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ABSTRACT

Temporal prefetching offers great potential, but this potential is

difficult to achieve because of the need to store large amounts of

prefetcher metadata off chip. To reduce the latency and traffic of

off-chip metadata accesses, recent advances in temporal prefetching

have proposed increasingly complex mechanisms that cache and

prefetch this off-chip metadata. This paper suggests a return to sim-

plicity: We present a temporal prefetcher whose metadata resides

entirely on chip. The key insights are (1) only a small portion of

prefetcher metadata is important, and (2) for most workloads with

irregular accesses, the benefits of an effective prefetcher outweigh

the marginal benefits of a larger data cache. Thus, our solution, the

Triage prefetcher, identifies important metadata and uses a portion

of the LLC to store this metadata, and it dynamically partitions the

LLC between data and metadata.

Our empirical results show that when compared against spatial

prefetchers that use only on-chip metadata, Triage performs well,

achieving speedups on irregular subset of SPEC2006 of 23.5% com-

pared to 5.8% for the previous state-of-the-art. When compared

against state-of-the-art temporal prefetchers that use off-chip meta-

data, Triage sacrifices performance on single-core systems (23.5%

speedup vs. 34.7% speedup), but its 62% lower traffic overhead

translates to better performance in bandwidth-constrained 16-core

systems (6.2% speedup vs. 4.3% speedup).
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1 INTRODUCTION

By hiding the long latencies of DRAM accesses, data prefetchers

are critical components of modern memory systems. One particu-

larly elusive form of prefetching, known as temporal prefetching, is

promising because it identifies arbitrary streams of correlated mem-

ory addresses, so it is suitable for irregular workloads, including

those that use pointer-based data structures. Unfortunately, tempo-

ral prefetching essentially memorizes pairs of correlated addresses,

so it requires metadata that are too large to fit on chip.

Early forms of temporal prefetching explored metadata orga-

nizations that reduce the cost of accessing off-chip metadata by

amortizing metadata accesses across multiple prefetches [45]. More

recently, the Irregular Stream Buffer (ISB) [24] introduced an alter-

native metadata representation that enabled portions of the meta-

data to be cached on chip. This metadata caching scheme was

subsequently revised with a new metadata management scheme

that includes a metadata prefetcher, reducing metadata traffic from

482% to 156% [47].

Unfortunately, the presence of off-chip metadata in these so-

lutions presents three issues. First, even 156% metadata traffic

overhead can impact performance, particularly in bandwidth-

constrained multi-core systems. Second, off-chip metadata traf-

fic consumes significant energy, since DRAM accesses consume

more power than on-chip operations. Third, off-chip metadata adds

hardware complexity because it requires (1) changes to the mem-

ory interface, (2) communication with the OS, and (3) methods for

managing the metadata, which can include both a metadata cache

replacement policy and a metadata prefetcher [47].

In this paper, we present a new temporal data prefetcher that

addresses these issues by not maintaining any off-chip metadata.

Our work is motivated by two observations. First, most of the cover-

age for state-of-the-art temporal prefetchers [24, 47] comes from a

small number of metadata entries, so it is possible to get substantial

coverage without storing megabytes of metadata (see Figure 1).

Second, the marginal utility of the last-level cache (LLC) [34, 40] is

typically outweighed by the benefits of an effective prefetcher. For

example, for the irregular subset of SPEC2006, reducing the cache

by 1 MB reduces performance by 7.4%, but a state-of-the-art irregu-

lar prefetcher with unlimited resources can improve performance

by 41.7%. Therefore, if we can distinguish the important metadata
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Figure 1: Metadata reuse distribution for the mcf bench-

mark: For an execution with 60Kmetadata entries, only 15%

of metadata entries are reused more than 15 times.

from the unimportant metadata, it can be profitable to use large

portions of the LLC to store important prefetcher metadata.

Thus, our prefetcher, which we call the Triage prefetcher, re-

purposes a portion of the LLC as ametadata store, and any metadata

that cannot be kept in the metadata store is simply discarded. To

identify important metadata, Triage uses the Hawkeye replacement

policy [25], which provides significant performance benefits for

small metadata stores, as it identifies frequently accessed metadata

over a long history of time. Of course, the ideal size of this metadata

store varies by workload, so we also introduce a dynamic cache

partitioning scheme that determines the amount of the LLC cache

that should be provisioned for metadata entries.

By forsaking off-chip metadata and by intelligently managing on-

chip metadata, Triage offers vastly different tradeoffs than state-of-

the-art temporal prefetchers. For example, Triage reduces off-chip

traffic overhead from 156.4% to 59.3%, it reduces energy consump-

tion for metadata accesses by 4-22×, and it offers a much simpler

hardware design. In Section 4, we show that in bandwidth-rich

environments these benefits come at the cost of lower performance

(due to limited prefetcher metadata), but they translate to better

performance in bandwidth-constrained environments.

Triage’s metadata organization has the added benefit of a sim-

plified and compressed metadata representation. In particular, we

find that without the need to store metadata off chip, tables [27]

are the most compact data structure for tracking correlated ad-

dresses, because they have no redundancy. By contrast, previous so-

lutions [24, 45] introduce varying degrees of metadata redundancy

to facilitate off-chip metadata management. Since our metadata

store competes for space in the LLC, this compactness has a direct

performance benefit.

To summarize, this paper makes several contributions:

• We introduce Triage, the first PC-localized1 temporal data

prefetcher that does not use off-chip metadata. Triage reuses

a portion of the LLC for storing prefetcher metadata, and it

includes a simple adaptive policy for dynamically provision-

ing the size of the metadata store.

1PC localization is a method of creating more predictable reference streams by sepa-
rating streams according to the address of the instruction that issued the load.

• We evaluate the Triage prefetcher using a highly accurate

proprietary simulator for single-core simulations and the

ChampSim simulator for multi-core simulations.

ś On single-core systems running SPEC 2006 workloads,

Triage significantly outperforms state-of-the-art prefetch-

ers that use only on-chip metadata (23.5% speedup for

Triage vs. 5.8% for the Best Offset Prefetcher, 2.8% for

SMS). Triage achieves 70% of the performance of a state-

of-the-art temporal prefetcher that uses off-chip metadata

(23.5% for Triage vs. 34.7% for MISB [47]).

ś On a 4-core system running CloudSuite server bench-

marks, BO+Triage improves performance by 13.7%, com-

pared to 8.6% for BO alone.

ś On a 16-core system running multi-programmed irregu-

lar SPEC workloads, where bandwidth is more precious,

Triage’s speedup is 6.2%, compared to 4.3% for MISB.

ś Triage also works well as part of a hybrid prefetcher that

combines a regular prefetcher with a temporal prefetchers

(24.8% for Triage+BO vs. 5.8% for BO alone on single-core

systems, and 10.0% for BO+Triage vs. 4.4% for BO alone

on 16-core systems).

• We outline and analyze the design space for temporal

prefetchers along three dimensions, namely, on-chip storage,

off-chip traffic, and overall performance, and we show that

Triage provides an attractive design point with previously

unexplored tradeoffs.

This paper is organized as follows. Section 2 places our work in

the context of prior work. Section 3 then describes our solution,

and Section 4 then presents our empirical evaluation. Finally, we

conclude in Section 5.

2 RELATED WORK

We now discuss related work in data prefetching. We start by con-

trasting our work with other temporal prefetchers before briefly

discussing other classes of prefetchers.

2.1 Temporal Prefetching

Temporal prefetchers are quite general because they learn address

correlations, that is, correlations between consecutive memory

accesses. Unfortunately, considerable state is required to memorize

correlations among addresses. To reduce metadata requirements,

some prefetchers forgo address correlation to learn weaker forms

of correlation, such as delta correlation [33], tag correlation [20],

or context-address pair correlation [36], but these simplifications

limit the scope of memory access patterns that can be learned.

Other prefetchers exploit address correlation by storing metadata

in off-chip memory [24, 45, 47], but the use of off-chip metadata has

limited the commercial viability of such prefetchers. Triage is the

first data prefetcher that reaps the benefit of PC-localized address

correlationÐthe most powerful form of temporal prefetching [24]Ð

without using any off-chip metadata.

Temporal prefetchers with off-chip metadata can be placed in

three categories based on their metadata organization. The primary

focus of all three categories is to reduce the overhead of accessing

off-chip metadata. While elements of Triage borrow from this ex-

isting work, Triage is designed with a completely different design



Temporal Prefetching Without the Off-Chip Metadata MICRO-52, October 12ś16, 2019, Columbus, OH, USA

goal, which is to prioritize the efficiency of the on-chip metadata

store. Therefore, Triage rethinks many design decisions for the

on-chip setting, removing complexity where possible and adding

new design components where necessary.

Table-Based Temporal Prefetchers. Joseph and Grunwald intro-

duced the idea of prefetching correlated addresses in 1997 with

their Markov Prefetcher [27]. The Markov Prefetcher uses a table

to record multiple possible successors for each address, along with

a probability for each successor, but unfortunately, it was too large

to be stored on-chip despite optimizations that reduced the size of

the table [20].

Therefore, early temporal prefetchers explore designs that re-

duce the traffic and latency costs of accessing an off-chip Markov

table [10, 43]. For example, Solihin et al., redundantly store a chain

of successors in each off-chip table entry, which increases table size

but amortizes the cost of fetching metadata for temporal streams

by grouping them in a single off-chip access. Triage also uses a

table-based organization, but there are two main differences. First,

Triage uses PC-localization, which improves coverage and accu-

racy and eliminates the need to track multiple successors in each

table entry, reducing table sizes by 2× to 4×. Second, Triage uses a

customized replacement policy that identifies the most useful table

entries, removing the need for off-chip metadata.

GHB-Based Temporal Prefetchers. Wenisch et al. find that ta-

bles are not ideal for organizing off-chip metadata because tempo-

ral streams can have highly variable lengths [9, 45]. Their STMS

prefetcher [45, 46] instead uses a global history buffer to record a

history of past memory accesses in an off-chip circular buffer. The

GHB reduces the latency of off-chip metadata accesses by amor-

tizing the cost of off-chip metadata lookup over long temporal

streams, and it reduces metadata traffic by probabilistically updat-

ing the off-chip structures. While the GHB improves significantly

over table-based solutions, it suffers from three drawbacks that

are addressed by Triage: (1) The GHB makes it infeasible to com-

bine address correlation with PC-localization, which is a technique

to improve predictability by correlating addresses that belong to

the same PC, (2) its metadata cannot be cached because it is orga-

nized as a FIFO buffer, and (3) it incurs metadata traffic overhead

of 200-400%.

Irregular Stream Buffer. The Irregular Stream Buffer (ISB) com-

bines address correlation with PC-localization by proposing a new

off-chip metadata organization [24, 47]. In particular, ISB maps PC-

localized correlated address pairs to consecutive addresses in a new

address space, called the structural address space. Furthermore, ISB

caches a portion of the physical-to-structural address mappings

on chip by synchronizing the contents of the on-chip metadata

cache with the TLB and by hiding the latency of off-chip metadata

accesses during TLB misses. While ISB significantly improves cov-

erage and accuracy of temporal prefetchers, it still incurs metadata

traffic overheads of 200-400%, and its metadata cache utilization

is quite poor due to the absence of spatial locality in the metadata

cache.

MISB [47] addresses these issues by divorcing ISB’s metadata

cache from the TLB. In particular, MISBmanages themetadata cache

at a fine granularity, and it hides the latency of off-chip metadata

accesses by employing highly accurate metadata prefetching. As a

result, MISB reduces the traffic overhead of temporal prefetchers

to 156%. Like MISB, Triage uses fine-grained metadata caching, but

there are several differences between MISB and Triage: (1) Triage

uses a space-efficient table-based organization that is more suited

for on-chip metadata (MISB’s metadata footprint is 2× larger than

Triage’s metadata footprint because it tracks each correlation in two

entries, a physical to structural address mapping, and a structural

to physical address mapping), (2) Triage uses a smart metadata

management policy for its on-chip metadata, and (3) Triage has no

metadata traffic overhead.

Finally, some prefetchers do store their metadata in on-chip

caches [6, 17, 44], but the metadata storage requirements for these

prefetchers is relatively small (hundreds of KB), so there was no

question that they would be stored somewhere on chip. By contrast,

Triage shows how prefetchers whose metadata are too large to

fit on chip can avoid storing off-chip metadata. Finally, metadata

optimizations have been explored in the context of memory com-

pression [13, 19, 48], but these techniques are orthogonal to our

work.

2.2 Non-Temporal Prefetching

Many prefetchers predict sequential [21, 28, 42] and strided [3,

15, 22, 32, 35, 37, 39] accesses, and while this class of prefetchers

has enjoyed commercial success due to their extremely compact

metadata, their benefits are limited to regular memory accesses.

Some irregular memory accesses can be prefetched by exploiting

spatial locality [7, 8, 26, 30, 44], such that recurring spatial pat-

terns can be prefetched across different regions in memory. For

example, the SMS prefetcher [44] uses on-chip tables to correlate

spatial footprints with the program counter that first accessed a

memory region. These spatial locality-based prefetchers tend to

be highly aggressive, issuing prefetches for many lines in a region

at once. More importantly, they are limited to a very special class

of irregular accesses that does not include access to pointer-based

data structures, such as trees and graphs.

Other prefetchers directly target pointers by either using com-

piler hints or hardware structures to detect pointers [11, 12, 14, 38].

For example, Content Directed Prefetching [12] searches the

content of cache lines for pointer addresses and eagerly issues

prefetches for all pointers. Such prefetchers waste bandwidth as

they prefetch many pointers that will not be used.

3 OUR SOLUTION

Triage repurposes on-chip cache space to store prefetcher metadata.

To effectively utilize valuable on-chip cache space, Triage considers

the following design questions:

• How should metadata be represented to maximize space

efficiency?

• Which metadata entries are likely to be the most useful?

• How much of the last-level cache should be dedicated to the

metadata store?

We now explain how our solution addresses these questions.

Metadata Representation. Triage learns PC-localized correlated

address pairs and records them in a table. For example, the top side
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of Figure 2 shows a stream of memory references that is segregated

into two PC-localized streams, and the bottom side shows the con-

ceptual organization of Triage’s metadata. In particular, each entry

in Triage maps an address to its PC-localized neighbor.

Global 

Stream 
A X Y B Z C 

PC
1 

A B C 

PC
2 

X Y Z 

Time 

Addr Neighbor 

A B 

B C 

X Y 

Y Z 

Figure 2: Triage’s metadata organization.

While tables are a poor choice for organizing off-chip metadata

(see Section 2), their space efficiency makes them an ideal choice for

organizing on-chip metadata. In particular, compared to other meta-

data organizations [24, 45, 47], our table-based organization avoids

metadata redundancy by representing each correlated address pair

only once. One drawback of our table-based organization is that

higher degree prefetching requires multiple metadata lookups, but

this penalty is significantly lower when the metadata resides com-

pletely on chip (~20 cycles for accessing each LLC-resident metadata

entry vs. 150-400 cycles for accessing each off-chip metadata entry.)

Section 3.2 provides details about Triage’s use of compact address

representations to further reduce the metadata footprint.

Metadata Replacement. Triage’s metadata replacement policy

manages the contents of its on-chip metadata store. We build

Triage’s metadata replacement policy on three observations. First,

most metadata reuse can be attributed to a few metadata entries

(see Figure 1). Second, even among the metadata entries that are

frequently reused, fewer still account for prefetches that are not

redundant, that is, prefetch requests that do not hit in the cache. Fi-

nally, metadata should be managed and evicted at a fine granularity

because Triage targets irregular memory accesses, which exhibit

poor spatial locality.

To accomplish these goals, we modify Hawkeye [25], a state-of-

the-art cache replacement policy, which learns from the optimal

solution for past memory references. To emulate the optimal pol-

icy for past memory references, Hawkeye examines a long history

of past cache accesses (8× the size of the cache), and it uses a

highly efficient algorithm to reproduce the optimal solution. Fig-

ure 3 shows a high-level overview of Hawkeye, where OPTgen is

OPTgen
Hawkeye 

Predictor
Metadata

Store

Computes the OPT 

solution for the past

Remembers past OPT 

decisions

Metadata 

Accesses 

 OPT

 hit/miss

 

Insertion 

Priority

 

PC

Figure 3: Triage’s metadata replacement is based on the

Hawkeye [25] cache replacement policy.

used to train a PC-based predictor; the predictor learns whether

loads by a given load instruction (PC) are likely to hit or miss with

the optimal solution. On new cache accesses, the predictor informs

the cache whether the line should be inserted with high priority or

low priority.

Because the Hawkeye policy can capture long-term reuse, it is

a good fit for Triage, where the replacement policy must not be

overwhelmed by the many useless metadata entries. We modify

the Hawkeye policy so that the policy is trained positively only

when the metadata yields a prefetch that misses in the cache. We

accomplish this by delaying Hawkeye’s training when the prefetch

request associated with a metadata entry is actually issued to mem-

ory. If the prefetch request hits in the cache, then the metadata

reuse is ignored and is not seen by any component of the Hawkeye

policy.

In Section 3.2, we explain how Triage is able to manage metadata

at a finer granularity than the line size of the last-level cache.

Adjusting the Size of the Metadata Store. To avoid interference

between application data and metadata, we partition the last-level

cache by assigning separate ways to data and metadata. Since differ-

ent applications require different metadata store sizes, our solution

dynamically determines the number of ways that should be allo-

cated to metadata. Our dynamic cache allocation scheme is based

on two insights. First, the OPTgen component of Hawkeye can

cheaply model the optimal hit rate at different metadata store sizes,

so OPTgen can be used to estimate the profitability of devoting

more cache space to metadata entries. Second, the optimal hit rate

scales linearly with cache size, so we need not estimate optimal hit

rate at every possible metadata store sizeÐwe can instead estimate

hit rate at two points and interpolate.

More concretely, we maintain two copies of OPTgen (each copy

consumes 1KB space), and we use these copies as sandboxes to

evaluate the optimal hit rate at different metadata store sizes. If

Triage finds that an increase in the metadata store size increases op-

timal metadata hit rate by more than 5%, it increases the number of

ways that are allocated to metadata entries. Similarly, if Triage finds

that a reduction of the metadata store size decreases the metadata

hit rate by less than 5%, it reduces the number of ways allocated

to metadata entries. For simplicity, Triage chooses between three

possible allocations for metadata store(0 MB, 512 KB and 1 MB),

but our scheme can be extended to any number of partitioning con-

figurations by time-sharing the OPTgen copies to evaluate different

metadata store sizes.

The partition sizes are re-evaluated periodically to adapt to

changes in program phases.
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3.1 Overall Operation

CPU

L1

L2

   LLC

Training
Unit

Triage 
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Offchip Memory
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Repl State

Metadata 
Update

Data 
Read

Metadata 
Read

Cache Misses

1

2

3

4

Update Repl 
State

Update 
Partition Size5

Figure 4: Overview of Triage.

Figure 4 shows the overall design of Triage, where we see that

a portion of the LLC is re-purposed for Triage’s metadata store.

On every LLC access, the metadata portion of the LLC is probed

with the incoming address to check for a possible metadata cache

hit 1 . If themetadata entry is found, it is read to generate a prefetch

request 2 . Regardless of whether the load resulted in ametadata hit

or miss, the Training Unit is updated (as explained below), and the

newly trained metadata entry is added (or updated) in the metadata

store 3 . The metadata replacement state is updated on metadata

misses and metadata hits that generate a successful prefetch 4 ,

and the metadata replacement state periodically recomputes the

amount of LLC that should be used as a metadata cache 5 . We

now explain these operations in more detail.

Training. The Training Unit keeps the most recently accessed

address for each PC.When a new access B arrives for a given PC, the

Training Unit is queried for the last accessed addressA by the same

PC. Addresses A and B are then considered to be correlated, and

the entry (A,B) is stored in Triage’s metadata store; the metadata

store is indexed by the first address in the pair (A in this example).

To avoid changing entries due to noisy data, each mapping in

Triage’s metadata store has an additional 1-bit confidence counter.

If the Training Unit determines that A’s neighbor differs from the

value in the metadata store, then the confidence counter is decre-

mented. If the Training Unit determines that A’s neighbor matches

the value in the metadata store, then the confidence counter is

incremented. The neighbor is changed only when the confidence

counter drops to 0.

Prediction. Upon arrival of a new address A, Triage indexes the

metadata by address A to find any available metadata entry. If an

entry (say (A,B)) is found, Triage issues a prefetch for B. If an entry

is not found, no prefetch is issued.

Metadata Replacement Updates. Our metadata replacement is

based on the Hawkeye policy [25], and like the Hawkeye policy,

our metadata replacement policy is trained on the behavior of a

few sampled sets. The metadata replacement predictors are trained

on all metadata accesses, except those, that result in redundant

prefetches. The replacement predictors are probed on all metadata

accesses, including hits and misses, to update the per-metadata-

entry replacement state. For more details on how the Hawkeye

policy works, we refer the reader to the original paper [25].

Metadata Partition Updates. Triage partitions the cache between

data and metadata by using way partitioning. The partitions are

recomputed every 50,000 metadata accesses. If Triage decides to

increase the amount of metadata store, dirty lines are flushed and

the newly allocated/deallocated portion of the cache is marked

invalid immediately. If Triage decides to decrease the amount of

metadata store, lines with metadata entries are marked invalid.

For shared caches, Triage computes the metadata allocation for

each core individually (by using per-core OPTgens) and allots the

corresponding portion of the LLC for each core’s metadata. For

example, if two cores are sharing a 4MB cache, and if core 0 wants

1MB of metadata and core 1 wants 512KB of metadata, then Triage

allocates 1.5MB of the shared LLC for metadata, and it partitions

the metadata store in a 2:1 ratio among the two cores.

3.2 Hardware Design

Each metadata entry in Triage is 4 bytes long, but LLC line sizes

are typically 64 to 128 bytes. Triage’s metadata entries within an

LLC line must be organized at a fine granularity because meta-

data entries for irregular prefetchers do not exhibit spatial locality.

Therefore, we store multiple tagged metadata entries within each

LLC cache line. For example, for a 64 byte LLC line, we store 16

metadata entries within a cache line. The metadata entries within a

cache line are stored in the following format: tag-entry-tag-entry-

· · · -tag-entry. On a metadata lookup, we first choose a physical

LLC cache line from the metadata store, and we then find the rele-

vant metadata entry by comparing the sub-tags within each cache

line.

To store the metadata within 4 bytes, we use a compressed tag.

To understand our compressed tag, realize that each physical ad-

dress has a cache line offset of 6 bits and set_id of 11 bits, and the

remaining bits are tags. We construct a lookup table to compress the

tag to 10 bits. Thus, each metadata entry records the compressed

tag of the trigger address and the compressed tag and set_id of the

next address, which require a total of 31 bits2. The remaining bit is

used as a confidence counter.

To identify the finer-grain metadata entries within a cache line,

we require additional logic in the form of comparators and mul-

tiplexors. The extra logic is similar to that used in the Amoeba-

Cache [31] and may incur additional latency or pipeline stages, but

only for metadata accesses. In Section 4.6, we describe a sensitivity

study that penalizes LLC access latencies for both data and meta-

data by up to 6 cycles, and we see that the performance impact is

minimal (around 1% lower speedup on average for the irregular

SPEC workloads).

2The set_id of the trigger address is implicit in a set-associative cache, so it does not
need to be stored.
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4 EVALUATION

4.1 Methodology

We evaluate Triage on single-core configurations using a cycle-level

industrial simulator that models ARMv8 AArch64 CPUs and that

has been correlated to be highly accurate against commercial CPU

designs. The parameters of the CPU and memory system model

used in the simulation are shown in Table 1. This model uses a

simple memory model with fixed latency, but it models memory

bandwidth constraints accurately.

Core Out-of-order, 2GHz,

4-wide fetch, decode, and dispatch

128 ROB entries

TLB 48-entry fully-assoc L1 I/D-TLB

1024-entry 4-way assoc L2 TLB

L1I 64KB, 4-way assoc, 3-cycle latency

L1D 64KB, 4-way assoc, 3-cycle latency

Stride prefetcher

L2 512KB, private, 8-way assoc

11-cycle load to use latency

L3 2MB/core, shared, 16-way assoc

20-cycle load-to-use latency

DRAM Single-Core:

85ns latency, 32GB/s bandwidth

Multi-Core:

8B channel width, 800MHz,

tCAS=20, tRP=20, tRCD=20

2 channels, 8 ranks, 8 banks, 32K rows

32GB/s bandwidth

Table 1: Machine Configuration

For multi-core evaluation of Triage, we use ChampSim [2, 29], a

trace-based simulator that includes an out-of-order core model and

a detailed memory system. ChampSim’s cache subsystem includes

FIFO read and prefetch queues, with demand requests having higher

priority than prefetch requests. The main memory model simulates

data bus contention, bank contention, and bus turnaround delays;

bus contention increases memory latency. Our modeled processor

for ChampSim also uses the configuration shown in Table 1. We

confirm that the performance trends on the two simulators are the

same.

Benchmarks. We present single-core results for a subset of

SPEC2006 benchmarks that are memory bound [18] and are known

to have irregular access patterns [24]. For SPEC benchmarks we

use the reference input set. For all single-core benchmarks, we

use SimPoints [41] to find representative regions. Each SimPoint

is warmed up for 200 million instruction and run for 50 million

instructions, and we generate at most 10 SimPoints for each SPEC

benchmark.

We present multi-core results for CloudSuite [16] and multi-

programmed SPEC benchmarks. For CloudSuite, we use the traces

provided with the 2nd Cache Replacement Championship. The

traces were generated by running CloudSuite in a full-system simu-

lator to intercept both application and OS instructions. Each Cloud-

Suite benchmark includes 6 samples, where each sample has 100

million instructions. We warm up for 50 million instructions and

measure performance for the next 50 million instructions.

For multi-programmed SPEC simulations, we simulate 4, 8 and

16 cores, such that each core runs a benchmark chosen uniformly

randomly from all memory-bound benchmarks, including both reg-

ular and irregular programs. Overall, we simulate 80 4-core mixes,

80 8-core mixes, and 80 16-core mixes. Of the 80 mixes, 30 mixes

include random mixes of irregular programs only, and the remain-

ing 50 mixes include both regular and irregular programs. For each

mix, we simulate the simultaneous execution of SimPoints of the

constituent benchmarks until each benchmark has executed at least

30 million instructions. To ensure that slow-running applications

always observe contention, we restart benchmarks that finish early

so that all benchmarks in the mix run simultaneously throughout

the execution. We warm the cache for 30 million instructions and

measure the behavior of the next 30 million instructions.

Prefetchers. We evaluate Triage against two state-of-the-art on-

chip prefetchers, namely, Spatial Memory Streaming (SMS) [44] and

the Best Offset Prefetcher (BO) [32]. SMS captures irregular patterns

by applying irregular spatial footprints across memory regions.

BO is a regular prefetcher that won the Second Data Prefetching

Championship [1].

We also evaluate Triage against existing off-chip tempo-

ral prefetchers, namely, Sampled Temporal Memory Streaming

(STMS) [45], Domino [4], and MISB [47]. STMS, Domino, and MISB

represent the state-of-the-art in temporal prefetching. For simplic-

ity, we model idealized versions of STMS and Domino, such that

their off-chip metadata transactions complete instantly with no la-

tency or traffic penalty. Our performance results for these prefetch-

ers represent the upper bound performance of these prefetchers.

For MISB, we faithfully model the latency and traffic of all metadata

requests.

We evaluate two versions of Triage, static and dynamic. The

static version picks a fixed metadata store size that gives the best

average performance and statically partitions the LLC using this

size; we find that the best static metadata store size for a 2MB LLC is

1MB on both simulators. The dynamic version of Triage modulates

the size of the metadata store dynamically as described in Section 3.

All prefetchers train on the L2 access stream, and prefetches are

inserted into the L2. The metadata is stored in L3. Unless specified,

all prefetchers use a prefetch degree of 1, which means that they

issue at most one prefetch on every trigger access.

4.2 Comparison With Prefetchers That Store
Metadata On Chip

Figure 5 shows that Triage outperforms state-of-the-art prefetchers

that use only on-chip metadata. In particular, Triage achieves a

speedup of 23.4% and 23.5% for the static and dynamic configura-

tions, respectively, whereas BO and SMS see a speedup of 5.8% and

2.2%, respectively. Triage’s superior performance can be explained

by its higher coverage (42.0% for Triage vs. 13.0% for BO and 4.6%

for SMS) and higher accuracy (77.2% for Triage vs. 43.3% for BO

and 39.6% for SMS) as shown in Figure 6.
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Figure 5: Triage outperforms BO and SMS
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Figure 6: Triage improves coverage and accuracy.

Triage-Dynamic is slightly better than Triage-Static as it modu-

lates the metadata store size for mcf and sphinx3. As we will see

later, the benefit of our dynamic scheme is most pronounced in a

shared cache setting where the cache is shared by both regular and

irregular benchmarks.

Figure 7 sheds more insight on Triage’s performance benefits, as

we see that the performance benefit of irregular prefetching signifi-

cantly outweighs the performance loss of reduced LLC capacity. In

particular, we see that an optimistic version of Triage that is given

a 1 MB on-chip metadata store in addition to its usual LLC capacity

achieves a 31.2% speedup. On the other hand, a system with no

Triage and a reduced LLC capacity of 1 MB achieves 7.4% lower

performance than the baseline. This loss in performance is easily

compensated by Triage’s benefits as Triage sees an overall speedup

of 23.4% with a 1 MB metadata store and a 1 MB LLC.
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Figure 8: Results on regular SPEC 2006 benchmarks.

For completeness, Figure 8 compares all prefetchers on the re-

maining memory-intensive SPEC 2006 benchmarks3. Because these

benchmarks are regular, Triage does not outperform BO, but we see

that Triage’s dynamic partitioning avoids hurting performance on

most benchmarks as it picks a 512 KB metadata store instead of a 1

MB metadata store. On bzip2, Triage hurts performance because it

detects metadata reuse, but the prefetches issued by these metadata

entries are not enough to cover the loss in LLC space. As future

work, more sophisticated partitioning schemes that account for

cache utility more accurately could help improve Triage in these

scenarios.

Sensitivity to Replacement Policy. Figure 9 compares the perfor-

mance of Triage at different metadata store sizes and with dif-

ferent replacement policies (assuming no loss in LLC capacity).

We make two observations. First, with just 1MB of metadata store,

Triage achieves 75% of the performance of an idealized PC-localized

temporal prefetcher, which is significant because typical temporal

prefetchers consume tens of megabytes of off-chip storage. This

result confirms the main insight of Triage that most prefetches can

be attributed to a small percentage of metadata entries. Our second

observation is that a smart replacement policy can improve the

effectiveness of Triage at smaller metadata cache sizes, but when

the metadata cache is sufficiently large (1 MB), the gap between

LRU and Hawkeye shrinks. In particular, with a 256 KB metadata

cache, Triage with an LRU policy achieves 7.7% speedup whereas

Triage with the Hawkeye policy sees a 13.7% speedup.

Hybrid Prefetchers. Since Triage targets irregular memory ac-

cesses, it makes sense to evaluate it as a hybrid with regular mem-

ory prefetchers, such as BO. Figure 10 shows that a BO+Triage

hybrid outperforms BO (24.8% speedup for BO+Triage vs. 5.8% for

BO), which shows that Triage successfully prefetches lines that BO

cannot.

3For astar, gcc, and soplex, we show results for the reference inputs, which are more
regular.
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4.3 Comparison With Prefetchers That Use
Off-Chip Metadata

Existing temporal data prefetchers use tens of megabytes of off-chip

metadata. Compared to these prefetchers, Triage provides a simpler

design and a more desirable tradeoff between performance and

off-chip metadata traffic. Figure 11 compares Triage against overly

optimistic idealized versions of STMS and Domino and against a

realistic version of MISB [47]. We see that Triage outperforms ideal-

ized STMS and Domino (23.5% for Triage vs 14.5% for Domino and

15.3% for STMS). Triage doesn’t match MISB’s 34.7% performance,

but we see that it incurs much less traffic overhead (bottom graph

in Figure 11). In particular, compared to a baseline with a 2 MB

cache and no prefetching, Triage increases traffic by 59.3%, whereas

STMS, Domino and MISB increase traffic by 482.9%, 482.7%, and

156.4% respectively.
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Figure 11: Triage reduces traffic compared to off-chip tem-

poral prefetcherswhile offering good performance improve-

ments.

To put these results in context, Figure 12 compares all temporal

prefetchers and the Best Offset (BO) prefetcher along two axes,

namely performance and traffic overhead. STMS, Domino, and

MISB all use off-chip metadata, so they incur high off-chip traffic

overheads and are in general more complex due to the complications

introduced by storing metadata off chip. Triage outperforms STMS

and Domino while eliminating metadata overheads. Triage has

lower performance than MISB, but it reduces traffic by more than

half, offering an attractive design point for temporal prefetching. In

fact, Triage’s traffic overhead of 59.3% is comparable to BO’s 33.8%

traffic overhead. BO’s traffic overhead can be attributed to its large

volume of inaccurate prefetches on irregular programs. By contrast,

Triage is more accurate, but it incurs traffic due to an effectively

smaller LLC.
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Figure 13: Triage is more energy efficient than MISB.

Energy Evaluation. Triage is more energy-efficient than other

temporal prefetchers. Figure 13 shows that Triage’s metadata ac-

cesses are 4 − 22× more energy efficient than MISB’s. To estimate

the energy consumption of Triage’s metadata accesses, we count

the number of LLC accesses for metadata, assuming 1 unit of en-

ergy for each LLC access. To estimate the energy consumption of

MISB’s memory accesses, we count the number of off-chip meta-

data accesses and multiply it by the average energy of a DRAM

access. Since a DRAM access can consume anywhere from 10× to

50× more energy than an LLC access [5, 23], we assume that each

DRAM access consumes 25 units of energy, and we add error bars

to account for the lower bound (10 units of energy per DRAM ac-

cess) and upper bound (50 units of energy DRAM access) of MISB’s

overall energy consumption.

At higher degrees, Triage’s table-based design requires multiple

LLC lookups, which will increase its overall energy requirements.

In particular, we find that Triage’s energy consumption doubles at

degree 8, which is still much more energy efficient than MISB.
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4.4 Evaluation on Server Workloads

To evaluate its effectiveness for server workloads, we evaluate

Triage on the CloudSuite benchmark suite running on a 4-core

system (See Figure 14). On the highly irregular Cassandra, Clas-

sification, and Cloud9 benchmarks, Triage improves performance

by 7.8%, whereas BO improves performance by 4.8% and SMS sees

no performance gains. On the more regular Nutch and Streaming

benchmarks, SMS and BO do well (10.9% and 14.7% performance

improvement), whereas Triage sees no performance improvement

because temporal prefetchers cannot prefetch compulsory misses.

In a hybrid setting, BO and Triage compose well, as Triage

works well for the irregular benchmarks and BO works well for

the regular ones. In particular, a BO+Triage hybrid outperforms all

other prefetchers as it improves performance by 13.7%, whereas BO

alone improves performance by only 8.6% (50.6% miss reduction

for BO+Triage vs. 31.4% miss reduction for BO). A BO+SMS hybrid

(5.8% speedup) does not provide much improvement and, in fact,

degrades performance compared to BO alone, because both BO and

SMS target regular access patterns, so when they are combined,

their collective inaccuracy creates more contention for bandwidth.

Figure 14 also shows that Triage-Dynamic provides benefit over

a static version of Triage in this setting, so we conclude that our

dynamic scheme makes good decisions about trading off cache

space for metadata storage. This benefit is most pronounced for

the irregular benchmarks (Cassandra, Classification, and Cloud9)

where the dynamic version outperforms the static scheme by 2.3%

(7.8% for Triage-Dynamic vs. 5.5% for Triage-Static).
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Figure 14: Triage works well for server workloads.

4.5 Evaluation on Multi-Programmed SPEC
Mixes

Figure 15 shows that for multi-programmed mixes of SPEC pro-

grams sharing the last-level cache, Triage-Dynamic is a significant

improvement over Triage-Static. In particular, for mixes of irreg-

ular workloads sharing an 8 MB LLC on a 4-core system, a static

version of Triage with 4 MB of metadata and 4 MB of data improves

performance by only 4.8%. By contrast, Triage-Dynamic improves

performance by 10.2%.
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Figure 15: Triage-Dynamic improves over Triage-Static for

shared caches.

These results can be explained by noting that the LLC is a more

valuable resource in shared systems. Triage-Dynamic works well in

this setting because it can (1) modulate the portion of the LLC ded-

icated to metadata depending on the expected benefit of irregular

prefetching, and (2) distribute the available metadata store among

individual applications such that the application which benefits

the most from irregular prefetching gets a larger portion of the

metadata store.

Comparison With Prefetchers That Store Metadata On Chip. Fig-

ure 16 shows that Triage compares favorably to spatial prefetchers,

such as BO, on 4-core systems. In particular, a combination of BO

and Triage-Dynamic outperforms BO alone on a 4-core system, as

we see that BO improves performance by 10.6%, Triage-Dynamic

improves performance by 10.2%, and a combination of BO and

Triage-Dynamic improves performance by 15.9%. These results re-

iterate that Triage can prefetch irregular memory accesses that BO

cannot.
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Figure 16: Triage works well on multi-programmed mixes

of irregular programs running on a 4-core system.
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We observe similar trends on 8-core and 16-core systems. On

an 8-core system, BO+Triage improves performance by 12.6% (vs.

7.4% for BO alone), and on a 16-core system, BO+Triage improves

performance by 10.0% (vs. 4.4% for BO alone).

Comparison With Prefetchers That Store Metadata Off Chip. Fig-

ure 17 compares the average speedup of Triage withMISB on 2-core,

4-core, 8-core, and 16-core systemswhere the cache is shared among

different irregular programs. We see that while MISB outperforms

Triage on a 2-core system (12.1% for Triage vs. 16.0% for MISB), its

benefit shrinks on an 8-core system (8.8% for Triage vs. 10.0% for

MISB). On a 16-core system, Triage outperforms MISB (6.2% for

Triage vs. 4.3% for MISB). These trends suggest that MISB’s perfor-

mance does not scale well to bandwidth-constrained environments

because of its large metadata traffic overheads. By contrast, Triage’s

performance scales well with higher core counts.
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Figure 17: Triage outperforms MISB in bandwidth-

constrained environments.

Comparison On Mixes With Regular Programs. For completeness,

Figure 18 shows that Triage composes well with BOwhen the multi-

programmed mixes include both regular and irregular programs. In

particular, for a 4-core system, BO+Triage improves performance

by 23%, whereas BO alone improves performance by 19.3%. Triage

alone does not work well in this setting (4.3% speedup) because it

cannot prefetch compulsory misses for regular programs.
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Figure 18: Triageworkswell onmulti-programmedmixes of

regular and irregular programs running on a 4-core system.

The dynamic version of Triage is essential in these scenarios

because the cache is shared among irregular programsÐwhich

benefit from TriageÐand regular programsÐwhich do not benefit

from Triage. For regular programs, a static version of Triage would

reduce effective LLC capacity without providing much prefetching

benefit. Figure 19 shows the number of ways allocated to each core

on this 4-core system, and we see that (1) the total number of ways

allocated to the metadata store varies across mixes, and (2) each

application receives varying amounts of metadata space depending

on a dynamic estimate of the usefulness of the metadata.

For example, the leftmost bar in Figure 19 represents a mix

with 1 regular program (milc on core 0), two irregular programs

(xalancbmk on core 1 and omnetpp on core 3), and one reg-

ular/irregular program (bzip2 on core 2). For this mix, Triage-

Dynamic allocates an average of 22% of the LLC capacity to meta-

data (the maximum metadata allocation can go up to 50% of the

LLC). It distributes this metadata store appropriately among differ-

ent workloads: Milc is not allocated any metadata space because it

does not benefit from irregular prefetching, omnetpp is allocated

the maximum metadata space (10% of total LLC capacity) because it

benefits the most from irregular prefetching, and the other bench-

marks are allocated 6% each.

4.6 Sensitivity Studies

Sensitivity to Degree. Figure 20 shows the performance of our

prefetchers at different prefetch degrees. As we increase degree

from 1 to 8, Triage’s performance grows from 23.5% to 36.2%, and

its performance saturates at a degree of 8. By comparison, BO and

SMS at degree 8 improve performance by 11.1% and 7.0% (over a

baseline with no prefetcher), respectively. Triage is consistently

more accurate than BO: At higher degrees, BO’s accuracy is only

21.5% (vs. 50.5% for Triage).

Sensitivity to Epoch Length. Triage-Dynamic periodically recom-

putes the fraction of the LLC that should be repurposed formetadata.

We find that Triage’s metadata partitions are stable over long peri-

ods of time and that resizing partitions more frequently than 50,000

LLC accesses does not affect performance. Thus, we conclude that

while metadata partition sizes vary significantly across benchmarks,

they tend to change infrequently for a given benchmark.

Sensitivity to Changes in Cache Latency. As discussed in Sec-

tion 3.2, the metadata portion of the LLC is managed at a finer

granularity than the data portion of the LLC. We expect these mod-

ifications to only affect the latency of metadata accesses, not the

latency of data accesses. However, to study the worst-case scenario,

we increase the latency of accessing both data and metadata up to

6 cycles, and we find that even with 6 cycles of additional latency,

we only see a 1% drop in performance (normalized to a baseline

with no prefetching and no extra latency).

5 CONCLUSIONS

Temporal prefetchers can be highly effective for irregular mem-

ory access patterns, but they have yet to be commercially adopted

because they need to store large amounts of metadata in DRAM.

This off-chip metadata adds complexity, adds energy overhead, and

incurs significant traffic. In this paper, we have presented Triage,
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Figure 19: Dynamic Triage allocates different metadata store sizes to different cores.
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Figure 20: Sensitivity to Prefetch degree.

a temporal prefetcher that removes the off-chip metadata require-

ment and stores metadata only on chip, making it practical to im-

plement.

To store its metadata on chip, Triage re-purposes the LLC as

a metadata store because for irregular workloads, the marginal

benefit of a larger cache is significantly outweighed by the benefit

of an effective temporal prefetcher. To ensure that Triage does

not degrade performance for workloads that do not benefit from

irregular prefetching, Triage includes a dynamic mechanism for

intelligently partitioning the cache between data and metadata

based on the utility of the metadata.

We have shown that when compared with prefetchers that only

use on-chip metadata, Triage provides a significant performance

advantage (23.5% speedup for Triage vs. 5.8% for BO). When com-

pared with state-of-the-art temporal prefetchers that use off-chip

metadata, Triage significantly reduces traffic overhead (59.3% traf-

fic overhead for Triage vs. 156.4% for MISB). This traffic reduction

translates to better speedup in bandwidth-constrained 16-core sys-

tems, where Triage outperforms MISB despite having access to a

metadata store that is orders of magnitude smaller. Triage’s traffic

overhead is comparable to state-of-the-art spatial prefetchers, such

as BO, which speaks to its practicality. Overall, Triage provides

a new and attractive design point for temporal prefetchers with

vastly different tradeoffs than previous solutions.
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