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Abstract

Lenses are bidirectional functions that satisfy a set of “round-tripping laws.” Lenses

arise in a number of domains, and can implement serializer/deserializer pairs,

parser/pretty printer pairs, and incremental data structure transformers.

Domain-specific languages like Boomerang, Augeas, GRoundTram, BiFluX, BiYacc,

Brul, BiGUL, and HOBiT allow programmers to write both transformations with a

single program, and guarantee the transformations satisfy the round-tripping laws.

However, writing in domain-specific lens languages can be hard, requiring the user

to reason about fiddly details of the transformations, often within the context of a

complex type system.

In this work we introduce Optician, which provides an alternative method of

developing lenses – synthesis. We develop a synthesis engine for Boomerang, a lens

language for string transformations. Pairs of regular expressions serve as types for

Boomerang lenses, which transform strings between the languages of those regular

expressions. Instead of manually writing Boomerang lenses, programmers merely need

to provide the type of the desired lens and a set of input/output examples describing

the lens’s behavior. Optician will then synthesize a lens between the provided types

that exhibits the demonstrated behavior. We demonstrate how to synthesize three

classes of lenses: bijective lenses, quotient lenses, and symmetric lenses. Bijective

lenses encode bijections, quotient lenses encode bijections modulo an equivalence

relation, and symmetric lenses encode bidirectional transformations that may discard

information when going from one format to another.

We define a synthesizer that involves two cooperating procedures. One procedure

proposes a candidate space of lenses, the second procedure searches through that

space.

To synthesize quotient lenses, regular expressions are augmented with equivalence

information, and the synthesizer generates lenses that translate between the repre-
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sentative elements of the equivalence classes. To synthesize symmetric lenses, regular

expressions are augmented with probability distributions, and the synthesis algorithm

aims to avoid information loss.

We evaluate Optician from a variety of benchmarks taken from the lens and

synthesis literature, and find that we are able to synthesize all the lenses in our

benchmark suite. We have integrated Optician into the Boomerang codebase, enabling

users to either synthesize their lenses or write them by hand.
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Chapter 1

Introduction

Programs that analyze consumer information, performance statistics, transaction logs,

scientific records, and many other kinds of data are essential components in many

software systems. Oftentimes, the data analyzed comes in ad hoc formats, making tools

for reliably parsing, printing, cleaning, and transforming data increasingly important.

Programmers often need to reliably transform back-and-forth between formats, not

only transforming source data into a target format but also safely transforming target

data back into the source format. Lenses [17] are back-and-forth transformations

that provide strong guarantees about their round-trip behavior, guarding against data

corruption while reading, editing, and writing data sources.

A lens comprises a number of functions, depending on the class of lenses. Generally,

there are one or more transformations that translate from the left-hand or source

format, into the right-hand or target format; and there are one or more transformations

that translate from the target format back to the source format. A benefit of lens-based

languages is that they use a single term to express both left-to-right and right-to-left

transformations. Furthermore, well-typed lenses give rise to functions guaranteed to

satisfy desirable invertibility properties.
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let name = [A−Z][a−z]∗
let wsp = [ \t\r\n\f]+
let lfm = name . ”,” (wsp . name)∗
let fml = (name . wsp)∗ . name
let name swap : (lens in fml <=> lmf) =

swap
(id(name) . del ”,”)
(swap id(wsp) id(name))∗

Figure 1.1: Bijective lens that converts names formatted like “Miltner, Anders Francis”
to names formatted like “Anders Francis Miltner” and back again.

Lens-based languages are present in a variety of tools and have found mainstream

industrial use. Boomerang [4, 6] lenses provide guarantees on transformations between

ad hoc string document formats. Augeas [35], a popular tool that reads Linux system

configuration files, uses the left-to-right part of a lens to transform configuration files

into a canonical tree representation that users can edit either manually or program-

matically. It uses the lens’s right-to-left transformations to merge the edited results

back into the original string format. Other lens-based languages and tools include

GRoundTram [24], BiFluX [49], BiYacc [63], Brul [62], BiGUL [29], bidirectional

variants of relational algebra [7], spreadsheet formulas [37], graph query languages [23],

and XML transformation languages [34].

Unfortunately, these languages are difficult to program in, as they force the

programmer to juggle the multiple ways of interpreting their terms. In Boomerang, a

single term encodes the allowable inputs from the source data format, the allowable

inputs from the target data format, and how to transform the terms from each format

to the other. When the two data formats contain Kleene stars in different places,

programmers must mentally transform these formats into a common “aligned” form.

These languages impose fiddly constraints on their terms, making lens programming

slow and tedious. For example, Boomerang programmers often must rearrange

the order of data items by recursively using operators that swap adjacent fields.

Furthermore, the Boomerang type checker is very strict, disallowing many programs
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because they contain ambiguity about how certain data is transformed. Lens languages

provide their strong bidirectional guarantees by putting additional burdens on the

programmer. For example, consider the lens in Figure 1.1, written in the language of

Bijective Lenses described in Chapter 3.

This transformation converts names like “Miltner, Anders Francis” to “Anders

Francis Miltner” and back again. In the second format, the last name appears last.

However, even this simple lens requires complex reasoning about how to reorder fields.

To make programming with lenses faster and easier, we have developed Optician, a

tool for synthesizing lenses from simple, high-level specifications. This work continues

a recent trend toward streamlining programming tasks by synthesizing programs in a

variety of domain-specific languages [14, 20, 32, 50], many guided by types [14, 15, 19,

48, 51].

As inputs, Optician takes specifications for the source and target formats, plus a

collection of concrete examples of the desired transformation. Format specifications are

supplied as regular expressions, possibly with some light annotations. Because regular

expressions are so widely understood, we anticipate such inputs will be substantially

easier for everyday programmers to work with than the unfamiliar syntax of lenses.

Moreover, these format descriptions communicate a great deal of information to the

synthesis system. Thus, requiring user input of regular expressions makes synthesis

robust, helps the system scale to large and complex data sources, and constrains the

search space sufficiently that the user typically needs to give very few, if any, examples.

While we believe Optician will be helpful for lens programmers, like those who use

Augeas, Optician primarily focuses on developers with little experience with lenses.

For most users, learning a new, fiddly language is harder than just implementing the

individual functions that comprise the lens. By requiring user input in the form of

regular expressions, users needn’t learn how to write Boomerang. While users do need

to learn how to read Boomerang, to ensure that their lens is correct, we envision that
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this is a much simpler task than writing the lenses themselves. In short, we would

like to make the job of writing data synchronizers easier – we believe the process of

synthesizing lenses is easier than either writing lenses by hand, or writing individual

functions that comprise the lens by hand.

In this dissertation, we demonstrate how to synthesize three classes of lenses,

Bijective Lenses (Chapter 3), Quotient Lenses (Chapter 4), and Symmetric Lenses

(Chapter 5). Bijective lenses bidirectionally convert between data formats in bijective

correspondence. Quotient lenses bidirectionally convert between data formats with

equivalence relations, where the data formats are in bijective correspondence, modulo

the equivalence relation. Symmetric lenses express sets of functions for bidirectionally

converting between data formats, where each format may have information not

present in the other format. The material for these chapters come from the papers:

Synthesizing Bijective Lenses [42], Synthesizing Quotient Lenses [38], and Synthesizing

Symmetric Lenses [45].

While regular expressions provide detailed information about the uses for the

generated lenses, they also complicate synthesis procedures. Specifically, Boomerang’s

types are regular expression pairs, and each regular expression is equivalent to an

infinite number of other regular expressions. To synthesize all Boomerang terms,

a type-directed synthesizer must sometimes be able to find, amongst all possible

equivalent regular expressions, the one with the right syntactic structure to guide the

subsequent search for a well-typed, example-compatible Boomerang term.

To resolve these issues, we introduce a new language of Disjunctive Normal Form

(DNF) lenses. Just as string lenses have pairs of regular expressions as types, DNF

lenses have pairs of DNF regular expressions as types. The typing judgements for

DNF lenses limit how equivalences can be used, greatly reducing the size of the search

space. Despite the restrictive syntax and type system of DNF lenses, we prove our new
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⇓
Regex1

Regex2

Examples

SynthDNFLens

Optician

⇑ Lens

Figure 1.2: Schematic Diagram for Optician. Regular expressions, Regex1 and Regex2,
and the examples, Examples, are given as input. First, the function ⇓ converts R and
S into their respective DNF forms. Next, SynthDNFLens synthesizes a DNF lens
from Examples and the DNF forms of Regex1 and Regex2. Finally, ⇑ converts the
synthesized DNF lens into a boomerang lens, Lens.

language is equivalent to a natural, declarative specification of the bijective fragment

of Boomerang.

Figure 1.2 shows a high-level, schematic diagram for Optician. First, Optician uses

the function ⇓ to convert the input regular expressions into DNF regular expressions.

Next, SynthDNFLens performs type-directed synthesis on these DNF regular

expressions and the input examples to synthesize a DNF lens. Finally, this DNF

lens is converted back into a regular lens with the function ⇑, and returned to the

user. When synthesizing quotient lenses, the synthesizer performs an additional step.

It extracts a canonizing function on the data formats and synthesizes a lens on the

canonical representatives.

The SynthDNFLens procedure operates as a pair of synthesizers. The first

synthesizer proposes candidate spaces of lenses, and the second procedure searches

through that space. How these synthesizers operate, and terminate, depends on

whether they are synthesizing bijective or symmetric lenses.

We have integrated Optician into the Boomerang codebase, enabling users to either

synthesize their lenses or write them by hand. With this integration, users can use

synthesized lenses as part of hand-written lenses, and the synthesis algorithm will

utilize relevant hand-written lenses to simplify synthesis tasks.
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We evaluate Optician on a variety of benchmarks taken from the lens and synthesis

literature. Many of our benchmarks come from Augeas [35], a configuration editing

system that uses lens combinators, and Flash Fill [20], a system that allows users to

specify unidirectional string transformations by example. Our benchmarks are quite

large and complex; the regular expressions for an average benchmark are defined in

hundreds of AST nodes, and often have nested iterations and disjunctions. We go

into extended detail in our benchmark suite construction in Chapter 3. On these

benchmarks, we find Optician is relatively quick – all benchmarks are solved in under

a minute.

In this thesis, we show that synthesis can be used to generate lenses between complex

file formats. Optician is able to synthesize complex transformations between large data

formats with nested iterations and disjunctions, largely because it leverages format

descriptions. Prior work [20, 32] that synthesizes transformations purely through

input-output examples eventually hits a complexity barrier, as such tools must learn

both the transformation and the data formats being transformed. Realizing that

format descriptions help in these synthesis tasks, we accept richer format descriptions

in the forms of Quotient Regular Expressions (Chapter 4) and Stochastic Regular

Expressions (Chapter 5) to help synthesize quotient and symmetric lenses. Generally,

with richer user specifications, our synthesis algorithm is able to tackle increasingly

complex classes of transformations.
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Chapter 2

Preliminaries

Before going into the specifics of any of the synthesis problems, we provide a small

section of preliminaries on regular expression syntax, unambiguity constraints, and

equivalences.

2.0.1 Regular Expressions

We use Σ to denote the alphabet of individual characters c; strings s and t are elements

of Σ∗. Regular expressions, abbreviated REs, are used to express languages, which are

subsets of Σ∗. REs over Σ are:

R,S ::= s | ∅ | R∗ | R1 · R2 | R1 | R2

L(R) ⊆ Σ∗, the language of R, is defined as usual.

2.0.2 Regular Expression Unambiguity

The typing derivations of lenses require regular expressions to be written in a way

that parses text unambiguously. R and S are unambiguously concatenable, written

R ·! S if, for all strings s1, s2 ∈ L(R) and t1, t2 ∈ L(S ), whenever s1 · t1 = s2 · t2 it

is the case that s1 = s2 and t1 = t2. Similarly, R is unambiguously iterable, written
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R | ∅ ≡ R + Ident
R · ∅ ≡ ∅ 0 ProjR
∅ · R ≡ ∅ 0 ProjL

(R · R′) · R′′ ≡ R · (R′ · R′′) · Assoc
(R | R′) | R′′ ≡ R | (R′ | R′′) | Assoc

R | S ≡ S | R | Comm
R · (R′ | R′′) ≡ (R · R′) | (R · R′′) DistR
(R′ | R′′) · R ≡ (R′ · R) | (R′′ · R) DistL

ε · R ≡ R · IdentL
R · ε ≡ R · IdentR

(R | S )∗ ≡ (R∗ · S )∗ · R∗ Sumstar
(R · S )∗ ≡ ε | (R · (S · R)∗ · S ) Prodstar

(R∗)∗ ≡ R∗ Starstar
(R | S )∗ ≡ ((R | S ) · S | (R · S ∗)n · R)

∗
Dicyclicity

·(ε | (R | S ) · ((R · S ∗)0 | . . . | (R · S ∗)n))

Figure 2.1: Conway’s equational theory for regular expressions.

R∗! if, for all n,m ∈ N and for all strings s1, . . . , sn, t1, . . . , tm ∈ L(R), whenever

s1 · . . . · sn = t1 · . . . · tm it is the case that n = m and si = ti for all i.

A regular expression R is strongly unambiguous if one of the following holds:

(a) R = s , or (b) L(R) = {}, or (c) R = R1 ·R2 with R1 ·! R2, or (d) R = R1 | R2 with

R1 ∩ R2 = ∅, or (e) R = (R′)∗ with (R′)∗!. Moreover, in the recursive cases, R1, R2,

and R′ must also be strongly unambiguous.

2.0.3 Regular Expression Equivalences

R and S are equivalent, written R ≡ S , if L(R) = L(S ). There exists an equational

theory for determining whether two regular expressions are equivalent, presented by

Conway [11], and proven complete by Krob [31] These axioms are shown in Figure 2.1.

While this equational theory is complete, näıvely using it in the context of lens

synthesis presents several problems. In the context of lens synthesis, we instead use

the equational theory corresponding to the axioms of a star semiring [13], shown in
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R | ∅ ≡s R + Ident
R · ∅ ≡s ∅ 0 ProjR
∅ · R ≡s ∅ 0 ProjL

(R · R′) · R′′ ≡s R · (R′ · R′′) · Assoc
(R | R′) | R′′ ≡s R | (R′ | R′′) | Assoc

R | S ≡s S | R | Comm
R · (R′ | R′′) ≡s (R · R′) | (R · R′′) DistR
(R′ | R′′) · R ≡s (R′ · R) | (R′′ · R) DistL

ε · R ≡s R · IdentL
R · ε ≡s R · IdentR

R∗ ≡s ε | (R·R∗) UnrollstarL
R∗ ≡s ε | (R∗ ·R) UnrollstarR

Figure 2.2: Star-semiring equivalences.

Figure 2.2. If two regular expressions are equivalent within this equational theory,

they are star semiring equivalent, written R ≡s S . The star semiring axioms consist

of the semiring axioms plus the following rules for equivalences involving the Kleene

star: In Chapter 3, we provide intuition for why synthesis with full regular expression

equivalence is problematic and justify our choice of using star semiring equivalence

instead.

There exist other alternative axiomatizations of regular expression equivalences,

such as Kozen’s [30] and Salomaa’s [55]. Kozen and Salomaa’s axiomatizations are not

equational theories: applying certain inference rules requires that side conditions must

be satisfied. Consequently, using these axiomatizations does not permit a simple search

strategy – our algorithm could no longer merely apply rewrite rules because it would

need to confirm that the side conditions are satisfied. To avoid these complications

(though in doing so, we accept the alternative complications of an infinitary theory),

we focus on Conway’s equational theory.
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Chapter 3

Synthesizing Bijective Lenses

3.1 Introduction

Bijective lenses are the subset of lenses that are also bijections. This means that

any change in one format reflects a change in the other format. We begin describing

bijective lenses to develop the overall algorithm, and will show how to synthesize

more complex lenses, like symmetric and quotient lenses, by building off the high-level

approach used in bijective lenses. While bijective lenses are the most restrictive class

of lenses, they still are quite useful. For example, name swap introduced in §1 is a

bijective lens.

let name = [A−Z][a−z]∗

let wsp = [ \t\r\n\f]+

let lfm = name . ”,” (wsp . name)∗

let fml = (name . wsp)∗ . name

let name swap : (lens in fml <=> lmf) =

swap

(id(name) . del ”,”)

(swap id(wsp) id(name))∗
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This lens is bijective, as each string in lfm corresponds to a unique string in fml.

However, small changes to the formats can remove the bijective correspondence.

Consider altering lfm to not permit arbitrary whitespace between names, but rather

to enforce a single space:

let lfm = name . ”,” (” ” . name)∗

With this small change, the desired lens of type fml <=> lmf is no longer bijective.

This chapter will introduce the language of bijective lenses, and provide more

detailed information about the general difficulties of lens synthesis. We will show how

we overcome these difficulties by developing a synthesis for an alternative, equivalent

language: DNF lenses. We evaluate our bijective synthesis algorithm on 39 benchmarks

taken from the lens and synthesis literature, and find that we can synthesize all the

bijections in under 5 seconds. Most of the content of this chapter comes from the

paper “Synthesizing Bijective Lenses” [42].

3.2 Bijective Lens Language

Technically, all bijections between languages are considered lenses. We define bijective

lenses to be bijections created from the following Boomerang lang combinators, `.

` ::= const(s1 ∈ Σ∗, s2 ∈ Σ∗)

| `∗

| concat(`1, `2)

| swap(`1, `2)

| or(`1, `2)

| `1 ; `2

| id(R)

The denotation of a lens ` is [[`]] ⊆ Σ∗ × Σ∗. If (s1, s2) ∈ [[`]], then ` maps between s1

and s2.
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[[const(s1, s2)]] = {(s1, s2)}

[[`∗]] = {(s1 · . . . · sn, t1 · . . . · tn) | n ∈ N ∧ ∀i ∈ [1,n], (si, ti) ∈ [[`]]}

[[concat(`1, `2)]] = {(s1 · s2, t1 · t2) | (s1, t1) ∈ [[`1]] ∧ (s2, t2) ∈ [[`2]]}

[[swap(`1, `2)]] = {(s1 · s2, t2 · t1) | (s1, t1) ∈ [[`1]] ∧ (s2, t2) ∈ [[`2]]}

[[or(`1, `2)]] = {(s , t) | (s , t) ∈ [[`1]] ∨ (s , t) ∈ [[`2]]}

[[`1 ; `2]] = {(s1, s3) | ∃s2(s1, s2) ∈ [[`1]] ∧ (s2, s3) ∈ [[`2]]}

[[id(R)]] = {(s , s) | s ∈ L(R)}

The simplest lens in the combinator language is the constant lens between strings

s, and t , const(s, t). The lens const(s, t), when operated left-to-right, replaces the

string s with t , and when operated right-to-left, replaces string t with s. It can

oftentimes be useful to add strings to just one side, keeping the other as the empty

string identity. For this common case, we use ins s as syntactic sugar for const(””,s)

and del s as syntactic sugar for const(s,””). In the name swap lens, we can see a use

of the constant lens: it deletes ”,” operating from left-to-right, and adds it back in

when operating from right-to-left.

The identity lens on a regular expression, id(R), operates in both directions by

applying the identity function to strings in L(R). In name swap, the identity lens is

used to retain name information when operating left-to-right and right-to-left.

The composition combinator, `1 ; `2, operates by applying `1 then `2 when operating

left to right, and applying `2 then `1 when operating right to left.

Each of the other lenses manipulates structured data. For instance, concat(`1, `2)

operates by applying `1 to the left portion of a string, and `2 to the right, and

concatenating the results. The name swap lens uses concatenations to build a lens

that maintains names, but deletes ”,”s.

The combinator swap(`1, `2) does the same as concat(`1, `2) but it swaps the results

before concatenating. In name swap, the swap lens is the mechanism by which the

first name appears at the end.
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Constant Lens
s1 ∈ Σ∗ s2 ∈ Σ∗

const(s1, s2) : s1 ⇔ s2

Iterate Lens
` : R ⇔ S R∗! S ∗!

`∗ : R∗ ⇔ S ∗

Concat Lens
`1 : R1 ⇔ S1

`2 : R2 ⇔ S2

R1 ·! R2 S1 ·! S2

concat(`1, `2) : R1R2 ⇔ S1S2

Swap Lens
`1 : R1 ⇔ S1

`2 : R2 ⇔ S2

R1 ·! R2 S2 ·! S1

swap(`1, `2) : R1R2 ⇔ S2S1

Or Lens
`1 : R1 ⇔ S1 `2 : R2 ⇔ S2

L(R1) ∩ L(R2) = ∅ L(S1) ∩ L(S2) = ∅
or(`1, `2) : R1 | R2 ⇔ S1 | S2

Compose Lens
`1 : R1 ⇔ R2 `2 : R2 ⇔ R3

`1 ; `2 : R1 ⇔ R3

Identity Lens
R is strongly unambiguous

id(R) : R ⇔ R

Rewrite Regex Lens
` : R1 ⇔ R2 R1 ≡s R′1 R2 ≡s R′2

` : R′1 ⇔ R′2

Figure 3.1: Lens Typing Rules

The combinator or(`1, `2) operates by applying either `1 or `2 to the string, de-

pending on which contains the string in the domain (or codomain).1

The combinator `∗ operates by repeatedly applying ` to subparts of a string.

Writing programs even as simple as swapping names around (as shown in Chapter 1)

requires reasoning about which components must be swapped to make the last name

appear at the end, and how to properly place whitespace between the names. These

difficulties become even more apparent when writing the complex transformations

that occur between large formats, and when ensuring lenses are well-typed.
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3.2.1 Lens Typing

The typing judgement for lenses has the form ` : R ⇔ S , meaning ` bijectively maps

between L(R) and L(S ). In particular, if ` : R ⇔ S , then (s , t) ∈ [[`]] implies s ∈ L(R)

and t ∈ L(S ). Furthermore, if (s, t) ∈ [[`]] and (s, t ′) ∈ [[`]], then t = t ′. In the same

way, if (s, t) ∈ [[`]] and (s ′, t) ∈ [[`]], then s = s ′. Because of this bijectivity, when

(s, t) ∈ [[`]], we say `.createR s = t and `.createL t = s. The functions, `.createL and

`.createR, are then inverses: `.createL ◦ `.createR = id and `.createR ◦ `.createL = id.

Figure 3.1 gives the typing relation. Many of the typing derivations require side

conditions about unambiguity. These side conditions guarantee that the semantics

of the language create a bijective function. For example, if `1 : R1 ⇔ S1, and

`2 : R2 ⇔ S2, and R1 is not unambiguously concatenable with R2, then there would

exist s1, s ′1 ∈ L(R1), and s2, s ′2 ∈ L(R2) where s1 · s2 = s ′1 · s ′2, but s1 6= s ′1, and s2 6= s ′2.

The lens concat(`1, `2) would no longer necessarily act as a function when applied

from left to right, as `1 could be applied to both s1 and to s ′1.

The typing rule for id(R) requires a strongly unambiguous regular expression.

This unambiguity allows the identity lens to be derivable from other lenses.2 This

requirement does not, however, reduce expressiveness, as any regular expression is

equivalent to a strongly unambiguous regular expression [8].

The last rule in Figure 3.1 is a type equivalence rule that lets the typing rules

consider a lens ` : R1 ⇔ R2 to have type R′1 ⇔ R′2 so long as R1 ≡s R1 and R2 ≡s R′2.

Notice that this rule uses star semiring equivalence as opposed to Conway equivalence.

In theory, this reduces the expressiveness of the type system; in practice, we have

not found it restrictive. We explain and justify the decision to use star semiring

1For nested concatenations and disjunctions, the terms concat(`1, `2) and or(`1, `2) are syntactically
heavy. Instead, these can be written in the infix style of `1.`2 (for concatenations) and `1|`2 (for
disjunctions).

2In practice, we allow regular expressions that aren’t strongly unambiguous to appear in id(R),
provided that they are expressed as a user defined regular expression. We elide such user-defined
regular expression information from the theory for the sake of simplicity.
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Legacy
Clients

Modern
Clients

Legacy
Server
API

Modern
Server
API

Server
Stack

Lens

(a)

Legacy Work Item Representation Modern Work Item Representation

<WorkItem>
<Field Id=1>Bug</Field>
<Field Id=2>Return 400 on

bad PUT request</Field>
<Field Id=5>Smith, J</Field>
</WorkItem>

{
Title: Return 400 on

bad PUT request,
Type: Bug,
AssignedTo: J Smith,
}

(b)

Figure 3.2: VSTS Architecture Using Lenses. In (a), we show the proposed architecture
of VSTS using lenses. When a legacy client requests a work item, the server retrieves
the data in a modern format through the new APIs, then the lens converts it into
a legacy format to return to the client. When a legacy client updates a work item,
it provides the data in the legacy format to the server. The lens then converts
this data into the modern format for the new endpoints to process. Idealized Task
representations from legacy and modern web service endpoints are given in (b).

equivalence in the next section. Furthermore, we find this system sufficient in practice:

the name swap lens, as well as all the lenses in our benchmark suite described in

Section 3.7, are well-typed according to these typing rules.

It is worthwhile at this point to notice that the problem of finding a well-typed

lens ` given a pair of regular expressions—the lens synthesis problem—would not be

difficult if it were not for lens composition and the type equivalence rules. When

read bottom up, these two rules require wild guesses at additional regular expressions

to continue driving synthesis recursively in a type-directed fashion. In contrast, in

the other rules, the shape of the lens is largely determined by the given types. The

following sections elaborate on this problem and describe our solution.

3.3 Synthesis Overview

To highlight the difficulties in synthesizing lenses, we use an extended example

inspired by the evolution of Microsoft’s Visual Studio Team Services (VSTS). VSTS
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is a collection of web services for team management – providing a unified location

for source control (e.g. a Git server), task management (i.e. providing a means to

keep track of TODOs and bugs), and more. In 2014, to increase third party developer

interaction, VSTS released new web service endpoints [22]. However, despite VSTS

introducing new, modernized web APIs, they must still maintain the old, legacy web

APIs for continued support of legacy clients [40]. Instead of maintaining server code

for each endpoint, we envision an architecture that uses a lens to convert resources of

the old form into resources of the new form and vice versa, as shown in Figure 3.2a.

Writing each of these converters by hand is slow and error prone. Optician expedites

this process by only requiring users to input regular expressions and input-output

examples. Furthermore, the lenses it generates are guaranteed to map between the

provided regular expressions and to act correctly on the provided examples.

Consider a “Work Item,” a resource that represents a task given to a team.

Figure 3.2b shows an example work item in idealized legacy and modern formats.

While the two representations contain the same information, they are presented

differently – clients that expect one representation would fail if given the other. In

our proposed architecture, if an old client performs an HTTP GET request to receive

a work item, the server first retrieves that work item using the modern API, and then

uses the lens’s putL function to convert this task into the legacy format. Similarly,

if an old client performs an HTTP PUT request to update a work item, the server

first uses the lens’s putR function to convert that data into the new format, and then

inputs the work item in the new representation to the modern APIs.

For simplicity, let’s consider finding only the mapping between the “Title” field of

the legacy and modern work item formats. The legacy client accepts inputs of the

form

let legacy title = ”<Field Id=2>” . text char∗ . ”</Field>”

while the modern client accepts inputs of the form
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let modern title = (”Title:” . text char∗ . text char . ”,”)

| ””

where text char is a user-defined data type representing what characters can be present

in a text field (like the title field). We would like to be able to synthesize `, a lens

that satisfies the typing judgement ` : legacy title⇔ modern title (i.e. ` maps between

the legacy representation legacy title, and the modern representation modern title).

Because the modern API omits the title field if it is blank, the lens must perform

different actions depending on the number of text characters present, functionality

provided by or lenses. An or lens applies one of two lenses, depending on which of the

lenses’ source types matches the input string.

However, the typing rule for or does not suffice to type check lenses that map

between legacy title and modern title. While modern title is a regular expression with

an outermost disjunction, legacy title is a regular expression with an outermost con-

catenation, so the rule cannot be immediately applied. We address this problem

by allowing conversions between equivalent regular expression types with the type

equivalence rule. Using this rule, a type-directed synthesis algorithm can convert

legacy title into

let legacy title’ = ”<Field Id=2></Field>”

| (”<Field Id=2>” . text char . text char∗ . ”</Field>”)

There exist or lenses between legacy title’ and modern title, and the two cases of an

empty and a nonempty number of text characters can be handled separately. However,

the need to find this equivalent type highlights a significant challenge in synthesizing

bijective lenses.

Challenge 1: Multi-dimensional Search Space. Since regular expression equiv-

alence is decidable, it is easy to check whether a given lens ` with type R1 ⇔ R2 also

has type R′1 ⇔ R′2. During synthesis, however, deciding when and how to use type
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conversion is difficult because there are infinitely many regular expressions that are

equivalent to the source and target regular expressions. Does the algorithm need to

consider all of them? In what order? To convert from legacy title to legacy title’, the

algorithm must first unroll text char∗ into ”” | text char text char∗, and then it must

distribute this disjunction on the left and the right.

A related challenge arises from the composition operator, `1 ; `2. The typing

rule for composition requires that the target type of l1 be the source type of l2. To

synthesize a composition lens between R1 and R3, a sound synthesizer must find an

intermediate type R2 and lenses with types R1 ⇔ R2 and R2 ⇔ R3. Searching for the

correct regular expression R2 is again problematic because the search space is infinite.

Thus, näıvely applying type-directed synthesis techniques involves searching in

three infinite dimensions. A complete näıve synthesizer must search for (1) a type

consisting of two regular expressions equivalent to the given ones but with “similar

shapes” and (2) a lens expression that has the given type and is consistent with

the user’s examples. Furthermore, whenever composition is part of the expression,

näıve type-directed synthesis requires a further search for (3) an intermediate regular

expression.

Our approach to this challenge is to define a new “DNF syntax” for regular

languages and lenses that reduces the synthesis search space in all dimensions. In

this new language, regular expressions are written in a disjunctive normal form, where

disjunctions are fully distributed over concatenation and where binary operators are

replaced by n-ary ones, eliminating associativity rules. Using DNF regular expressions,

when presented with a synthesis problem with type (A|B)C ⇔ A′C ′|B′C ′, Optician

will first convert this type into 〈[A ·C] | [B ·C]〉 ⇔ 〈[A′ ·C ′] | [B′ ·C ′]〉, where 〈. . .〉

represents n-ary disjunction and [. . .] represents n-ary concatenation. Like DNF regular

expressions, DNF lenses are stratified, with disjunctions outside of concatenations,

and they use n-ary operators instead of binary ones. Furthermore, DNF lenses do not
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RigidSynth

dl

×

X

SynthDNFLens

Figure 3.3: Schematic Diagram for DNF Lens Synthesis Algorithm. DNF regular
expressions, DS and DT , and a set of examples exs are given as input. The synthesizer,
TypeProp, uses these input DNF regular expressions to propose a pair of equivalent
DNF regular expressions, DS ′ and DT ′. The synthesizer RigidSynth then attempts
to generate a DNF lens, dl , which goes between DS ′ and DT ′ and satisfies all the
examples in exs. If RigidSynth is successful, dl is returned. If RigidSynth is
unsuccessful, information of the failure is returned to TypeProp, which continues
proposing candidate DNF regular expressions until RigidSynth finds a satisfying
DNF lens.

need a composition operator, eliminating an entire dimension of search. This dual

stratification and the lack of composition creates a very tight relationship between the

structure of a DNF lens term and the DNF regular expression pair that forms its type.

Translating regular expressions into DNF form collapses many equivalent REs into

the same syntactic form. However, this translation does not fully normalize regular

expressions. Nor do we want it to: If a synthesizer normalized ε | BB∗ to B∗, it

would have trouble synthesizing lenses with types like ε | BB∗ ⇔ ε | CD∗ where the

first occurrence of B on the left needs to be transformed into C while the rest of

the Bs need to be transformed into D. Normalization to DNF eliminates many, but

not all, of the regular expression equivalences that may be needed before a simple,

type-directed structural search can be applied—i.e., DNF regular expressions are only

pseudo-canonical.

Consequently, a type-directed synthesis algorithm must still search through some

equivalent regular expressions. To handle this search, SynthDNFLens is structured

as two communicating synthesizers, shown in Figure 3.3. The first synthesizer,

TypeProp, proposes DNF regular expressions equivalent to the input DNF regular
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expressions. TypeProp uses the axioms of a star semiring to unfold Kleene star

operators in one or both types, to obtain equivalent (but larger) DNF regular expression

types. The second synthesizer, RigidSynth, performs a syntax-directed search based

on the structure of the provided DNF regular expressions, as well as the input examples.

If the second synthesizer finds a satisfying DNF lens, it returns that lens. If the second

synthesizer fails to find such a lens, TypeProp learns of that failure, and proposes

new candidate DNF regular expression pairs.

Star Semiring Equivalence and Rewriting One could try to search the space

of DNF regular expressions equivalent to the input regular expressions by turning the

Conway axioms into (undirected) rewrite rules operating on DNF regular expressions

and then trying all possible combinations of rewrites. Doing so would be problematic

because the Conway axiomatization itself is infinitely branching (due to the choice of

n in the dyclicity axiom).

We also want DNF lenses to be closed under composition – if they are not then

we need to be able to synthesize lenses containing composition operators. To be

closed under composition, it is sufficient for the equivalence relation used in the type

equivalence rule to be the equivalence closure of a rewrite system (→) satisfying four

conditions. First, if R → R′, then L(R) = L(R′). Second, if R → R′ and R is strongly

unambiguous, then R′ is also strongly unambiguous. The remaining two properties

relate the rewrite rules to the typing derivations of DNF lenses, when those typing

derivations do not use type equivalence. To express these properties, we use the

notation dl :̃ DS ⇔ DT to mean that if dl is a DNF lens that goes between DNF

regular expressions DS and DT , then the typing derivation contains no instances of

the type equivalence rule. Using this notation, we can express the confluence property,

as follows:
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Definition 1 (Confluence). A set of rewrite rules on regular expressions, →, is

confluent, if whenever dl1 :̃ (⇓R1) ⇔ (⇓S1)
3, if R1 → R2 and S1 → S2, then there

exist regular expressions R3, and S3 and a DNF lens dl3, such that:

1. R2 → R3

2. S2 → S3

3. dl3 :̃ (⇓R3)⇔ (⇓S3)

4. [[dl3]] = [[dl1]]

We call the final property bisimilarity. Bisimilarity requires two symmetric condi-

tions.

Definition 2 (Bisimilarity). Whenever dl1 :̃ (⇓R1) ⇔ (⇓S1) and R1 → R2, there

exist a regular expression S2 and a DNF lens dl2 such that

1. S1 → S2

2. dl2 :̃ (⇓R2)⇔ (⇓S2)

3. [[dl2]] = [[dl1]]

For the rewrites to be bisimilar, the symmetric property must also hold for S1 → S2.

Our solution for handling type equivalence is to use ≡s, the equivalence relation

generated by the axioms of a star semiring. This equivalence relation is compatible

with our lens synthesis strategy, as orienting these unrolling rules from left to right

presents us with a rewrite relation that is both confluent and bisimilar, and whose

equivalence closure is ≡s. The star semiring axioms are the most coarse subset of

regular expression equivalences we could find that is generated by a rewrite relation

and is still confluent and bisimilar. We have not been able to prove that this relation

3Recall that ⇓ converts a regular expression into DNF form.
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is the coarsest such relation possible, but it is sufficient to cover all the test cases in

our benchmark suite (see §3.7). However, it is easy to show that Conway’s axioms

(Prodstar in particular) are not bisimilar, which is why we avoid this in our system.

Challenge 2: Large Types DNF lenses are equivalent in expressivity to lenses

and the algorithm SynthDNFLens is quite fast. Unfortunately, the conversion to

DNF incurs an exponential blowup. In practical examples, the regular expressions

describing complex ad hoc data formats may be very large, causing the exponential

blowup to have a significant impact on synthesis time. The key to addressing this

issue is to observe that users naturally construct large types incrementally, introducing

named abbreviations for major subcomponents. For example, in the specification of

legacy title and modern title, the variable text char describes which characters can be

present in a title. To include a large disjunction representing all valid title characters

instead of the concise variable text char in the definitions of legacy title and modern title

would be unmaintainable and difficult to read.

Unfortunately, leaving these variables opaque introduces a new dimension of search.

In addition to searching through the rewrites on regular expressions, the algorithm

must also search through possible substitutions, replacements of variables with their

definitions. We designate these two types of equivalences expansions, using “rewrites”

to denote expansions that arise from traversing rewrite rules on the regular expressions,

and using “substitutions” to denote expansions that arise from replacing a variable

with its definition.

Interestingly, Optician can exploit the structure inherent in these named abbrevia-

tions to speed up the search dramatically. For example, if text char appears just once

in both the source and the target types, the system hypothesizes that the identity

lens can be used to convert between occurrences of text char. On the other hand, if

text char appears in the source but not in the target, the system recognizes that, to
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find a lens, text char must be replaced by its definition. In this way, the positions of

names can serve as a guide for applying substitutions and rewrites in the synthesis

algorithm. By using these named abbreviations, TypeProp guides the transformation

of regular expression types during search by deducing when certain expansions must

be taken, or when one of a class of expansions must be taken.

3.4 DNF Regular Expressions

The first important step in Optician is to convert regular expression types into

disjunctive normal form (DNF). A DNF regular expression, abbreviated DNF RE,

is an n-ary disjunction of sequences, where a sequence alternates between concrete

strings and atoms, and an atom is an iteration of DNF regular expressions. The

grammar below describes the syntax of DNF regular expressions (DS ,DT ), sequences

(SQ ,TQ), and atoms (A, B) formally.

A,B ::= DS ∗

SQ ,TQ ::= [s0 ·A1 · . . . ·An · sn]

DS ,DT ::= 〈SQ1 | . . . | SQn〉

Notice that it is straightforward to convert an arbitrary series of atoms and strings

into a sequence: if there are multiple concrete strings between atoms, the strings may

be concatenated into a single string. If there are multiple atoms between concrete

strings, the atoms may be separated by empty strings, which will sometimes be omitted

for readability. Notice also that a simple string with no atoms may be represented

as a sequence containing just one concrete string. In our bijective lens synthesis

implementation, names of user-defined regular expressions are also atoms. However,

we elide such definitions from our theoretical analysis.
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�SQ : Sequence → Sequence → Sequence
[s0 ·A1 · . . . ·An · sn]�SQ [t0 ·B1 · . . . ·Bm · tm] = [s0 ·A1 · . . . ·An · sn · t0 ·B1 · . . . ·Bm · tm]

� : DNF → DNF → DNF
〈SQ1 | . . . | SQn〉 � 〈TQ1 | . . . | TQm〉 =
〈SQ1 �SQ TQ1 | · · · | SQ1 �SQ TQm | · · · | SQn �SQ TQ1 | · · · | SQn �SQ TQm〉

⊕ : DNF → DNF → DNF
〈SQ1 | . . . | SQn〉 ⊕ 〈TQ1 | . . . | TQm〉 = 〈SQ1 | . . . | SQn | TQ1 | . . . | TQm〉

D :Atom → DNF
D(A) = 〈[ε ·A · ε]〉

Figure 3.4: DNF Regular Expression Functions

Intuitions about DNF regular expressions may be confirmed by their semantics,

which we give by defining the language (set of strings) that each DNF regular expression

denotes:

L(DS ∗) = {s1 · . . . · sn | ∀isi ∈ L(DS )}

L([s0 ·A1 · . . . ·An · sn]) = {s0 · t1 · · · tn · sn | ti ∈ L(Ai)}

L(〈SQ1 | . . . | SQn〉) = {s | s ∈ L(SQ i) and i ∈ [1,n]}

A sequence of strings and atoms is sequence unambiguously concatenable, written

·!(s0; A1; . . . ; An; sn), if, when s ′i, t ′i ∈ L(Ai) for all i, then s0s
′
1 . . . s

′
nsn = s0t

′
1 . . . t

′
nsn

implies s ′i = t ′i for all i. A DNF regular expression R is unambiguously iterable,

written R∗! if, for all n,m ∈ N and for all strings s1, . . . , sn, t1, . . . , tm ∈ L(R), if

s1 · . . . · sn = t1 · . . . · tm then n = m and si = ti for all i.

Expressivity of DNF Regular Expressions Any regular expression may be

converted into an equivalent DNF regular expression. To define the conversion

function, we rely on several auxiliary functions defined in Figure 3.4. Intuitively,

DS �DS concatenates two DNF regular expressions, producing a well-formed DNF

regular expression as a result. Similarly, DS ⊕ DS generates a new DNF regular

expression representing the union of two DNF regular expressions. Finally, D(A)

converts a naked atom into a well-formed DNF regular expression. The conversion
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algorithm itself, written ⇓R, is defined below.

⇓s = 〈[s ]〉

⇓∅ = 〈〉

⇓(R∗) = D((⇓R)∗)

⇓(R1 · R2) = ⇓R1� ⇓R2

⇓(R1 | R2) = ⇓R1⊕ ⇓R2

Using ⇓ , the definition of legacy title’ gets converted into the DNF regular expression:

dnf legacy title =

〈[ ”<Field Id=2></Field>” ]

| [ ”<Field Id=2>” · text char · ”” · 〈 [ text char ] 〉∗ · ”<Field Id=2>” ]〉

and the definition of modern title gets converted into the DNF regular expression:

dnf modern title =

〈[ ”Title:” · text char · ”” · 〈[ text char ]〉∗ · ”,” ]

| [””]〉

We formalize the correspondence between regular expressions and DNF regular ex-

pressions via the following theorem.

Theorem 1 (⇓ Soundness). For all regular expressions R, L(⇓R) = L(R).

Note that the proofs for this theorem, and all subsequent theorems in this section,

are contained in the full version of the “Synthesizing Bijective Lenses” paper [41].

DNF Regular Expression Rewrites There are many fewer equivalences on DNF

regular expressions than there are on regular expressions, but there still remain pairs of

DNF regular expressions that, while syntactically different, are semantically identical.

Figure 3.5 defines a collection of rewrite rules on DNF regular expressions designed

to search the space of equivalent DNF REs. This directed rewrite system helps limit
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Atom UnrollstarL

DS ∗ →A 〈[ε]〉 ⊕ (DS �D(DS ∗))

Atom UnrollstarR

DS ∗ →A 〈[ε]〉 ⊕ (D(DS ∗)� DS )

Atom Structural Rewrite
DS → DS ′

DS ∗ →A 〈[DS ′
∗
]〉

DNF Structural Rewrite
Aj →A DS

〈SQ1 | . . . | SQ i−1〉
⊕〈[s0 ·A1 · . . . · sj−1]〉 � D(Aj)� 〈[sj · . . . ·Am · sm]〉⊕

〈SQ i+1 | . . . | SQn〉
→

〈SQ1 | . . . | SQ i−1〉
⊕〈[s0 ·A1 · . . . · sj−1]〉 � DS � [sj · . . . ·Am · sm]⊕

〈SQ i+1 | . . . | SQn〉

Figure 3.5: DNF Regular Expression Rewrite Rules

the search space more than the non-directional equivalence ≡s relation. Because the

rewrite rules are confluent, it is just as powerful as the ≡s relation.

Because disjunctive normal form flattens a series of unions or concatenations into

an n-ary sum-of-products, there is no need for rewriting rules that manage associativity

or distributivity. Moreover, the lens term language and synthesis algorithm itself

manages out-of-order summands, so we also have no need of rewriting rules to handle

commutativity of unions. Hence, the rewriting system need only focus on rewrites that

involve Kleene star. The rule Atom UnrollstarL is a directed rewrite rule designed

to mirror UnrollstarL. Intuitively, it unfolds any atom DS ∗ into ε | (DS ·DS ∗). However,

ε | (DS ·DS ∗) is not a DNF regular expression. Hence, the rule uses DNF concatenation

(�) and union (⊕) in place of regular expression concatenation and union to ensure a

DNF regular expression is constructed. The rule Atom UnrollstarR mirrors the

rule UnrollstarR in a similar way.
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The rules Atom Structural Rewrite and DNF Structural Rewrite

make it possible to rewrite terms involving Kleene star that are nested deep within a

DNF regular expression, while ensuring that the resulting term remains in DNF form.

3.5 DNF Lenses

The syntax of DNF lenses (dl), sequence lenses (sql) and atom lenses (al) is defined

below. DNF lenses and sequence lenses both contain permutations (σ) that describe

how these lenses transform their subcomponents.

al ::= dl∗

sql ::= ([(s0, t0) · al1 · . . . · aln · (sn, tn)],σ)

dl ::= (〈sql1 | . . . | sqln〉,σ)

A DNF lens consists of a list of sequence lenses and a permutation. Much like

a DNF regular expression is a list of disjuncted sequences, a DNF lens contains a

list of ored sequence lenses. DNF lenses also contain a permutation σ that provides

information about which sequences are mapped to which by the internal sequence

lenses. As an example, consider a DNF lens that maps between data with type

dnf legacy title and data with type dnf modern title. In such a lens, the permutation

σ indicates whether data matching [ ”<Field Id=2></Field>” ] will be translated to

data matching [”Title:” · text char · ”” · 〈[text char]〉∗ · ”,”] or [””], and likewise for the

other sequence in dnf legacy title. In this case, we would use the permutation that

swaps the order, as the first sequence in dnf legacy title gets mapped to the second

in dnf modern title, and vice-versa. As we will see in a moment, these permutations

make it possible to construct a well-typed lens between two DNF regular expressions

regardless of the order in which clauses in a DNF regular expression appear, thereby

eliminating the need to consider equivalence modulo commutativity of these clauses.

A sequence lens consists of a list of atom lenses separated by pairs of strings,

and a permutation. Intuitively, much like a sequence is a list of concatenated atoms
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and strings, a sequence lens is a list of concatenated atom lenses and string pairs.

Sequence lenses also contain a permutation that makes createL and createR reorder

data, allowing sequence lenses to take the job of both concat and swap. If there

are n elements in the series then the DNF sequence lens divides an input string up

into n substrings. The ith such substring is transformed by the ith element of the

series. More precisely, if that ith element is an atom lens, then the ith substring

is transformed according to that atom lens. If the ith element is a pair of strings

(s1, s2) then that pair of strings acts like a constant lens: when used from left-to-right,

such a lens translates string s1 into s2; when used from right-to-left, such a lens

translates string s2 into s1. After all of the substrings have been transformed, the

permutation describes how to rearrange the substrings transformed by the atom

lenses to obtain the final output. As an example, consider a sequence lens that

maps between data with type [”Title:” · text char · ”” · 〈[text char]〉∗ · ”,”] and data

with type [ ”<Field Id=2>” ·text char ·”” ·〈[text char]〉∗ ·”<Field Id=2>” ]. We desire

no reorderings between the atoms text charand 〈[text char]〉∗, so the permutation

associated with this lens would be the identity permutation.

An atom lens is an iteration of a DNF lens; its semantics is similar to the semantics

of ordinary iteration lenses. In our implementation, identity transformations between

user-defined regular expressions are also atom lenses. However, we elide such definitions

from our theoretical analysis.

The semantics of DNF Lenses, sequence lenses and atom lenses are defined formally

below.

[[dl∗]] ::= {(s1 · . . . · sn, t1 · . . . · tn)

| n ∈ N ∧ (si, ti) ∈ [[dl ]]}

[[([(s0, t0) · al1 · . . . · aln · (sn, tn)],σ)]] ::= {(s0s
′
1 . . . s

′
nsn, t0t

′
σ(1) . . . t

′
σ(n)tn)

| (s ′i, t ′i) ∈ [[al i]]}

[[(〈sql1 | . . . | sqln〉,σ)]] ::= {(s , t) | (s , t) ∈ sql i for some i}

28



dl :̃ DS ⇔ DT DS ∗! DT ∗!

dl∗ :̃ DS ∗ ⇔ DT ∗

al1 :̃ A1 ⇔ B1 . . . aln :̃ An ⇔ Bn

σ ∈ Sn ·!(s0; A1; . . . ; An; sn) ·!(t0; Bσ(1); . . . ; Bσ(n); tn)

([(s0, t0) · al1 · . . . · aln · (sn, tn)],σ) :̃ [s0 ·A1 · . . . ·An · sn]⇔ [t0 ·Bσ(1) · . . . ·Bσ(n) · tn]

sql1 :̃ SQ1 ⇔ TQ1 . . . sqln :̃ SQn ⇔ TQn

σ ∈ Sn i 6= j ⇒ L(SQ i) ∩ L(SQ j) = ∅ i 6= j ⇒ L(TQ i) ∩ L(TQ j) = ∅
(〈sql1 | . . . | sqln〉,σ) :̃ 〈SQ1 | . . . | SQn〉 ⇔ 〈TQσ(1) | . . . | TQσ(n)〉

DS ′→∗DS DT ′→∗DT dl :̃ DS ⇔ DT

dl : DS ′ ⇔ DT ′

Figure 3.6: DNF Lens Typing

Type Checking Figure 3.6 presents the type checking rules for DNF lenses. In order

to control where regular expression rewriting may be used (and thereby reduce search

complexity), the figure defines two separate typing judgements. The first judgement

has the form dl :̃ DS ⇔ DT . If dl :̃ DS ⇔ DT , then not only is [[dl ]] a bijective

mapping between L(DS ) and L(DT ), but the terms and types are all well aligned

– if dl :̃ DS ⇔ DT then there must be the same number of sequence lenses in dl as

there are sequences in each of DS and DT (and similarly for their subcomponents).

The second judgement has the form dl : DS ⇔ DT . If dl : DS ⇔ DT , then [[dl ]] is a

bijective mapping between DS and DT . However, because this judgement allows for

rewriting in its derivation, the terms and types may not be aligned.

One of the key differences between these typing judgements and the judgements

for ordinary lenses are the permutations. For example, in the rule for typing DNF

lenses, the permutation σ indicates how to match sequence types in the left-hand

format (SQ1 . . . SQn) and the right-hand format (TQσ(1) . . .TQσ(n)). Permutations

are used in a similar way in the typing rule for sequence lenses.
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These DNF lenses only express bijections that are already expressible in the

language of lenses, and they can express everything expressible in the language of

lenses.

Properties While DNF lenses have a restrictive syntax, they remain as powerful as

ordinary bijective lenses. The following theorems characterize the relationship between

the two languages.

Theorem 2 (DNF Lens Soundness). If there exists a derivation of dl : DS ⇔ DT ,

then there exist a lens, ⇑dl , and regular expressions, R and S , such that ⇑dl : R ⇔ S

and ⇓R = DS and ⇓S = DT and [[⇑dl ]] = [[dl ]].

Theorem 3 (DNF Lens Completeness). If there exists a derivation for ` : R ⇔ S ,

then there exists a DNF lens dl such that dl : (⇓R)⇔ (⇓S ) and [[`]] = [[dl ]].

Discussion DNF lenses are significantly better suited to synthesis than regular

bijective lenses. First, they contain no composition operator. Second, the use of

equivalence (rewriting) is highly constrained: Rewriting may only be used once at the

top-most level as opposed to interleaved between uses of the other rules. Consequently,

a type-directed synthesis algorithm may be factored into two discrete steps: one step

that searches for an effective pair of regular expressions and a second step that is

directed by the syntax of the regular expression types that were discovered in the first

step.

3.6 Algorithm

Synthesis Overview Algorithm 1 presents the synthesis procedure. SynthLens

takes the source and target regular expressions R and S , and a list of examples exs , as

input. First, SynthLens validates the unambiguity of the input regular expressions,
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R and S , and confirms that they parse the input/output examples, exs. Next, the

algorithm converts R and S into DNF regular expressions DS and DT using the ⇓

operator. It then calls SynthDNFLens on DS , DT , and the examples to create

a DNF lens dl . Finally, it uses ⇑ to convert dl to a Boomerang lens. The details

of ⇑ are relatively uninteresting, and so we elide them here. The ⇑ function merely

converts the disjunctions to a series of ors, and converts permutations to a series of

swaps and concatenations.

Algorithm 1 SynthLens

1: function SynthDNFLens(DS , DT , exs)
2: Q ← CreatePQueue((DS , DT ), 0)
3: while true do
4: (qe, Q)← Pop(Q)
5: (DS ′, DT ′, e)← qe
6: dlo ← RigidSynth(DS ′, DT ′, exs)
7: match dlo with
8: | Some dl → return dl

9: | None →
10: qes ← Expand(DS , DT , e)
11: Q ← EnqueueMany(qes , Q)

12: function SynthLens(R, S , exs)
13: Validate(R, S , exs)
14: (DS , DT )← (⇓R,⇓S )
15: dl ← SynthDNFLens(DS , DT , exs)
16: return ⇑dl

SynthDNFLens starts by creating a priority queue Q to manage the search

for a DNF lens. Each element qe in the queue is a tuple of the source DNF regular

expression DS ′, the target DNF regular expression DT ′, and a count e of the number

of expansions needed to produce this pair of DNF regular expressions from the originals

DS and DT . (Recall that an expansion is a use of a rewrite rule or the substitution

of a user-defined definition for its name.) The priority of each queue element is e;

DNF regular expressions that have undergone fewer expansions will get priority. The

algorithm initializes the queue with DS and DT , which have an expansion count
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of zero. The algorithm then proceeds by iteratively examining the highest priority

element from the queue (this examination corresponds to TypeProp in Figure 3.3),

and using the function RigidSynth to try to find a rewriteless DNF lens between

the popped source and target DNF regular expressions that satisfy the examples

exs. If successful, the algorithm returns the DNF lens dl . Otherwise, the function

Expand produces a new set of candidate DNF regular expression pairs that can be

obtained from DS and DT by applying various expansions to the source and target

DNF regular expressions.

Expand Intelligent expansion inference is key to the efficiency of Optician. Expand,

shown in Algorithm 2, codifies this inference. It makes critical use of the locations

of user-defined data types, measured by their star depth, which is the number of

nested ∗’s the data type occurs beneath. Star depth locations are useful because

we can quickly compute the current star depths of user-defined data types (with

GetCurrentSet) and the star depths of user-defined data types reachable via

expansions (with GetTransitiveSet). Furthermore, the star depths of user-defined

data types have the following useful property:

Property 1. If U is present at star depth i in DS and there exists a rewriteless DNF

lens dl such that dl :̃ DS ⇔ DT , then U is also present at star depth i in DT . The

symmetric property is true if U is present at star depth i in DT .

Property 1 means that if there is a rewriteless DNF lens between two DNF regular

expressions, then the same user-defined data types must be present at the same

locations in both of the DNF regular expressions. We use this property to determine

when certain rules must be applied and to direct the search to rules that make progress

towards this required alignment.

Expand has three major components: ExpandRequired, FixProblemElts,

and ExpandOnce, which we discuss in turn. ExpandRequired performs expansions
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Algorithm 2 Expand

1: function ExpandRequired(DS , DT ,e)
2: CSDS ← GetCurrentSet(DS )
3: CSDT ← GetCurrentSet(DT )
4: TSDS ← GetTransitiveSet(DS )
5: TSDT ← GetTransitiveSet(DT )
6: r ← false
7: foreach (U , i) ∈ CSDS \ TSDT

8: r ← true
9: (DS , e)← ForceExpand(DS ,U , i, e)

10: foreach (U , i) ∈ CSDT \ TSDS

11: r ← true
12: (DT , e)← ForceExpand(DT ,U , i, e)

13: if r then
14: returnExpandRequired(DS , DT , e)

15: return (DS , DT , e)

16: function FixProblemElts(DS , DT ,e)
17: CSDS ← GetCurrentSet(DS )
18: CSDT ← GetCurrentSet(DT )
19: qes ← []
20: foreach (U , i) ∈ CSDT \ CSDS

21: qes ← qes ++ Reveal(DS ,U , i, e, DT )

22: foreach (U , i) ∈ CSDS \ CSDT

23: qes ← qes ++ Reveal(DT ,U , i, e, DS )

24: return qes

25: function Expand(DS , DT ,e)
26: (DS , DT , e)← ExpandRequired(DS , DT , e)
27: qes ← FixProblemElts(DS , DT , e)
28: match qes with
29: | [] → returnExpandOnce(DS , DT , e)

30: | → return qes
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that must be taken. In particular, if a user-defined data type U at star depth i is

impossible to reach through any number of expansions on the opposite side, then that

user-defined data type must be replaced by its definition at that depth. For example,

consider trying to find a lens between 〈[legacy title]〉 and 〈[modern title]〉. No matter

how many expansions are performed on modern title, the user-defined type legacy title

will not be exposed because the set of possible reachable pairs of data types and star

depths in modern title is {(modern title, 0), (text char, 0), (text char, 1)}. Because no

number of expansions will reveal legacy title on the right, the algorithm must replace

legacy title with its definition on the left in order to find a lens. ExpandRequired

continues until it finds all forced expansions.

ExpandRequired finds all the expansions that must be performed, but it does

not perform any other expansions. However, there are many situations where it is

possible to infer that one of a set of expansions must be performed without forcing any

individual expansion. In particular, for any pair of types that have a rewriteless lens

between them, for each (user-defined type, star depth) pair (U , i) on one side, that

same pair must be present on the other side. FixProblemElts identifies when there

is a (U , i) pair present on only one side. After identifying these problem elements, it

calls Reveal to find the expansions that will reveal this element. For example, after

〈[legacy title]〉 has been expanded to

〈[ ”<Field Id=2>” · 〈[text char]〉∗ ·”</Field>” ]〉

and 〈[modern title]〉 has been expanded to

〈[”Title:” · text char · ”” · 〈[text char]〉∗ · ”,”] | [””]〉

we can see that the modern expansion has an instance of text char at depth 0, where

the legacy one does not. For a lens to exist between the two types, text char must be
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revealed at star depth 0 in the legacy expansion. Revealing text char at depth zero

will give back two candidate DNF regular expressions, one from an application of

Atom UnrollstarL, and one from an application of Atom UnrollstarR.

Together ExpandRequired and FixProblemElts apply many expansions,

but by themselves they are not sufficient. Typically, when FixProblemElts and

ExpandRequired do not find all the necessary expansions, the input data formats

expect large amounts of similar information. For example, in trying to synthesize the

identity transformation between ”” | U | UU(U∗) and ”” | U(U∗), ExpandRequired

and FixProblemElts find no forced expansions. An expansion is necessary, but the

set of pairs ({(U , 0), (U , 1)}) is the same for both sides. When this situation arises, the

algorithm uses the ExpandOnce function to conduct a purely enumerative search,

implemented by performing all single-step expansions.

RigidSynth The function RigidSynth, shown in Algorithm 3, implements the

portion of SynthLens that generates a lens from the types and examples without

using any equivalences. Intuitively, it aligns the structures of the source and target

regular expressions by finding appropriate permutations of nested sequences and nested

atoms, taking into account the information contained in the examples. Once it finds

an alignment, it generates the corresponding lens.

For integrating the example information, RigidSynth starts by merging the parse

trees of the examples into the DNF regular expressions, creating exampled DNF regular

expressions, where ils is a set of int lists.

Definition 3. An exampled atom, exampled sequence, and exampled DNF regular

expression are:

EA,EB ::= (EDS∗,ils)

ESQ,ETQ ::= ([s0 ·EA1 · . . . ·EAn · sn], ils)

EDS,EDT ::= (〈ESQ1 | . . . | ESQn〉, ils)
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If the int list [0, 2] is part of the int list set of an exampled DNF regular expression,

that means that the DNF regular expression is under one stars, and it parses the

second iteration of the first example. If the int list [0, 2, 3] is part of the int list set of

an exampled DNF regular expression, then that means it parses the third iteration of

the nested star, and the second iteration of the outermost star, of the first example.

We use a NFA matching algorithm to embed the parse trees of the examples into

the DNF regular expressions. The function {s1, . . . , sn} ∈ DS  EDS represents

embedding the strings s1, . . . , sn into DS , creating EDS.

Searching for aligning permutations requires care, as näıvely considering all per-

mutations between two exampled DNF regular expressions 〈SQ1 | . . . | SQn〉 and

〈TQ1 | . . . | TQn〉 would require time proportional to n!. A better approach is to

identify elements of the source and target DNF regular expressions that match and to

leverage that information to create candidate permutations.

RigidSynth performs this identification via orderings on sequences (≤Seq), and

atoms (≤Atom). To determine if one expression is less than the other, the algorithm

converts each expression into a sorted list of its subterms and returns whether the

lexicographic ordering determines the first list less than the second. These orderings

are carefully constructed so that equivalent terms have lenses between them. For

example, between two sequences, SQ and TQ , there is a lens sql :̃ SQ ⇔ TQ if,

and only if, ESQ ≤Seq ETQ and ETQ ≤Seq ESQ, where {} ∈ SQ  ESQ and

{} ∈ TQ  ETQ. Through these orderings, aligning the components reduces to

merely sorting and zipping lists.

Furthermore, through composing the permutations required to sort the lists (ex-

tracted through the function, sorting), the algorithm discovers the permutation used

in the lens. Finally, if there are lenses between all the subcomponents (checked with

the AllSome function), the sublenses are combined with the permutation to return

the full DNF lens.
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Algorithm 3 RigidSynth

1: function RSAtom((EDS∗, ils1), (EDT ∗, ils2))
2: if ils1 6= ils2 then
3: return None
4: match RSInt(EDS,EDT ) with
5: | Some dl → return dl∗

6: | None → return None

7: function RSSeq(([s0 ·EA1 · . . . ·EAn · sn], ils1), ([t0 ·EB1 · . . . ·EBm · tm], ils2))
8: if ils1 6= ils2 then
9: return None

10: if n 6= m then
11: return None
12: σ1 ← sorting(≤Atom, [EA1 · . . . ·EAn])
13: σ2 ← sorting(≤Atom, [EB1 · . . . ·EBn])
14: σ ← σ−11 ◦ σ2
15: EABs ← Zip([EA1 · . . . ·EAn], [EBσ(1) · . . . ·EBσ(n)])
16: alos ←Map(RSAtom, EABs)
17: match AllSome(alos) with
18: | Some [al1 · . . . · aln] → return Some ([(s0, t0) · al1 · . . . · aln · (sn, tn)],σ−1)

19: | None → return None

20: function RSInt((〈ESQ1 | . . . | ESQn〉, ils1), (〈ETQ1 | . . . | ETQm〉, ils2))
21: if ils1 6= ils2 then
22: return None
23: if n 6= m then
24: return None
25: σ1 ← sorting(≤Seq, [ESQ1 | . . . | ESQn])
26: σ2 ← sorting(≤Seq, [ETQ1 | . . . | ETQn])
27: σ ← σ−11 ◦ σ2
28: ESTQs ← Zip([ESQ1 | . . . | ESQn], [ETQσ(1) | . . . | ETQσ(n)])
29: sqlos ←Map(RSSeq, ESTQs)
30: match AllSome(sqlos) with
31: | Some [sql1 | . . . | sqln] → return Some (〈sql1 | . . . | sqln〉,σ−1)
32: | None → return None

33: function RigidSynth(DS , DT , [(s1, t1); . . . ; (sn, tn)])
34: {s1, . . . , sn} ∈ DS  EDS
35: {t1, . . . , tn} ∈ DS  EDT
36: returnRSInt(EDS,EDT )
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As an example, consider trying to find a DNF lens between

〈 [”<Field Id=2></Field>”]

| [ ”<Field Id=2>” · text char · ”” ·〈[text char]〉∗· ”</Field>”] 〉

and

〈 [ ”Title:” · text char · ”” · 〈[ text char ]〉 · ”,” ]

| [””] 〉

As RigidSynth considers the legacy DNF regular expression, it orders its two

sequences by maintaining the existing order: first [ ”<Field Id=2></Field>” ],

then [ ”<Field Id=2>” · text char · ”” · 〈[text char]〉∗ · ”<Field Id=2>” ]. In contrast,

RigidSynth reorders the two sequences of the modern DNF regular expression,

making [””] first, and [”Title:” · text char · ”” · 〈[text char]〉∗ · ”,”] second; the overall

permutation is a swap. As a result, the two string sequences become aligned, as do

the two complex sequences.

Then, the algorithm calls RSSeq on the two aligned sequence pairs. There are no

atoms in both [ ”<Field Id=2></Field>” ] and [””], trivially creating the sequence

lens:

([(”<Field Id=2></Field>”,””)],id)

Next, the sequences [ ”<Field Id=2>” ·text char ·”” · 〈[text char]〉∗ · ”<Field Id=2>” ]

and [”Title=”·text char··””·〈[text char]〉∗·”,”] would be sent to RSSeq. In RSSeq, the

atoms would not be reordered, aligning text char with text char, and 〈[text char]〉∗ with

〈[text char]〉∗. Immediately, RSAtom finds the identity transformation on text char,

and will recurse to find the identity transformation for 〈[text char]〉∗: These generated

atom lenses are then combined into a sequence lens. Lastly, the two sequence lenses

are combined with the swapping permutation to create the final DNF lens.

By incorporating information about how examples are parsed in the orderings,

SynthLens guarantees not only that there will be a lens between the regular expres-
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sions, but also that the lens will satisfy the examples. For example if ESQ ≤Seq TQ

and ETQ ≤Seq SQ then there is not only a sequence lens between SQ and TQ , but

there is one that also satisfies the examples. Incorporating parse tree information lets

the synthesis algorithm differentiate between previously indistinguishable subcompo-

nents; a text char that parsed only ”a” would become less than a text char that parsed

only ”b”.

Because RigidSynth reduces to merely ordering subterms, the runtime of indi-

vidual RigidSynth calls is n ∗ log(n) +m ∗ log(m), where n and m are the sizes of

DS and DT .

Correctness We have proven two theorems demonstrating the correctness of our

algorithm.

Theorem 4 (Algorithm Soundness). For all lenses `, regular expressions R and S ,

and examples exs , if ` = SynthLens(R, S , exs), then ` : R ⇔ S and for all (s , t) in

exs , (s , t) ∈ [[`]].

Theorem 5 (Algorithm Completeness). Given regular expressions R and S , and a

set of examples exs, if there exists a lens ` such that ` : R ⇔ S and for all (s, t) in

exs , (s , t) ∈ [[`]], then SynthLens(R, S , exs) will return a lens.

Theorem 4 states that when we return a lens, that lens will match the specifications.

Theorem 5 states that if there is a DNF lens that satisfies the specification, then we

will return a lens, but not necessarily the same one. However, from Theorem 4, we

know that this lens will match the specifications.

Termination If there are no bijective lenses between R and S that satisfies the

examples exs, then SynthLens(R, S , exs) will not terminate, as long as L(R) is

infinite or L(S ) is infinite. However, we theorize that there likely is a way of identifying,

by looking at the regular expressions and examples, whether a well-typed bijective
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lens exists that satisfies the examples. However, we did not investigate building such

an identification system; in part because if our symmetric synthesizer (§5) is complete,

it is guaranteed to terminate.

Simplification of Generated Lenses While our system takes in only partial

specifications, there can be multiple lenses that satisfy the specifications. To help

users determine if the synthesized lens is correct, Optician transforms the generated

code to make it easily readable. Optician (1) maximally factors the concats and ors,

(2) turns lenses that perform identity transformations into identity lenses, and (3)

simplifies the regular expressions the identity lenses take as an argument. Performing

these transformations and pretty printing the generated lenses make the synthesized

lenses much easier to understand. For example, without minimization, the title field

transformation is:

const(”<Field Id=2></Field>”,””)

| (const(”<Field Id=2>”,”Title: ”)

. id(text char)

. const(””,””)

. (const(””,””) . id(text char) . const(””,””))∗

. const(””,””)

. const(”</Field>”,”, ”))

where with minimization, the title field transformation is:

const(”<Field Id=2>”,””)

. (id(””)

| (id(text char) . id(text char)∗ . const(””, ”,”)))

. const(”</Field>”,””))
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Compositional Synthesis Most synthesis problems can be divided into subprob-

lems. For example, if the format R1 ·R2 must be converted into S1 · S2, one might first

work on the R1 ⇔ S1 and R2 ⇔ S2 subproblems. After those subproblems have been

solved, the lenses they generate can be combined into a solution for R1 · R2 ⇔ S1 · S2.

Our tool allows users to specify multiple synthesis problems in a single file, and

allows the later, more complex problems to use the results generated by earlier

problems. This tactic allows Optician to scale to problems of just about any size and

complexity with just a bit more user input. This compositional interface also provides

users greater control over the synthesized lenses and allows reuse of intermediate

synthesized abstractions. The compositional synthesis engine allows lenses previously

defined manually by the user, and lenses in the Boomerang standard library to be

included in synthesis.

3.7 Evaluation

We have implemented Bijective Optician in 3713 lines of OCaml code. We have

integrated our synthesis algorithm into Boomerang, so users can input synthesis tasks

in place of lenses. We have published our implementation in a public GitHub repo [43].

We evaluate our synthesis algorithm by applying it to 39 benchmark programs.

All evaluations were performed on a 2.5 GHz Intel Core i7 processor with 16 GB of

1600 MHz DDR3 running macOS Sierra.

Benchmark Suite Construction We constructed our benchmarks by adapting

examples from Augeas [35] and Flash Fill [20] and by handcrafting specific examples

to test various features of the algorithm.

Both Augeas and Flash Fill permit non-bijective transformations. In adopting these

benchmarks, we had to modify the formats to address two forms of non-bijectivity:

(1) whitespace was present in one format but not the other, and (2) useful information
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was projected away when going from one format to the other. The first form of

non-bijectivity was by far the most common, applying to many Augeas examples. To

address this form of non-bijectivity, we added whitespace in the format where typically

whitespace is unnecessary. The second form of non-bijectivity was less prevalent, but

occurred, typically in the FlashFill examples. To address this form of non-bijectivity,

we added projected information to the end of the format missing that information.

Augeas is a configuration editing system for Linux that uses lens combinators

similar to those in Boomerang. However, it transforms strings on the left to structured

trees on the right rather than transforming strings to strings. We adapted these Augeas

lenses to our setting by converting the right-hand sides to strings that correspond

to serialized versions of the tree formats. We derived 29 of the benchmark tests by

adapting the first 27 lenses in alphabetical order, as well as the lenses aug/xml-firstlevel

and aug/xml that were referenced by the ‘A’ lenses. Furthermore, the 12 last synthesis

problems derived from Augeas were tested after Optician was finalized, demonstrating

that the optimizations were not overtuned to perform well on the testing data.

Flash Fill is a system that allows users to specify common string transformations

by example [20]. We derived three benchmarks from the first few examples in the

paper and one from the running example on extracting phone numbers.

Finally, we added custom examples to highlight weaknesses of our algorithm

(cap-prob and 2-cap-prob) and to test situations for which we thought the tool would

be particularly useful (workitem-probs, date-probs, bib-prob, and addr-probs). These

examples convert between work item formats, date formats, bibliography formats, and

address formats, respectively.

Figure 3.7 shows the complexity of our regular specifications as well as our example

counts. An average benchmark has a regular specification written in 310 AST nodes,

and uses 1.1 input/output examples. Our benchmarks vary from simple problems, like

changing how dates are represented (with a specification size of 85, and a generated lens
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Figure 3.7: Sizes of Specifications. In (a), we show how many benchmarks are defined
in our suite using a given number of AST nodes or fewer. In (b), we show how many
benchmarks are defined in our suite using a given number of examples or fewer.

size of 79), to complex tasks, like transforming configuration files for server monitoring

software into dictionary form (with a specification size of 670 and a generated lens

size of 651). On average, the size of the generated lens is 89% the size of its type

specifications.

Impact of Optimizations We developed a series of optimizations that improve

the performance of the synthesis algorithm dramatically. To determine the relative

importance of these optimizations, we developed the 5 different modes that run the

synthesis algorithm with various optimizations enabled. These modes are:
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Figure 3.8: Number of benchmarks that can be solved by a given algorithm in a given
amount of time. Full is the full synthesis algorithm. NoCS is the synthesis algorithm
using all optimizations but without using a library of existing lenses. NoFPE is the
core DNF synthesis algorithm augmented with user-defined data types with forced
expansions performed. NoER is the core synthesis augmented with user-defined
data types. NoUD is the core synthesis algorithm. FlashExtract is the existing
FlashExtract system. Flash Fill is the existing Flash Fill system. Näıve is näıve
type-directed synthesis on the bijective lens combinators. Our synthesis algorithm
performs better than the näıve approach and other string transformation systems,
and our optimizations speed up the algorithm enough that all tasks become solvable.

Full: All optimizations are enabled, and compositional synthesis is used.

NoCS: Like Full, but compositional synthesis is not used.

NoFPE: Like NoCS, but FixProblemElts is never called, expansions are

only forced through ExpandRequired or processed enumeratively

through ExpandOnce.

NoER: Like NoFPE, but all the expansions taken are generated through

enumerative search from ExpandOnce.

NoUD: User-defined data types are no longer kept abstract until needed. All

user-defined regular expressions get replaced by their definition at the

start of synthesis.
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Figure 3.9: Number of expansions found using enumerative search for tasks requiring
a given number of expansions. NoCS is using the full inference algorithm. NoFPE
only counts forced inferences as found by the ExpandRequired function. Both
systems are able to infer the vast majority of expansions. Full inference only rarely
requires enumerative search.

We ran Optician in each mode over our benchmark suite. Figure 3.8 summarizes

the results of these tests. Full synthesized all 39 benchmarks, NoCS synthesized 38

benchmarks, NoFPE synthesized 36 benchmarks, NoER synthesized 6 benchmarks,

NoUD synthesized 8 benchmarks, and Näıve synthesized 0 benchmarks. Optician’s

optimizations make synthesis effective against a wide range of complex data formats.

Interestingly, NoER performs worse than NoUD. Adding in user defined data

types introduces the additional search through substitutions. The cost of this additional

search outweighs the savings that these data type abstractions provide. In particular,

because of the large fan-out of possible expansions, NoER can only synthesize

lenses which require 5 or fewer expansions. However, some lenses require over 50

expansions. Without a way to intelligently traverse expansions, the need to search

through substitutions makes synthesis unbearably slow.

In NoFPE, we can determine that many expansions are forced, so an enumerative

search is often unnecessary. Figure 3.9 shows that in a majority of examples, all the

expansions can be identified as required, minimizing the impact of the large fan-out.

While unable to infer every expansion for all the benchmarks, the full algorithm is
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Figure 3.10: Number of subtasks specified during compositional synthesis. Splitting
the task into just a few subtasks provides huge performance benefits at the cost of a
small amount of additional user work.

able to infer quite a bit. In our benchmark suite, ExpandRequired infers a median

of 13 and a maximum of 75 expansions.

Merely inferring the forced expansions makes almost all the synthesis tasks solvable.

In many cases, NoFPE infers all the expansions. In 22 of the 38 examples solvable

by NoCS, all expansions were forced. However, the remaining 16 still require some

enumerative search. This enumerative search causes the NoFPE version of the

algorithm to struggle with some of the more complex benchmarks. Incorporating

FixProblemElts speeds up these slow benchmarks. When using full inference

(FixProblemElts and ExpandRequired), the synthesis algorithm can recognize

that one of a few expansions must be performed. Adding in these types of inferred

expansions directs the remaining search even more, both speeding up existing problems

and solving previously unmanageable benchmarks.

When combined, these optimizations implement an efficient synthesis algorithm,

which can synthesize lenses between a wide range of data formats. However, some

of the tasks are still slow, and one remains unsolved. Using compositional synthesis

lets the system scale to the most complex synthesis tasks, synthesizing all lenses in

under 5 seconds. Additional user interaction is required for compositional synthesis,
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but the amount of interaction is minimal, as shown in Figure 3.10. The number of

subtasks used was in no way the minimal number of subtasks needed for synthesis

under 5 seconds, but rather subtasks were introduced where they naturally arose.

The benchmark that only completes with compositional synthesis is also the slowest

benchmark in Full, aug/xml4. Optician can only synthesize a lens for this example

when compositional synthesis is used because it is a complex data format, it requires a

large number of expansions, and relatively few expansions are forced. When not using

compositional synthesis, the algorithm must perform a total of 398 expansions, of

which only 105 are forced. The synthesis algorithm is able to force so few expansions

because of the highly repetitive nature of the aug/xml specification. XML tags occur

at many different levels, and they all use the same user-defined data types. This

repetitive nature causes our expansion inference to find only a few of the large number

of required expansions. The large fan-out of expansions, combined with the large

number of expansions that must be performed, creates a search space too large for our

algorithm to effectively search. However, the synthesis algorithm is able to succeed on

the easier task of finding the desired transformation when provided with two additional

subtasks: synthesis on XML of depth one, and synthesis of XML of depth up to two.

Importance of Examples To evaluate how many user-supplied examples the

algorithm requires in practice, we randomly generated appropriate source/target pairs,

mimicking what a näıve user might do. We did not write the examples by hand out

of concern that our knowledge of the synthesis algorithm might bias the selection.

Figure 3.11 shows the number of randomly generated examples it takes to synthesize

the correct lens averaged over ten runs. The synthesis algorithm almost never needs

any examples: only 5 benchmarks need a nonzero number of examples to synthesize

the correct lens and only one, cust/workitem-probs required over 10 randomly generated

4Since xml syntax is context-free, the source and target regular expressions describe only xml
expressions up to depth 3.
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Figure 3.11: Average number of random examples required to synthesize benchmark
programs. Experimental Average is the average number of randomly generated
examples needed to correctly synthesize the lens. Determinize Permutations is the
theoretical number of examples required to determinize the choice all the permutations
in RigidSynth. In practice, far fewer examples are needed to synthesize the correct
lens than would be predicted by the number required to determinize permutations.

examples. A clever user may be able to reduce the number of examples further by

selecting examples carefully; we synthesized cust/workitem-probs with only 8 examples.

These numbers are low because there are relatively few well-typed bijective lenses

between any two source and target regular expressions. As one would expect, the

benchmarks where there are multiple ways to map source data to the target (and vice

versa) require the most examples. For example, the benchmark cust/workitem-probs

requires a large number of examples because it must differentiate between data in

different text fields in both the source and target and map between them appropriately.

As these text fields are heavily permuted (the legacy format ordered fields by a numeric

ID, where the modern format ordered fields alphabetically) and fields can be omitted,

a number of examples are needed to correctly identify the mapping between fields.

The average number of examples to infer the correct lens does not tell the whole

story. The system will stop as soon as it finds a well typed lens that satisfies the

supplied examples. This inferred lens may or may not correctly handle unseen examples

that correspond to unexercised portions of the source and target regular expressions.

Figure 3.11 lists the number of examples that are required to determinize the generation

of permutations in RigidSynth. Intuitively, this number represents the maximum

number of examples that a user must supply to guide the synthesis engine if it always
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guesses the wrong permutation when multiple permutations can be used to satisfy the

specification.

The average number of examples is so much lower than the maximum number of

required examples because of correspondences in how we wrote the regular expressions

for the source and target data formats. Specifically, when we had corresponding

disjunctions in both the source and the target, we ordered them the same way. The

algorithm uses the supplied ordering to guide its search, and so the system requires

fewer examples. We did not write the examples in this style to facilitate synthesis,

but rather because maintaining similar subparts in similar orderings makes the types

much easier to read. We expect that most users would do the same.

Comparison Against Other Tools We are the first tool to synthesize bidirectional

transformations between data formats, so there is no tool to which we can make

an apple-to-apples comparison. Instead, we compare against tools for generating

unidirectional transformations instead. Figure 3.8 includes a comparison against two

other well-known tools that synthesize text transformation and extraction functions

from examples – Flash Fill and FlashExtract. For this evaluation, we used the version

of these tools distributed through the PROSE project [52].

To generate specifications for Flash Fill, we generated input/output specifications

by generating random elements of the source language, and running the lens on those

elements to generate elements of the target language. These were then fed to Flash

Fill.

To generate specifications for FlashExtract, we extracted portions of strings

mapped in the generated lens either through an identity transformation or through a

previously synthesized lens, whereas strings that were mapped through use of const

were considered boilerplate and so not extracted.
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As these tools were designed for a broader audience, they put less of a burden

on the user. These tools only use input/output examples (for Flash Fill), or marked

text regions (for FlashExtract), as opposed to Optician’s use of regular expressions to

constrain the format of the input and output. By using regular expressions, Optician

is able to synthesize significantly more programs than either existing tool.

Flash Fill and FlashExtract have two tasks: to determine how the data is trans-

formed, they must also infer the structure of the data, a difficult job for complex

formats. In particular, neither Flash Fill nor FlashExtract was able to synthesize

transformations or extractions present under two iterations, a type of format that

is notoriously hard to infer. These types of dual iterations are pervasive in Linux

configuration files, making Flash Fill and FlashExtract ill suited for many of the

synthesis tasks present in our test suite.

Furthermore, as unidirectional transformations, Flash Fill and FlashExtract have

a more expressive calculus. To guarantee bidirectionality, our syntax must be highly

restrictive, providing a smaller search space to traverse.
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Chapter 4

Synthesizing Quotient Lenses

4.1 Introduction

Chapter 3 describes how to synthesize bijections from format descriptions. However,

many useful lenses are not strictly bijective in nature—the desired transformation

might ignore whitespace or the exact ordering of data fields, for instance. One

observation, however, is that non-bijective transformations can often be structured as

a bijective “core” surrounded by some kind of data normalization at the edges. We

use the bijective lens synthesis as component in a system that synthesizes lenses that

involve normalization.

This paper applies this idea to the problem of synthesizing quotient lenses [18].

Quotient lenses are lenses in which the lens laws are loosened so that they hold modulo

an equivalence relation on the source and target data respectively; in this paper we are

concerned with bijective quotient lenses which are lenses that express bijections modulo

equivalence relations ≡S and ≡T defined on the source and target data respectively.

Quotient lenses are useful in situations where a programmer wishes for the trans-

formation defined by a lens to have the same behavior on data that differ only in

inessential details. For instance, a programmer may wish to “quotient away” the
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number of white space characters between data items, the capitalization of various

strings, the sequence of fields in a record, or the order of items in a list.

Optician synthesizes bijective lenses from a pair (S,T ) of regular expressions

specifying the source and target types and a set of example input-output pairs that

guide the synthesis algorithm. This presents a challenge for synthesizing quotient

lenses since a specification of a lens’s source and target formats needs to account for the

equivalence relations defined on the respective formats. Our solution is to introduce

Quotient Regular Expressions (QREs), which are regular expressions augmented with

extra syntax that enables programmers to simultaneously specify a regular expression

and an equivalence relation on the language of that regular expression. Further, given

a QRE, we can automatically infer a canonizer—a function that converts strings in

the language of the regular expression to a canonical form.

For example, consider the following QRE for writing author names:

let wsp sp = collapse wsp → ” ”

let comma name = last name . ”,” . wsp sp . first name

In this example, wsp is an existing regular expression for a nonempty sequence of

whitespace characters, and first name and last name are existing regular expressions

for first and last names. The QRE wsp sp is a QRE with the same underlying language

as wsp, but with a single canonical representative: ” ”. It is used as a component

of comma name, a QRE with an underlying language of two names, separated by a

command and whitespace, where the names with a single space between them are

canonical.

Additionally, we introduce QRE lenses, with the end goal of synthesizing QRE

lenses that map between QREs via a synthesized bijective lens between the respective

canonical formats. This idea is simple and natural but begs the following question: do

we give up expressiveness if we restrict ourselves to this form? We prove that we do

not—more specifically, we prove a normal form theorem (Theorem 7) that says that
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every QRE lens formed by freely composing QRE lenses, applying regular operators to

them, and quotienting them with QREs can be rewritten to be the composition of a

source canonizer, a bijective lens, and a target canonizer. This normalization property

will enable us to (1) synthesize QRE lenses by extending the synthesis algorithm used

by the bijective synthesizer, and (2) prove that if there is a QRE lens that satisfies

the input specification, then this extended algorithm will return such a lens.

Given this framework, generating a QRE lens requires only a pair of QREs to

describe the source and target formats and a (possibly empty) suite of examples

demonstrating the mapping. For example, the following code

let ` = synth comma name ⇔ space name

using {(”Lovelace, Ada”, ”Ada Lovelace”)}

binds ` to a synthesized QRE lens mapping between names in the comma-separated

form described by the QRE comma name and the space-separated form described by

the QRE space name.

Most of the content in this chapter comes from the paper “Synthesizing Quotient

Lenses” [38].

4.2 Quotient Lens Definition

Recall that given regular expressions R,S and equivalence relations ≡R and ≡S defined

on L(R) and L(S), a bijective quotient lens q : R/≡R ⇔ S/≡S is a pair of functions

q.createR : L(R) −→ L(S) and q.createL : L(S) −→ L(R) such that for all r ∈ L(R)

and s ∈ L(S), we have q.createL(q.createR(r)) ≡R r and q.createR(q.createL(s)) ≡S

s. Moreover, if r ≡R r′, then q.createR(r) = q.createR(r′), and if s ≡S s′, then

q.createL(s) = q.createL(s′). In words, a bijective quotient lens q from R to S modulo

≡R and ≡S is a pair of functions q.createR and q.createL such that q.createR respects

≡R and q.createL respects ≡S, and such that the createR and createL functions lifted
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to L(R)/≡R and L(S)/≡S are mutual inverses. These laws are similar to stating that

the functions are inverses (as was shown for bijective lenses in Chapter 3), except

that the strict syntactic equality relations in the definition of inverses are loosened to

allow for equivalence relations. Also, the condition that r ≡R r′ implies q.createR(r) =

q.createR(r′) ensures that the createR function induced on the equivalence classes of

≡R is well-defined, and similarly for the createL function.

4.3 QRE Lenses by Example

Chapter 3 shows how to simplify the task of programming bijective string lenses, but

not all bidirectional transformations are bijective. For instance, BibTEX users are

not typically interested in preserving whitespace between words. The order of author

and title fields is also likely irrelevant, and there may be equivalent ways of writing

the same name: “Lovelace, Ada” vs “Ada Lovelace.” Consequently, the following

two BibTEX citations represent the same logical object even though they differ in

nonessential details.

@Book {Lovelace,

Author = "Ada Lovelace",

Title = {Notes},

}

@Book{

Lovelace,

Title = {Notes},

Author = "Lovelace, Ada", }

When mapping these records into another format, such as EndNote, we must decide

what to do with the nonessential information. A bijective mapping must preserve all the

information, including the extraneous details, which leads to complex and brittle lenses.

A better approach is to identify records that differ only in the nonessential information,

mapping them into a canonical representation. This canonical representation is then

mapped into the target format. With this approach, both of the above BibTEX records

would be mapped to the same EndNote record.
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We use Quotient Regular Expresions (QREs) to specify the external format in full

detail and to mark which pieces of it are inessential. From a QRE, we can infer a

regular expression that describes only the essential information, which we call the

internal format, and we can derive a canonizer that maps between the external and

internal formats.

4.3.1 Specifying BibTEX Using QREs

In this subsection, we develop a QRE specification of BibTEX records, introducing

various QRE combinators along the way. Our first step in this process is to define

a whitespace format, which externally matches any non-zero number of whitespace

characters. It converts any such whitespace into a single space character, its canonical

form. We use the QRE collapse primitive to define this whitespace-normalizing QRE.

let wsp sp = collapse wsp → ” ”

Sometimes there are multiple disjoint representations of the same data. In such

situations, the QRE squash combinator creates a QRE that allows external data to

be in either format, and converts any data in the first format to the second. For

instance, assume that the comma name format describes “Lovelace, Ada” and that the

space name format describes “Ada Lovelace” and c to s is a function from the first to

the second. In this case, the following instance of squash creates the desired canonizer.

let name = squash comma name → space name using c to s

One way to define the c to s function is simply to write it from scratch in some ordi-

nary programming language. However, we can synthesize such functions automatically—

here, c to s is the left-to-right direction of a lens that can be synthesized using the

synth combinator:

let ` = synth comma name ⇔ space name

using {(”Lovelace, Ada”, ”Ada Lovelace”)}
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let c to s = `.createR

The first line above synthesizes a lens between comma name and space name using

the listed example transformation as a guide. The second line extracts the createR

transformation from the lens, which is what we need for squash.

The permutation QRE combinator, perm, allows data to be unordered. For example,

the following instance of perm allows label, author, and title fields (which we assume

have been defined earlier) to appear in any order.

let bib fields = perm (label, bib author, bib title)

To normalize the field separators, one can specify in an optional with clause that the

components of the permutation are conjoined by another QRE. For instance, below,

we normalize whitespace between fields, leaving only a single newline.

let bib fields = perm (label, bib author, bib title) with (collapse (”,” . wsp) → ”,\n”)

Another QRE primitive is the functional composition combinator, written “;”. For

an example of its use, suppose we have already defined a QRE, canonized whitespace,

that accepts XML documents and chooses documents with no whitespace as canonical.

Suppose that we also have defined a QRE, canonized order, which accepts whitespace-

normalized XML documents, and chooses a specific ordering of XML elements as

canonical. We can use the functional composition combinator to combine these

two QREs into canonized whitespace ; canonized order, a QRE that accepts all XML

documents, and chooses ordered XML documents without whitespace as canonical.

The final QRE combinator is the normalize combinator. This combinator allows a

programmer to manually define a function f which sends each string that matches a

regular expression R to some canonical representative in another regular expression R′

where L(R′) ⊆ L(R). The equivalence relation defined by the normalize combinator

is hence the equivalence relation defined by the fibres of f ; that is, for all strings s

and s′ that match R, s is equivalent to s′ if and only if f(s) = f(s′).
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let wsp = [#\,\textvisiblespace\,#\n\t\r]+
let wsp sp = collapse wsp → ” ”
let last name = [A−Z][a−z]
let first name = [A−Z][a−z]

(∗ define name representations with a space and with a comma ∗)
let space name = first name . wsp sp . last name
let comma name = last name . ”,” . wsp sp . first name

(∗ synthesize a lens that maps comma representation to space representation ∗)
let ` = synth comma name ⇔ space name using {(”Lovelace, Ada”, ”Ada Lovelace”)}
let c to s = `.createR

(∗ squash QRE maps comma name to space name ∗)
let name = squash comma name → space name using c to s

(∗ define rest of bibtex fields ∗)
let bib names = name . (wsp sp . ”and” . wsp sp . name)∗

let bib author = ”author = \”” . bib names . ”\””
let title = word . (wsp sp . word)∗

let bib title = ”title = {” . title . ”}”

(∗ allow any permutation of fields interspersed with arbitrary whitespace ∗)
let bib fields = perm (label, bib author, bib title) with (collapse (”,” . wsp) → ”,\n”)
let bibtex = ”@book{” . bib fields . ”}”

Figure 4.1: QRE definition of BibTEX records.

For instance, assume that f(s) = “ ” (a space character) for all whitespace strings

s. Then the collapse QRE wsp sp defined above can be expressed using the normalize

combinator as normalize (wsp,” ”, f).

Figure 4.1 gives a QRE definition for the simple BibTEX records we consider here.

4.3.2 QRE Lenses and QRE Lens Synthesis

At this point, we have a tool for synthesizing bijective string lenses from a pair of

regular expressions and a set of example input-output pairs (Optician), and we have a

way of defining regular expressions with equivalence relations indicating the essential
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Figure 4.2: QRE lens from source P to target Q. P and Q are QREs, each consisting
of a “whole” set (W (P ) and W (Q)) and a “kernel” part (K(P ) and K(Q)) Between
the two kernels is a plain bijective lens. The createR function of the whole lens takes an
argument from W (P ), applies the canonizer for P to obtain a canonical representative
in K(P ), then applies the createL of the plain lens, yielding an element of K(Q), which
is a subset of W (Q). The createL function does the reverse, mapping from W (Q) to
K(P ) (hence W (P ). This lens is in normal form, with canonizers (specified by QREs)
at the outer edges and an ordinary bijective lens in the center.

information (QREs). A tantalizing possibility would be to use the bijective string lens

synthesis procedure as a subroutine for a quotient lens synthesis procedure. This new

synthesizer would take as input source and target QREs and example input-output

pairs, compute the canonical source/target formats from the QREs, map the example

input-output pairs to their canonical representations, and then invoke the bijective

string lens synthesis procedure on the canonical data formats and the canonical

examples.

Indeed this idea is what motivates our definition of QRE lenses. Intuitively, our

QRE lenses are bijective lenses with “canonizers at the edges”. Figure 4.2 depicts the

architecture of QRE lenses. Every QRE lens q has a type P ⇔ Q where P and Q are

QREs. In the left-to-right direction, a QRE lens q : P ⇔ Q uses the source QRE P

to compute a canonical representative for the data modulo the equivalence relation

defined by P and then applies the createR function of a bijective string lens ` to this

representative. In the right-to-left direction, q operates similarly, but using the QRE

Q and the createL function of `.
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Because the QREs P and Q determine the internal formats for data after canoniza-

tion, and because the algorithm for synthesizing bijective string lenses is directed by

these formats, P and Q are all that is required to synthesize QRE lenses end-to-end.

However, our requirement that canonizers appear only at the edges raises a key

technical question: Are we limiting the expressiveness of our transformations by

demanding all programs fit into this normal form? It turns out that we are not—any

lens that uses canonizers internally can be transformed into a lens that uses canonizers

only at the edges. The main technical contribution of this chapter (Theorem 7) is a

proof of this fact. This technical result justifies using synthesis to produce QRE lenses

instead of manually writing them, which can lead to substantial savings in program

complexity. For instance, after defining the BibTEX and EndNote QREs and binding

them to the variables bibtex and endnote respectively, then writing a synchronizer

from BibTEX to EndNote is as simple as a single call to the synthesis prodedure:

let bib to end : bibtex ⇔ endnote =

synth bibtex ⇔ endnote using {(bib example, end example)}

Here, the generated quotient lens synchronizes bibtex and endnote formats, using

bib example and end example (the two concrete example strings given at the beginning

of this section) to disambiguate. In addition, and as we saw earlier with the definition

of c to s, the synthesis procedure itself can be used to create lenses that are in turn

used to define other QREs. The ability to interleave QRE specification with QRE lens

synthesis yields a powerful and flexible way of creating bidirectional transformations.

4.4 Quotient Regular Expressions

A Quotient Regular Expression (or QRE) is a regular expression R augmented with

syntax that expresses an equivalence relation on the language of R.
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4.4.1 Syntax and Semantics of QREs

Formally, the language of Quotient Regular Expressions (QREs) is given by the

following grammar,

Q := normalize(R1,R2, f) | id(R) | collapse R 7→ s | squash Q1 → Q2 using f

| perm(Q1, . . . ,Qn) with Q | Q1 ; Q2 | Q1 ·Q2 | (Q1 | Q2) | Q∗

where Q ranges over QREs, R ranges over regular expressions, f ranges over functions

between regular languages, and s ranges over character strings.

Using the conventional notation that L(R) is the language accepted by the regular

expression R, each QRE Q yields four semantic objects:

W (Q) A regular expression, denoting the “whole” of Q

≡Q An equivalence relation on L(W (Q))

K(Q) A regular expression, denoting the “kernel” of Q, such that L(K(Q)) forms a

complete set of representatives for ≡Q

canonize(Q) A “canonizing” function. Given any w ∈ L(W (Q)), canonize(Q)(w)

is the unique k in L(K(Q)) such that k ≡Q w.

Intuitively, W (Q) is the regular expression representing the external format, while

K(Q) is the regular expression representing the internal format. The equivalence

relation ≡Q groups together elements in the language of W (Q) that contain the same

essential information. The function canonize(Q) picks the representative element from

each of the resulting equivalence classes.

In the next section, I will provide a judgement, Q wf, that defines the well-formed

QREs. The well-formedness constraints for QREs ensure that these four semantic

objects fit together to form a coherent quotient W (Q)/ ≡Q whose equivalence classes

are determined by canonize(Q).
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4.4.2 The normalize Combinator

The relationship among the semantic objects of a QRE can be understood in terms of

the combinator normalize(R1,R2, f), which expresses each of these pieces explicitly.

Its whole language is just R1, its kernel language is just R2, and its canonizer is just

f ; its equivalence relation ≡ is determined by the fibres of f , so we have s1 ≡ s2 ⇔

f(s1) = f(s2) for s1 and s2 in L(R1).

These components form a quotient when the canonization function f is surjective

and idempotent (intuitively, f picks out a unique representative for each equivalence

class). We also require that the kernel language be a subset of the whole language,

which enables QRE composition. These considerations lead to the following well-

formedness rule.

Normalize

L(R2) ⊆ L(R1) f : L(R1) −→ L(R2) f is surjective f = f 2

normalize(R1,R2, f) wf

Semantically, the normalize QRE is universal—each of the other combinators Q

is equivalent to normalize(W (Q),K(Q), f) for some surjective, idempotent function

f : L(W (Q)) −→ L(K(Q)). However, verifying that a canonization function f is

surjective and idempotent is in general undecidable. Consequently, a programmer

wishing to use normalize must discharge strong proof obligations, which is cumbersome

in practice.1

The remaining QRE combinators, which we discuss next, provide simpler, more

compositional ways of building canonizers that meet these requirements by construction.

Nevertheless, the normalize combinator provides a useful guide in the design of these

1In our implementation we allow a programmer to use normalize at their own risk without checking
these side conditions as an “escape hatch” for the case when other QRE combinators are insufficient.
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Q W (Q) K(Q)
id(R) R R
collapse R 7→ s R s
squash Q1 → Q2 using f W (Q1) | W (Q2) K(Q2)
normalize(R1,R2, f) R1 R2

Q1 ; Q2 W (Q1) K(Q2)
Q1 · Q2 W (Q1) ·W (Q2) K(Q1) ·K(Q2)
Q1 | Q2 W (Q1) | W (Q2) K(Q1) | K(Q2)
Q∗ W (Q)∗ K(Q)∗

W (perm(Q1, . . . ,Qn) with Q) =
⋃
σ∈Sn

W (Qσ(1)) ·W (Q) · . . . ·W (Q) ·W (Qσ(n))

K(perm(Q1, . . . ,Qn) with Q) = K(Q1) ·K(Q) · . . . ·K(Q) ·K(Qn)

Figure 4.3: Whole and Kernel regular expressions for QRE combinators. In describing
regular expressions, we use the notations | and

⋃
for alternation, the notation ·

for concatenation, and the notation ∗ for Kleene closure. We use the notation Sn to
denote the set of all permutations of the numbers 1 to n.

combinators because it gives a sufficient condition for the well-formedness of any

potential QREs.

4.4.3 QRE Combinator Semantics

Figure 4.3 gives the inductive definitions of the whole and kernel languages W (Q)

and K(Q) for all of the QRE combinators. The squash and permutation combinators

have the two most interesting definitions. If Q = squash Q1 → Q2 using f , then the

whole language of Q is W (Q1) | W (Q2) because the squash combinator merges the

whole language W (Q1) of Q1 with the whole language W (Q2) of Q2. The function

f : L(W (Q1)) −→ L(W (Q2)), maps L(W (Q1)) into L(W (Q2)) using f and then

canonizes W (Q2) into K(Q2) using canonize(Q2).

For the perm(Q1, . . . ,Qn) with Q combinator, the whole language is the union of

languages of the form W (Qσ(1)) ·W (Q) · . . . ·W (Q) ·W (Qσ(n)) for any permutation

σ in Sn, where Sn is the set of all permutations of the numbers 1 to n. Intuitively,

the permutation combinator allows for the string to match any permutation of the
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canonize(id(R))(w) = w
canonize(collapse R 7→ s)(w) = s

canonize(squash Q1 → Q2 using f)(w) =

{
canonize(Q2)(f(w)) if w ∈ L(W (Q1))

canonize(Q2)(w) otherwise

canonize(normalize(R1,R2, f))(w) = f(w)
canonize(Q1 ; Q2)(w) = canonize(Q2)(canonize(Q1)(w))
canonize(Q1 ·Q2)(w1 · w2) = canonize(Q1)(w1) · canonize(Q2)(w2)

canonize(Q1 | Q2)(w) =

{
canonize(Q1)(w) if w ∈ L(W (Q1))

canonize(Q2)(w) if w ∈ L(W (Q2))

canonize(Q∗)(w1 · . . . · wn) =

{
ε if n = 0

canonize(Q)(w1) · . . . · canonize(Q)(wn) if n > 0

canonize(perm(Q1, . . . ,Qn) with Q)(wσ(1) · s1 · . . . · sn−1 · wσ(n))
= canonize(Q1)(w1) · canonize(Q)(s1) · . . . · canonize(Q)(sn−1) · canonize(Qn)(wn)

Figure 4.4: QRE canonizers. Here we assume that the input w to the canonizers
has been partitioned in the unique way guaranteed to exist by the lens unambiguity
conditions.

Qi’s while preserving the separator Q in between each of the Qi’s. The kernel of the

permutation combinator is the language K(Q1) ·K(Q) · . . . ·K(Q) ·K(Qn), because

the canonical permutation is the identity permuation, with each of the parts of the

input that match Qi and Q canonized into K(Qi) and K(Q) respectively.

Figure 4.4 gives the inductive definitions of the canonize function for each QRE.

The permutation combinator gives rise to the most interesting definition:

canonize(perm(Q1, . . . ,Qn) with Q)(wσ(1) · s1 · . . . · sn−1 · wσ(n))

= canonize(Q1)(w1) · canonize(Q)(s1) · . . . · canonize(Q)(sn−1) · canonize(Qn)(wn)

which places the strings that match Qi and Q according to the canonical permuta-

tion (i.e., the provided ordering) before applying the canonizers canonize(Qi) and

canonize(Q), respectively. Essentially, the permutation combinator permits any order-

ing of the fields in W (Q), and has a specific ordering in K(Q).
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w ≡normalize(R1,R2,f) w
′ ⇐⇒ f(w) = f(w′)

w ≡id(R) w
′ ⇐⇒ w = w′

w ≡collapse R 7→s w′ ⇐⇒ True
w ≡squash Q1→Q2 using f w′ ⇐⇒ f(w) ≡Q2 w

′ or w ≡Q2 w
′

w ≡Q1 ; Q2 w′ ⇐⇒ ∃k, k′ ∈ L(K(Q2)) such that
w ≡Q1 k, w′ ≡Q1 k′, and k ≡Q2 k′

w ≡Q1·Q2 w′ ⇐⇒ w = r1 · r2, w′ = r′1 · r′2 with
r1 ≡Q1 r′1, r2 ≡ Qn r

′
2

w ≡Q1 | Q2 w′ ⇐⇒ w ≡Q1 w′ or w ≡Q2 w′

w ≡Q∗ w′ ⇐⇒ w = r1 · . . . · rn, w′ = r′1 · . . . · r′n and ri ≡Q r′i
w ≡perm(Q1,...,Qn) with Q w′ ⇐⇒ w = rσ(1) · s1 · . . . · sn−1 · rσ(n),

w′ = r′θ(1) · s′1 · . . . · s′n−1 · r′θ(n)
for some σ, θ ∈ Sn, with ri ≡qi r′i and sk ≡Q s′k

Figure 4.5: QRE Equivalence Relations

Finally, Figure 4.5 gives the inductive definition of the equivalence relation ≡Q,

which is the set-theoretic semantics of a QRE Q as an equivalence relation on the

regular language W (Q).

4.4.4 Ambiguity and Well-Formed QREs

To ensure that regular combinations of QREs are well-formed, we need to enforce

a variety of unambiguity constraints. Like in lens programming, these unambiguity

constraints can be a little fiddly in practice. As a simple example of this, consider

writing a regular expression for comma-separated lists of strings. Our first impulse

might be to write it as,

CSL = anychar+ . (”,” . anychar+)∗

(where . is concatenation), but this regular expression is ambiguous, as anychar is a

big union of a of single characters including comma.

While the unambiguity constraints consequently appear to compromise composi-

tionality of QREs, they can usually be circumvented by making a small changes to
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the offending regular expression: for instance, in the preceding example, then we need

to write,

CSL = anycharexceptcomma+ . (”,” . anycharexceptcomma+)∗

(assuming anycharexceptcomma denotes a big union of every single character string

except comma).

Unambiguity constraints are necessary because they ensure that the can-

onizing function of a QRE is well-defined. For example, consider the QRE

”a”∗ . (collapse ”a”∗ → ”a”). The behavior of this QRE is not well-defined since the

string ”aaa” can be canonized to any of ”a”, ”aa”, or ”aaa” depending on how ”aaa”

is parsed. The unambiguity constraints are also applied to the kernels of QREs since

the underlying bijective string lens of a QRE lens operates on kernels, and bijective

string lenses impose the same unambiguity restrictions so that they too are well

defined as functions.

4.4.5 Well-formedness of QREs

Figure 4.6 gives the inference rules for deriving well-formed QREs.

The unambiguity conditions are pertinent when defining QREs using the regular

combinators. For example, the (Concat) inference rule says that the concatenation

Q1 · Q2 of QREs Q1 and Q2 is well formed only if the concatentions of W (Q1) and

W (Q2), and K(Q1) and K(Q2) are unambiguous.

The most complicated inference rule is the Perm rule for the permutation com-

binator. The second hypothesis for the Perm rule says that for any two different

permutations σ and θ, the languages W (Qσ(1)) ·W (Q) · . . . ·W (Qσ(n)) and W (Qθ(1)) ·

W (Q) · . . . ·W (Qθ(n)) must be disjoint. This restriction is important because an input

string could match any of the regular expressions W (Qθ(1)) ·W (Q) · . . . ·W (Qθ(n))

for some permutation θ, so we must require that all of them be disjoint. The third

hypothesis says that the regular expression K(Q1) ·K(Q) · . . . ·K(Q) ·K(Qn) must be
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Id
R is strongly unambiguous

id(R) wf

Collapse
s ∈ L(R)

collapse R 7→ s wf

Perm
Qi,Q wf

∀σ 6= θ, (W (Qσ(1)) ·W (Q) · . . . ·W (Qσ(n))) ∩ (W (Qθ(1)) ·W (Q) · . . . ·W (Qθ(n))) = ∅
K(Q1) ·! K(Q) ·! . . . ·! K(Q) ·! K(Qn)

perm(Q1, . . . ,Qn) with Q wf

Squash

Q1,Q2 wf L(W (Q1)) ∩ L(W (Q2)) = ∅ f : L(W (Q1)) −→ L(W (Q2))

squash Q1 → Q2 using f wf

Normalize
L(R′) ⊆ L(R) f : L(R) −→ L(R′) f is surjective f = f 2

normalize(R,R′, f) wf

Compose
Q1,Q2 wf K(Q1) = W (Q2)

Q1 ; Q2 wf

Star
Q wf W (Q)∗! K(Q)∗!

Q∗ wf

Concat
Q1,Q2 wf W (Q1) ·! W (Q2) K(Q1) ·! K(Q2)

Q1 ·Q2 wf

Union
Q1,Q2 wf W (Q1) ∩W (Q2) = ∅

Q1 | Q2 wf

Figure 4.6: Well-formed QREs
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unambiguous. This restriction arises because the underlying lens that maps to or from

a perm QRE operates on the language K(Q1) ·K(Q) · . . . ·K(Q) ·K(Qn), the kernel

of the perm QRE. The underlying lens requires that the source and target regular

expressions be unambiguous so that the lens can match strings uniquely.

4.5 QRE Lenses

As we have seen, QREs express a broad class of equivalence relations directly on

regular languages. QREs are therefore a good specification language for quotient

lenses. In this section we introduce QRE Lenses, a class of quotient lenses that map

between data that is specified using QREs.

Recall that given regular expressions R,S and equivalence relations ≡R and

≡S defined on L(R) and L(S), a bijective quotient lens q : R/≡R ⇔ S/≡S is a

pair of functions q.createR : L(R) −→ L(S) and q.createL : L(S) −→ L(R) such

that for all r ∈ L(R) and s ∈ L(S), we have q.createL(q.createR(r)) ≡R r and

q.createR(q.createL(s)) ≡S s. Moreover, if r ≡R r′, then q.createR(r) = q.createR(r′),

and if s ≡S s′, then q.createL(s) = q.createL(s′). In words, a bijective quotient lens q

from R to S modulo ≡R and ≡S is a pair of functions q.createR and q.createL such

that q.createR respects ≡R and q.createL respects ≡S, and such that the createR and

createL functions lifted to L(R)/≡R and L(S)/≡S are mutual inverses. Also, the

condition that r ≡R r′ implies q.createR(r) = q.createR(r′) ensures that the createR

function induced on the equivalence classes of ≡R is well-defined, and similarly for the

createL function.

Having identified QREs as a natural way of specifing equivalence relations on

regular expressions, a natural next step in defining quotient lenses is to map between

two QREs via a bijection between their kernels; indeed, this approach is the one we

adopt in defining QRE lenses. More concretely, to define a language of QRE lenses,
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we add quotients by allowing canonizers to be prepended or postpended to bijections

and allow composition of such quotient lenses via the regular operators and functional

composition (Sections 4.5.1 and 4.5.2).

However, we also have a secondary objective, which is to support lens synthesis.

When provided with QREs describing the source and target languages, we would

like to be able to generate quotient lenses automatically. One way to achieve that

goal is to generate canonizers canonize(Q1) and canonize(Q2) from QREs Q1 and Q2

and then to synthesize bijective lenses between the kernel languages for Q1 and Q2.

Unfortunately, the composition of two such quotient lenses does not have the form of

a bijective lens with canonizers at the edges. Hence, an important technical question

is whether we give up expressiveness if we restrict ourselves to this form. Fortunately,

we can show that there is no loss of expressiveness if the bijections used to define QRE

lenses are derived with a particular set of combinators. We describe these combinators

next.

4.5.1 Syntax of QRE Lenses

The language of QRE lenses is given by following grammar,

q := lift(`) | q1 · q2 | swap(q1, q2) | (q1 | q2) | q∗ | q1 ; q2 | lquot(Q, q) | rquot(q,Q)

where Q ranges over QREs.

Other than the lift combinator which allows a bijective lens to be treated as a

quotient lens, the QRE lens combinators are the same as the bijective string lens

combinators but with two extra combinators where quotienting actually occurs: the

lquot and rquot combinators. The lquot(Q, q) combinator takes a quotient lens q and

a QRE Q and quotients the source data using Q. The rquot(q,Q) combinator does

the same but on the target data.
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For example, recall that in the BibTEX to EndNote transformation, we had the

QREs bibtex and endnote and the bijective lens bib to end that maps between bibtex

and endnote. The quotient lens that maps between bibtex and endnote is then given

by the following QRE lens:

let bib to end q : bibtex ⇔ endnote = rquot (lquot(bibtex, bib to end), endnote)

4.5.2 Semantics of QRE Lenses

Each QRE lens q has a type q : Q1 ⇔ Q2 where Q1,Q2 are QREs. If q : Q1 ⇔ Q2,

then the source format is described by W (Q1) and the canonical set of representative

for the source data is described by K(Q1). Similarly, the target format is described

by W (Q2) and the canonical set of representatives for the target data is described by

K(Q2). The underlying lens of q is a bijective lens ` : K(Q1)⇔ K(Q2).

The denotation JqK of a QRE lens q : Q1 ⇔ Q2 is a quotient lens JqK :

W (Q1)/≡Q1 ⇐⇒ W (Q2)/≡Q2 . Because the semantics are more complex, they cannot

be expressed as merely a subset of Σ∗ × Σ∗. Instead, the semantics are provided

directly as the two functions createR and createL. Note that, for many lenses, the

semantics are only well-defined when the lens is well-typed. The typing rules of QRE

lenses are given in Figure 4.7 and the semantics are given in Figure 4.8. The trickiest

typing rule is the typing rule for composition:

Compose

L(W (Q2)) = L(W (Q′2)) K(Q2) ≡s K(Q′2)

q1 : Q1 ⇔ Q2 q2 : Q′2 ⇔ Q3 canonize(Q2) = canonize(Q′2)

q1 ; q2 : Q1 ⇔ Q3

This rule essentially says that the composition q1 ; q2 is well defined if and only if

the intermediary QREs Q2 and Q′2 define the same equivalence relation on regular
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Lift
` : R⇔ S

lift(`) : id(R)⇔ id(S)

LQuot

q : Q2 ⇔ Q3 Q1 wf K(Q1) = W (Q2)

lquot(Q1, q) : Q1 ; Q2 ⇔ Q3

RQuot

q : Q1 ⇔ Q3 Q3 wf W (Q3) = K(Q2)

rquot(q,Q1) : Q1 ⇔ Q2 ; Q3

Star
q : Q1 ⇔ Q2 W (Q1)

∗!,W (Q2)
∗! K(Q1)

∗!,K(Q2)
∗!

q∗ : Q1
∗ ⇔ Q2

∗

Concat
q1 : Q1 ⇔ Q3 q2 : Q2 ⇔ Q4

W (Q1) ·! W (Q2) K(Q1) ·! K(Q2) W (Q3) ·! W (Q4) K(Q3) ·! K(Q4)

q1 · q2 : Q1 ·Q2 ⇔ Q3 ·Q4

Swap
q1 : Q1 ⇔ Q3 q2 : Q2 ⇔ Q4

W (Q1) ·! W (Q2) K(Q1) ·! K(Q2) W (Q4) ·! W (Q3) K(Q4) ·! K(Q3)

swap(q1, q2) : Q1 ·Q2 ⇔ Q4 ·Q3

Or
q1 : Q1 ⇔ Q3

q2 : Q2 ⇔ Q4 L(W (Q1)) ∩ L(W (Q2)) = ∅ L(W (Q3)) ∩ L(W (Q4)) = ∅
q1 | q2 : (Q1 | Q2)⇔ (Q3 | Q4)

Compose
L(W (Q2)) = L(W (Q3)) K(Q2) ≡s K(Q3)

q1 : Q1 ⇔ Q2 q2 : Q3 ⇔ Q4 canonize(Q2) = canonize(Q3)

q1 ; q2 : Q1 ⇔ Q4

Figure 4.7: Typing Rules for QRE Lenses
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Jlift(`)K.createL = J`K
Jlift(`)K.createR = J`K−1

Jlquot(Q1, q)K.createL = JqK.createL ◦ canonize(Q1)
Jlquot(Q1, q)K.createR = JqK.createR

Jrquot(q,Q1)K.createL = JqK.createL
Jrquot(q,Q1)K.createR = JqK.createR ◦ canonize(Q3)

Jq∗K.createL = (JqK.createL)∗

Jq∗K.createR = (JqK.createL)∗

Jq1 · q2K.createL = Jq1K.createL · Jq2K.createL
Jq1 · q2K.createR = Jq1K.createR · Jq2K.createR

JqK.createL(s1 · s2) = Jq2K.createL(s2) · Jq1K.createL(s1)
JqK.createR(t2 · t1) = Jq1K.createR(t1) · Jq2K.createR(t2)

Jq1 | q2K.createL(s) =

{
Jq1K.createL(s) if s ∈ L(W (Q1))

Jq2K.createL(s) if s ∈ L(W (Q2))

Jq1 | q2K.createR(s) =

{
Jq1K.createR(s) if s ∈ L(W (Q3))

Jq2K.createR(s) if s ∈ L(W (Q4))

Jq1 ; q2K.createL = Jq2K.createL ◦ Jq1K.createL
Jq1 ; q2K.createR = Jq1K.createR ◦ Jq2K.createR

Figure 4.8: Semantics for QRE Lenses

expressions that are equivalent modulo the star-semiring axioms. (See [18, §4] for an

example of what goes wrong if this premise is dropped). The condition L(W (Q2)) =

L(W (Q′2)) says that the intermediary language is the same on both sides, while the

condition K(Q2) ≡s K(Q′2) says that the kernel regular expressions are equivalent

modulo the star-semiring axioms. Finally, the condition canonize(Q2) = canonize(Q′2)

says that Q2 and Q′2 define the same equivalence relation on L(W (Q2)) = L(W (Q′2)).

Of course checking the condition canonize(Q2) = canonize(Q′2) is undecidable in

general; indeed Boomerang’s typechecker only permits compositions between quotients

when the associated canonizers are the identity. In other words, two Boomerang lenses
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q1 : Q1 ⇔ Q2 and q2 : Q′2 ⇔ Q3 can be composed if W (Q2) = K(Q2) = K(Q′2) =

W (Q′2).

While this decision seemingly restricts the power of composition in Boomerang

significantly, the practice of writing quotient lenses shows that this restriction is not

overly restrictive. This is because most quotient lenses originate as lifted basic lenses,

and therefore have types whose equivalence relations are both equality, and further,

equality is preserved by many of the quotient lens combinators [18]. Foster et al

also discuss a second possible approach to typing quotient lenses, where equivalence

relations are represented by rational functions that induce them. While this second

approach is more refined than the first, Boomerang favours the first approach since

the second appears to be too expensive to be useful in practice.

Thankfully, we do not face the issue of checking equivalence relation equality in

our work since our end goal is to synthesize lenses and not write them my hand, so the

programmer will never actually need to typecheck a functional composition expression.

The semantics defined on QRE lenses imply the following theorem:

Theorem 6. If there is a derivation q : Q1 ⇔ Q2, then JqK : W (Q1)/≡Q1 ⇔

W (Q2)/≡Q2 is a well-defined quotient lens.

4.5.3 Normal Forms of QRE Lenses

Recall that our approach in defining QRE lenses is to have each QRE lens q : Q1 ⇔ Q2

be such that

JqK.createL = ` ◦ canonize(Q1)

JqK.createR = `−1 ◦ canonize(Q2)

72



for some bijective lens `. In other words, each QRE lens is the same as a bijective

lens with canonizers at the edges. The following theorem, which is the main technical

contribution of this chapter, confirms that this indeed is the case:

Theorem 7. If there is a derivation q : Q1 ⇔ Q2, then there exists a bijective lens

` : K(Q1)⇔ K(Q2) such that:

JqK.createL = J`K ◦ canonize(Q1)

JqK.createR = J`K−1 ◦ canonize(Q2)

Proof. The proof follows by induction on the derivation of q : Q1 ⇔ Q2. The

most interesting part of the proof is the case for functional composition as we must

demonstrate that it is possible to eliminate the canonizers in the middle of the term.

The derivation rule and denotation for composition are as follows:

L(W (Q2)) = L(W (Q′2)) K(Q2) ≡s K(Q′2)

q1 : Q1 ⇔ Q2 q2 : Q′2 ⇔ Q3 canonize(Q2) = canonize(Q′2)

q1 ; q2 : Q1 ⇔ Q3

Jq1 ; q2K.createL = Jq2K.createL ◦ Jq1K.createL

Jq1 ; q2K.createR = Jq1K.createR ◦ Jq2K.createR

By the induction hypothesis, there exist bijective lenses, `1 : K(Q1)⇔ K(Q2) and

`2 : K(Q′2)⇔ K(Q3) such that:

Jq1K.createL = J`1K ◦ canonize(Q1) Jq2K.createL = J`2K ◦ canonize(Q′2)

Jq1K.createR = J`1K
−1 ◦ canonize(Q2) Jq2K.createR = J`2K

−1 ◦ canonize(Q3)
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Consequently:

Jq2K.createL ◦ Jq1K.createL = (J`2K ◦ canonize(Q′2)) ◦ (J`1K ◦ canonize(Q1))

= J`2K ◦ (canonize(Q′2) ◦ J`1K) ◦ canonize(Q1)

= (J`2K ◦ J`1K) ◦ canonize(Q1)

= J`1 ; `2K ◦ canonize(Q1)

We are permitted to claim the third step from the second since canonize(Q′2) is the

identity function on K(Q2) which is syntactically equal to K(Q′2) by assumption. A

similar argument shows that:

Jq1K.createR ◦ Jq2K.createR = J`1 ; `2K−1 ◦ canonize(Q3)

The other cases of the proof are similar, proceeding by a straightforward application

of the induction hypothesis followed by unrolling the equations that give the denotation

for QRE lenses. Full details can be found in the appendix of the full version of the

original paper [38].

4.6 Synthesis Algorithm

QRE lenses address some of the limitations of bijective lenses because a single lens

program expresses both the canonizers and the transformation between kernel lan-

guages simultaneously, which reduces programmer effort. But we can go even further

by recognizing that the type structure of QRE lenses contains information that can be

exploited to automatically synthesize lenses from their types. Rather than writing the

QRE lens manually, the programmer can instead specify the desired behavior of a lens

by giving its interface types and providing examples, if necessary, to disambiguate
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among possible implementations. This way of constructing lenses can often be much

simpler than building them by hand.

Chapter 3 showed how to do such lens synthesis in the case for bijective lenses.

Here we show how to reduce QRE lens synthesis to that case, so that we can re-use the

core synthesis algorithm but in the more expressive context of QRE lenses. The basic

idea is straightforward: we run the Optician algorithm to synthesize a lens between

the kernels of two QREs and then apply the canonizers at the edges to recover a

lens between the whole languages. This simple strategy turns out to be remarkably

effective, and the idea of using Optician in this way inspired the design of our QRE

lenses.

In our setting, we want to synthesize a quotient lens q : Q1 ⇔ Q2 from the QREs

Q1 and Q2 and a set of example input-output pairs {(x1, y1), . . . , (xn, yn)} where the

xi’s are in W (Q1) and the yi’s are in W (Q2). We furthermore wish q to map the

equivalence class of xi to the equivalence class of yi and vice versa:

q.createR(xi) ≡Q2 yi, and

q.createL(yi) ≡Q1 xi

Our approach to synthesizing QRE lenses is guided by Theorem 7, which says that,

if there is a derivation q : Q1 ⇔ Q2 of a QRE lens, then there exists a bijective lens

` : K(Q1)⇔ K(Q2) such that:

JqK.createR = J`K ◦ canonize(Q1)

JqK.createL = J`K−1 ◦ canonize(Q2)

For the examples, the xi’s are in W (Q1) and the yi’s are in W (Q2), so we can construct

x′i = canonize(Q1)(xi) in K(Q1) and y′i = canonize(Q2)(yi) is in K(Q2). To synthesize

the desired quotient lens q : Q1 ⇔ Q2 that is consistent with the input-output examples
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{(x1, y1), . . . , (xn, yn)} it suffices to synthesize a bijective lens ` : K(Q1) ⇔ K(Q2)

that is consistent with the canonized examples {(x′1, y′1), . . . , (x′n, y′n)} and then apply

the canonizers at the outside. Our procedure for QRE lens synthesis is given formally

in Algorithm 4.

Algorithm 4 SynthQRELens

1: function SynthQRELens(Q1,Q2, exs)
2: R1 ← K(Q1)
3: R2 ← K(Q2)
4: c1 ← canonize(Q1)
5: c2 ← canonize(Q2)
6: exs′ ←Map(exs,λ(exl, exr)→ (c1(exl), c2(exr)))
7: l← SynthBijectiveLens(R1,R2, exs

′)
8: return rquot(lquot(Q1, `),Q2)

Theorem 8. Given QREs Q1 and Q2, and a set of examples {(x1, y1), . . . , (xn, yn)}, if

there is a QRE lens q : Q1 ⇔ Q2 such that q.createL(xi) ≡Q2 yi and q.createR(yi) ≡Q1

xi, then SynthQRELens(Q1,Q2, exs) will return such a lens.

(This follows from Theorems 4, 5, and 7.)

Returning to the BibTEX to EndNote transformation of Section 4.3.2, the QREs

bibtex and endnote describe a BibTEX record and an Endnote record respectively. We

also had the example pair (bib example , end example), where:

bib example =

”@Book {Lovelace,

Author = \”Ada Lovelace\”,

Title = {Generic Title},

}”

end example =

”%0 Book

%T Generic Title

%A Ada Lovelace

%F Lovelace”

There exists a bijective lens between the kernel of bibtex and the kernel of endnote

that maps the normalized form of bib example to the normalized form of end example,
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so calling SynthQRELens on the QREs bibtex and endnote, with the example set

of {(bib example, end example)} will return a satisfying lens. In this instance, the

example set guides the algorithm to also find the desired lens.

4.7 Evaluation

We have implemented QREs and the quotient lens synthesis algorithm described above

as an extension to the Boomerang interpreter [6, 18]. We have extended the existing

Optician tool to synthesize QRE lenses from QREs. We will use “QRE-enhanced

Optician” to denote our extended version of Optician, and just plain “Optician” to

denote the bijective version of Optician. To evaluate the effectiveness of QREs, QRE

lenses, and QRE lens synthesis, we conducted experiments to answer the following

questions:

• Ease of use. Does synthesizing QRE lenses from QREs permit an easier

development process than writing lenses by hand? Does synthesizing QRE

lenses from QREs permit an easier development process than manually writing

canonizers and then synthesizing lenses between their canonized forms?

• Performance. Is the synthesis algorithm/implementation fast enough to be

used as part of a standard development process?

All evaluations were performed on a 2.5 GHz Intel Core i7 processor with 16 GB of

1600 MHz DDR3 running macOS High Sierra.

4.7.1 Benchmark Suite Construction

To evaluate our QRE implementation, we adapted 39 lens synthesis tasks from the

benchmark suite of Chapter 3. These benchmarks are a combination of custom

benchmarks, benchmarks derived from FlashFill [20], and benchmarks derived from
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Augeas [36] (we also experimented using our QRE implementation to synthesize

quotient lenses between XML, RDF and and JSON formats using data from the

data.gov database; the data consisted of census statistics, demographic statistics, wage

comparosion data, and crime index data). In these 39 benchmarks, 10 of the data

formats had to be modified to work with the bijectivity constraints that Optician

required due to a lack of quotients. For instance, when one representation permits

whitespace where the other does not, we modified the original version of the benchmark

to allow more whitespace, thereby restoring bijectivity (but altering the data format).

With the new QRE support, we were able to remove these alterations. This experience

alone suggests that QREs make the lens development process more flexible.

4.7.2 Ease of Use

To evaluate the impact of QRE lens synthsis on programmer effort, we focus our

attention on the 10 problems in the benchmark suite that are not bijective and hence

require non-trivial canonizers. (Optician already handles the other problems with

minimal programmer effort.)

We are interested in comparing three different approaches, which vary in the

amount of synthesis used. In the first approach, which we call QS for QRE Synthesis,

the programmer uses QRE lens synthesis. She must write QRE specifications of the

source and target formats and she may give examples. In the second approach, which

we call BS for Bijective Synthesis, the programmer uses bijective lens synthesis à

la Optician. She must write canonizers by hand, along with regular expressions to

describe the external representations of the source and target formats. (The internal

formats can be inferred from Boomerang canonizers.) She may also provide examples

to help in the synthesis of the bijective lens. In the third approach, which we call

NS for No Synthesis, the programmer writes the lens between the source and target

formats entirely by hand, including the descriptions of the source and target formats.
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For each problem in the benchmark suite, we calculate the following measures as

proxies for the level of programmer effort when using each the three approaches:

QS: The number of AST nodes in the QRE specifications for the source and target

formats, including examples.

BS: The sum of (1) the number of AST nodes in W (q) for each QRE q in the source

and target formats, (2) the number of AST nodes in canonize(q) for each QRE q

with a non-trivial canonizer, and (3) the number of AST nodes in the examples.

We use (1) to estimate the burden of describing the external source and target

formats and (2) to estimate the burden of writing the requisite canonizers by

hand. We count the nodes in the examples because they would be fed to the

bijective synthesizer. These counts are an approximation, as both W (q) and

canonize(q) are automatically generated from the corresponding QRE q, and it

is possible that a human-written version might be smaller.

NS: The sum of (1) the number of AST nodes in W (q) for each QRE q in the source

and target formats and (2) the number of AST nodes in the synthesized QRE

lens. We use (1) to estimate the burdern of describing the source and target

formats and (2) to estimate the burdern of writing the appropriate lens by hand.

These counts are also approximations, as W (q) and the synthesized lens may be

larger than one written by hand.

Figure 4.9 shows each of these measures for the 10 non-bijective problems in

the benchmark suite. On average (using a geometric mean), BS used 38.5% more

AST nodes than QS, requiring an average of 214 more AST nodes. On average,

NS used 180% more AST nodes than QS, requiring an average of 998 more AST

nodes. These figures suggest that introducing QREs saves programmers significant

effort compared to both Optician and basic Boomerang, while finding semantically

equivalent lenses.
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Figure 4.9: AST node measurements for each of the three approaches on each of the
10 non-bijective benchmark problems. Benchmarks are sorted in order of increasing
complexity as measured by the number of AST nodes in the source and target
format descriptions. QRE Synthesis requires far fewer AST nodes than the other two
approaches. QS represents using the full quotient Optician system. BS represents
using bijective Optician to write bijective lenses, and manually writing canonizers for
the edges. NS represents manually writing the full lens.

4.7.3 Maintaining Competitive Performance

To assess the performance of QRE synthesis, we are interested in two different

questions. First, how does the performance of QRE-enhanced Optician compare to

the performance of Optician on benchmarks that do not require QREs? The answer

to this question tells us how much overhead we have introduced by adopting the more

general mechanism. Figure 4.10(a) shows that QRE-enhanced Optician was able to

synthesize all of the Optician benchmarks at a speed competitive with the old version.

There is a small amount of additional overhead introduced by QREs in calculating the

W and K functions (two additional passes over the QREs are required, where inputs

could be used as-is), resulting in a very slight decrease in performance.

Second, how much time does it take for QRE-enhanced Optician to synthesize a

QRE lens when running on a non-bijective benchmark problem? Figure 4.10(b) shows

the amount of time required to infer a lens for each of the 10 benchmark programs
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Figure 4.10: Runtimes measurements. In (a), we run Optician and QRE-enhanced Op-
tician on the Optician benchmarks. We find that there is only a negligible performance
overhead incurred by using QREs. In (b), we run QRE-enhanced Optician on the 10
Optician benchmarks previously edited to make them bijective, after removing those
edits and then extending the synthesis specification to include QREs. (In other words,
we restored them to their original state, added QREs, and then ran QRE-enhanced
Optician). We find that QRE-enhanced Optician is able to synthesize all quotient
lenses in under 10 seconds, and typically finishes in under 5 seconds.

with nontrivial quotients. We find that QRE-enhanced Optician is able to synthesize

all quotient lenses in under 10 seconds, and typically finishes in under 5 seconds.
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Chapter 5

Synthesizing Symmetric Lenses

5.1 Introduction

One reason that bijective and quotient lens synthesis can be so effective, even relative

to successful synthesis tools in other domains, is that there are typically not very

many bijections (or bijections, up to equivalence) between a given pair of data formats,

particularly in the context of user-defined regular expressions, where only the identity

map can be used on them. If the synthesis algorithm finds any bijection, it is fairly

likely to be the intended one.

However, the set of real-world use cases for bijective lenses and quotient bijec-

tive lenses, where two data formats contain different arrangements of precisely the

same information, is limited. Oftentimes, two data formats share just some of their

information content. For instance, one ad-hoc system-configuration file might include

some format-specific metadata, such as a date or a reference number, while the same

configuration file on another operating system does not. Indeed among our benchmark

suite, all of the benchmarks taken from Flash Fill [20] and many of the benchmarks

that synchronize between two ad hoc file formats have this characteristic.
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Can Optician’s basic synthesis procedure be extended to a richer class of lenses?

Could we even imagine synthesizing all symmetric lenses [25]—a much larger class

that includes bijective lenses, “asymmetric” lenses (where the transformation from a

source structure to a target can throw away information that must then be restored

when transferring from target to source), and even more flexible transformations that

allow each side to throw away information?

One might first hope that extending the bijective lens synthesis algorithms to

synthesize symmetric rather than bijective lenses would be relatively straightforward:

Simply replace the bijective combinators with symmetric ones and search using similar

heuristics. However, this näıve approach encounters two difficulties.

The first of these is pragmatic. Symmetric lenses as presented by Hofmann et

al. [25] operate over three structures: a “left” structure X, a “right” structure Y

and a “complement” C that contains the information not present in either X or Y .

These complements must be stored and managed somehow. More fundamentally,

complements complicate synthesis specifications—instead of just giving single examples

of source and target pairings, users would have to give longer “interaction sequences”

to show how a lens should behave. To avoid these complexities, we define a restricted

variant of symmetric lenses, called simple symmetric lenses. Intuitively, simple

symmetric lenses are symmetric lenses that do not require external “memory” to

recover data from past instances of X or Y when making a round trip. They only

need the most recent instance.

Formally, we characterize the expressiveness of simple symmetric lenses by proving

that they are exactly the symmetric lenses that satisfy an intuitive property called

forgetfulness. We also show they are expressive enough for many practical uses by

adding simple symmetric lenses to the Boomerang language [6] and applying them

to a range of real-world applications. This exercise also demonstrates that simple
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Figure 5.1: Schematic diagram for the simple symmetric lens synthesis algorithm.
The user provides regular expressions Rand Sand a set of examples exs as input.
Expandfirst converts Rand S to stochastic regular expressions Rand Swith default
probabilities. It then finds pairs of stochastic regular expressions equivalent to Rand
Sand iteratively proposes them to GreedySynth. GreedySynth finds a lens typed
between the supplied SREs. When the algorithm finds a likely lens, it returns it.

symmetric lenses can coexist with, and be extended by, other advanced lens features

provided by Boomerang, including quotient lenses [18, 38] and matching lenses [5].

This leaves us with the second difficulty in synthesizing symmetric lenses: Whereas

the number of bijective lenses between two given formats is typically tiny, the number

of simple symmetric lenses is typically enormous. If a näıve search algorithm just

selects the first simple symmetric lens it finds, the returned lens will generally not be

the one the user wanted. We need a new principle for identifying “more likely” lenses

and a more sophisticated synthesis algorithm that uses this principle to search the

space more intelligently.

For these, we turn to information theory. We consider “likely” lenses to be ones

that propagate “a lot” of information from the left data format to the right and vice

versa. Conversely, “unlikely” lenses are ones that require a large amount of additional

information to recover one of the formats given the other. By default, our synthesis

algorithm prefers the lenses that propagate more information. This preference is

formalized using stochastic regular expressions (SREs) [10, 54], which simultaneously

define a set of strings and a probability distribution over those strings. Using this

probability distribution, we can calculate the likelihood of a given lens.

With simple symmetric lenses and this SRE-based likelihood measure in hand, we

propose a new algorithm for synthesizing likely lenses. To tame this complexity, we

divide the synthesis algorithm into two communicating search procedures (Figure 5.1),
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following the approach introduced in Chapter 3. The first, Expand, uses rewriting

rules to propose new pairs of stochastic regular expressions equivalent to the original

pair. The second, GreedySynth (which replaces RigidSynth) uses a greedy,

type-directed algorithm to find a simple symmetric lens between input SRE pairs,

returning the lens and its likelihood score to Expand. The whole synthesis algorithm

heuristically terminates when a sufficiently likely lens is found.

We added this synthesis procedure to the Boomerang system and explored its

effectiveness on a range of applications. Users set up a Boomerang synthesis task by

providing two regular expressions and optionally supplying input-output examples.

Users can also override the default mechanism for calculating the information content

of a SRE by asserting that certain strings are essential or irrelevant, forcing certain

data to either be retained or discarded during the transformations.

We evaluate our implementation, the effects of optimizations, and our inclusion

of relevance annotations on a set of 48 lens synthesis benchmarks drawn from data

cleaning, view maintenance, and file synchronization tasks, including the 39 bench-

marks described in Chapter 3. We find the system can synthesize simple symmetric

lenses for all of the benchmarks in under 30 seconds (§5.8). Most of the content in

this chapter comes from the paper “Synthesizing Symmetric Lenses” [45].

5.2 Simple Symmetric Lenses

Symmetric lens are used to synchronize files, where each file has relevant information

that is not present in the other file. Consider the example of synchronizing management

and HR employee files, shown in Figure 5.2. In this company, management and human

resources (HR) store information about employees in separate text files: management

stores the names of employees and their salaries while HR stores the names of employees

and their health insurance providers.
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Management’s data HR’s data

Jane Doe: 38000
John Public: 37500

FirstLast,Company
Jane Doe,Healthcare Inc.
John Public,Insurance Co.

Management’s type HR’s type

let salary = number | ”unk”
let emp salary = name . ” ” . name . ”: ” salary
let emp salaries = ”” | emp salary . (”\n” emp salary)∗

let company = (co name . (”Co.” | ”Inc.” | ”Ltd.”)) | ”UNK”
let emp ins = name . ” ” . name ”,” company
let header = ”FirstLast,Company”
let emp insurance = header . (”\n” . emp ins)∗

Figure 5.2: Hypothetical example data files and corresponding regular expressions
used by management and HR at a company to represent employee salaries and health
insurance providers, respectively.

While symmetric lenses are already a well-studied class of lenses, capable of

synchronizing these formats, they are not very amenable to synthesis. Instead, we

focus on simple symmetric lenses, a restriction on symmetric lenses. Semantically, a

simple symmetric lens between sets X and Y comprises four functions subject to four

round-tripping laws.

createR : X → Y

createL : Y → X

putR : X → Y → Y

putL : Y → X → X

putL (createRx)x = x (CreatePutRL)

putR (createL y) y = y (CreatePutLR)

putL (putRx y)x = x (PutRL)

putR (putL y x) y = y (PutLR)

The two create functions are used to fill in default values when introducing new data

(e.g., on create the “unk” salary entry is added alongside the name to the management

file when HR inserts a new employee). The two put functions propagate edits from

one format to the other by combining a new value from one with an old value from the

other. The record projection notation `.putR extracts the putR function from the lens

`. These four functions can be used to keep the common information between two file

types in sync. For example, if a new file of the left-hand format is created, the createR

function will build a new file in the right-hand format. If the right-hand file is then

edited, the putL function can update the left-hand file with the changed information.

The round-tripping laws guarantee that pushing an “unedited” value from one

side (the result of a put or create) back through a lens in the other direction will
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get back to exactly where we began. For example, consider a lens synchronizing the

employee data formats in Figure 5.2. Applying the createR function to a salary file

creates an insurance file with the same employee names in the file, with “UNK” for

each insurance company. The round-tripping laws guarantees that applying the putL

function to the generated insurance file and the original salary file will return the

original salary file, unmodified.

Simple symmetric lenses differ from “classical” symmetric lenses in that they do

not involve a complement. We give a detailed comparison in Chapter 6.

5.3 Simple Symmetric Lens Language

Simple symmetric lenses can be written using the following lens combinators, `.

` ::= id(R)

| `∗

| concat(`1, `2)

| swap(`1, `2)

| or(`1, `2)

| `1 ; `2

| invert(`1)`2

| disconnect(R, S , s ∈ Σ∗, t ∈ Σ∗)

If R and S are regular expressions, then ` : R ⇔ S indicates that ` is a simple

symmetric lens between L(R) and L(S ). (We will use undecorated variables later for

stochastic regular expressions, so for the remainder of this chapter, we mark plain

REs with overbars.) We illustrate some of these combinators by defining lenses on

subcomponents of the employee data formats.
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The semantics for simple symmetric lenses are only well-defined when the lens

is well-typed, so we shall introduce the lens typing rules at the same time as the

semantics.

id(R) : R ⇔R

createR s = s

createL s = s

putR s t = s

putL s t = s

The simplest combinator is the identity lens id, which takes as an argument a

regular expression R and propagates data unchanged in both directions. For example,

as names should be synchronized across the data formats, an id lens could perform

that synchronization.

id(name) : name ⇔ name

The identity lens moves data back and forth from source to target without changing

it. Both the createR and createL functions are the identity function (so createR s = s),

and the put functions merely return the first argument (so putR s t = s). Because the

two formats are fully synchronized, no knowledge of the prior data is needed.

s ∈ L(R) t ∈ L(S )

disconnect(R,S , s , t) : R ⇔ S

createR s ′ = t

createL t ′ = s

putR s ′ t ′ = t ′

putL t ′ s ′ = s ′
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In contrast to the identity lens, disconnect(R, S , s , t) does not propagate any data

at all from one format to the other. The disconnect lens takes four arguments: two

regular expressions (R, S ) and two strings (s , t). The regular expressions specify the

formats on the two sides, while the strings provide default values. Disconnect lenses

are used to remove information – for example, removing salary information when

transforming from the management format to the HR format.

disconnect(salary, ””, ”unk”, ””) : salary ⇔ ””

On creates, the input values are thrown away, and default values are returned

(createL t = ”unk” ), and on puts, the second argument is used and the first is thrown

away (putR s t = t). For example, the salary field is only present in management files,

so the disconnect lens can ensure salary edits do not cause updates to the HR file.

With the above lens, putL”” 60000 will return 60000, and putR will always return ””.

The insert lens ins and the delete lens del are syntactic sugar for uses of the

disconnect lens in which a string constant is omitted entirely from the source or target

format.

ins(t) = disconnect(””, t, ””, t)

del(s) = disconnect(s, ””, s, ””)

The ins lens inserts a constant string when going from left to right, while del inserts a

string when going from right to left.

`1 : R1 ⇔ S 1 `2 : R2 ⇔ S 2

R1 ·! R2 S 1 ·! S 2

concat(`1, `2) : R1 ·R2 ⇔ S 1 ·S 2
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createR s1s2 = (`1.createR s1)(`2.createR s2)

createL t1t2 = (`1.createL t1)(`2.createL t2)

putR (s1s2) (t1t2) = (`1.putR s1 t1)(`2.putR s2 t2)

putL (t1t2) (s1s2) = (`1.putL t1 s1)(`2.putL t2 s2)

Concat is similar to concatenation in our bijective lens language. The concat lens

structurally combines its sublenses; we could use the lens

id(name) . id(” ”) . id(name) . del(”: ”) . ins(”,”)

to transform “Jane Doe: ” to “Jane Doe,” in the left-to-right direction.

`1 : R1 ⇔ S 1 `2 : R2 ⇔ S 2

R1 ·! R2 S 2 ·! S 1

swap(`1, `2) : R1 ·R2 ⇔ S 2 ·S 1

createR s1s2 = (`2.createR s2)(`1.createR s1)

createL t2t1 = (`1.createL t1)(`2.createL t2)

putR (s1s2) (t2t1) = (`2.putR s2 t2)(`1.putR s1 t1)

putL (t2t1) (s1s2) = (`1.putL t1 s1)(`2.putL t2 s2)

The swap combinator is similar to concat, though the second regular expression is

swapped.

`1 : R1 ⇔ S 1 `2 : R2 ⇔ S 2

L(R1) ∩ L(R2) = ∅ L(S 1) ∩ L(S 2) = ∅

or(`1, `2) : R1 | R2 ⇔ S 1 | S 2
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createR s =


`1.createR s if s ∈ L(R1)

`2.createR s if s ∈ L(R2)

createL t =


`1.createL t if t ∈ L(S 1)

`2.createL t if t ∈ L(S 2)

putR s t =



`1.putR s t if s ∈ L(R1) ∧ t ∈ L(S 1)

`2.putR s t if s ∈ L(R2) ∧ t ∈ L(S 2)

`1.createR s if s ∈ L(R1) ∧ t ∈ L(S 2)

`2.createR s if s ∈ L(R2) ∧ t ∈ L(S 1)

putL t s =



`1.putL t s if t ∈ L(S 1) ∧ s ∈ L(R1)

`2.putL t s if t ∈ L(S 2) ∧ s ∈ L(R2)

`1.createL t if t ∈ L(S 1) ∧ s ∈ L(R2)

`2.createL s if t ∈ L(S 2) ∧ s ∈ L(R1)

The or lens deals with data that can come in one form or another. If the data gets

changed from one format to the other, information in the old format is lost.

` : R ⇔ S R
∗!

S
∗!

`∗ : R
∗ ⇔ S

∗

createR s1 . . . sn = (`.createR s1) . . . (`.createR sn)

createL t1 . . . tn = (`.createL t1) . . . (`.createL tn)

putR (s1 . . . sn) (t1 . . . tm) = t ′1 . . . t
′
n where t ′i =


`.putR si ti if i ≤ m

`.createR si otherwise

putL (t1 . . . tm) (s1 . . . sn) = s ′1 . . . s
′
n where s ′i =


`.putR ti si if i ≤ n

`.createR ti otherwise

The iterate lens is useful for synchronizing a series of items or rows in a table. For

example given a lens employee lens that synchronizes data for a single employee, the

lens

91



(id(”\n”) . employee lens)∗ : (”\n” . emp salary)∗ ⇔ (”\n” . emp ins)∗

transforms a list of employees in employees in the Management format to a list of

employees in the HR format and vice versa.

`1 : R1 ⇔ S `2 : R2 ⇔ S L(R1) ∩ L(R2) = ∅

merge right(`1, `2) : R1 | R2 ⇔ S

createR s =


`1.createR s if s ∈ L(R1)

`2.createR s if s ∈ L(R2)

createL t = `1.createL t

putR s t =


`1.putR s t if s ∈ L(R1)

`2.putR s t if s ∈ L(R2)

putL t s =


`1.putL t s if s ∈ L(R1)

`2.putL t s if s ∈ L(R2)

The merge right lens is interesting because when executed from left to right, it

converts data in either format R1 or R2 into a common format S . In previous work [6],

this was combined into or, where or could have ambiguous types.

`1 : R ⇔ S 1 `2 : R ⇔ S 2 L(S 1) ∩ L(S 2) = ∅

merge left(`1, `2) : R ⇔ S 1 | S 2

createR s = `1.createR s

createL t =


`1.createL t if t ∈ L(S 1)

`2.createL t if t ∈ L(S 2)

putR s t =


`1.putR s t if t ∈ L(S 1)

`2.putR s t if t ∈ L(S 2)

putL t s =


`1.putL t s if t ∈ L(S 1)

`2.putL t s if t ∈ L(S 2)
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The merge left lens is symmetric to merge right.

`1 : R ⇔ S `2 : S ⇔T

`1 ; `2 : R ⇔T

createR s = `2.createR (`1.createR s)

createL t = `1.createL (`2.createL t)

putR s t = `2.putR (`1.putR s (`2.createL t)) t

putL t s = `1.putL (`2.putL t (`2.createR s)) s

The putR and putL function of composed lens `1 ; `2 is interesting. Because puts

require intermediary data, we recreate that intermediary data with creates.

` : R ⇔ S

invert(`) : S ⇔R

createR t = `.createL t

createL s = `.createR s

putR t s = `.putL t s

putL s t = `.putR s t

The invert combinator is particularly useful when chaining many compositions together,

as it can be used to align the central types. For example, with the lenses `1 : R1 ⇔ R2

and `2 : R3 ⇔ R2, we can construct the composition `1 ; invert(`2) : R1 ⇔ R3.

` : R ⇔ S R ≡s R
′

S ≡s S
′

` : R
′ ⇔ S

′

Type equivalence enables a lens of type S ⇔ T to be used as a lens of type S ′ ⇔ T ′

if S equivalent to S ′ and T is equivalent to T ′. Type equivalence is useful both for

addressing type annotations, and for making well-typed compositions.
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let name lens = id(name) . id(” ”) . id(name) . del(”: ”) . ins(”,”)
let employee lens = name lens . disconnect(salary,””,”unk”,””)

. disconnect(””,company,””,”UNK”)
let employees lens = ins(”\n”) . employee lens . iterate(id(”\n”) . employee lens)
let full lens : emp salaries ⇔ emp insurance = ins(header) . employees lens

Figure 5.3: A lens that synchronizes management and HR employee files

These combinators are combined in figure 5.3 to construct a complete lens between

the employee formats.

5.4 Synthesis Overview

Given a regular expression type R ⇔ S and a set of input-output examples, we want

to find a simple symmetric lens ` : R ⇔ S that satisfies all the input/output examples.

Note that, unlike previous synthesis specifications, these input/output examples can

take the form of put examples, (e.g. putR s t = t′), instead of just create examples (e.g.

createR s = t). This can help demonstrate that specific data from one side should be

propogated. For our running example, suppose we wish to synthesize a lens between

emp salaries and emp insurance, using as the input-output examples: createR mgmt ex

= hr ex and createL hr ex = mgmt ex.
mgmt ex hr ex

Jane Doe: 38000

John Public: 37500

FirstLast,Company

Jane Doe,Healthcare Inc.

John Public,Insurance Co.

emp salaries emp insurance

let salary = number | ”unk”

let emp salary = name . ” ” . name . ”: ” salary

let emp salaries = ”” | emp salary . (”\n” emp salary)∗

let company = (co name . (”Co.” | ”Inc.” | ”Ltd.”)) | ”UNK”

let emp ins = name . ” ” . name ”,” company

let header = ”FirstLast,Company”

let emp insurance = header . (”\n” . emp ins)∗

One challenge is that the simple symmetric lens combinators permit many well-

typed lenses between a given pair of regular expressions. For example, Figure 5.3 gives

one possible lens with type emp salaries ⇔ emp insurance, but
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disconnect(emp salaries, emp insurance, mgmt ex, hr ex)

is another well-typed lens that satisfies the example in Figure 5.2. In general, many

examples may be required to rule out all possible occurrences of disconnect lenses,

particularly in complex formats. Instead of merely finding any satisfying lens, we wish

to synthesize a satisfying lens that is likely to please the user.

How can we identify such a “likely” lens? We propose the following heuristic: A

satisfying lens is “more likely” if it uses more data from one format to construct the

other. For example, the identity lens (which uses all the data) is more likely than the

disconnect lens (which uses none). Formally, we define the likelihood of a satisfying

lens as the expected number of bits required to recover data in one format from data

in the other; higher likelihoods correspond to fewer bits. Two strings s and t are

synchronized according to lens ` if `.putR s t = t and `.putL t s = s. We can recover s

from t using bits b and lens ` if we can reconstruct s from t, b, and `. For example,

given the id lens, we can recover s from t using no bits because, in this case, s is just t.

In contrast, given the disconnect lens, we need enough bits to fully encode s in order

to recover it from t because all the information in t gets thrown away. Thus, if both

id and disconnect are satisfying lenses for a particular pair of formats, id will be more

likely.

The expected number of bits required to recover a piece of data corresponds to the

well-known information-theoretic concept of entropy [57]. Calculating entropy requires

a probability distribution over the space of possible values for the data. Specifically,

given a set S and a probability distribution P : S → R over S, the entropy H(S,P ) is

−Σs∈SP (s)log2P (s). In information theory, the information content of each element

of s ∈ S is the number of bits required to specify s in a perfect encoding scheme

(−log2P (s)). The entropy of S is the expected number of bits required to specify an

element drawn from S—the probability of each element times its information content.

Entropy captures the intuition that, if a data source contains many possible elements
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and none have significantly higher probability than others, it will have high entropy.

Data sources with just a few high probability elements have low entropy. When P is

clear from context, we will often use the shorthand of H(S) for H(S,P ).

In the present setting, we already have a way of expressing sets of data: regular

expressions. To calculate entropy, what we need is a way to express probability

distributions over those sets. To that end, we adopt stochastic regular expressions [54,

10] (SREs), which are regular expressions in which each operator is annotated with

a probability (see §5.5). A stochastic regular expression thus specifies both a set of

strings at the same time as a probability distribution over that set.

We use entropy to gauge the relative likelihood of lenses in our synthesis algorithm

(see §5.6). For any lens `, we can calculate the expected number of bits required to

recover a string t in L(S ) from a synchronized string s in L(R). This expectation is the

conditional entropy of R given S and `, formally
∑

s∈R PR(s) ·H({t | `.putR s t = t}).

The likelihood we assign to ` is the sum of the conditional entropy of R given S and `

and the conditional entropy of S given R and `. This metric assigns higher entropy

(or lower likelihood) to lenses where knowing the string on one side provides little

information about the string on the other side. It assigns zero entropy to bijections

because given a string s ∈ R, the bijection exactly determines the corresponding string

in S .

To obtain SREs from the plain regular expressions that users write, we use a

default heuristic that attempts to assign probability annotations giving each string in

the language equal probability (not prioritizing one piece of information over another).

Sometimes users already know that certain data should or should not be used to

construct the other format. We introduce relevance annotations to SREs that enable

users to specify whether a piece of data should be used to construct the other format

(with require) or not (with skip). In our example, salary and company could safely be

skipped (as they are disconnected), where name in emp salary and emp ins could be
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annotated as required (as they are converted with the identity lens). Doing so both

constrains the problem (as names must be synchronized) and makes it easier (as the

algorithm does not waste time looking for salary information in the insurance format).

In this way, users can tweak the lens likelihoods with their external knowledge.

5.4.1 Searching for Likely Lenses

Given a stochastic regular expression type R ⇔ S and a set of input-output examples,

our algorithm will search for a likely lens with that type. Similarly to when synthesizing

bijective lenses, we split the search into two communicating procedures. The first,

Expand, navigates the space of semantically equivalent regular expressions by applying

rewrite rules that preserve both semantics and probability distributions. This algorithm

ranks pairs of stochastic regular expressions by the number of rewrite rule applications

required to obtain each pair from the one given as input. It passes the pairs off to the

second search procedure, GreedySynth, in rank order with the smallest first.

GreedySynth looks for highest-likelihood lenses between a given pair of stochas-

tic regular expressions R and S by performing a type-directed search. It first converts

the stochastic regular expressions provided by Expand into stochastic DNF regular

expressions—a constrained representation of stochastic regular expressions with dis-

junctions distributed over concatenations and with concatenations and disjunctions

normalized to operating over lists. Then it uses the syntax of these n-ary DNF regular

expressions to find normalized lenses in a form we call simple symmetric n-ary DNF

lenses. These involve neither a composition operator nor a type equivalence rule.

These restrictions mean that there are comparatively few simple symmetric n-ary

DNF lenses that are well typed between a given pair of stochastic n-ary DNF regular

expressions, so GreedySynth’s search space for a given pair of regular expressions

is finite. Finally, GreedySynth yields a simple symmetric lens by converting the

n-ary syntax back to the binary forms provided in the surface language.
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This architecture of communicating synthesizers gives us a way to enumerate pairs

of stochastic regular expressions of increasing rank and to efficiently search through

them, but it poses a problem: when should Expand stop proposing new SRE pairs?

We might have found a promising lens between a pair of stochastic regular expressions,

but a different pair we haven’t yet discovered may give rise to an even better lens.

The search algorithm must resolve a tension between the quality of the inferred lens

and the amount of time it takes to return a result. For example, if the algorithm has

already found the lens in Figure 5.3, we don’t want to spend a lot of time searching

for an even better lens. To resolve this tension, the algorithm uses heuristics to judge

whether to return the current best satisfying lens to the user or to pass the next set

of equivalent SREs to GreedySynth. The heuristics favor stopping if the current

best satisfying lens is very likely, indicating the lens is very promising (for example, if

the satisfying lens loses no information, the algorithm should terminate for no other

lens will be more likely). The heuristics also favor stopping if Expand has delivered

to GreedySynth all pairs of stochastic regular expressions at a given rank and

there is a large number of pairs at the next rank, because searching through all such

pairs will take a long time (i.e., if a satisfying lens loses only a little information and

searching for a better one will take a long time, the discovered lens is returned). With

this approach, the algorithm can quickly return a satisfying lens with relatively high

likelihood. If the user is unhappy with the result, they can either refine the search

by supplying additional examples, which serve both to rule out previously proposed

lenses and to reduce the size of the search space by cutting down on the number

of satisfying lenses, or they can supply annotations on the source and target SREs

indicating that certain information either must be retained or must be discarded by

the lens (see §5.7.3).
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5.5 Stochastic Regular Expressions

To characterize likely lenses, we must compute the expected number of bits needed

to recover a string in one data source from a synchronized string in the other data

source. To do this, we first develop a probabilistic model for our language using

stochastic regular expressions (SREs)—regular expressions annotated with probability

information [10, 54]—that jointly express a language and a probability distribution

over that language.

R, S ::= s | ∅ | R∗p | R1 · R2 | R1 |p R2

(Lowercase s ranges over constant strings and p ranges over real numbers between 0

and 1, exclusive.) The semantics of an SRE S is a probability distribution PS defined

as follows.

Ps(s ′′) =


1 if s = s ′′

0 otherwise

P∅(s) = 0

PR1·R2(s) = Σs=s1s2PR1(s1)PR2(s2)

PR1 |p R2(s) = pPR1(s) + (1− p)PR2(s)

PR∗p (s) = ΣnΣs=s1...snp
n(1− p)Πn

i=1PR(si)

One may think of SREs as string generators. Under this interpretation, the constant

SRE s always generates the string s and never any other string. The SRE R1 |p R2

generates a string from R1 with probability p and generates a string from R2 with

probability 1− p. The SRE R∗p generates strings in Rn with probability pn(1− p).

For example, R∗p will generate a string in R with probability p(1− p) and a string in

R · R with probability p2(1− p).
99



∅ · R ≡s ∅ 0 ProjL
R · ∅ ≡s ∅ 0 ProjR
ε · R ≡s R · IdentL
R · ε ≡s R · IdentR

R |1 ∅ ≡s R + Ident
R |p S ≡s S |1−p R | Comm

R · (R′ |p R′′) ≡s (R · R′) |p (R · R′′) DistR
(R′ |p R′′) · R ≡s (R′ · R) |p (R′′ · R) DistL

R∗p ≡s ε |1−p (R · R∗p) UnrollstarL
R∗p ≡s ε |1−p (R∗p · R) UnrollstarR

(R · R′) · R′′ ≡s R · (R′ · R′′) · Assoc
(R |p1 R′) |p2 R′′ ≡s R |p1p2 (R′ | (1−p1)p2

1−p1p2

R′′) | Assoc

Figure 5.4: Stochastic Regular Expression Star-Semiring Equivalence

5.5.1 Stochastic Regular Expression Equivalences

The Expand algorithm enumerates SREs that are “equivalent” to a given one. How-

ever, existing work does not define any notion of stochastic regular expression equiva-

lence. Figure 5.4 shows how we extend the star-semiring [33] equivalences (a finer

notion of equivalence than semantic equivalence) to SREs.

Theorem 9. If R ≡s S , then PR = PS .

This theorem will come in handy as we traverse (with Expand) or normalize

across (as part of GreedySynth) star-semiring equivalences.

5.5.2 Stochastic Regular Expression Entropy

The entropy of a data source S is the expected number of bits required to describe an

element drawn from S (formally −Σs∈S P (s) · log2P (s)). The entropy of a SRE can

be computed directly from its syntax, when each string is uniquely parsable (i.e. the

SRE is unambiguous) and contains no empty subcomponents.
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H(s) = 0

H(R∗p) = p
1−p(H(R)− log2p)− log2(1− p)

H(R · S ) = H(R) + H(S )

H(R |p S ) = p(H(R)− log2(p)) + (1− p)(H(S )− log2(1− p))

For example, the entropy of R = ”a” |.5 ”b” is 1. The best encoding of a stream of

elements from R will use, on average, 1 bit per element to determine whether that

element is ”a” or ”b”. As an additional example, a fixed string has no information

content, and so has no entropy.

Theorem 10. If R is unambiguous and does not contain ∅ as a subterm, H(R) is the

entropy of R.

To understand the difficulties caused by ambiguity, consider the SRE ”a” |.5 ”a”.

The formula above defines the entropy to be 1, but the true entropy is 0 (i.e., no bits

are needed to know the generated string will be ”a”). Similar issues occur when trying

to find the entropy when ∅ is a subterm (what should the entropy of ∅∗.5 be?), so we

do not define entropy on ∅.

Fortunately, we already require unambiguous regular expressions as input to our

synthesis procedure to guarantee the synthesized lenses are well-typed, and we can

easily preprocess empty subexpressions out of SREs that are themselves nonempty

using the star-semiring equivalences (e.g., ∅ |.5 ”s” ≡s ”s”).

5.6 Lens Likelihoods

Our likelihood metric is based on the expected amount of information required to

recover a string in one data format from the other. We use the function H→(S | `, R)

to calculate bounds on the expected amount of information required to recover a

string in S from a string in R, synchronized by `. Similarly, we use the function

H←(R | `, S ) to calculate bounds on the expected amount of information required to
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recover a string in R from a string in S , synchronized by `. We write a[b, c] to mean

[ab, ac], and [a, b] + [c, d] to mean [a+ c, b+ d].

H→(S | id(S ), S ) = [0,0]

H→(S | disconnect(R, S , s , t), R) = [H(S ),H(S )]

H→(S ∗q | `∗, R∗p) = p
1−pH

→(S | `, R)

H→(S1 · S2 | concat(`1, `2), R1 · R2) = H→(S1 | `1, R1) + H→(S2 | `2, R2)

H→(S2 · S1 | swap(`1, `2), R1 · R2) = H→(S2 | `1, R2) + H→(S1 | `1, R1)

H→(S1 |q S2 | or(`1, `2), R1 |p R2) = pH→(R1 | `1, S1) + (1− p)H→(R2 | `2, S2)

H→(S | merge right(`1, `2), R1 |p R2) = pH→(S | `1, R1) + (1− p)H→(S | `2, R2)

H→(S1 |q S2 | merge left(`1, `2), R) = [0,H→(S1 | `1, R) + H→(S2 | `2, R) + 1]

H→(R | invert(`), S ) = H←(R | `, S )

H←(R | `, S ) is defined symmetrically. These functions bound the expected number

of bits to recover one data format from a synchronized string in the other format.

Note that we would be able to exactly calculate the conditional entropy, were it not

for merge left and merge right. If merge left(`1, `2) : R ⇔ S1 |q S2, given a string

in s, we need to determine if the synchronized string is in S1 or S2. However, this

information content is dependent on how likely the synchronized string is to be in S1 or

S2. Nevertheless, we typically calculate the conditional entropy exactly, as merges are

relatively uncommon in practice; only 2 of the lenses synthesized in our benchmarks

include merges.

The likelihood of a lens is the negative of its cost. The cost of a lens between

two SREs cost(`, R, S ) = max(H←(R | `, S )) + max(H→(S | `, R)) is the sum of the

maximum expected number of bits to recover the left format from the right, and the

right from the left. We have proven theorems demonstrating the calculated entropy

corresponds to the actual conditional entropy to recover the data.
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Theorem 11. Let ` : R ⇔ S , where ` does not include composition, R and S are

unambiguous, and neither R nor S contain any empty subcomponents.

1. H→(S | `, R) bounds the entropy of {t | t ∈ L(S )}, given {s | s ∈

L(R) ∧ `.putR s t = t}

2. H←(R | `, S ) bounds the entropy of {s | s ∈ L(R)}, given {t | t ∈

L(S ) ∧ `.putL t s = s}

Note that our definition of H→ contains no case for sequential composition `1; `2

and our theorem excludes lenses that contain such compositions. Defining the entropy

of lenses involving composition is challenging because `1 might, for instance, add some

information that is subsequently projected away in `2. Such operations can cancel,

leaving a zero-entropy bijection composed from two non-zero entropy transformations.

However, detecting such cancellations directly is complicated and this property is

difficult to determine merely from syntax. Fortunately, we are able to sidestep such

considerations by synthesizing DNF lenses—simple symmetric lenses that inhabit a

disjunctive normal form that does not include composition.

5.7 Synthesis Algorithm

Algorithm 5 presents our synthesis algorithm at a high level of abstraction. This

algorithm searches for likely lenses in priority order one “class” at a time using a

GreedySynth subroutine. Each class is the set of lenses that can by typed by

a pair of regular expressions, modulo a set of simple axioms such as associativity,

commutativity, and distributivity. The Expand subroutine generates new classes

using the star-unrolling axioms (UnrollstarL and UnrollstarR).

To summarize, the input regular expressions are first converted into stochastic

regular expressions with ToStochastic. This pair of SREs is used to initialize a
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Algorithm 5 SynthSymLens

1: function SynthSymLens(R,S , exs)
2: R ← ToStochastic(R)
3: S ← ToStochastic(S )
4: pq ← PQ.Create(R, S )
5: best ← None
6: while Continue(pq , best) do
7: (R, S )← PQ.Pop(pq)
8: `← GreedySynth(exs , R, S )
9: if Cost(`) < Cost(best) then

10: best ← `
11: PQ.Push(pq ,Expand(R, S ))

12: return best

priority queue (pq). The priority of a SRE pair is the number of rewrites needed to

derive the pair from the originals. Next, SynthSymLens enters a loop that searches

for likely lenses. The loop terminates when the algorithm believes it is unlikely to find

a better lens than the best one it has found so far (a termination condition defined by

Continue). Within each iteration of the loop, it:

• pops the next class (S, T ) of lenses to search off of the priority queue (PQ.Pop),

• executes GreedySynth to find a best lens in that class if one exists (`), using

the examples exs to filter out potential lenses that do not satisfy the specification,

• replaces best with `, if ` is more likely according to our information-theoretic

metric, and

• adds the SREs derived from rewriting S and T (Expand(S,T )) to the priority

queue.

When the loop terminates, the search returns the globally best lens found (best).

Each subroutine of this algorithm will be explained in further depth in the following

subsections.
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5.7.1 Searching for (R, S ) Candidate Classes

The first phase of the synthesis algorithm looks for pairs of SREs (R, S ) to drive the

GreedySynth algorithm. These pairs are generated using the star unrolling axioms:

R∗p → ε |1−p (R · R∗p)

R∗p → ε |1−p (R∗p · R)

as well as the congruence rules that allow these rewrites to be applied on subexpressions.

The priority queue yields stochastic regular expressions generated using fewer rewrites

first. Only when there are no more proposed regular expressions derived from n

rewrites will PQ.Pop propose regular expressions derived from n+ 1 rewrites.

The procedure Continue terminates the loop based on the how long the search

has been going, and how hard it expects the next class of problems to be. In particular,

if PQ.Peek(pq) = (R, S ), that RE pair is at distance d, the number of pairs in pq at

distance d is n, and the current best lens has cost c, then Continue(pq) continues the

loop while c < d+ log2(n). This termination condition is based around two primary

principles: do not search overly deep (d), and do not tackle a frontier that would

take too long to process (log2(n)). The log of the frontier is included because the

frontier grows much faster than lens costs grow. Lens cost grows with the log of the

expected number of choices in a given lens (due to its information theoretic basis), so

the frontier calculation does too.

When Continue(pq) terminates the loop, the algorithm stops proposing regular

expression pairs, and instead returns to the user the best lens found thus far. If the

algorithm finds a bijective lens, which has zero cost, it will immediately return.

5.7.2 Stochastic DNF Regular Expressions

The GreedySynth subroutine converts input SREs into a temporary pseudo-normal

form, Stochastic DNF regular expressions (SDNF REs). SDNF REs normalize across
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many of the star-semiring equivalences – if two regular expressions are equivalent mod-

ulo differences in associativity, commutativity, or distributivity, their corresponding

SREs are syntactically equal.

Syntactically, stochastic DNF regular expressions (DS , DT ) are lists of stochastic

sequences. Stochastic sequences (SQ , TQ) themselves are lists of interleaved strings

and stochastic atoms. Stochastic atoms (A,B) are iterated stochastic DNF regular

expressions.

A,B ::= DS ∗p

SQ ,TQ ::= [s0 ·A1 · . . . ·An · sn]

DS ,DT ::= 〈(SQ1, p1) | . . . | (SQn, pn)〉

Intuitively, stochastic DNF regular expressions are stochastic regular expressions

with all concatenations fully distributed over all disjunctions. As such, the language of

a stochastic DNF regular expression is a union of its subcomponents, the language of

a stochastic sequence is the concatenation of its subcomponents, and the language of a

stochastic atom is the iteration of its subcomponent. For 〈(SQ1, p1) | . . . | (SQn, pn)〉

to be a valid stochastic DNF regular expression, the probabilities must sum to one

(
∑n

i=0 pi = 1).

L(DS ∗p) = {s1 · . . . · sn | ∀i, si ∈ L(DS )}

L([s0 ·A1 · . . . ·An · sn]) = {s0 · t1 · · · tn · sn | ti ∈ L(Ai)}

L(〈(SQ1, p1) | . . . | (SQn, pn)〉) = {s | s ∈ L(SQ i) and i ∈ [1,n]}

As these DNF regular expressions are stochastic, they are annotated with proba-

bilities to express a probability distribution, in addition to a language.

PDS∗p (s) = ΣnΣs=s1...snp
n(1− p)Πn

i=1PDS (si)

P[s0·A1·...·An·sn](s ′) = Σs′=s0s′1...s
′
nsnΠn

i=1PAi
(s ′i)

P〈(SQ1,p1) | ... | (SQn,pn)〉(s) = Σn
i=1piPSQi

(s)
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�SQ : Sequence → Sequence → Sequence
[s0 ·A1 · . . . ·An · sn]�SQ [t0 ·B1 · . . . ·Bm · tm] =
[s0 ·A1 · . . . ·An · sn · t0 ·B1 · . . . ·Bm · tm]

� : DNF → DNF → DNF
〈(SQ1, p1) | . . . | (SQn, pn)〉 � 〈(TQ1, q1) | . . . | (TQm, qm)〉 =
〈(SQ1 �SQ TQ1, p1q1) | . . . | (SQ1 �SQ TQm, p1qm) | . . .
| (SQn �SQ TQ1, pnq1) | . . . | (SQn �SQ TQm, pnqm)〉

⊕p : DNF → DNF → DNF
〈(SQ1, p1) | . . . | (SQn, pn)〉 ⊕ 〈(TQ1, q1) | . . . | (TQm, qm)〉p =
〈(SQ1, p1p) | . . . | (SQn, pnp) | (TQ1, q1(1− p)) | . . . | (TQm, qm(1− p))〉

D :Atom → DNF
D(A) = 〈([ε ·A · ε], 1)〉

Figure 5.5: Stochastic DNF Regular Expression Functions

The algorithm for converting a stochastic regular expressions R into its correspond-

ing SDNF RE form, written ⇓R, is defined below. This conversion relies on operators

defined in Figure 5.5.

⇓s = 〈([s ], 1)〉 ⇓(R1 · R2) = ⇓R1� ⇓R2

⇓∅ = 〈〉 ⇓(R1 |p R2) = ⇓R1⊕p ⇓R2

⇓(R∗p) = D((⇓R)∗p)

After this syntactic conversion has taken place, the sequences are ordered (normaliz-

ing commutativity differences). This conversion respects languages and probability

distributions.

Theorem 12. PR(s) = P⇓R(s) and L(R) = L(⇓R).

Entropy We have developed a syntactic means for finding the entropy of a stochastic

DNF regular expression, like we have for stochastic regular expressions. This enables

us to efficiently find the entropy without first converting a SDNF RE to a stochastic

regular expression.
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H(DS ∗p) = p
1−p(H(DS )− log2p)− log2(1− p)

H([s0 ·A1 · . . . ·An · sn]) = Σn
i=1H(Ai)

H(〈(SQ1, p1) | . . . | (SQn, pn)〉) = Σn
i=1pi(H(SQ i) + log2pi)

Theorem 13. H(DS ) is the entropy of PDS .

ToStochastic With stochastic DNF regular expressions and ⇓defined, it is easier to

explain ToStochastic, the function that converts regular expressions into stochastic

regular expressions. If R is a stochastic regular expression generated by ToStochas-

tic, then when put into SDNF RE form, ⇓R = 〈(SQ1,
1
n
) | . . . | (SQn, 1

n
)〉 for some

sequences SQ1 . . . SQn, and every stochastic atom generated by ToStochasticis

DS ∗.8 . In particular, ⇓ generates regular expressions whose DNF form gives equal

probability to all sequence subcomponents of the SDNF REs, and gives a .8 chance

for stars to continue iterating. In our experience generating random strings from

regular expressions, these probabilities provide good distributions of strings—stars

are iterated 4 times on average, and no individual choice in a series of disjunctions

is chosen disproportionately often. It would be interesting future work to see how

changing the probability of iterating, or changing the distribution of strings, impacts

how well our algorithm performs.

5.7.3 Relevance Annotations

Even though our generated probability distribution works well in most situations, it is

not perfect. Consider synthesizing a lens between the formats shown in Figure 5.2.

Because salary information is present in emp salaries, but not in emp insurance, the

algorithm might spend a long time (fruitlessly) trying to construct lenses that transform

the salary to information present in emp insurance even though that is impossible.

In a similar but more elaborate example, such wasted processing effort may cause

synthesis to fail to terminate in any reasonable amount of time.
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One solution would be to cut off the search early. However, then one runs into the

opposite problem: In other scenarios, salary information may be present in the other

format, but it may take quite a bit of work to find a transformation that connects

the salary in emp salaries to the salary in the second format. Hence, early termination

may cut off synthesis before the right lens is found.

We can solve both problems by allowing users to augment the specifications

with relevance annotations. Sometimes, users have external knowledge that certain

information appears exclusively in one format or the other, or they may know the

information is present both formats. By communicating this knowledge to the synthesis

algorithm through relevance annotations, users can force the synthesis of lenses

that discard or retain certain information. The first annotation, skip(R), says the

information of R appears only in R, and can safely be projected. The second

annotation, require(R), says the information of R appears in the other format and

cannot be discarded.

For example, users can easily recognize that salary information is not present

in emp insurance. By annotating the salary field as skip(salary), users can add this

knowledge to the specification to optimize the search. In practice, we define the

information content of skip(R) to be zero.

H(skip(R)) = 0

Similarly, users can recognize that employee names are present in both files. By

annotating instances of name as require(name), users can add this knowledge to the

specification to optimize the search and force the generated lens to retain name

information. In practice, we make any lens that loses “required” information infinitely

unlikely.
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H→(require(S ) | `, R) =


∞ if H→(require(S ) | `, R) 6= 0

0 otherwise

H→(S | disconnect(R, S , s , t), R) =



∞ if S contains require(S ′) as

a subexpression, where

H(S ′) 6= 0

[H(S ),H(S )] otherwise

By adding in relevance annotations, we override the default metric, and Theorem 11

no longer holds. This is expected and desired. We intentionally want to break the

theorem, as minimizing entropy lost is no longer the first priority – the first priority

becomes to retain required information, and to lose skipped information. After these

priorities are achieved, the default metric determines what parts of the remaining

information is lost, and what parts are retained.

5.7.4 Symmetric DNF Lenses

Symmetric DNF lenses are an intermediate synthesis target for GreedySynth. There

are many fewer symmetric DNF lenses than symmetric regular lenses. In fact, if one

does not use the star-unrolling axioms, there are only finitely many DNF lenses of

a given type (though there are still many more symmetric DNF lenses than DNF

bijective lenses).

The structure of symmetric DNF lenses mirrors that of SDNF REs. A symmetric

DNF lens (sdl) is a union of symmetric sequence lenses, a symmetric sequence lens

(ssql) is a concatenation of symmetric atom lenses, and a symmetric atom lens (sal)

is an iteration of a symmetric DNF lens.

Just as we analyzed the information content of ordinary regular expressions, we

can analyze the information content of DNF regular expressions. As before, we
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use H→(DT | sdl , DS ) to calculate bounds on the expected amount of information

required to recover a string in DT from a string in DS , synchronized by sdl . We

use the function H←(DS | sdl , DT ) to calculate bounds on the expected amount of

information required to recover a string in DS from a string in DT , synchronized by

sdl .

The details of these definitions are syntactically tedious, but not intellectually

difficult. We elide them here but include them in the full version of the original

paper [44]. In Chapter 3, we proved DNF lenses are equivalent in expressiveness

to standard lenses. While we conjecture symmetric DNF lenses are equivalent in

expressivity to our standard symmetric lenses, we have not proven this equivalence.

5.7.5 GreedySynth

The synthesis procedure comprises three algorithms: one that greedily finds

symmetric DNF lenses (GreedySynth), one that greedily finds symmetric se-

quence lenses (GreedySeqSynth), and one that finds symmetric atom lenses

(GreedyAtomSynth). These three algorithms are hierarchically structured:

GreedySynth relies on GreedySeqSynth, GreedySeqSynth relies on Greedy-

AtomSynth, and GreedyAtomSynth relies on GreedySynth. The structure of

the algorithms mirrors the structure of symmetric DNF lenses and SDNF REs.

Symmetric DNF Lenses Algorithm 6 presents GreedySynth, which synthesizes

symmetric DNF lenses. Its inputs are a suite of input-output examples and a pair of

stochastic DNF regular expressions. First, NoMap determines whether there is no lens

satisfying the examples, because either the examples are contradictory, or if the output

parses have no corresponding input parses. If there are no such lenses, GreedySynth

returns None immediately. Otherwise, GreedySynthfinds the best lenses (given

the examples that match them) between all sequence pairs (SQi,TQj) drawn from
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Algorithm 6 GreedySynth

1: function GreedySynth(exs , DS , DT )
2: 〈(SQ1, p1) | . . . | (SQn, pn)〉 ← DS
3: 〈(TQ1, q1) | . . . | (TQm, qm)〉 ← DT
4: if NoMap(exs, 〈(SQ1, p1) | . . . | (SQn, pn)〉, 〈(TQ1, q1) | . . . | (TQm, qm)〉)

then
5: return None
6: SQs← [SQ1; . . . ; SQn]
7: TQs← [TQ1; . . . ; TQm]
8: sls ← CartesianMap(GreedySeqSynth(exs),SQs,TQs)
9: pq ← PQ.Create(sls)

10: lb ← LensBuilder.Empty
11: while PQ.IsNonempty(pq) do
12: ssql ← PQ.Pop(pq)
13: if LensBuilder.UsefulAdd(lb, ssql , exs) then
14: lb ← LensBuilder.AddSeq(lb, ssql)

15: returnLensBuilder.ToDNFLens(pq)

the left and right DNF regular expressions. (The function CartesianMap maps its

argument across the cross product of the input lists). A priority queue containing

these sequence lenses, ordered by likelihood, is then initialized with PQ.Create. The

symmetric lens is then built up iteratively from these sequence lenses, where the state

of the partially constructed lens is tracked in the lens builder, lb.

GreedySynth loops until there are no more sequence lenses in the priority queue.

Within this loop, a sequence lens is popped from the queue and, if it is “useful,” is

included in the final DNF lens. The lens is considered to be useful when its source (or

target) is not already the source (or target) of an included sequence lens. If examples

require that two sequences have a lens between them, such lenses are considered

useful. The priorities of the sequence lenses update as the algorithm proceeds: if two

sequence lenses have the same source, the second one to be popped gets a higher cost

than it originally had; information must now be stored for including that source of

non-bijectivity.

As an example, consider searching for a lens between ”” | name.name∗ and

”” | name. GreedySynth might first pop the sequence lens between the sequences
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”” and ””, because it is a bijective sequence lens between. As neither ”” is involved

in a sequence lens, this lens is considered useful. Next, the sequence lens between

name.name∗ and name would be popped: while that lens is not bijective it is still

better than the alternatives. As all sequences are now involved in sequence lenses,

and there are no examples to make other lenses useful, no more sequence lenses would

be added to the lens builder.

Finally, after all sequences have been popped, the partial DNF lens lb is converted

into a symmetric DNF lens. This is only possible if all sequences are involved in some

sequence lens: if they are not, LensBuilder.ToDNFLens instead returns None.

Symmetric Sequence lenses Algorithm 7 presents GreedySeqSynth, which

synthesizes symmetric sequence lenses using an algorithm whose structure is similar

to GreedySynth’s. It calls AtomSynth, which synthesizes atom lenses by iterating

a DNF lens between its subcomponents.

The inputs to GreedySeqSynth are a suite of input-output examples and a

pair of lists of stochastic atoms. As in GreedySynth, GreedySeqSynth returns

Noneearly if there is no possible lens. Afterward, GreedySeqSynth finds the best

lenses between each atom pair of the left and right sequences, and organizes them into

a priority queue ordered by likelihood with PQ.Create. The symmetric sequence

lens is built up iteratively from these atom lenses, where the state of the partially

built lens is tracked in the sequence lens builder, slb.

GreedySeqSynth loops until there are no more atom lenses in the priority queue.

In the loop, a popped atom lens is considered “useful” if adding it to the sequence will

lower the cost of the generated sequence lens, or if examples show that one of its atoms

must not be disconnected. Each atom can be part of only one lens at a time, so the

algorithm must sometimes remove a previously chosen atom lens in order to connect

one that must not be disconnected. The algorithm succeeds when all atoms that must
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Algorithm 7 GreedySeqSynth

1: function AtomSynth(exs , DS ∗p , DT ∗q)
2: if NoMap(exs , DS ∗p , DT ∗q) then
3: return None
4: else
5: returnGreedySynth(exs , DS , DT )∗

6: function GreedySeqSynth(exs , [s0 ·A1 · . . . ·An · sn], [t0 ·B1 · . . . ·Bm · sm])
7: if NoMap(exs , [s0 ·A1 · . . . ·An · sn], [t0 ·B1 · . . . ·Bm · sm]) then
8: return None
9: als ← CartesianMap(GreedyAtomSynth(exs), [A1; . . . ; An], [B1; . . . ; Bm])

10: pq ← PQ.Create(als)
11: slb ← SLensBuilder.Empty
12: while PQ.IsNonempty(pq) do
13: sal ← PQ.Pop(pq)
14: if SLensBuilder.UsefulAdd(slb, sal , exs) then
15: pq ← SLensBuilder.AddAtom(pq , sal)

16: returnSLensBuilder.ToDNFLens(pq)

not be disconnected are involved in an atom lens; SLensBuilder.ToDNFLens

returns None otherwise.

5.7.6 Optimizations

Our implementation includes a number of optimizations not described above: annota-

tions that guide DNF conversion; an expansion inference algorithm; and compositional

synthesis. The optimizations make the system performant enough for interactive use.

Open and Closed Regular Expressions While GreedySynth acts relatively

efficiently, it can suffer from an exponential blowup when converting SREs to DNF

form. This problem can be mitigated by avoiding the conversion of some SREs to

DNF form and by performing the conversion lazily when necessarily. More specifically,

Expand labels some unconverted SREs as “closed,” which means the type-directed

GreedySynth algorithm treats them as DNF atoms and does not dig into them

recursively. In other words, given a pair of closed SREs, GreedySynth can either

construct the identity lens between them (it will do this if they are the same SRE), or
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it can construct a disconnect lens between them. Regular expressions that are not

annotated as closed are considered “open.”

Distinguishing between open and closed regular expressions improves the efficiency

of GreedySynth, but forces Expand to decide which closed expressions to open. At

the start of synthesis, all regular expressions are closed, and Expand rewrites selected

closed regular expressions to open ones (thereby triggering DNF normalization).

Open an closed regular expressions are a generalization of user-defined regular

expressions introduced in Chapter 3. By using open and closed regular expressions,

where the user uses variables no longer has an impact on performance.

Expansion Inference These additional rewrites make the search through possible

regular expressions harder. Our algorithm identifies when certain closed regular

expressions can only be involved in a disconnect lens (unless opened). Such regular

expressions will automatically be opened. The full details of expansion inference are

explained in Chapter 3.

Compositional Synthesis We port the compositional synthesis algorithm from

Chapter 3 to the context of symmetric lenses.

5.8 Evaluation

We implemented simple symmetric lenses as an extension to Boomerang [6]. In doing

so, we reimplemented Boomerang’s asymmetric lens combinators using a combination

of the symmetric combinators presented in this chapter and symmetric versions of

asymmetric extensions (like matching lenses [5] and quotient lenses [18]) already present

in Boomerang. We also integrated our synthesis engine into Boomerang, allowing

users to write synthesis tasks alongside lens combinators, incorporate synthesis results

into manually-written lenses, and reference previously defined lenses during synthesis.
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All experiments were performed on a 2.5 GHz Intel Core i7 processor with 16 GB of

1600 MHz DDR3 running macOS Mojave.

In this evaluation, we aim to answer four primary questions:

1. Can the algorithm (with suitable examples and annotations) find the correct

lens?

2. Is the synthesis procedure efficient enough to be used in everyday development?

3. How much slower is our tool on bijective lens synthesis benchmarks than prior

work customized for bijective lenses [42]?

4. How effective is the information-theoretic search heuristic and how do our

annotations affect the results?

5.8.1 Benchmark Suite

Our benchmarks are drawn from three different sources.

1. We use 8 data cleaning benchmarks from Flash Fill [20] (3 of which were present

in Chapter 3, but had their alterations removed). None of these benchmarks

were bijective.

2. We use the 29 benchmarks from Augeas [35].

3. We created 11 additional benchmarks derived from real-world examples and/or

the bidirectional programming literature, 7 of which were present in Chapter 3.

These tasks range from synchronizing REST and JSON web resource descriptions

to synchronizing BibTEX and EndNote citation descriptions. Five of these

benchmarks were not bijective lenses.
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5.8.2 Synthesizing Correct Lenses

To determine whether the system can synthesize desired lenses, we ran it interactively

on all 48 tasks, working with the system to create sufficient examples and provide

useful relevance annotations. In all cases, the desired lens was obtained. The majority

of the tasks required only a single example and none required more than three examples

to synthesize the desired lens.1

Providing relevance annotations was needed in only 8 of the 48 tasks. In practice, we

found that adding such annotations quite easy: if manual inspection of the lens showed

there were too few ids, and too many disconnects or merges, we would add require

annotations. If synthesis took too long, we would add skip annotations. Section 5.8.5

studies the effects of removing such annotations.

We verified that our default running mode (SS) generated the correct lenses the

way programmers often validate their programs: we manually inspected the code and

ran unit tests on the synthesized code. To determine whether the synthesis procedure

generated the correct lens when running in modes other than SS, we compared

generated lens to the lens synthesized by SS.

5.8.3 Effectiveness of Compositional Synthesis

Having determined appropriate examples and annotations for the 48 benchmarks,

we evaluate the performance of the system by measuring the running time of our

algorithm in two modes:

SS: Run the symmetric synthesis algorithm with all optimizations enabled.

SSNC: Run the symmetric synthesis algorithm, with no compositional synthesis

enabled.

Recall that compositional synthesis allows users to break a benchmark into a series

of smaller synthesis tasks, whose solutions are utilized in more complex synthesis

1In one benchmark, we supplied a fourth example that was later discovered to be unnecessary.
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Figure 5.6: Number of benchmarks that can be solved by a given algorithm in a
given amount of time. SS is the full symmetric synthesis algorithm. SSNC is
the symmetric synthesis algorithm without using a library of existing lenses. The
symmetric synthesis algorithm is able to complete all benchmarks in under 30 seconds
elapsed total time. Without compositional synthesis it is able to complete 31. Each
benchmark specification includes source and target (potentially annotated) regular
expressions, and between one and three sufficient examples.

procedures. Compositional synthesis (SS mode) allows our system to scale to arbitrar-

ily large and complex formats; measuring it shows the responsiveness of the system

when used as intended. SSNC mode, which synthesizes a complete lens all at once,

provides a useful experimental stress test for the system.

For each benchmark in the suite and each mode, we ran the system with a timeout

of 60 seconds, averaging the result over 5 runs. Figure 5.6 summarizes the results of

these tests. We find that our algorithm is able to synthesize all of the benchmarks

in under 30 seconds. Without compositional synthesis, the synthesis algorithm is

able to solve 31 out of 48 problem instances. In total, 73 existing lenses were used in

compositional synthesis (about 1.5 per benchmark on average).
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5.8.4 Slowdown Compared to Bijective Synthesis

To compare to the existing bijective synthesis algorithm, we run our symmetric

synthesis algorithm on the original Optician benchmarks, comprised of 39 bijective

synthesis tasks.2

To perform this comparison, we synthesized lenses in two modes:

BS: The existing bijective synthesis algorithm with all optimizations enabled.

SS: The symmetric synthesis algorithm with all optimizations enabled.

For each benchmark, we ran it in both modes with a timeout of 60 seconds and

averaged the result over 5 runs. Figure 5.7 summarizes the results of these tests. On

average, SS took 1.3 times (0.5 seconds) longer to complete than BS. The slowest

completed benchmark for both synthesis algorithms is xml to augeas.boom, a

benchmark that converts arbitrary XML up to depth 3 into a serialized version of

the structured dictionary representation used in Augeas. This benchmark takes 18.9

seconds for the symmetric synthesis algorithm to complete, and 9.3 seconds the

bijective synthesis algorithm to complete.

Both the bijective synthesis and the symmetric synthesis engines use a pair of

collaborating synthesizers that (1) search for a compatible pair of regular expressions

and (2) search for a lens given those regular expressions. Bijective synthesis is faster

than symmetric synthesis because part (2) is much faster. Specifically, a bijection

must translate all data on the left into data on the right, and this fact constrains the

search. By contrast, a symmetric synthesis problem has a choice of which data on the

left to translate into data on the right. This choice gives rise to additional choices,

and symmetric synthesis must consider all of them. However, with memoization, this

slowdown is not too substantial, and all our benchmarks still terminate in under 30

seconds.

2We had to slightly alter four of these benchmarks, either by providing additional examples or by
adding in require annotations. Without these alterations, symmetric synthesis yielded a lens that fit
the specification but that was undesired.
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Figure 5.7: Number of benchmarks that can be solved by a given algorithm in a given
amount of time. SS is the full symmetric synthesis algorithm. BS is the full bijective
lens synthesis algorithm.

5.8.5 The Effects of Heuristics and Relevance Annotations

We evaluate the usefulness of (1) our information-theoretic metric, (2) our termination

heuristic and (3) our relevance annotations. To this end, we run our program in

several different modes:

Any: Ignore the information-theoretic preference metric (i.e., all valid lenses have

cost 0).

FL: Return the first highest ranked lens GreedySynth returns (i.e., ignore

the termination heuristic).

DC: Replace our information-theoretic cost metric with one where the cost of

the lens is the number of disconnects plus the number of merges.

NS: Ignore all skip annotations in the SRE specifications.

NR: Ignore all require annotations in the SRE specifications.

We experimented with the DC mode to determine whether the complexity of the

information-theoretic measure is really needed. Related work on string transformations

has often used simpler measures such as “avoid constants” that align with, but are

simpler than our measures [20, 32, 53]. The DC mode is an example of such a

simple measure—it operates by counting disconnects, which put a complete stop to

information transfer, and merges, which eliminate the information in a union.
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Figure 5.8: Number of benchmarks that synthesize the correct lens by a given algorithm.
Any provides no notion of cost, and merely returns the first lens it finds that satisfies
the specification. FL provides a notion of cost to GreedySynth, but once a satisfying
lens is greedily found, that lens is returned. DC synthesizes lenses, where the cost of
a lens is the number of disconnects plus the number of merges. NS ignores all skip
annotations while running the algorithm. NR ignores all require annotations while
running the algorithm.

Figure 5.8 summarizes the result of these experiments. The data reveal that the

information-theoretic metric is critical for finding the correct lens: Only 10 of the

benchmarks succeeded when running in DC mode. The termination condition is also

quite important. When running in FL mode, the algorithm only discovers 5 lenses,

which shows that the first class that contains a satisfying lens is rarely the correct

class. However, our algorithm is not perfect and fails when either it is very difficult to

find the desired lens (necessitating require) or when a large amount of data is projected

(necessitating skip). Without any annotations, our algorithm finds the correct lens for

40 of our 48 benchmarks; eight required relevance annotations to find the correct lens.

In total, there are 12 uses of require, and 4 uses of skip in our benchmark suite.
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Chapter 6

Related Work

In this thesis, we have designed and implemented lens synthesis techniques for bijective,

quotient, and symmetric lenses. We compare this line of work to existing lens

formulations, and work towards making lens programming easier (§6.1), and we

compare to previous work in synthesis (§6.2).

6.1 Lenses

6.1.1 QRE Lenses vs Quotient Lenses

Our work in synthesizing quotient lenses builds on the work of Foster et al [18]

who introduced the theory of quotient lenses and implemented quotient lenses as

a refinement of the bidirectional string processing language Boomerang [6]. As we

mentioned in Section 4.4.4, all our QRE combinators can be expressed using just the

normalize combinator, which is one of the canonizer primitives that Boomerang already

supports. Also, all our QRE lens combinators are already supported in Boomerang.

Consequently Boomerang quotient lenses are at least as expressive as our language of

QRE lenses.
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Boomerang’s canonizers allow one to canonize a regular language R to by mapping

it to another regular language S which may not be contained in S. Formally, given

sets C and B and an equivalence relation on B, Foster et al defined a canonizer q from

B/≡B to C to be a pair of functions q.canonize : B −→ C and q.choose : C −→ B

such that for every b ∈ B:

q.choose (q.canonize b) ≡B b

This definition gives allows much more latitude for defining canonizers than QREs. For

example, if ≡B is equal to Tot(B), the equivalence relation that relates every element

in B to every other element in B, then every function from C to B is a canonizer.

Because of this extra elbow-room, Boomerang is able to offer two primitive dupli-

cation quotient lenses, the first of which can be defined as follows,

` : C/≡C ⇔ A1/≡A1 f : C −→ A2 A1 ·! A2 ≡A=≡A1 ·Tot(A2)

dup1` f : C/≡C =⇒ A1 · A2/≡A

(dup1 ` f).get c = (`.get c) · (f c)

(dup1 ` f).put (a1 · a2) c = `.put a1 c

(dup1 ` f).create (a1 · a2) = `.create a1

with the symmetric dup2 combinator discarding the first copy instead of the second in

the put/create direction.

Boomerang’s more general definition for canonizers also allows (asymmetric) quo-

tient lenses to be used as canonizers by using the taking the canonize function to

be the get component of a lens and the choose function to be its create component.

Naturally, QREs also take advantage of this ability to use lenses as canonizers by

allowing for user-defined functions to be used by the squash and normalize combinators.

Lens synthesis can help define these user defined functions.
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6.1.2 Simple Symmetric Lenses vs Symmetric Lenses

The concept of symmetric lenses was originally introduced in Hofman et al. [25].

However, general symmetric lenses cause issues with synthesis, so we introduced simple

symmetric lenses.

In this section, we analyze the relationship between our simple symmetric lenses

and classical symmetric lenses. Proofs about this relationships are included in the full

version of the symmetric lens paper [44].

A classical symmetric lens[25] ` between X and Y consists of 4 components: a

complement C, a designated element init ∈ C, and two functions, putr : X × C →

Y ×C and putl : Y ×C → X ×C, that propagate changes in one format to the other.

In this formulation, data unique to each side are stored in the complement. When

one format is edited, the putR or putL function stitches together the edited data with

data stored in the complement. The init element is the initial value of C and specifies

default behavior when data is missing. For instance, to implement the scenario in

Figure 5.2, the complement would consist of a list of pairs of salary and company

name. Classical symmetric lenses satisfy the following equational laws.

putr (x, c) = (y, c′)

putl (y, c′) = (x, c′)

putl (y, c) = (x, c′)

putr (x, c′) = (y, c′)

Two classical symmetric lenses are equivalent if they output the same formats

given any sequence of edits. Formally, given a lens ` between X and Y , an edit for ` is

a member of X + Y . Consider the function apply, which, given a lens and an element

of that lens’s complement, is a function from sequences of edits to sequences of edits.

If apply(`, c, es) = es′, then given complement c and edit esi, the lens ` generates es′i.

apply(`, c, []) = []

`.putr(x, c) = (y, c′) apply(`, c′, es) = es′

apply(`, c, (inl x) :: es) = (inr y) :: es′

`.putl(y, c) = (x, c′) apply(`, c′, es) = es′

apply(`, c, (inr y) :: es) = (inl x) :: es′
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Two lenses, `1 and `2, are equivalent if apply(`1, `1.init, es) = apply(`2, `2.init, es) for

all es.

To compare classical and simple symmetric lenses, we define an apply function

on simple symmetric lenses as well. If apply(`, None, es) = es′, then starting with no

prior data, after edit esi, the lens ` generates es′i (the right format if esi = inl x, and

the left format if esi = inr y). If apply(`, Some (x, y), es) = es′, then starting with

data x and y on the left and right, respectively, after edit esi, the lens ` generates es′i.

apply(`,xyo, []) = []

`.createRx = y apply(`, Some (x, y), es) = es′

apply(l, None, inl x :: es) = inr y :: es′

`.createL y = x apply(`, Some (x, y), es) = es′

apply(l, None, inr y :: es) = inl x :: es′

`.putRx′ y = y′ apply(`, Some (x′, y′), es) = es′

apply(l, Some (x, y), inl x′ :: es) = inr y′ :: es′

`.putL y′ x = x′ apply(`, Some (x′, y′), es) = es′

apply(l, Some (x, y), inr y′ :: es) = inl x′ :: es′

Next, we define forgetful symmetric lenses to be symmetric lenses that satisfy the

following additional laws.

`.putr(x, c1) = ( , c′1)
`.putr(x, c2) = ( , c′2)

`.putl(y, c′1) = ( , c′′1)
`.putl(y, c′2) = ( , c′′2)

c′′1 = c′′2

(ForgetfulRL)

`.putl(y, c1) = ( , c′1)
`.putl(y, c2) = ( , c′2)

`.putr(x, c′1) = ( , c′′1)
`.putr(x, c′2) = ( , c′′2)

c′′1 = c′′2

(ForgetfulLR)

Intuitively, these equations state that complements are uniquely determined by

the most recent input x and y. Such lenses correspond exactly with simple symmetric

lenses, where all state is maintained by the x and y data.
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Theorem 14. Let ` be a classical symmetric lens. The lens ` is equivalent to a forgetful

lens if, and only if, there exists a simple symmetric lens `′ where apply(`, `.init, es) =

apply(`′, None, es), for all put sequences es.

The proof of this theorem is present in the appendix of the original “Synthesizing

Symmetric Lenses” paper [44].

Simple symmetric lenses are a strict subset of classical symmetric lenses, but

quite a useful one. For instance, all asymmetric lenses are expressible as simple

symmetric lenses. The primary loss is the loss of “memory” within the complement.

In classical symmetric lenses, disjunctive (or) lenses retain information about both

possible formats. If a user edits a format from one disjuncted format to the other, the

information contained in that first disjunct is retained within the complement. Simple

symmetric lenses have no such complement, so they mimic the forgetful disjunctive

lens of classical symmetric lenses.

Though classical symmetric lenses are more expressive, they introduce drawbacks

for synthesis: because each lens has a custom complement, one can no longer specify

the put functions through input/output examples alone. One alternative would be to

enrich specifications with edit sequences; another would be to specify the structure

of complements explicitly (though the latter would be somewhat akin to specifying

the internal state of a program). In either case, the complexity of the specifications

increases.
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6.1.3 Simple Symmetric Lenses vs Symmetric Lenses

Formally, an asymmetric lens ` : S ⇔ V is a triple of functions `.get : S −→ V ,

`.put : V −→ S −→ S and `.create : V −→ S satisfying the following laws [17]:

`.get (`.put s v) = v (PUTGET)

`.put s (`.get s) = s (GETPUT)

`.get (`.create v) = v (CREATEGET)

Simple symmetric lenses are strictly more expressive than classical asymmetric lenses.

Theorem 15. Let ` be an asymmetric lens. ` is also a simple symmetric lens, where:

`.createL y = `.create y `.createRx = `.get x

`.putL y x = `.put y x `.putRx y = `.get x

The proof of this theorem is present in the appendix of the original “Synthesizing

Symmetric Lenses” paper [44].

6.1.4 Other Lens Formulations

The literature on bidirectional programming languages and on lens-like structures is

extensive. Some lens-like languages and tools include GRoundTram [24], BiYacc [63],

Brul [62], BiGUL [29], bidirectional variants of relational algebra [7], spreadsheet

formulas [37], graph query languages [23], and XML transformation languages [34].

Some tools use quotient lens-like structures, like XSugar [9], biXid [28], FliPpr [39],

BiFluX [49], and X/Inv [27, 46, 47]. We refer the reader to the related work section

in Foster et al. [18] for an extended comparison of these works to quotient lenses.

For further detail on the bidirectional programming literature, readers can consult

a (slightly dated) survey [12] and more recent theoretical perspectives [1, 16].
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6.2 Data Transformation Synthesis

6.2.1 Invertible Function Synthesis

Recently, symbolic transducers have been used to infer program inverses [26], providing

invertibility guarantees for functions expressible in extended symbolic finite transducers.

This task differs from the one we tackle in that a programmer must supply a program

that performs a transformation in one direction and they get back a program that

performs the transformation in the inverse direction, whereas we specify data formats,

and obtain programs in both directions at once. Furthermore, this tool does not

work on many of the programs we are interested in: swap cannot be expressed in full

generality using these transducers. As extended symbolic finite transducers have only

finite lookahead, they cannot rearrange data of arbitrary length, making them unable

to express lenses like the name-swapping lens shown in Chapter 1.

6.2.2 String Transformation Synthesis

While we do not know of any previous efforts to synthesize both directions of bidirec-

tional transformations, there is a good deal of other recent research on synthesizing

unidirectional string transformations [20, 32, 50, 58, 59]. We compared our system to

two of these unidirectional string transformers, Flash Fill [20] and FlashExtract [32].

We found that these tools were unsuccessful in synthesizing the complex transforma-

tions we are performing – both these tools synthesized under 5 of our 39 examples.

Furthermore, neither of these tools were able to infer transformations that occurred

under two or more iterations – for efficiency reasons Flash Fill does not synthesize

programs with nested loops [20]. Much of this work assumes, like us, that the synthesis

engine is provided with a collection of examples. Our work differs in that we assume

the programmer supplies both examples and format descriptions in the form of regular

expressions. There is a trade-off here. On the one hand, a user must have some
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programming expertise to write regular expression specifications and it requires some

work. On the other hand, such specifications provide a great deal of information to

the synthesis system, which decreases the number of examples needed (often to zero),

makes the system scale well, and allows it to handle large, complex formats, as shown

in §3.7. By providing these format specifications, the synthesis engine does not have

to both infer the format of the data as well as the transformations on it, obviating the

need to infer tricky formats like those involving nested iterations.

6.2.3 DSL and Type-Directed Synthesis

Over the past decade, the programming languages community has explored the

synthesis of programs from a wide variety of angles. One of the key ideas is typically

to narrow the program search space by focusing on a specific domain, and to impose

constraints on syntax [2], typing [3, 15, 19, 21, 48, 56], or both.

There are many other recent results showing how to synthesize functions from

type-based specifications [3, 15, 19, 48, 51, 56]. These systems enumerate programs

of their target language, orienting their search procedures to process only terms that

are well-typed. Our system is distinctive in that it synthesizes terms in a language

with many type equivalences. Perhaps the most similar is InSynth [21], a system for

synthesizing terms in the simply-typed lambda calculus that addresses equivalences

on types. Instead of trying to directly synthesize terms of the simply-typed lambda

calculus, InSynth synthesizes a well-typed term in the succinct calculus, a language

with types that are equivalent “modulo isomorphisms of products and currying” [21].

Our type structure is significantly more complex. In particular, because our types do

not have full canonical forms, we use a pseudo-canonical form, which captures part of

the equivalence relation over types. To preserve completeness, we push some of the

remaining parts of the type equivalence relation into a set of rewriting rules and other

parts into the RigidSynth algorithm itself.
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Morpheus [14] is another synthesis system that uses two communicating synthesizers

to generate programs. In both Morpheus and Optician, one synthesizer provides an

outline for the program, and the other fills in that outline with program details that

satisfy the user’s specifications. This approach works well in large search spaces, which

require some enumerative search. Our systems differ in that an outline for Morpheus

is a sketch—an expression containing holes—whereas an outline for Optician is a pair

of DNF regular expressions, i.e., a type. Moreover, in order to implement an efficient

search procedure, we had to create both a new type language and a new term language

for lenses. Once we did so, we proved our new, more constrained language designed

for synthesis was just as expressive as the original, more flexible and compositional

language designed for human programmers.

Many synthesis algorithms work on domain-specific languages custom built for

synthesis [20, 32, 60, 61]. We too built a custom domain-specific language for synthesis

– DNF lenses. We provide the capabilities to convert specifications in an existing

language, Boomerang, to specifications as DNF regular expressions, and provide the

capabilities to convert our generated DNF lenses to Boomerang lenses. But we go

further than merely providing a converter to Boomerang, we also provide completeness

results stating exactly which terms of Boomerang we are able to synthesize.
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Chapter 7

Conclusions

In this work, we showed how to synthesize bijective, quotient, and symmetric lenses

from format specifications. We focus on string lenses, and synthesize Boomerang

expressions from lens types – pairs of regular expressions. Our core algorithm works

via two communicating synthesizers, one that generates a series of semantically

equivalent lens types from the initial specification, and another that searches for

transformations between the proposed lens types. We evaluated our algorithm on a

number of benchmarks, 39 for Bijective and Quotient lenses and 48 for Symmetric

lenses, and found that we were able to synthesize all of them in under 5 minutes.

While we focused on string lenses, I believe our core algorithm can be repurposed

to lenses in other domains (like lenses over algebraic data types, relational algebras,

and regular trees) and other domains where the type systems have rich equivalence

classes. If the type system for the language can be partitioned into type-directed

rules, and a rule for type-equivalence, our high-level approach should work. Users

should be able to have two synthesizers – one that traverses equivalences, and one

that searches through syntax-directed rules. Proving this process complete may be

difficult, as it entails showing the lenses have a normal form where all equivalences

are traversed “at once.” In the string lens domain, we did this with the DNF lens
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typing derivation, which first processes all rewrites, then processes syntactic rules.

While other synthesizers would not necessarily need to synthesize in a DNF form, they

would require such a two-sorted typing derivation.

One of my favorite parts of this work is how we use richer specifications to synthesize

transformations that were previously intractable. Previously, all string transformation

synthesis engines only used input-output examples as specifications. Synthesis systems

that only use examples have a very difficult task, they must recognize characteristics

of the data formats – essentially learning the data formats, and then learn how to

transform inputs from one learned data format to the other. Because they must learn

the data formats, these tools have particular difficulty in synthesizing transformations

with nested iterations, and disjunctions under iterations, which are also particularly

difficulty for data format inference systems.

By using types as inputs, our inference algorithm does not have to identify format

information, the formats are already available! Optician does not have any difficulties

with nested iterations; many of the benchmarks in our benchmark suite have deeply

nested iterations. Optician can scale to these complex formats because it only has to

focus on one thing – generating the lens.

The approach of enriching specifications to synthesize more complex transforma-

tions helps synthesize quotient lenses in Chapter 4. The key contributions of Chapter 4

lie in the design of QREs and our theorem demonstrating lenses with QREs at the

edges are equivalent in expressivity to full quotient lenses. This chapter is unique, as

it’s fundamentally a language design chapter, but the language being designed is a only

really used as specifications for a synthesizer. QREs in isolation don’t really make a

programmer’s job easier, they are basically just more restrictive forms of quotient lens

canonizers. But when combined with a bijective synthesis algorithm, QREs permit

Optician to synthesize all quotient lenses with only some lightweight annotations.
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Finally, while extending Optician to work on symmetric lenses, we quickly hit

difficulties due to the disconnect lens. As a disconnect lens is not usually the lens

a user wants but can have any type, we needed some extra form of specification.

By including probability annotations in the form of SREs, disconnect lenses can be

avoided. However, sometimes users want lenses with large amounts of information

lost. By including additional specifications in the form of relevance annotations, users

override Optician’s default rankings. By letting users control the rankings, and having

a default ranking that worked well in many cases, users can quickly find their desired

lenses.

In addition to synthesizing multiple types of string lenses, Optician makes in-

tellectual contributions that are more broadly applicable. Our general algorithm

can be used for synthesizing lenses in other domains, and could even be useful for

type-directed synthesis in non-lens domains where the types have rich equivalences.

Our approaches showed the benefits of using complex user specifications. There is an

inherent tension that we’ve exposed – by asking users for more complex specifications,

the user’s job is harder, but the synthesis task is made simpler. Prior work on program

sketching [60] also explores these boundaries – program sketches are heavyweight

specifications, but complex programs can be synthesized using them. In the future,

I think currently intractable synthesis tasks, like synthesizing long programs in a

general-purpose language, can become tractable by employing more complex types of

human interaction.
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