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Grammatical domains are sets of related grammars. Such domains appear naturally whenever a common
datatype like a date, a phone number or an address has multiple textual representations. While the grammar
induction problem may be intractable in general, when specialized to such grammatical domains it is often not
only feasible but efficient. In this paper, we introduce the concept of grammatical domains and propose to learn
grammars within such domains using Syntax-guided Grammar Induction (SGI), a refinement of the traditional
grammar induction problem that includes a syntactic specification of the grammars to search through. To
support the definition of grammatical domains, we design Saggitarius, the first user-facing meta-language
for specifying grammatical domains. The Saggitarius system comes equipped with an algorithm for solving
SGI problems based on encoding them as MaxSMT instances. We also define a benchmark suite for SGI and
evaluate the effectiveness of the algorithm on our benchmark suite, showing it typically returns a satisfying
grammar within a few seconds. We describe a case study in which we use Saggitarius to detect classes of
XML documents and find that Saggitarius metagrammars can be used to tame a highly ambiguous search
space. Finally, we perform a second case study in which we use Saggitarius to detect CSV dialects. Our
general purpose tool infers grammars for 84% of the files in the case study within the specified timeout. On
these grammars, it has comparable accuracy to custom-built dialect detection tools.

1 INTRODUCTION
Grammar induction is the long-studied problem of inferring a grammar from positive and negative
example data [3, 4, 13, 16, 17, 31, 38, 46]. Despite its obvious value, and much research effort over
the years, instances of the problem often remain intractable, requiring either a great deal of example
data or vast computational resources to solve. Indeed, even the restricted case of regular expression
inference is a challenge: Chen [8] observed that Angluin’s classic L∗ algorithm makes 679 queries
just to infer the simple regular expression [a-zA-Z]+, and Lee [24] shows that the search space for
regular expressions grows at a rate of 𝑐2𝑑−1 where 𝑑 is the depth of the regular expression and 𝑐 is
the number of regular expression operators (𝑐 is 7 when working with a binary alphabet). While
recent research [8, 24] has taken impressive steps forward in the special case of regular languages,
scaling to larger data formats remains a challenge. For instance, AlphaRegex still classifies some
regular expressions over a binary alphabet with 10-20 symbols as “hard” [24, Table 3]. Scaling to
richer classes of grammars, such as the context-free languages, is even more daunting.

One “solution” to this problem is to give up: The grammar induction problem cannot be solved
accurately in general—there are simply too many degrees of freedom. But after having given up,
one must ask: What’s next?
As with any artificial intelligence problem, one way to give shape to, or cut down, the search

space, and thereby render an intractable problem tractable, is to associate some priors, constraints,
or background knowledge with instances of the problem. For example, over the last decade or so,
great progress has been made in the closely related problem of program synthesis not by tackling
the problem in general, but by picking out key subdomains in which to operate. Typically, this

Authors’ addresses: Anders Miltner, Princeton University, Princeton, NJ, USA, amiltner@cs.princeton.edu; Arnold Mong,
Princeton University, Princeton, NJ, USA, among@princeton.edu; Kathleen Fisher, Tufts University, Medford, MA, USA,
kfisher@cs.tufts.edu; David Walker, Princeton University, Princeton, NJ, USA, dpw@cs.princeton.edu.

, Vol. 1, No. 1, Article . Publication date: July 2021.



2 Anders Miltner, Arnold Mong, Kathleen Fisher, and David Walker

selection works by defining a restrictive domain-specific language (DSL), specializing the ranking
functions for the programs in the DSL, and then learning a ranked list of DSL programs from
examples or other kinds of specifications. In this way, it has been possible to build extremely
effective program synthesizers for spreadsheet transformations [22], database queries [49], tree
transformations [50] and lenses [26–28] to name just a few. Program induction of this form is
often referred to as Syntax-guided Program Synthesis (SyGuS), because one of the key elements of
such systems is the fact that the syntax of programs is carefully constrained, via the DSL, ahead of
time. Now, there are meta-languages like Prose [37] to help experts build syntax-guided program
synthesis systems.
In this paper, we investigate whether similar techniques may be applied productively to the

problem of grammar induction. In doing so, the natural first question was whether there were any
grammatical domains akin to the programming domains where SyGuS has been effective. Such
grammatical domains should include a set of related grammars, just as a programming domain
contains a set of related programs. Moreover, programmers should easily be able to identify when
the grammar they need falls within the given domain so they are able to select the tool or library
to apply to their problem.

Grammatical Domains. A clear example of an interesting grammatical domain is the set of
“comma-separated-value” formats, the CSV domain. While one mostly thinks of comma-separated
value formats as simple tables, separated by, well, commas, there is actually great variation in
these formats [44]. Tabs, vertical bars, semi-colons, spaces, or carats are all sometimes used rather
than commas to separate fields. Some files use quotes to delimit strings and related symbols, while
others use tildes or single quotes. And of course, some CSV files are “typed,” with integers required
to appear in one column and perhaps strings in another. One of the consequences of this mess is
that the appropriate way to parse a CSV file can be ambiguous [44]. Hence, to avoid incorrectly
interpreting a given CSV file, one must determine the correct CSV grammar or “dialect” to use for
a given data set. There are some tools to help users with this particular special case. For instance,
Microsoft Excel provides a wizard that allows a user to select the kind of delimiter to use to import
a CSV file as a spreadsheet. Unfortunately, the process is a manual one. Python has libraries that
implement “sniffers” to detect CSV dialects and van den Burg et al. [44] built their own tool to
analyze CSV files and infer the grammar best suited to parse it.
CSV formats are just the tip of the iceberg: there are many other grammatical domains that

arise in practice. Some are similar to CSV formats in that they provide a textual representation of
a large, structured data set. Examples include the set of possible JSON formats, XML formats, or
S-expression formats. In each case, there is a general specification of the layout, but the general
case is often specialized in particular applications, to, for instance, constrain the types of values or
the schema that may appear.

Another sort of grammatical domain is a domain associated with a data type that, over time, has
come to have multiple different textual representations. Here, dates are a good example. Dates may
be formatted using MM/DD/YY strings or DD/MM/YY strings, as well as in a myriad of other ways.
Since these different formats are ambiguous, it is necessary to identify and deploy the specific
format used in a particular data set. Moreover, since dates often appear nested within other formats,
those formats are themselves ambiguous until the internal date formats are properly determined.
Other examples of data types with a variety of textual representations or specializations include
phone numbers, postal codes, street addresses, the names of states or provinces that have multiple
common abbreviations, timezones, times, date ranges, etc. Any kind of data whose representation
needs to be adjusted to handle internationalization is a likely candidate for a grammatical domain.
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Finally, this work is partly movtivated by the US DARPA SafeDocs program [9], which is currently
exploring the PDF grammatical domain: While PDF has been standardized, different tools implement
subsets or supersets of the standard. Moreover, some of these PDF variants, and the tools used
to process them, contain vulnerabilities [7, 25]. Consequently, SafeDocs has a number of teams
investigating ways to define safe subsets of PDF.

We collect the various grammatical domains we have studied into a benchmark suite described
in §6.

Syntax-guided Grammar Induction. A domain-specific grammar induction problem is specified via
a set of grammars (the domain), a set of positive examples and a set of negative examples. A solution
to such a problem is a grammar drawn from the domain that parses all the positive examples and
none of the negative examples. A natural way to specify such a domain is to constrain the syntax of
the grammars that may be chosen, by, for instance, specifying the candidate productions available.
We call problems specified this way Syntax-guided Grammar Induction (SGI) Problems.

In SGI, or in domain-specific grammar induction more broadly, there are two types of user. The
first kind of user, the grammar engineers, are responsible for defining grammatical domains. The
second, the instance engineers, infer grammars from within the defined grammatical domains by
supplying positive and negative examples. Ideally, the domains produced by grammar engineers are
heavily reused, making their investment of time and energy well spent. For instance, the domain of
dates can be reused in the synthesis of any grammar for any data containing a date. Likewise, there
are many many CSV files, meaning such a domain, once defined, can be used by many instance
engineers who need only supply example data and need not possess the skills of grammar engineers.

Saggitarius. We designed and implemented Saggitarius, the first user-facing language and
system to provide support for defining syntax-guided grammar induction problems. Roughly
speaking, Saggitarius may be viewed as an extension of a standard YACC-based parser generator.
However, whereas YACC defines a single grammar, Saggitarius defines a set of possible grammars—
i.e., a grammatical domain. To do so, Saggitarius allows grammar engineers to specify certain
grammatical productions as optional, much like a SyGuS language, such as Sketch [2, 40, 41],
declares certain subexpressions of a program optional. Saggitarius also has features that allow
grammar engineers to declare constraints that force certain combinations of productions to appear,
or not appear, and hence provides fine control over the grammars in the grammatical domain in
question.
The Saggitarius grammar induction algorithm uses both the definition of the grammatical

domain and the supplied examples to select productions that allow the resulting grammar to parse
all positive examples and none of the negative ones. Because more than one grammar from the
domain may satisfy the provided examples, Saggitarius allows grammar engineers to provide
functions to rank the generated grammars. Grammar engineers play a role similar to designers of
a domain-specific language in syntax-guided synthesis; instance engineers play a role similar to
users of synthesized functions. While grammar engineers require sophisticated knowledge of a
grammatical domain and the Saggitarius tool, instance engineers need only supply appropriate
examples from the domain in question and then use the generated parser.

Contributions.

• We introduce the concepts of grammatical domains and the Syntax-Guided Grammar Induction
(SGI) Problem.

• We design a language, Saggitarius, for specifying grammatical domains and implement an
SGI algorithm for inferring grammars within defined domains.
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• We demonstrate that a variety of grammatical domains exist in the wild and use them to create
the first SGI benchmark suite.

• We evaluate the performance of Saggitarius on our benchmark suite, showing that for many
domains, it returns a grammar satisfying the example constraints within a few seconds.

• We describe a case study in which we develop an XML metagrammar. In it, we show how
Saggitarius’s programmatic control over the search space can be used to speed up synthesis
times for challenging tasks.

• We describe a second case study in which we test the use of Saggitarius on the problem of
dialect detection for CSV files. Our general purpose tool infers grammars for 84% of the files in
the case study. On these grammars, it has comparable accuracy to custom-built dialect detection
tools [45].

2 MOTIVATING EXAMPLES
Grammatical domains appear in many different contexts. In this section, we show how to use
Saggitarius to define two useful domains: the domain of calendar dates and the domain of comma-
separated-value (CSV) formats.

2.1 Example 1: Calendar Dates
Dates are formatted in many different ways. Because the various formats are ambiguous (causing
confusion as to whether one is reading a MM/DD or DD/MM format, for instance), date parsers must
be specialized to a particular data set. Said another way, dates formats form a natural grammatical
domain and different data sets adhere to different grammars within the domain.
Saggitarius programs specify grammatical domains through the use of metagrammars (M),

where a metagrammar is a set of candidate productions (aka, candidate rules) together with some
constraints that limit the sets of productions that may appear in the grammars belonging to the
domain and some preferences that describe what an optimal grammar looks like.

The simplest Saggitarius components specify productions using a YACC-like syntax with the
form N -> RHS. Here, N is a non-terminal and RHS is a regular expression over terminals and
non-terminals. For instance, to begin construction of our date grammatical domain, we can specify
Digit and Year non-terminals as follows.

Digit -> ["0"-"9"].
Year -> Digit Digit | Digit Digit Digit Digit.

This first definition looks like a definition one might find in an ordinary grammar. It states
that Year can have either two or four digits. The denotation of such a definition is a grammatical
domain—in this case, a grammatical domain (a set) containing exactly one grammar.
Saggitarius is more interesting when one defines metagrammars that include optional pro-

ductions. Optional productions are preceded by a “?” symbol. For instance, consider the following
definition.

Digit -> ["0"-"9"].
Year -> ? Digit Digit

? Digit Digit Digit Digit.

The metagrammar above denotes a grammatical domain that includes four grammars:

(1) one grammar in which Year has no productions,
(2) two grammars in which Year has one production, and
(3) one grammar in which Year has two productions.
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To extract a single grammar from this set of four grammars, one supplies the Saggitarius grammar
induction engine with positive and negative example data. If no grammar parses all the data as
required, the grammar induction algorithm will return “no viable grammar.”

Continuing, consider the following specification for days.
Day -> ? ["1" - "9"]

? "0" ["1" - "9"]
| ["1" - "2"] Digit | "30" | "31".

This metagrammar includes grammars for days ranging from 1 -> 31. It allows single digit days to
be prefixed with a 0. However, it is natural to require grammars that parse either single-digit days
or 0-prefixed-days, but not both. One way to specify such a constraint is as follows.

Day -> ? ["1" - "9"]
? "0" ["1" - "9"]
| ["1" - "2"] Digit | "30" | "31".

constraint(|productions(Day)| = 2).

Here, the constraint specifies that the number of production rules for Day can only be 2. Since
the last row is always included, exactly one of the ? production candidates can be in the solution
grammar. Another option is to name productions and to use the names in constraints.

Day -> ? ["1" - "9"] as SingleDigitDays
? "0" ["1" - "9"] as ZeroPrefixDays
| ["1" - "2"] Digit | "30" | "31".

constraint(SingleDigitDays + ZeroPrefixDays = 1).

Here, we have given names to each of the rule candidates which represent indicator variables in the
constraint expression; the indicator variable SingleDigitDays evaluates to 0 if a given grammar
does not use that production and 1 if it does. In addition to defining constraints using arithmetic,
one may use logical connectives. For instance, a constraint of the form R1 =⇒ R2 will require R2
to be included whenever R1 is.
Figure 1 includes the rest of the (simplified) definition of the date format, adding definitions

for separators (Sep), months (Month), and dates as a whole (Date). Non-terminal S denotes the
grammar start symbol. The use of constraints is common. For instance, notice the grammar engineer
who designed this particular format allowed for the possibility of several different separators, but
required a single separator to be used consistently throughout a format. Hence, while a date format
may use "-" or "/" as a separator, it never uses both.

To extract a particular grammar from the domain, an instance engineer will supply positive and/or
negative example data. For example, one could supply U.S.-style dates 12/31/72 and 01/01/72,
marking them as positive examples. Having done so, the Saggitarius grammar induction algorithm
might generate the example grammar presented in Figure 2. However, there are other grammars in
the domain that are also valid for this set of examples. By adding in the preference:

avoid 1.0 productions(*).

one can specify that a solution grammar should have a minimal number of productions. In this
case, the solution presented in Figure 2 is unique. If one preferred European dates, one could supply
different example data and extract a different grammar from the domain.

While one might worry that a naive instance engineer could supply insufficient data and thereby
underconstrain the set of possible solution grammars, such problems could likely be mitigated
through a well-designed user interface that informs a user when multiple solutions are possible and
presents example data to the user, asking them to choose valid and invalid instances of the format.
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1 Sep -> exactly 1 of {? "," ? "/" ? "-" }.

3 Digit -> ["0"-"9"].

5 Year -> ? Digit Digit
6 ? Digit Digit Digit Digit.
7 constraint(|Production(Year)| = 1)

9 Month -> ? Digit
10 ? "0" Digit
11 | "10" | "11" | "12".
12 constraint(|Production(Month)| = 2)

14 Day -> ? ["1" - "9"]
15 ? "0" ["1" - "9"]
16 | ["1" - "2"] Digit | "30" | "31".
17 constraint(|Productions(Day)| = 2).

19 Date -> ? Day Sep Month Sep Year
20 ? Month Sep Day Sep Year
21 ? Year Sep Month Sep Day
22 ? Year Sep Day Sep Month.
23 constraint(|Productions(Date)| = 1).

25 S -> Date

Fig. 1. Calendar Dates Metagrammar

1 Sep -> "/".

3 Digit -> ["0"-"9"].

5 Year -> Digit Digit.

7 Month -> "0" Digit | "10" | "11" | "12".

9 Day -> "0" ["1" - "9"]
10 | ["1" - "2"] Digit
11 | "30" | "31".

13 Date -> Day Sep Month Sep Year.

15 S -> Date

Fig. 2. Date Solution Grammar

2.2 Example 2: CSV
Dates, phone numbers, addresses and the like are simple data types with many textual representa-
tions. Saggitarius is also capable of specifying domains that contain larger aggregate data types.
Here, the domain of comma-separated-value formats is a good example.
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One challenge in specifying a CSV domain is that if we want the columns of the CSV format to be
“typed”—one column must be integers, another strings or dates, for instance, we need to consider
many, many potential grammar productions. To facilitate construction of such metagrammars
succinctly, we allow grammar engineers to define indexed collections of productions. For instance,
suppose we would like to specify a spreadsheet with three columns (numbered 0-2) and each
column can contain either a number or a string value. We might define the ith Cell in each row as
follows.

Cell{i in [0,2]} -> ? Number ? String.
for (i in [0,2])
constraint(|Productions(Cell[i])| = 1)

This declaration defines three nonterminals simultaneously: Cell{0}, Cell{1}, and Cell{2} and
provides the same definition for each of them. However, since each of Cell{0}, Cell{1}, and
Cell{2} are separate non-terminals, the underlying inference engine can specialize them indepen-
dently based on the supplied data. For instance, Cell{0} could be a string and Cell{1} and Cell{2}
might both be numbers.1. Constraints can refer to specific indexed non-terminals as shown.

The domain of 3-column CSVs is likely a rare one! Fortunately, users can also declare collections
of indexed non-terminals with unbounded size.

Cell{i in [0,infty)} -> ...

While each Cell has the same definition, it is also possible to define collections of nonterminals
with varying definitions through the use of conditionals. Below, we define Row{i}, a non-terminal
for a row containing cells Cell{0} through Cell{i}. The use of normal context-free definitions
allows Row{i} to refer to Row{i-1}. Notice that separators (Sep) are not indexed. We want one
separator definition that is used consistently throughout the format, though we do not know which
separator it will be.

Row{i in [0,infty)} ->
? if (0 = i) then Cell{i}
? if (0 < i) then Row{i-1} Sep Cell{i}.

Sep -> ? "," ? "|" ? ";".
constraint(|Productions(Sep)| = 1).

Row{i} represents a single row with i Cells. To create a table with many rows, we might write
the following definition.

S -> Table.
Table -> MyRow ("\n" MyRow)*.
MyRow -> ??{i in [0,infty)} (? Row{i}).
constraint (|Productions(MyRow)| = 1)

Here, we use the standard Kleene star to represent a table with an arbitrary number of rows. (We
could equally well have written the usual recursive, context-free definition.). To force every row in
the table to have the same shape, we demand that the kind of row used in the table (i.e., MyRow)
be exactly one of the Row{i} non-terminals. Here, the notation “??” defines a “big option,” i.e., a
choice amongst many alternatives. In this case, it is a choice amongst amongst the many possible
Row{i} alternatives.

Figure 3 presents our progress so far on defining a metagrammar for simple CSV formats. At the
top, we have “imported” a couple of useful non-terminal definitions—definitions for String and

1Observant readers may worry that the characters “12” could be interpreted as either a number or a string if the definition
of strings includes numbers. We will explain how to create preferences to disambiguate momentarily.
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Number. Users can write such definitions from scratch, but we have developed a modest library of
them to facilitate quick construction of parsers for ad hoc data formats.

1 import String, Number

3 S -> Table.

5 Table -> MyRow ("\n" MyRow)*.

7 MyRow -> ??{i in [0,infty)} (Row{i}).

9 Sep -> ? "," ? "|" ? ";".
10 constraint(|Productions(Sep)| = 1).

12 Row{i in [0,infty)} ->
13 ? if (0 = i) then Cell{i}
14 ? if (0 < i) then Row{i-1} Sep Cell{i}.

16 Cell{i in [0,infty)} ->
17 ? Number
18 ? String.
19 for(i in [0,infty))
20 constraint(|Productions(Cell[i])| = 1)

Fig. 3. CSV Metagrammar, Version 1

2.3 Ranking Grammars
Consider the following example data.

0,1,15,Hello world!
1,2,23,Programming
0,3,-2,rocks!

A humanwould probably choose the column types to be Number, Number, Number, String. However,
if Numbers can be Strings then the column types could be String, String, String, String.
Without guidance, an algorithm will not know how to choose between potential grammars.

Saggitarius allows users to steer the underlying grammar induction algorithm towards the
grammar of choice by expressing preferences for one grammar over another. Such preferences are
expressed using prefer clauses, which have a similar syntax to constraint clauses. Such clauses
assign floating point numbers to boolean formulas. The ranking of a synthesized grammar is the
sum of all satisfied boolean formulas. Saggitarius produces grammars with a maximal ranking.
Figure 4 illustrates the use of preferences to force CSV formats to infer Number cells when they can
and String cells otherwise.

3 THE SYNTAX-GUIDED GRAMMAR INDUCTION PROBLEM
A context free grammar 𝐺 = (𝑆,I, Σ, 𝑅) with start symbol 𝑆 , non-terminals I, terminals Σ, and
productions (also called rules) 𝑅 is defined in the usual way. A Metagrammar M = (𝑆,I, Σ, 𝑅, 𝑓 , ℎ)
includes the following components.
• 𝑆 , the grammar start symbol
• I, the set of grammar non-terminals
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1 Cell{i in [0,infty)} ->
2 ? Number as Num{i}
3 ? String as Str{i}.
4 for(i in [0,infty))
5 constraint (|productions(Cell[i])| = 1).

7 prefer{i in [1,infty)} 2.0 Num{i}.
8 prefer{i in [1,infty)} 1.0 Str{i}.

Fig. 4. A Metagrammar with Preferences

• Σ, the set of grammar terminals
• 𝑅, the finite set of possible candidate productions
• Boolean-valued constraint function 𝑓 : 2𝑅 → 𝑏𝑜𝑜𝑙

• Real-valued preference function ℎ: 2𝑅 → R
We say that a grammar 𝐺 belongs toM (written 𝐺 ∈ M) when the start symbol of 𝐺 is the start
symbol ofM, the terminal and non-terminal symbols are the same in𝐺 andM, the productions of
𝐺 are a subset of the productions of𝑀 , and 𝑓 (𝐺.𝑅) is true (where 𝐺.𝑅 are the productions of 𝐺).

An instance of the syntax-guided grammar induction problem is specified via a triple (M, 𝐸𝑥+,
𝐸𝑥−) whereM is a metagrammar and 𝐸𝑥+ and 𝐸𝑥− are positive and negative examples respectively.
The solution to an instance of the syntax-guided grammar induction problem is a grammar𝐺 ∈ M
that contains all of the positive examples, none of the negative examples and has maximal ranking.
In other words, for all 𝐺 ′ ∈ M, ℎ(𝐺.𝑅) >= ℎ(𝐺 ′.𝑅).

4 SAGGITARIUS CORE CALCULUS
Saggitarius provides users with a convenient syntax for writing metagrammars (𝑀𝐺) that consists
of a sequence of statements, where each statement can be either a production, a constraint, or a
preference. The formal syntax follows.

𝑀𝐺 ::= prod.𝑀𝐺

| const c.𝑀𝐺

| prefer pref .𝑀𝐺

| 𝜖
prod ::= 𝑖 → 𝑝

c ::= 𝑖 → 𝑝 | ¬c
| c1 ∧ c2 | c1 ∨ c2

pref ::= 𝑐 𝑟

Productions in a Saggitarius metagrammar are of the form 𝑖 → 𝑝 , where 𝑖 is a nonterminal,
and 𝑝 is a sequence of terminals and non-terminals.
Constraints are boolean formulas, where the predicates are productions. Any accepting gram-

mar must satisfy the boolean formula, where included productions are interpreted as true and
productions not included are interpreted as false.

Preferences consist of a boolean formula 𝑐 and a real value 𝑟 . If the boolean formula 𝑐 is satisfied
by a given grammar, the reward of that grammar is increased by 𝑟 .
We assume there is some designated set of terminals, non-terminals and start symbol. The

semantics of a Saggitarius metagrammar is given by a function [[·]] that maps a metagrammar
𝑀𝐺 to a triple (𝑅, 𝑓 , ℎ) of productions, constraint function and preference function. The function
C[[c]] maps a constraint c to a function 𝑓 from grammars to type 𝑏𝑜𝑜𝑙 . The function P[[pref ]]

, Vol. 1, No. 1, Article . Publication date: July 2021.



10 Anders Miltner, Arnold Mong, Kathleen Fisher, and David Walker

maps a preference pref to a function from grammars toR. We formally define these three functions
below.

[[prod .𝑀𝐺]] = (𝑅 ∪ {prod}, 𝑓 , ℎ)
where [[𝑀𝐺]] = (𝑅, 𝑓 , ℎ)

[[const c.𝑀𝐺]] = (𝑅, 𝑓 , ℎ)
where [[𝑀𝐺]] = (𝑅, 𝑓1, ℎ)
and C[[c]] = 𝑓2
and 𝑓 (𝑥) = 𝑓1 (𝑥) ∧ 𝑓2 (𝑥)

[[prefer pref .𝑀𝐺]] = (𝑅, 𝑓 , ℎ)
where [[𝑀𝐺]] = (𝑅, 𝑓 , ℎ1)
and P[[pref ]] = ℎ2
and ℎ(𝑥) = ℎ1 (𝑥) + ℎ2 (𝑥)

[[𝜖]] = ({}, 𝑓 , ℎ)
where 𝑓 (𝑥) = 𝑡𝑟𝑢𝑒

and ℎ(𝑥) = 0
C[[𝑖 → 𝑝]] = 𝑓 where 𝑓 (𝑥) = 𝑖 → 𝑝 ∈ 𝑥

C[[¬c]] = 𝑓 where 𝑓 (𝑥) = ¬(C[[c]] (𝑥))
C[[c1 ∧ c2]] = 𝑓 where 𝑓 (𝑥) = C[[c1]] (𝑥) ∧ C[[c2]] (𝑥)
C[[c1 ∨ c2]] = 𝑓 where 𝑓 (𝑥) = C[[c1]] (𝑥) ∨ C[[c2]] (𝑥)

P[[c 𝑟 ]] = 𝑓 where 𝑓 (𝑥) = if C[[c]] (𝑥) then 𝑟 else 0

4.1 Syntactic Sugar by Example
Saggitarius includes a number of other features to enable rapid development of complex meta-
grammars that do not appear in the core calculus. Except in the case of infinite rule spaces, these
extensions are simple syntactic sugar. We illustrate how these constructs are compiled to the core
calculus informally by example below.

? Choices. Using the ? combinator prior to a production body signifies a rule is optional. A single
production may also include a series of optional bodies. For instance, the rules

A -> ? B ? "c".
B -> "b".

compile to
A -> B.
A -> "c".
B -> "b".
const B -> "b".

The constraint guarantees the production for B must be included; the lack of constraints for A’s
productions indicate they may or may not be included.

Regular Expression Productions. We compile regular expression syntax to context-free grammar
rules in the usual way, by introducing new nonterminals and rules as appropriate. Such collections
of such rules can be included or excluded as a group using constraints. For example, A -> ?"b"*
may be compiled as follows, where Temp is a fresh variable.
A -> Temp as r1.
Temp -> "" as r2.
Temp -> "b"Temp as r3.
const r1 <=> r2 <=> r3.
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3

1.3 + 2.3

0.(1.3 + 1.2.3 + 2.3)

1.(1.3 + 2.3) + 
2.(1.3 + 2.3 )    

positive example semiring construction

1.3 + 1.2.3 + 2.3    ≡

≡ 0.1.3 + 0.1.2.3 + 0.2.3

provenance formula

(0 Λ 1 Λ 3) ν

(0 Λ 1 Λ 2 Λ 3) ν

(0 Λ 2 Λ 3)

(0 Λ 1 Λ 4) ν
(0 Λ 1 Λ 2 Λ 4) ν

(0 Λ 2 Λ 4)

¬

Λ

a solution

{0, 1,  3}

Fig. 5. Semiring parsing and provenance formula construction

Rules with finite index sets. Indexed rule sets with finite ranges are simply expanded at compile
time. Hence Cell{i in [0,2]} -> ... is expanded to definitions for three non-terminals: Cell_0,
Cell_1, and Cell_2. Computations that depend upon the indices, such as conditions, are also
resolved at compile time.

Rules with infinite index sets. When a Saggitarius metagrammar contains rules with an infinite
index set such as Cell{i in [0,infty)} -> ..., it is not compiled to a single syntax-guided
grammar induction problem. Rather, it is compiled to a series of SGI problems, each with finite
size. The system increases the size of the problem until it is able to find a solution. For example,
Cell{i in [0,infty)} is first compiled to Cell{i in [0,20)}. If no solution is found, it is then
compiled to Cell{i in [0,40)}, and so on. Termination is not guaranteed for grammars with
infinite indexing – if there is no solution Saggitarius will search for one indefinitely.

5 GRAMMAR INDUCTION ALGORITHM
A syntax-guided grammar induction algorithm must determine the set of candidate parsing rules
that parse the positive examples, do not parse the negative examples, satisfy all constraints and
maximize the preference score. We have experimented with several possible algorithms that
interleave parsing and constraint solving in different ways (See §6 for an evaluation of the trade-
offs); we outline the most successful algorithm here.

In a nutshell, our algorithm parses all examples simultaneously and uses the results to generate
a logical formula that describes the rules required to successfully parse all the positive examples
and none of the negative examples. This formula is conjoined with the user-specified constraints
and shipped to Z3 [10], which uses its MaxSMT algorithms to find a preference-optimal solution.
This algorithm is formalized in Figure 6.

Our parser must be able to process the highly ambiguous metagrammars generated by Saggitar-
ius. For this task, we chose to implement a modified Earley algorithm [12, 43], though other general
context-free parsing algorithms, such as a GLR algorithm [30], would also have been suitable
starting points. The key modifications to the algorithm come in how we process the grammatical
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1 Dependencies:
(1) Provenance Parser P : 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠 → Σ∗ → 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

(2) SMT-Solver Z: 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 → 𝑃𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 → 𝐺𝑟𝑎𝑚𝑚𝑎𝑟 𝑜𝑝𝑡𝑖𝑜𝑛

2 Input: (M, 𝐸𝑥+, 𝐸𝑥−)
3 Output: A Grammar G ∈ M that parses 𝐸𝑥+, and does not parse 𝐸𝑥−

5 (𝑅, 𝑓 , ℎ) := [[M]]
6 𝜙 := 𝑓

7 for each negative example 𝑒− ∈ 𝐸𝑥−:
8 𝜙 := 𝜙 ∧ ¬

(
𝑃 (M, 𝑒−)

)
9 for each positive example 𝑒+ ∈ 𝐸𝑥+:

10 𝜙 := 𝜙 ∧ ¬
(
𝑃 (M, 𝑒+)

)
11 match Z(𝜙, h) with
12 | None → return "No viable grammar"
13 | Some G → return G

Fig. 6. Saggitarius’s grammar inference algorithm. This algorithm relies on a “Full Parser,” which parses a
string according to some grammar, then outputs a formula that represents what rules must be included to
get a viable parse; and a SMT-Solver, which can find an assignment to the rules that satisfies a given formula,
while maximizing the output of another formula.

rules, for which we follow Goodman’s thesis [18]: Rather than construct a conventional parse
tree, we implement a semiring parser [18, 19], where the semiring in question is the conditional
table semiring [20], which interprets multiplication as conjunction and addition as disjunction. The
elements of the semiring are the rules.

Figure 5 illustrates the process on a simple example. In the upper left, we present five candidate
productions (numbered 0-4) that define nonterminals A, B and C. To the right of each production is
an example of the kind of edge we use in the diagrams to indicate the use of the corresponding
production. For instance, production 1 is denoted by a dashed edge and production 2 is denoted by a
solid edge. Productions 1 and 2 are identical in this example; a solution can use either one. They help
illustrate the choices the algorithm must make. In the upper right, Figure 5 presents two example
parse trees, one for the positive example “abbb” and one for the negative example “abbc.” On the
lower left-hand side, Figure 5 presents the rule provenance computation that the parser implements
when processing the positive example (the corresponding computation for the negative example is
elided). Here, the non-terminals are replaced by algebraic expressions that represent the rules used
to implement that subtree. For instance, the orange box at the bottom left contains the algebraic
expression “3,” which represents the fact that rule 3must be used to parse the underlying string. The
box above it contains the expression “1.3 + 2.3,” which indicates that either the rules 1 and 3 or the
rules 2 and 3 must be used to parse “bb.” Above that, there appears another provenance expression,
which may be reduced to the equivalent expression “1.3 + 1.2.3 + 2.3” thanks to the fact we are
working in the conditional table semiring. The final expression produced is “0.1.3 + 0.1.2.3 + 0.2.3.”
This expression may then be converted to the first conjunct shown in the provenance formula by
replacing “.” with conjunction and “+” with disjunction. The corresponding logical formula was a
positive one since we are processing a positive example. The formula corresponding to a negative
example is negated. A MaxSMT solver such as Z3 will return a solution with maximal weight. One
possible solution is the set of rules {0, 1, 3}.

6 EXPERIMENTAL RESULTS
This section answers the following research questions.
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SGI Benchmark Suite
Name Size Description
States 368 US State identifiers. Permits acronyms, full names, and abbreviations.

Phone #s 257 Phone numbers. Permits local and international phone numbers.
Times 201 Time of day in a variety of formats.
Floats 110 Floating-point numbers. Includes grammars for different scientific notations and stan-

dard decimal form.
Emails 490 Email addresses. Includes grammars that accept emails from specific or arbitrary

domains.
Names 139 Human identifiers. Includes grammars specifying salutations, post-nominal titles, and

acronyms.
Streets 164 US street identifiers. Includes grammars that demand specific suffixes and directions.
Dates 311 Calendar dates. Includes month-first, day-first, and year-first formats.

Addresses 588 US street addresses. Uses the States and Streetsmetagrammars to identify those portions
of the address.

XML 492 XML Files. Permits 10 classes of XML elements. It discovers the identifiers for element
classes and the recursive schemes. In effect, it imputes the structural component of a
schema definition.

RFCCSV 470 CSV: Exactly RFC 4180 [21]. Automatically infers cell type.
IdealCSV 500 CSV: Generalized RFC 4180 [21]. Admits more kinds of separators including comma,

tab, semi-colon than the RFC. Automatically infers cell type.
Fig. 7. Information on metagrammars for the SGI benchmark suite.Name identifies the grammatical domain.
Size is the AST count of the metagrammar. Description characterizes the grammatical domain, including
an incomplete description of how some induced grammars differ from each other.

• Expressiveness. Can Saggitarius specify real-world grammatical domains?
• Efficiency. Is Saggitarius fast enough to be used in day-to-day development?
• Algorithmic Improvements. Does our grammar induction algorithm perform well compared
to prior work?

This section concludes with two case studies: one using Saggitarius for learning an XML grammar
and the other for detecting CSV dialects.

6.1 Expressiveness
To evaluate the expressiveness of Saggitarius, we developed a benchmark suite of 11 grammatical
domains. Figure 7 describes each domain briefly. We have written metagrammars for each of the
domains. On average, it took 327 AST nodes to describe such a benchmark metagrammar.

Two of the entries in the benchmark suite are of particular note because we use them in our case
study: RFCCSV and IdealCSV. Metagrammar RFCCSV is the Saggitarius definition of the CSV
specification given in RFC 4180. IdealCSV is a slight generalization of the specification. In both
cases, CSV files containing errors, such as inconsistent use of separators or erroneous escapes or
quotes, will be rejected. Both Saggitarius CSV definitions use grammar induction to infer the
types of cells in a column.
On occasion, our initial domain definitions were erroneous, returning undesired results on

certain test data sets. We found such errors were relatively easy to fix by adjusting preferences. §6.4
presents a case study that further tests the expressiveness of Saggitarius on messy, erroneous
CSV files.
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14 Anders Miltner, Arnold Mong, Kathleen Fisher, and David Walker

6.2 Efficiency
Benchmarks. To evaluate the efficiency of Saggitarius, we developed a benchmark suite of

110 induction tasks, ten tasks for each of the first eleven grammatical domains in Figure 7.2 In
constructing our ten tasks, we varied the number of positive examples (PEs) and negative examples
(NEs), and whether or not there was a grammar in the domain that satisfied the examples. The ten
tasks are:
(1) Induce a grammar from 1 PE.
(2) Induce a grammar from 1 NE.
(3) Induce a grammar from 1 PE and 1 NE.
(4) Induce a grammar from 10 PEs.
(5) Induce a grammar from 5 PEs and 5 NEs.
(6) Induce a grammar from 1 PE and 20 NEs.
(7) Induce a grammar from 20 PEs and 20 NEs.
(8) Attempt to induce a grammar from 1 PE and 1 NE, where there is no grammar in the domain

that accepts the PEs while rejecting the NEs.
(9) Attempt to induce a grammar from 10 PEs and 10 NEs, where there is no grammar in the domain

that accepts the PEs while rejecting the NEs.
(10) Attempt to induce a grammar from 20 PEs and 1 NE, where there is no grammar in the domain

that accepts the PEs while rejecting the NEs.

Algorithms. To experiment with the effectiveness of different grammar induction algorithms, we
ran Saggitarius in three different modes.
• Saggitarius: The algorithm described in §5.
• ProSynth: In this mode, Saggitarius iteratively guesses subsets of candidate rules, parses the
data with the given subset, and then checks to see whether the subset succeeds to parse the
positive but not the negative examples. If it fails, it uses a counter-example-guided algorithm to
generate a new set of candidate rules and repeats the process. This algorithm was inspired by the
work on ProSynth [29], an inductive logic programming engine. Since parsing via context-free
grammar is a refinement of logic programming, the ProSynth algorithm may be effective. In
particular, if it is able to find a candidate set early, it may avoid the heavy cost of parsing all
data with a large ambiguous grammar.

• ProSynth++: In this mode, Saggitarius parses the example data once using all candidate
productions. It constructs a full provenance tree as in Saggitarius. Rather than build a single
large MaxSMT formula, it considers candidate rule sets in a counter-example guided loop, as
in ProSynth. This mode avoid constructing a large SAT formula, but pays a price by making
many SAT calls.

Experimental setup. All experiments were performed on a 2.5 GHz Intel Core i7 processor with
16 GB of 1600 MHz DDR3 RAM running macOS Catalina. We ran each benchmark 10 times, with a
timeout of 60 seconds and report the average time. If any of the 10 runs times out then we consider
the benchmark as a whole to have timed out.

Results. Figure 8 summarizes the performance of Saggitarius in the three different modes on
our our benchmark suite. It shows the number of benchmarks Saggitarius can complete in a given
amount of time in each mode.
If we consider first the effectiveness of our primary algorithm (Saggitarius), we can see that

Saggitarius completed 101 of the 110 benchmarks in under 1 minute. In 6 of the 9 instances

2We did not include RFCCVS since it is a subset of IdealCSV.
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Fig. 8. Number of benchmarks that terminate in a given time in different modes.

the system timed out, it did so because no grammar matched the example data (by experiment
design) and Saggitarius looped, attempting to forever extend the range of one of its unbounded
[0..infty) index sets. A useful improvement to the system would be to look for heuristics that
might detect data sets that will not be satisfied by any grammar in a given infinite metagrammar. The
remaining 3 of the 110 experiments ran long due to particularly slow SMT calls. Interestingly, a large
portion of this slowdown appears to be due to preferences—removing all preferences drastically
speeds up these tasks, allowing them to complete in under a minute (though the returned grammars
are not the desired ones).
When comparing Saggitarius to alternative algorithms ProSynth and ProSynth++, several

trends emerge. First, we found that Saggitarius solved every benchmark but one faster than either
ProSynth and ProSynth++. That one benchmark is the one of the two on which Saggitarius
did not complete in a minute due to the slow SMT call. ProSynth++ makes multiple smaller SMT
calls, which usually take longer in aggregate, but in this one case avoided generating a particular
challenging SMT formula (and was solved in 48 seconds).
More broadly, the cost of all of the algorithms grows substantially with the number of rules in

the metagrammar. The ProSynth-inspired algorithms, in particular, suffer significantly as rule sets
increase because it takes them more iterations to build up a sufficiently constrained SAT call to
find a solution. Saggitarius is also negatively impacted by having more rules, but in a different
(and less substantial) way. More rules results in slower parsing, which is the typical bottleneck for
Saggitarius.
Broadly, across all the algorithms, we found that the number of examples did not affect system

performance substantially. However, the length of an example can have a significant impact when
the metagrammar is highly ambiguous. Early parsing with large numbers of ambiguous rules is
a costly enterprise that can grow cubically with the length of the input in the worst case. This
parsing cost tends to dominate as examples grow in length.

6.3 Case Study: XML Metagrammar Development
XML is a general-purpose document class often used for data storage and data transfer. We have
written an XML metagrammar that can generate a custom grammar from a set of positive and
negative examples. Figure 9 presents a simplified version of this XML metagrammar and Figure 10
presents an XML document with which to specialize the metagrammar.

The metagrammar itself permits 8 different types of elements, each of which can be a data element,
a container element, or both. A data element is an XML element that contains some text before its
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1 S -> ??{i in [0,8)} Element{i}.

3 Element{i in [0,8)} ->
4 ? Header{i} Text Footer{i}
5 ? Header{i} Container{i} Footer{i}

7 Container{i} ->
8 ? ""
9 ??{j in [0,8)} Element{j} Elements{i}

Fig. 9. Simplified XML metagrammar.

1 <class>
2 <name>Intro to Computer Science</name>
3 <students>
4 <student>Jane Doe</student>
5 <student>John Public</student>
6 </students>
7 </class>

Fig. 10. Example XML document describing an introduction to computer science class.

closing tag. A container element is an XML element that contains some XML before its closing tag.
For expository purposes, Figure 9 specifies only these two types of XML elements, and does not
include additional features such as XML attributes, though the metagrammar we defined and used
in our experiments does.

Our example XML document contains four different XML elements: class, name, students, and
student. The class and students elements are container elements while the name and student
elements are data elements.
If you look carefully, you will notice something unfortunate about this simple XML meta-

grammar: It contains a lot of redundancy. For instance, consider the grammars 𝐺1:

1 S -> Element{0}

3 Element{0} -> "<a>" Container{0} "</a>"
4 Element{1} -> "<b>" Text "</b>"

6 Container{0} -> Element{1}

and 𝐺2:
1 S -> Element{0}

3 Element{0} -> "<a>" Container{0} "</a>"
4 Element{2} -> "<b>" Text "</b>"

6 Container{0} -> Element{2}

These two grammars are clearly semantically equivalent, but syntactically distinct. The presence of
syntactic redundancy in a search space is a well-known problem in program synthesis in general—
in any SyGuS system, such redundancy enlarges the search space and slows down synthesis.
Unsurprisingly, such redundancy has an impact on Saggitarius as well. More specifically, we
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found that for sufficiently complex examples, when the amount of redundancy is too large, the
Max-SMT calls use to search the grammar space are prohibitively slow.

1 S -> Element{0}.

3 Element{i in [0,8)} ->
4 ? Header{i} Text Footer{i}
5 ? Header{i} Container{i} Footer{i}

7 Container{i} ->
8 ? ""
9 ??{j in [0,8)} Element{j} Elements{i}

11 constraint &&{i in [1,8)} (Productions(Element{i}) > 0) => (Productions(Element{i-1}) > 0).

Fig. 11. Simplified XML metagrammar.

Fortunately, our metagrammar language affords a solution: The programmer can add constraints
to cut the search space back down. In Figure 11, we have added constraints to ensure that if
Element{i} has a nonzero number of productions, then Element{i-1} must also have a nonzero
number of productions. We further require that the first element must be Element{0}. Therefore,
the singleton grammar with Element{1} is no longer a valid grammar. Furthermore, if Element{0}
must contain exactly one text element within it, and no other elements are used, that element
will always be Element{1}. Because Element{1} has no productions, Element{2} cannot be the
single text element within Element{0}. This is a tactic that can be applied to general recursive
data – when constructing a metagrammar with multiple mutually recursive elements, providing a
default ordering in which those elements are used helps constrain the search space. In our case,
Element{0} gets used first, followed by Element{1}, and so on.
We run Saggitarius on both of these metagrammars, and show the difference in run times in

Figure 12. By minimizing the ambiguity of the metagrammar, XML inference becomes much more
tractable even though the language is just as expressiveness as it was before. Additionally, while
synthesis failed on one benchmark (the benchmark corresponding to task (7), involving inducing a
grammar from 20 PEs and 20 NEs, we found that the time taken per additional example increased
at a substantially slower rate than without our optimization.
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Fig. 12. Number of benchmarks that terminate in a given time on XML and XML-Ambig.
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Takeaways. One of the strengths of SGI lies in the ability of the metagrammar developer to
control the search space. By refactoring the metagrammar, the metagrammar developer can encode
the same grammatical domain in a way that is more amenable to synthesis. Doing so provides
fundamental advantages over general-purpose, unguided grammatical inference techniques where
the search space is overwhelmingly large and unconstrained.

6.4 Case Study: CSV Dialect Detection
RFC 4180 provides the standardized definition of CSV, but there are many real-world data files that
do not conform to the standard. Such data files may contain irregular “table-like” data in which
rows have differing numbers of columns, cells are malformed (containing dangling delimiters),
and the entire table is surrounded by unstructured text. To handle such messy CSV-like data, Van
den Burg et al. [44] designed CSV Wrangler, a tool for inferring the dialect of messy, possibly
erroneous CSV documents. A CSV dialect is a triple of a cell delimiter, a quote character, and an
escape character. The delimiter separates cells; the quote character surrounds strings, allowing
delimiters to appear within a cell, and the escape character admits nested quotes. For example, the
row below should be parsed with a comma delimiter, a quotation mark as the quote symbol and a
backslash as the escape character.

0, "\"How's the weather?\" she asked.", "1"

CSV dialects are typically ambiguous: The row above can also be parsed as a single string with
no delimiter, quote character, or escape character. In general, any file can be parsed as a single
string with the trivial dialect. Van den Burg et al. has defined a custom algorithm that scores CSV
dialects based on how consistent the resulting rows are (the pattern score) and how well-typed the
cells are (the type score) [44], attempting to mimic the human process of recognizing the data in a
messy CSV file. Note that this algorithm does not “parse” the CSV per se, it is merely designed to
detect the dialect. Of course, once a dialect is detected, a file may be parsed later using the inferred
delimiter, quote and escape characters, though the presence of errors, such as missing end-quotes
or escapes, may give rise to unintended results. Python’s CSV sniffer [35] is a similar sort of dialect
detector. Dialect detection is difficult because many real CSV dialects are ambiguous. For example,
a CSV in our case study contains many lines of the form

(tab)(tab) C1(tab) C2,C3(tab) C4,C5(tab) C6

The resulting dialect is ambiguous as it could be part of a well-formed CSV with either the tab or
comma delimiter. Under RFC guidelines, the CSV should be parsed with the comma delimiter, but
the CSV Wrangler tool and the human labeler used in experiments to evaluate CSV Wrangler chose
the tab delimiter [45].
To experiment with CSV dialect detection using Saggitarius, we developed two additional

CSV specifications, named Strict and Lax. Strict requires (1) (unescaped) quote characters not
be used nested within a cell (they may wrap the entire contents of a cell), and (2) delimiters
(commas, semicolons, tabs and vertical bars) internal to a cell must be quoted. The latter constraint
arises because strict will not break ties between these potential delimiters. Lax imposes neither
requirement, but its preferences attempt to mimic the human priors that bias towards one dialect
or another. Like Van den Burg’s tool, Lax prefers dialects that maximize the number of rows
with similar length and that lead to cells that do not violate the Strict restrictions. Both Lax and
Strict generate grammars when supplied with data files; those grammars reveal the dialect the
specifications have identified.
Lax is considerably more costly to execute than Strict: Lax is highly ambiguous as it admits

dangling quotations (adding to the complexity, the quotation character is not fixed) and ill-formed
cells. It uses a preference system to sort through the multitude of possible parses. Because Lax is
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Detector Yes No No Dialect Timeout
RFC 41 14 44 0
Strict 67 12 8 13

StrictLax 70 14 0 16
CSV Wrangler 86 13 1 N/A
Python Sniffer 81 14 5 N/A

Fig. 13. CSV Analysis. Yes: Number of files on which the tool aligns with the human label. No: Number of
files on which the tool does not align with the human label. No Dialect: Number of files for which no dialect
is reported. Timeout: Number of files on which the tool times out.

more lenient than Strict, the two processes can be pipelined—only when Strict fails do we attempt
Lax. We call the pipelined system StrictLax.

Benchmarks. We measured the performance of Saggitarius on 100 ASCII-128 CSVs with human
labels drawn from Van den Burg et al.’s GitHub repo [45]. More than half of the benchmark suite
(59/100) does not obey the CSV RFC. In such situations, it is difficult for humans to unambiguously
identify the dialect of files, as we discuss below.

Experiments. We attempted dialect detection using 5 different tools: (1) RFC (the Saggitarius
specification of the CSV RFC), (2) Strict, (3) StrictLax (Strict followed by Lax), (4) CSV Wrangler
(Van den Burg’s tool), and (5) the Python Sniffer. In these experiments, Earley parsing was the
bottleneck for the Saggitarius system on large CSV benchmarks. To speed up processing, we
truncated the CSV files to 20 lines prior to processing them with Strict or RFC and to 5 lines prior
to processing them with Lax. When Strict timed out on a 20-line file, we truncated the file to 5 lines
and tried again. We use the same process for RFC evaluation, but do not pass any results forward
to Lax.

Figure 13 presents the results from our tool as well as corresponding results we retrieved fromVan
den Burg et al.’s GitHub repository [45] for CSV Wrangler and Python Sniffer. A first observation
is that RFC misclassifies a number of the CSV files relative to a human labeller. It does so when, for
instance, it is able to interpret an entire line as a single cell because that line uses a non-standard
separator, such as a semi-colon, that the RFC does not recognize. A second observation is that the
error rate in all the tools is fairly similar. In other words, identifying the dialect of these messy CSV
files is fairly difficult for any tool. The main difference between Saggitarius and the custom tools
is that Saggitarius’s grammar inference engine will sometimes fail to terminate.
We investigated some of the circumstances in which Saggitarius varied from human-labelled

data. Figure 14 summarizes our findings. In all, we identified 8 different situations in which the
StrictLax results disagreed with the human labels. Specifically, we believe that in scenarios 2, 3,
and 8 (5 tests), our tool is correct, or at least not wrong. In addition, we might also argue, even
after hand inspection, that the tool returns reasonable answers in situations 1, 6 and 7. One author
believes spaces should not be used as delimiters in CSV so it seems we have disagreements among
authors as well (situation 5). The failures caused by truncation (situation 4) are clear failures by the
tool because of decisions to limit the common case time spent analyzing data.

Takeaways. First, we illustrate that it is possible to develop more than one specification for an
ambiguous grammatical domain. Multiple generated tools can then be arranged in a pipeline and
take advantage of time/accuracy tradeoffs. Second, real-world data is often messy. Even hand-tuned,
custom tools such as Python’s CSV sniffer or the CSV Wrangler can make mistakes; humans often
disagree. Nevertheless, our SGI-generated tool reports "no dialect" a similar number of times to
these custom-built tools. The CSV sniffer and the CSV Wrangler align with outside human labeller
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Id Saggitarius behavior Frequency

1**
CSV preferences allowed algorithm
to return no delimiter character 4

2*
chose different delimiter than

hand-label but file was ambiguous. 2

3*
did not find any characters because

of leading metadata 2

4
did not find quote or escape character

because of truncation 2

5***
did not accept space
as a valid delimiter 1

6**
did not identify quote in

ill-quoted file 1

7**
unquoted “,” character lead to

false “,” delimiter 1

8*
did not find improperly
used escape character 1

Fig. 14. Reasons for StrictLax misclassification. In our analysis, cases marked * are inherently ambiguous
or mislabelled by the human. Cases marked ** also represent reasonable behavior by our system in our
judgement. We could change our specification to accommodate space as a separator, though doing so may
have unanticipated consequences.

a few more times than our tool, but the authors of this paper actually disagree with that outside
human labeller in almost all such cases.3 Hence, when it comes to the unambiguous formats where
humans agree, our SGI-generated tool is very effective.

7 RELATEDWORK
Grammar induction. Grammar induction traces back to at least the 60s when Gold [17] began

studying models for language learning and their properties. Later, Angluin [3, 4] developed her
famous L∗ algorithm for learning regular languages. As mentioned earlier, however, such algorithms,
on their own, often require large numbers of examples, even to synthesis simple regular expressions.
More recently, FlashProfile [32] has shown that regular-expression-like patterns can be learned
from positive examples, by (1) clustering by syntactic similarity, and (2) inducing programs for
given clusters. Inference of context-free grammars is considerably more difficult than inference
of regular expressions and patterns, and results are limited, but it has been tackled, for instance,
by Stolcke and Omohundro [42], who use probabilistic techniques to infer grammars. Fisher et
al. [15] explored inference of grammars for “ad hoc” data, such as system logs, in the context of
the PADS project [14]. Lee [24] developed more efficient search strategies for regular languages
in the context of a tool for teaching automata theory. Both these latter tools tackled restricted
kinds of grammars. Scaling to complex formats using few examples remains a challenge in either
case. The Glade [6] tool is a more recent approach to synthesizing grammars. Similarly to L∗,
Glade uses an active learning algorithm, and generalizes to full context-free grammars, rather than
merely regular expressions, while requiring relatively fewer membership queries to hone-in on the
desired grammar. The key contributions of this paper are largely orthogonal to these advances in
grammar induction algorithms over the years. In particular, we introduce the idea of "grammatical

3It may be that the outside labeller and the authors of the CSV Wrangler and CSV sniffer are aware of some other criteria
for disambiguating CSV data that we are not, which is why they and the tools align but we do not. In such a case, we might
be able to add this criteria to our SGI specifications as well.
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domains," and a novel language for defining meta-grammars, to restrict the set of grammars under
consideration during the induction process; doing so has the potential to improve the performance
of almost any grammar induction algorithm.
Grammatical inference becomes more tractable when one can introduce bias or constraints—

meta-grammars are one way to introduce such bias but there are others. For instance, Chen et
al. [8] use a combination of examples and natural language to speed inference of a constrained set
of regular expressions. Internally, their system generates an “h-sketch” as an intermediate result.
These h-sketches are partially-defined regular expressions that may include holes for unknown
regular expressions. Such h-sketches play a similar role to our meta-grammars: They denote sets
of possible regular expressions and they constrain the search space for grammatical inference.
However, our language is an extension of YACC and is designed for humans rather than being
a regular-expression-based intermediate language. We also introduce the idea of “grammatical
domains,” and provide natural examples such as date and phone number domains, that may be
reused across data sets; each h-sketch is an intermediate representation used once inside a compiler
pipeline.
Related to the notion of grammatical inference is that of expression repair. RFixer [33] uses

positive and negative examples to fix erroneous regular expressions. BothRFixer and Saggitarius use
similar algorithms for finding grammars that ensure positive examples are in the generated language,
and negative examples are not. Both of these tools encode these constraints as MaxSMT formulas
to ensure the generated grammars are optimal. Because RFixer does not have a metagrammar to
orient the search, their constraints can only be used to find character sets that distinguish between
the grammars. Saggitarius permits any constraints that can be expressed in propositional logic,
and the constraints can be over arbitrary productions, not merely character set choices. In effect,
one could see their algorithm as an instance of our algorithm, where the meta-grammar they are
using is one of character sets.

Syntax-guided Program Synthesis. . Our work was inspired by the progress on syntax-guided
program synthesis over the past decade or so [1, 2, 40, 41]. Much of that work has focused on data
transformations, including spreadsheet manipulation [5, 22, 48], string transformations [27, 28, 47],
and information extraction [23, 36]. Such problems have much in common with our work, but
they have typically been set up as searches over a space of program transformation operations
rather than searches over collections of context-free grammar rules. Particularly inspiring for our
work was the development of FlashMeta [34] and Prose [37]. These systems are “meta” program
synthesis engines—they help engineers design program synthesis tools for different domain-specific
languages. Similarly, Saggitarius is a “meta” framework for syntax-guided grammar induction,
helping users perform grammar induction in domain-specific contexts. Of course, Saggitarius,
FlashMeta and Prose differ greatly when it comes to specifics of their language/system designs and
the underlying search algorithms implemented.

Logic Program Synthesis. We were also inspired by work on Inductive Logic Programming [11],
and Logic Program Synthesis [29, 39]. Parsing with context-free grammars is a special case of logic
programming so it was natural to investigate whether inductive logic programming algorithms
would work well here. ProSynth [29] is a state-of-the-art algorithm in this field so we experimented
with it as a tool for grammatical inference. However, we found our custom algorithm almost always
outperformed ProSynth on grammatical inference tasks.

8 CONCLUSION
Grammatical domains are sets of related grammars. Such domains appear whenever a common
datatype like a date or a phone number has multiple textual representations. They also often appear
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when data sets are communicated via ASCII text files, as is the case for CSV files. In this paper,
we introduce the concept of grammatical domains, provide a variety of examples of such domains
in the wild, and propose Syntax-guided Grammar Induction as method for supporting efficient
grammar induction within such domains.
We also design a language, called Saggitarius, for specifying meta-grammars, which define

grammatical domains. Saggitarius includes features for defining finite and infinite sets of candidate
productions, for constraining the candidate productions that may and may not appear, and for
ranking the generated grammars. We illustrate the use of Saggitarius on a variety of examples
and develop a grammar induction algorithm for the system that uses semiring parsing to generate
MaxSMT formulae that can be solved via an off-the-shelf theorem prover.
In the future, we look forward to extending Saggitarius with semantic actions, which would

enable Saggitarius to be incorporated into existing parser-generators like YACC.
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