7/31/12

Beyond Lists:
Other Data Structures

CS303E: Elements of Computers
and Programming

August 1, 2012

Announcements

= Exam next Friday
—Same time
- Same place
u Assignment 6 due tomorrow

Other Data Structures

= Tuples
= Sets
a Dictionaries

Tuples

= Sequential data structures
- Order matters
- Lists and strings are also sequential
a Very similar to lists BUT immutable
- More efficient
- Can prevent data from being changed
u Uses: employee or student records,
point specification

7/31/12

Tuple Representation

Like lists, but with parentheses instead
of square brackets

myTuple = (1,2,3)
myTuple = (“a”, “b", 3)
nyTuple = (1,2,1,2,3)

Tuple Operations
Operation Description
[1 Indexing
[:] Slicing
+ Concatenation
* Repetition
len() Length
for elem in myTuple OR Traverse
for i in range(len(myTuple))
then access with []
elem in myTuple Membership

Packing and
Unpacking Tuples

= You can also create a tuple by packing
values together:

nyTuple = “a”,4,"hello”
= And you can unpack them:
letter, num, word = myTuple

Converting Tuples

a Convert from tuple to list using 1ist
list (myTuple)

a Convert from list to tuple using tuple
tuple(myList)

7/31/12

Sets

A set is an unordered collection with no
duplicates
- Similar to mathematical sets

Set Representation
u Create from a list:
mySet = set([1,2,3,4])

myList = 11,2,3,4,5]
nySet = set(myList)

= Duplicate elements will be eliminated
and the ordering lost

Set Operations

= Union (|)
- Elements in one or both sets
= Intersection (&)
- Elements in both sets
= Difference (-)
= Symmetrical Difference (*)
- Elements in one but not both sets

More Set Operations

Operation Description
<setName>.add(<elem>) Add an element to
the set

Remove all elements
from the set

<setName>.clear()

len() Length
for elem in mySet Traverse
elem in mySet Membership

7/31/12

iClicker Question

What do the following datatypes have in
common?

List, String, Tuple

A. All are immutable
B. All are mutable

C. All are sequential
D. All are unordered

Dictionaries

= Unordered collection of key-value pairs
- Keys are used to find values in the
collection
- Called hash tables or maps in other
languages
u Key must be an immutable type
u Keys are unique in the dictionary

Dictionary Representation

To represent a dictionary:
{<key>:<value>,<key>:<value>}

Examples:

myDictionary = {} #empty

myDictionary = {“hammer”:"tool"”,
“ham” : "meat”}

Dictionary Operations

Add to a dictionary by indexing with a
key and assigning a value:
myDictionary[<key>]=<value>

Example:
myDictionary = {} #empty
myDictionary([“apple”]=*fruit”
#{"apple”:"fruit"}

7/31/12

Dictionary Operations

Change a value associated with a key by
simply re-doing the assignment:
myDictionary[<key>]=<new_value>

Example:
myDictionary[“apple”]=“veggie”
#{“apple"”:"veggie”}
myDictionary[“apple” |=“fruit”
#{“apple”:"fruit"}

Dictionary Operations

Remove from a dictionary by indexing with

a key and using del:
del myDictionary[<key>]

Example:
myDictionary = {“apple”:"fruit”}

del myDictionary[“apple”) #empty

Dictionary Operations

a Membership:
<key> in <dictionary>
= Traverse:
for <key> in <dictionary>
m List of Keys:
<dictionary>.keys()
u List of Values:

<dictionary>.values()

More Dictionary
Operations

Operation Description

myDictionary.has_key(<key>) Returns True if the
dictionary contains the
specified key and False
otherwise

Returns a list of tuples,
where each tuple contains
a key and value pair

myDictionary.items()

myDictionary.get(<key>,<default>) |Returns value associated
with key if it exists,
otherwise returns default
value

Removes all pairs from
the dictionary

myDictionary.clear()

7/31/12

iClicker Question

For a value to act as a key in a
dictionary, it must be:

A. A literal value
B. A string

C. Immutable

D. All of the above

What types can be keys in a dictionary?
- Strings
—Tuples
— Numbers(!)

