
Matrix Factorization for Collaborative Filtering

Recommender Systems

Jeremy Hintz

December 17, 2015

Introduction

Anyone who has recently gone shopping online has witnessed a wide variety and sometimes over-
whelming volume of purchasing options. It is frankly unrealistic to think that a user could scroll
through and view all these options to locate the items that he or she would like to purchase. For this
reason, e-commerce companies must bring to the forefront those items which the individual users
are most likely to buy, and so these companies use recommender systems, which both determine
what items to suggest and a level of confidence in each of their suggestions. While recommender
systems can be used to solve a wide range of problems [2], we illustrate the process of building
recommender systems that attempt to pair a set of users with a corresponding set of items.

Recommender systems are generally divided into two main subcategories: content-based and
collaborative filtering. In the content-based approach, users and items are characterized by cer-
tain properties in order to construct a kind of profile that describes each actor in the system. A
quintessential example is a system where the items are homes and the users are home buyers.
Content-based approaches would utilize information about the homes, perhaps such as price, ge-
ographic location (i.e. zipcode), and number of bedrooms/bathrooms to build a profile. Often,
demographic information such as age, income, and number of children, is used to characterize
users. A content-based recommender system would then work to associate properties of users
with frequently co-occurring properties of items. For example, home buyers who are married with
four children are more likely to buy homes with many bedrooms than buyers that are single with
no children. From the perspective of most web services, the main problem with content-based
recommender systems is that they require users to provide a large amount of information about
themselves

Collaborative filtering is an alternate technique for determining which items to recommend
that does not require users to input personal data. Instead, collaborative filtering utilizes the
users’ history of actions to match users with items, and users with similar histories are assumed to
share key properties. This approach is usually more accurate for predicting user-item affinity than
content-based methodologies [1] as it leverages all user histories to make better recommendations.

Key Ideas Behind Collaborative Filtering

The idea behind collaborative filtering is relatively intuitive. Consider Figure 1, which illustrates
the case of three users who all have a set of items that they like. The specific definition of like
varies by domain and application but could signify a previously purchased item, an item for which
a five star rating was given, or any other indications of affinity that exist within the system context.

In Figure 1 users Alice, Bob, and Charlie each have some set of preferences indicated by letters
a, b, ..., i. These users can share preferences. For instance, all users like item a. Similarly, Alice
and Bob both like items a and f . Now let us imagine a new item j enters the system. Imagine that
Bob immediately indicates an affinity for j. Then a logical question might be: if we recommend
item j to Alice and Charlie, in which recommendation do we have a higher level of confidence?

Intuition tells us that a recommendation based on Bob’s preferences is more likely to be liked
by a user with similar “taste” to Bob. What indicates similar taste? While we can imagine many
heuristics for guessing a user’s taste, our current scenario lends itself to a simple metric: the larger
the intersection of two users’ preferences, the more similar their taste. Thus in this scenario, we

1

Figure 1: Common and unique preferences in a hypothetical system

would be more confident recommending j to Charlie, since Bob and Charlie like many of the same
items.

Latent Factor Models

The content-based recommender systems we saw earlier paired items with user traits based on
how often they occurred together. That approach made sense, but we encountered the difficulty of
attaining information from users. For example, many children corresponding to a higher number
of bedrooms made intuitive sense, but asking how many children someone has, along with many
other questions necessary for building a complete user profile, is intrusive. Web companies thus
mostly rely on the data they receive through interactions between their service and their users.

Models built on said data are called latent factor models. A latent factor is one of the properties
in a user profile minus the explicit knowledge of that property. Latent factors are the underlying
force behind the decisions that users make. For instance, even if we don’t explicitly know that
a home buyer has children, we can infer that they may since they viewed homes with many
bedrooms. Thus if two home buyers show interest in multiple homes with many bedrooms, then
it would be reasonable to show the buyers the homes that they themselves had not yet viewed
but their counterpart had viewed. Furthermore, latent factor models are very good at identifying
traits that are difficult to specifically include as properties of the item. For instance, users with
children may also be interested in homes in cul-de-sacs or homes near good schools. Even if our
service did not contain this information, a good latent factor model would coerce it from the data
in an unsupervised fashion.

Latent factors, just like known features, can be discrete/categorical or continuous values. They
are kept in a list or array of values, as discussed further in the next section. Collaborative filtering
models that use latent factors tend toward better accuracy as the number of latent factors increases
[1].

2

Matrix Factorization

While the Venn diagram in Figure 1 helps us understand the idea behind collaborative filtering,
collaborative filtering algorithms actually represent the data in matrix form.

Transforming our data into matrix form is done as follows: let r be a matrix with the rows
representing users and columns representing items. Let us fill in all [u, i] cells of r with a 1 if
user u likes i and 0 otherwise. Similarly, we may be able to measure how much u likes i and can
instead use some continuous value for entry rui. In an explicit feedback system, this could be done
through a rating system. For instance, rui could be filled with numbers 1-5 representing a 5-star
scale. Similarly, in an implicit feedback setting, our confidence in an affinity pairing could, for
example, increase according to the rules of some separately trained logistic regression.

We will formulate our model for achieving the most accurate recommendations by, as with most
machine learning models, optimizing some cost function. While this cost function and the manner
in which we locate its maximums and minimums changes with the variation of matrix factorization
we choose to employ, the general technique for matrix factorization is as follows: consider that
our m × n matrix r can be factored into two matrices x and y of dimension f × m and f × n,
respectively. When using the concept of latent factors, we can let f be the number of latent factors
prescribed for our model, recalling that a higher number of latent factors yields more accuracy but
comes at the expense of computational efficiency (by the properties of matrix factorization itself).

Now let’s assume that we took all the columns of x, the user vectors, and populated them
randomly. Each xu is a column vector called the latent factor vector for user u. Similarly yi is
the latent factor vector for item i. Then multiplying xT and y would give us a matrix that has
the same dimensions as r but does not equal r. In order to be able to say that we have found
latent factor vectors that coincide with our collected data, we want to minimize the sum of cells
of r - xT y. This is to say we want the multiplication of our decomposed matrix to approximate
as closely as possible our known data from r. Thus the general form for matrix factorization is as
follows:

min
∑
u,i

(rui − xTu yi)2 + λ(||xu||2 + ||yi||2)

Here, the last term is a regularization term. λ is a regularization hyperparameter that must
be tweaked to minimzie overfitting. There are different varieties of matrix factorization that stem
from the above equation. They differ primarily in how they go about the process of minimizing r
- xT y. A few notable examples are discussed below.

Implicit Matrix Factorization

Implicit matrix factorization (IMF), as described by Hu et al [1], is widely used in collaborative
filtering problems. The methodology is so widely accepted that it comes standard in many popular
machine learning libraries such as MLLib for Apache Spark. The authors’ algorithm has the
following cost function:

min
∑
u,i

cui(pui − xTu yi)2 + λ(||xu||2 + ||yi||2)

Note the subtle differences between the authors’ technique compared to the more general form.
Here cui is called the confidence and is given by cui = 1 + αrui. The confidence is used in order
to give some minimal confidence for every user-item affinity pairing (i.e. 1 in this case), which
can be subsequently incremented based on the number and/or significance of interactions between
that user and item. Here α is a learning rate parameter that can be tweaked in order for the
minimization to converge. The matrix pui is populated from rui. Anywhere where there is a
non-zero value in r, p is set to 1. Entries for which r is 0 remain as such in p. Finally xTu yi is the
product of the user vectors and the item vectors. So clearly, just as before we wish to minimize
the difference between our known data and data we have predicted for our user and item latent
factors, scaled by our confidence in the predictions. Because we alternate holding the user vectors
and item vectors constant, one of them being fixed makes our cost function above quadratic. This
readily suggests that an alternating least squares methodology will make the most sense. Indeed,
that is what the authors of [1] use.

3

We terminate the protocol after a specified number of iterations on our cost function or once
we have reached some acceptable level of convergence. At this point, we have an m×n matrix that
represents predictions for the affinity of given user-item pairs. Typically for most applications,
we will want to take say the k highest affinity scores and say these are a users ”top items” and
recommend these items.

Logistic Matrix Factorization

Another methodology for matrix factorization that is currently trending due to its use at Spotify
is Logistic Matrix Factorization (LMF). It is similar to IMF, but uses probabilistic approach to
formulating the prediction for an affinity value. Concretely, whereas the IMF and other forms of
collaborative filtering look to predict whether a user will engage with an item and assigns a discrete
guess of 1 for yes and 0 for no, the LMF looks to predict a continuous value for the probability
that a user will engage with an item. The new cost function then looks like this:

min
∑
u,i

αrui(xuy
T
i + βu + βi)− (1 + αrui)log(1 + exp(xuy

T
i + βu + βi)− λ(||xu||2 + ||yi||2)

While the new LMF cost function may seem more complicated than the one used for IMF, the
principle is the same. We simply have modulated all of the interactions between our known matrix
and latent factor vectors using a logit function. Because of this, we can no longer utilize a simple
alternating least squares minimization and must opt instead for a slightly more complicated (but
hopefully just as intuitive) alternating gradient descent approach. In order to do this, we use the
fact that the partial derivatives of our cost function, f, are as follows:

∂
∂xu

=
∑
i

αruiyi − yi(1+αrui)exp(xuy
T
i +βu+βi)

1+exp(xuyTi +βu+βi)
− λxu

∂
∂xi

=
∑
u
αruix

T
u −

xT
u (1+αrui)exp(xuy

T
i +βu+βi)

1+exp(xuyTi +βu+βi)
− λyi

Thus our gradient descent simply freezes either the user or item vectors and attempts to take
a step toward convergence using the above partial derivatives.

Online Matrix Factorization

The last flavor of matrix factorization that we will consider is that of Online Matrix Factorization
(OMF) as described in [4]. In machine learning, the term online learning refers to an algorithm that
can run on streaming data as it comes in, as opposed to training on batch data and periodically
retraining on a larger and larger batch as new data comes in. This is extremely useful for practical
applications as the task of retraining a model and having the results of new model reflected in the
output of whatever recommender service is serving up the recommendations is certainly non-trivial
for most applications of meaningful scale. Another tremendous benefit of online learning is that
our model is more up to date with recent data, since there is no lag time between retraining the
model.

Before we give the cost function for OMF, we must note that one significant modification that
the authors of [4] make is to use a low-rank approximation of the known matrix. Because of
the sparsity of the matrix, it is reasonable to do so. The authors include discussion of how the
approximation affects the quality of the recommendations made, but claim that the slight loss of
precision is greatly outweighed by the gain in efficiency.

The cost function for OMF is as follows:

min (
∑
l

xuy
T
i − rui)2 + λ

∑
i

∑
j

αβTi βj

Just as before, we are minimizing the difference between the known values for user-item interaction
and the predicted values. The regularization must be changed, however, to deal with the low-rank
approximation done to our matrices. The process of minimization occurs through alternating
gradient descent. While the full protocol for the technique of Online Matrix Factorization can be
found in [4], but it is worth noting that online gradient descent is more computationally demanding
than its batch counterpart, and thus even with the approximation of our matrix, the time and space
efficiency of OMF must be managed. The algorithm is parallelizable by partitioning the matrix.

4

Model Evaluation

As with any machine learning model, we need some way to evaluate the recommendations we receive
back from our matrix factorization models. Many metrics exist, some of which are likely familiar
to many other applications such as the Mean Squared Error (MSE), which is simply the average
error for each recommendation. A metric that is relatively unique to matrix factorization is Mean
Percentile Rank (MPR). Mean Percentile Rank uses the notion that our predicted recommendations
should intuitively have as “top picks” the items for which the user actually indicated affinity with
the model’s new guesses added into the mix. MPR takes each item from rui, calculates the
percentile of that item within the list of all items, and then takes the average percentile. If we
assigned recommendations at random, the expected value of the MPR would be 50%. Similarly
simply recommending popular items to every user would typically yield an MPR of somewhere
around 20%. Thus, when evaluating our model, we wish to see concrete improvement with an
MPR lower than 20%, since if we can’t get lower than that, then we are better off recommending
items that are broadly popular or trending.

Conclusion

Recommender systems are seen as an essential part of the business model of many major tech
companies. The personalization of product recommendations and advertisements has become
paramount to the success of web services and online retailers. Within recommender systems,
collaborative filtering using matrix factorization is nearly ubiquitous because of its parallelizability
and relative computational efficincy. Collaborative filtering with matrix factorization is progressing
to allow for quicker turn around time between new data coming in and a new model running on
the personalization service.

References

[1] Hu, Yifan, Yehuda Koren, and Chris Volinsky. “Collaborative filtering for implicit feedback
datasets.”, Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on. IEEE,
2008.

[2] Koren, Yehuda, Robert Bell, and Chris Volinsky. “Matrix factorization techniques for recom-
mender systems.” Computer 8 (2009): 30-37.

[3] Johnson, Christopher C. ”Logistic Matrix Factorization for Implicit Feedback Data.” 2012.

[4] Ling, Guang, et al. ”Online learning for collaborative filtering.” Neural Networks (IJCNN),
The 2012 International Joint Conference on. IEEE, 2012.

5

