
Solutions to Exercise 4

Algebraic Curve, Surface Splines – IV: Molecular Models

CS384R, CAM 395T, BME 385J: Fall 2007

Question 1. Describe the LEG (Labelled Embedded Graph) atomic representations as per class notes, of
the twenty protein amino acids (or protein residues), and the two common protein secondary
structures (i.e., α-helices and β-sheets).

Solution.

The LEG representation of a molecule is simply an annotated graph representation of the
chemical structure of the molecule, in which each node represents an atom and each edge a chemical
bond. Each atom may be annotated by its symbol and the vdW radius, each edge may be annotated
by the length of the corresponding chemical bond and possibly a dihedral angle, and each pair of
consecutive edges by a bond angle.
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Figure 1: Chemical structures of 18 of the 20 amino acids with their side-chain dihedrals (χi,1, χi,2,
χi,3, χi,4) identified. The remaining two, i.e., Glycine (Gly) and Alanine (Ala), do not have any
side-chain dihedrals. Adapted from [8].

In Figure 1 we show the chemical structures of the 20 amino acids, and in Tables 1, 2 and 3
we list all possible vdW radii, bond lengths and bond angles, respectively, that appear in these
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Table 1: List of van der Waals radii for 25 protein atoms [7].

Table 2: Bond lengths in proteins [3].
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Table 3: Bond angles in proteins [3].

chemical structures. Using these information, it is straight-forward to construct the required LEG
representations of the amino acids.

Since secondary structures (e.g., α-helices and β-sheets) are composed of primary structures
(i.e., amino acids), the LEG representation of secondary structures can also be constructed from
the information in Figure 1 and Tables 1, 2 and 3. However, the (φ,ψ) dihedral angles of the residues
in α-helices and β-sheets lie in fairly restricted ranges: (−45◦,−60◦) for α-helices, (−120◦, 115◦) for
parallel β-sheets, and about (−140◦, 135◦) for anti-parallel β-sheets. The bond lengths and bond
angles may also change slightly.
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Question 2. Given a LEG representation of a protein (created from the PDB), describe an algorithm
to detect and output the LEG representations of all α-helices and β-sheets in that protein.
Your algorithm should be able to distinguish between parallel and anti-parallel β-sheets.

Solution.

We will use geometric properties of α-helices and β-sheets in order to extract them from the
LEG representation L of the given protein P .

Figure 2: Geometric structure of an α-helix [4].

Extracting α-helices from L. We traverse L along the peptide backbone of P , and using the
internal coordinates (i.e., bond lengths, bond angles, dihedral angles, etc.), bond types and atom
types specified in L, we detect and output all maximal contiguous segments of this backbone (along
with side chains) that satisfy the following properties of α-helices.

• The amino acids in an α-helix are arranged in a right-handed helical structure with each
amino acid corresponding to a 100◦ turn in the helix and a 1.5 Å translation along the helical
axis. Thus there are 13 atoms and 3.6 amino acid residues per turn, and each turn is 5.4 Å
wide (see Figure 2).

• The C=O group of residue i forms a hydrogen bond with the N -H group of residue i+ 4.

• Amino acid residues in an α-helix typically have dihedral angles φ ≈ −45◦ and ψ ≈ −60◦.

Extracting β-sheets from L. We scan the peptide backbone of P given in L, and detect and
output all maximal contiguous segments of this backbone (along with side chains) that satisfy the
following properties of β-sheets.
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Figure 3: Geometric structure of a β-sheet [4].

• Each β-strand can be viewed as a helical structure with two residues per turn. The distance
between two such consecutive residues is 3.47 Å in anti-parallel β-sheets and 3.25 Å in parallel
β-sheets.

• Unlike α-helices the C=O groups in the backbone of a β-strand form hydrogen bonds with
the N -H groups in the backbone of adjacent strands.

– In parallel β-sheets all N -termini of adjacent strands are oriented in the same direction
(see Figure 4(b)). If the Cα atoms of residues i and j of two different strands are
adjacent, they do not hydrogen bond to each other, rather rasidue i may form hydrogen
bonds to residues j − 1 or j + 1 of the other strand.

– In anti-parallel β-sheets the N -terminus of one strand is adjacent to the C-terminus of
the next strand (see Figure 4(a)). If a pair of Cα atoms from two successive β-strands
are adjacent, then unlike in parallel β-sheets they form hydrogen bonds to each other’s
flanking peptide groups.

• The (φ,ψ) dihedrals are about (−120◦, 115◦) in parallel β-sheets, and about (−140◦, 135◦) in
anti-parallel β-sheets.

• Unlike in α-helices, peptide carbonyl groups in successive residues point in alternating direc-
tions.

Question 3. Given a LEG representation of a protein P ,

(a) Describe an algorithm to compute the vdW (union-of-spheres) surface of P .

(b) Describe an algorithm to detect all solvent exposed atoms of P .

(c) Augment the algorithm of part (b) to detect where two or three of these exposed atoms
intersect.

(d) Describe how to construct the L-R molecular surface (also called a sphere solvent contact
surface) of the protein P , using the information generated in parts (b) and (c).
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Figure 4: Two types of β-sheets: (a) anti-parallel, and (b) parallel [6].

(e) Describe a method to detect where if at all, the L-R surface of part (d), self intersects.

(f) Can you solve parts (b) and (c) in O (n log n) time, where n is the number of atoms in
the protein? You can assume for simplicity that all atoms have the same radius.

Solution.

Let us first explore a couple of properties of a moleclue (described in [5]) that can be exploited to
design efficient algorithms for manipulating the “union-of-sphere” model of the molecule (e.g., for
computing the molecular surface). In the worst case, the arrangement defined by n balls in 3-space
(i.e., the subdivision of 3-space into cells of dimensions 0, 1, 2, and 3, defined by the balls) may
have O

(

n3
)

combinatorial complexity, the boundary defined by their union may have complexity
O

(

n2
)

. However, the balls defining the atoms in the “union-of-sphere” model of a molecule have
the following two proporties which allow for more efficient and simpler algorithms for manipulating
them:

• The centers of two balls cannot get too close to each other.

• The range of radii of the balls is fairly restricted (e.g., see Table 4 below).

C Cal H N O P S

1.52 Å 3.48 Å 0.70 Å 1.36 Å 1.28 Å 2.18 Å 2.10 Å

Table 4: Radii of balls used to represent different types of atoms [5].

The following theorem, proved in [5], gives a couple of useful consequences of the two properties
listed above.

Theorem 1 (Theorem 2.1 in [5]). Let M = {B1, . . . , Bn} be a collection of n balls in 3-space with
radii r1, . . . , rn and centers at c1, . . . , cn. Let rmin = mini {ri} and let rmax = maxi {ri}. Also let
S = {S1, . . . , Sn} be the collection of spheres such that Si is the boundary surface of Bi. If there are
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positive constants k, ρ such that rmax

rmin

< k and for each Bi the ball with radius ρ · ri and concentric
with Bi does not contain the center of any other ball in M (besides ci), then:

(i) For each Bi ∈ M , the maximum number of balls in M that intersect it is bounded by a
constant.

(ii) The maximum combinatorial complexity of the boundary of the union of the balls in M is
O (n).

Table 5 lists the values of k, ρ and the maximum and average number of balls intersecting any
given ball in various molecules [5]. As the table shows, k is quite small and ρ is quite close to 1,
resulting in a small number of insersections per ball.

molecule k ρ
maximum number of balls

intersecting a given ball

avgerage number of balls

intersecting a given ball

caffine 2.17 0.71 10 4.5

acetyl 3.11 0.67 16 5.4

crambin 1.64 0.78 10 5.5

felix 1.64 0.81 9 4.9

SuperOxide Dismutase 1.95 0.76 16 5.5

Table 5: Values of k, ρ and the maximum and average number of balls intersecting a single ball in
various molecules [5].

Given a “union-of-ball” representation of a molecule, Theorem 1 can now be used to design an
efficient data structure that can answer insersection queries with either a point or with a ball whose
radius is bounded by a rmax. We will use this data structure in parts 3(a) – 3(f).

An Efficient Intersection Query Data Structure (from [5]). Let M be the set of n balls
as defined in Theorem 1. We subdivide the entire 3-space into axis-parallel cubes of size 2rmax ×
2rmax × 2rmax each. For each B ∈M , we compute the grid cubes that B intersects. Let C be the
set of non-empty grid cubes. Since each ball can intersect at most 8 grid cubes, the size of C is
bounded by O (n). Also observe that according to Theorem 1, each cube can be intersected by at
most a constant number of balls. We store the cubes in C in a balanced binary search tree ordered
lexicographically by the bottom-left-front vertices of the cubes. With each cube we store the list
of O (1) balls of M that intersects it.

Now given a query ball Q, we compute all (at most 8) grid cubes it intersects, and search for
each of these cubes in the binary search tree. For each such cube that exists in the search tree, we
check the balls stored in it for intersection with Q. Each search will take O (log n) time, and the
total number of balls tested will be O (1). Hence, we have the following theorem.

Theorem 2 (Theorem 3.1 in [5]). Given a collection M of n balls as defined in Theorem 1, one
can construct a data structure using O (n) space and O (n log n) preprocessing time, to answer
intersection queries for balls whose radii are not greater than rmax, in time O (log n).
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Figure 5: A peptide plane with all bond lengths and bond angles shown [4].

Part 3(a): We first convert the LEG representation of P to the “union-of-spheres” representation,
and then compute its boundary surface.

LEG to “Union-of-Spheres” Conversion. For each ball Bi in the union we need to compute its
center ci and radius ri. The ri value is simply the van der Waals (vdW) radius of the atom, and can
be obtained from various sources (e.g., [2], see also Table 4). The LEG representation itself might
be annotated with the vdW radius of each atom, However, since vdW radii are not standardized,
values obtained from different sources might differ slightly. The ci values can be computed easily
using the internal coordinates (i.e., bond lengths, bond angles and dihedral angles) specified in the
LEG representation. For example, we can choose the N atom on an arbitrary peptide plane (see
Figure 5) of the protein, and put the atom (i.e., its center) at the origin. The Cα atom connected
to the N atom is placed at distance 1.45 Å from the origin along the positive x-axis. The H atom
connected to the N atom is then placed on the xy plane using the bond length N -H = 1 Å and the
bond angle Cα-N -H = 118.2◦. After the peptide plane containing these three atoms are fixed, it is
straight-forward to compute the coordinates of the remaining atom centers using the given internal
coordinates.

Computing the vdW Surface [5]. Given a collection M of balls as defined in Theorem 1, the
algorithm proceeds in the following three steps:

1. For each B ∈M , compute the balls in M \ {B} intersecting it.

2. Using the information generated in step 1, compute the (potentially null) contribution of each
ball B ∈M to the union boundary.

3. Transform the local information generated in step 2 into global structures describing the
required connected component of the union boundary.

Each step is described in more details below.
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Step 1: We use the intersection query data structure described earlier (see Theorem 2). Each in-
tersection query takes O (log n) time, and hence the total cost of this step is O (n log n).

Step 2: Let Bi be a ball, and we want to compute its contribution to the union boundary. We
know from Theorem 1 that at most a constant number of other balls intersect Bi. Let Bj be such
a ball, if any. We consider the following three cases:

(i) If Bj fully contains Bi, we stop processing Bi as it cannot contribute to the union boundary.

(ii) If Bi fully contains Bj , we simply ignore Bj.

(iii) If neither of the two cases above holds, we compute the intersection between Si and Sj, which
is a circle Cij on Si (and Sj). This circle splits Si into two parts: one part is completely
contained within Sj and hence cannot contribute to the union boundary, and the other part
which is called the free part of Si, may actually appear on the union boundary.

After the process above is repeated for every ball intersecting Bi, we get a collection of circles on
Si. These circles form a 2D arrangement Ai on Si. A face of Ai belongs to the union boundary iff
it is on the free part defined by each such circle. Since the number of such circles is O (1), Ai can
be computed in O (1) time using brute force. Within the same bound we can mark each face on
Ai as free or not free. A free face is guaranteed to appear on the union boundary. Since the above
procedure for Bi takes O (1) time, the total time complexity of this step is O (n).

Step 3: In this step, the outer connected component of the union bounadry of M is represented
using a graph data structure. In order to do so, each arrangement Ai is augmented slightly as
follows. If Ai is the whole sphere Si, it is split into two parts using some circle. Next, if a boundary
component of Ai is a simple circle C, then C is split into two arcs by adding two new vertices. If
C belongs to two arangements Ai and Aj , the same two vertices are added to both arrangements.
Finally, if a free face of Ai contains holes, the face is split into (sub)faces by adding extra arcs so
that none of (sub)faces contains any holes in it. All these additions are made canonical by fixing a
direction d, and adding all extra edges along great circles that are intersections of Si with planes
parallel to the direction d. This step can easily be performed in O (n) time, and after this step the
union boundary will consist of only simple faces that are bounded by at least two edges, and each
edge will be shared by exactly two faces (assuming general position).

Now we compute the vdW surface (i.e., the outer union boundary) of M and store it as a
graph G = (V,E) (which is initially empty) as follows. First, we find the ball Bmax ∈ M with
the point having the largest z-coordinate. Let fmax be the face of Bmax that contains this point.
Then clearly fmax belongs to the outer union boundary of M . Now starting from this face fmax we
traverse the entire connected component containing fmax using depth-first search. Each free face
f we encounter during this traversal will be made a vertex vf ∈ V , and each arc shared by two
such faces f1 and f2 will be made an edge (vf1

, vf2
) ∈ E. Everytime we encounter a free face f

which has not been visited before, we determine its boundary (i.e., the edges bounding this face),
which can be done in O (1) time. For each such edge e of f , we can find the face f ′ that shares e
in O (1) time. If f ′ is a free face and has not been visited before, we recursively visit f ′. After we
have visited each free face reachable from fmax once, G contains the vdW surface of M . Clearly,
this traversal takes O (1) time.

Hence, the following theorem follows.

Theorem 3 (Theorem 4.1 in [5]). The vdW surface of the union of a connected collection of balls
as defined in Theorem 1 can be computed in O (n log n) time and O (n) space.
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Part 3(b): We increase the radius of each atom in P by rs, where rs is the radius of a solvent
atom. Clearly, the collection of these enlarged atoms still satisfies the requirements of Theorem 1,
and the theorem holds. Hence, we can find all atoms in this collection that contribute to the outer
union boundary in O (n log n) time and O (n) space using the same algorithm as in part 3(a).

Part 3(c): The algorithm in part 3(b) already constructs the intersection query data structure
described earlier for the set of enlarged atoms in P . If P contains n atoms, this construction takes
O (n log n) time and uses O (n) space. The algorithm also identifies all solvent exposed atoms.
Now, for any ball Bi representing a solvent exposed atom in P , we can find the set Ti of O (1)
other solvent exposed atoms that intersects it in O (log n) time. Since the size of the set Ti ∪ {Bi}
is bounded by a constant, we can detect in O (1) time where two or three of the atoms in this set
intersect. We can identify all such intersections in O (n log n) time and O (n) space by using the
same process as above for each solvent exposed atoms in P .§¨©ª«¬ ­®¯«°±§²³ ®²´§¯ ´¨°¨±µ²³ ®²´§¯

§¨©§²ª«­®¯«°±§²³ ®²´§¯
Figure 6: 3D image showing the decomposition of the L-R surface into three different kinds of
patches: convex spherical, toroidal and concave spherical.

Part 3(d): The L-R surface of a molecule M with respect to a solvent atom B of radius r is the
inner envelope of the region described by B rolling on the vdW surface B of M in all possible
directions [1]. This surface can be decomposed into a collection of three kinds of patches: convex
spherical, toroidal and concave spherical (see Figure 6).

We can detect the locations of these patches using the information generated in parts 3(b) and
3(c), and thus construct the entire L-R surface.

Convex Spherical Patches. A convex spherical patch is formed when the rolling solvent atom
B is in contact with only one atom Bi ∈ M , and it is the maximal connected set of points on
the spherical surface Si of Bi that B touches in this manner. In order to find the extent of the
spherical patch on Si that belongs to the L-R surface, we simply increase the radius of all balls
within distance 2rmax + r of Bi by r (by Theorem 1 there are only a constant number of them),
and use the method in step 2 of part 3(a).

Toroidal Patches. A toroidal patch is formed when the rolling solvent atom B (of radius r) is in
touch with the spherical surfaces S1 and S2 of two solute atoms. We increase the radius of S1 by
r and compute its intersection circle l2 with S2, and similarly increase the radius of S2 by r and
compute its intersection l1 with S1. Now if we move B along the intersection of S1 and S2, it will
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Figure 7: The solvent atom of radius r sweeps a torus if it is moved in such a way that it is always
in touch with the spheres S1 and S2. The line l1 (l1) along which it keeps in touch with S1 (resp.
S2) can be found by increasing the radius of S2 (resp. S1) by r and computing its intersection with
S1 (resp. S2).

keep in touch with the two spheres along l1 and l2, respectively, and the inward facing arc of B will
sweep a torus (see Figure 7). Other atoms intersecting with S1 and S2 may split this torus into
several toroidal patches.

Concave Spherical Patches. A concave spherical (triangular) patch is formed when the rolling
solvent atom B simultaneously touches three atoms. The three contact points define a spherical
triangle on the surface S of B whose edges are arcs of great circles on S. This triangle is a concave
spherical patch on the L-R surface.

Part 3(e): We describe below how the three different types of patches (i.e., convex spherical,
toroidal and concave spherical) on an L-R surface can intersect one another, and how to detect
them.

Convex Spherical Patches. It has been shown in [1] (see Lemma 3 in [1]) that the convex
spherical patches cannot intersect any other part of the L-R surface.

Toroidal Patches. It has been shown in [1] that two different toroidal patches cannot inter-
sect each other (see Lemma 4 in [1]), and also that a toroidal patch cannot intersect another
convex/concave spherical patch (see Lemma 5 in [1]).

A toroidal can only intersect itself. As shown in Figure 8, a toroidal patch intersects itself when
it can be constructed as a rotational surface of an arc of a circle around an axis that intersects the
arc.

Concave Spherical Patches. It has been shown in [1] that a concave spherical patch cannot
intersect itself (see Lemma 6 in [1]), or another concave patch (see Lemma 7 in [1]), or a toroidal
patch (see Lemma 5 in [1]).

As shown in Figure 9 two distinct concave patches can intersect each other. Since each concave
patch is a part of a sphere, we can detect this type of intersections easily by solving sphere-sphere
intersection problems.

Part 3(f): The algorithms in parts 3(b) and 3(c) already run in O (n log n) time.
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Figure 8: (a) The arc a rotating around the axes l describes a self intersection portion of torus. (b)
The arc a′ rotating around the axes l describes portion of torus with no self intersection.
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(c)

Figure 9: Three possible self-intersecting L-R surfaces for different radii of the solvent and molecule
atoms. On the left the self-intersecting L-R surfaces are shown. On the right the corresponding
solvent contact surfaces are shown (without self-intersections).
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