Lecture 2b: Geometric Modeling and Visualization

BEM/FEM Domain Models

Chandrajit Bajaj

http://www.cs.utexas.edu/~bajaj

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences University of Texas at Austin

September 2006



Linear Interpolation on a line segment
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The Barycentric coordinates = (0 O ) for any point p on line
segment <p, p,>, are given by

( dist(p, p,) dist(p,,p) )
dist(py, p;) dist(p,, p,)

O =

which yields |p = Qg py + 44 Py

and

f,= Qg Ty + Ay 1
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Linear interpolation over a triangle
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For a triangle py,p4,p,, the Barycentric coordinates
a = (a,a,0,) for point p,

o =

( area(p, p,,p,) area(p,,p,p,) area(p,,p,,P) )
area(pO,P1»Pz) area(poapppz) area(po,pl,pz)
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Non-Linear Algebraic Curve and Surface Finite
Elements ?
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The conic curve interpolant 1s the zero of the bivariate quadratic
polynomial interpolant over the triangle
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A-spline segment over BB basis
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Regular A-spline Segments
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(a) ) (d)

For a given discriminating family D(R, R;, If By(s), B;(s), ... has one sign

R,), let f(X, y) be a bivariate polynomial . change, then the curve 1s
If the curve (X, y) = 0 intersects with

each curve in D(R, R,, R,) only once in (a) D, - regular curve.
the interior of R, we say the curve f=0

is regular(or A-spline segment) with (b) D, - regular curve.
respect to D(R, R, R,).

(¢) D, -regular curve.
(d) D, - regular curve.
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Examples of Discriminating Curve Families
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Constructing Scaffolds
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Spline Surfaces of Revolution
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Boundary Elements
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Linear interpolant over a tetrahedron

Linear Interpolation within a
« Tetrahedron (py,P4;P2,P3)

a = q; are the barycentric coordinates of p

3
P = 2 A, P,
Po
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Other 3D Finite Elements (contd)

* Unit Prism (p4,P2,P3,P4:Ps,Ps)

P =t(2aipi)+(1_t)(2ai—3pi) o
P2 — | P3

Note: nonlinear P | P4
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Other 3D Finite elements

« Unit Pyramid (py,p1,P2,P3:P4)

p=upy+(L-u)(t(sp, +(1=-5)p,)+ (1 =-1)(sp; +(1-5)p,))
Po

Note:
nonlinear
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Other 3D Finite Elements

° Unlt CUbe (p1’p2’p3’p4’p5’p6’p7’p8)
— Tensor in all 3 dimensions

p=u(t(sp,+(1=5)p,)+(A=t)(sp; +(1=5)p,)) +
(1=u)(t(sps + (1=s) ps) + (1= 1)(sp; + (1 =5) p;))

e

P

Ps / Pe

P7 Ps

‘/. 0/'
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Topology of Zero-Sets of a Tri-linear Function
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Non-linear finite elements-3d

Irregular prism

—Irregular prisms may be used to represent data.
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UVS space

Non linear

Transformation

of mesh
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C1 Interpolant

Hermite interpolation
fOI fll
fo £

0 1
o O

f(t) = foH ) + FOH () + f1H () + fOH ()
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Incremental Basis Construction

* Define functions and gradients on the edges
of a prism

* Define functions and gradients on the faces of
a prism

e Define functions on a volume

* Blending
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Hermite Interpolant on Prism Edges

+1

+1 |1
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on edges

Institute of Computational and Engineering Sciences
Department of Computer Sciences University of Texas at Austin September 2006



Hermite Interpolation on Prism Faces

on faces
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Shell Elements (contd)

* The function F is C! over ¥ and
interpolates C! (Hermite) data

* The interpolant has quadratic precision
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Side Vertex Interpolation

on volume
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C21 Shell Elements

F=+1
F=-1

?\_, b, b, by
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CAM Shell Elements within a Cube

C”1 Quad Shell Surfaces can be built in a similar way, by
defining functions over a cube
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Shell Finite Element Models
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Also see my algebraic
curve/surface spline
lectures 7 and 8 from
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