Lecture 4: Geometric Modeling and Visualization

Molecular Structures (Models) from PDB, VIPER
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Tools for 3D Molecular Structure
Determination

X-ray crystallography (diffraction)
— Atomic resolution
— Difficulties (experimental, computational)

Nuclear magnetic resonance (NMR)
(spectroscopy)

— Atomic resolution
— Limited to small structures
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Proteins
« Amino acids contain an amide, a residue and a
carboxyl group

* Proteins are polypeptide chains, made from amino
acids combined via peptide bonds.
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X helix

Hydrogen bond

J; Usually 4-5 to 40 residues
Rise per residue = 1.5A

Residues project outwards
from the axis

J} Hydrogen bonds cause a dipole
moment, approx 0.5-0.7 unit
charge on each end
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Beta sheets
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Structure of Hemoglobin

e secondary, tertiary, quaternary structure

* One | chain contains eight  ghelices and no -ﬁheets.

Center for Computational Visualization
Institute of Computational and Engineering Sciences

Department of Computer Sciences University of Texas at Austin September 2007




X-ray diffraction
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Hard-Sphere Model

Atom: Electron Ball
hs o 1 if | X —Xe| <r,
U™ (X) = { 0 otherwise:

where, r is the atomic van der Waals or solva-
tion radius, and X is the center of the atom.

Molecule: Union of Electron Balls
vdW Surface
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Molecules in Solvent (Implict Model)

 Solvent molecule modeled as a sphere. \Water: radius 1.4A

SAS
VDW
SES/SCS (Molecular Surface)

SAS: solvent accessible surface: locus of probe center
VDW: van der Waals surface: Union of spheres with VDW radii
SES/SCS: solvent excluded/contact surfaces
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Implicit Solvation Surface for the Hard
Sphere Model

Lee-Richard (LR) surface is decomposed into three kinds
of patches:

convex spherical, toroidal, and concave spherical patches

The LR surface can be represented as A-patches and NURBS

Bajaj et al, Discrete Appl Math. (2003), 23-51
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Molecules as Union of Hard Spheres

> Union of atoms (CPK)

» [ aguerre Voronoi Diagram
»Regular Triangulation

> Skeletal Complex
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Molecular Solvation Mutrasweet)
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Solvent Offset Curves Complex

Solvent Contact
Surface Patches

Laguerre Voronoi Diagram of Solvent Excluded Surfaces
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Molecular Surfaces for Varying Solvent Radii
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C"1 A-Patch Complex of the LR Molecular Surface

positive control points

free control point
zero control point

negative control point

-, @ 090

SES Curves Complex

SES

Solvent Contact

Patch Complex
Laguerre Voronoi Diagram of Bajaj, Chen, Xu, ACM TOG (1995)
Union
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Adaptive 6rid based Molecular Surface

« Main advantage:
— Grids are commonly used in simulations

— Grids permit many other operations including computing surface area etc.

» Sign distance function definition of SDF:
— Let sdf(x) be the sign distance function of SAS surface.
— Let the sign inside the surface be positive.

— Surf={x:sdf(x)=probe radius}
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Grid classification

N coarse cells
M atoms
Grid spacing chosen as ~ 0.5A,.

Classify:

Boundary SAS cell, vertices
Boundary VDW cells , vertices
Region in between SAS & VDW
Interior fo VDW

Exterior to SAS

Each cell also contains atom intersections.

Atom cover at most h”3 cells. Atoms
inserted in order into grid, updating
classification.

Cost: O(Mh”3)

Gives us a patch complex defining the SES.
Intersecting atoms gives us location of

- Trimming curves

- Toroidal patches

- Spherical concave patches
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SES by grid classification and SDF

Octree construction:
Subdivide cells with multiple SAS spheres,

Keep max level L of subdivision

SDF computation:
For each point inside SAS,
T Search neighborhood to min dist to SAS

If cell contains oo many intersecting cells at

highest resolution, cell center is used to

N —
/

/ y compute distance.
point - spherical patch distance implemented.

— Isocontour approximation:

Isosurface with isovalue = r, approximates SES.

Atom cover at most h3 cells
Cost: MheL
Propagation based SDF: Mh3L
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SDF classification results

«  Cut off of volume rendering
— Dark blue: SAS surface
— Pink: SAS volume
— Red: SES surface
— Yellow: part of VDW surface

— Light blue: part of SES volume Myoglobin 101M.PDB
— Green: VDW volume Time taken ~ 15s for
base 643 grid
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Surface atoms

Grid points within atom approximates its distance to surface.
Cost: Once classification, SDF is complete, cost is at most linear in size of grid

2nd Protein of: 11AI.PDB 2VIR.PDB 1BQL.PDB

Interior atoms colored by residue type. Surface atoms in uniform orange color
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Problem with LR: Singularities

Probe at center touching 3 atoms
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Atomic Shape Parameters

(G

« Isotropic Quadratic Kernel Gi (x)z e i
a s - X—Xi _ri
e Isotropic Linear Kernel Gi (X) =e ﬂ(l | )
> where ror i i s -
JIIN e
> The decay f controls the shape |° J’H'.!";'“H — M
of the Gaussian function. 5 /'l'l. '-t\
» The van der waals radius is ;. |7 'I:' .4I
> The center of the atom is X;. i ,/;" \
i &
e Anisotropic Kernels 1i
?O 8 7-;.“__ -4 2 0 2 4 _;- 8 10

B =23 r =18A
£ value suggested in (Boys 50), (Grant Pickup 89)
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Smooth Molecular Surfaces (Implicit
Solvation) Models

Linear decay model

Hard sphere model Quadratic decay model
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Imbplicit Solvation Analvtic Molecular Surfaces as Level Sets

« For a molecule with M atoms, we can define a
synthetic electron density function as

f elec_dens(x) = i G (x), xe R

« Molecular surface for quadratic decay
kernels, A=ef: p
——(x xi)

fdec tons (X) = ZAe 5(x—xi)

« Molecular Surface for linear decay
kernels, A=efri:

Soee dens(X) = f: Aie_ﬂ}x_x"é‘ (x e )
=1

Hemoglobin Molecular surface
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Fast Analytic Molecular Volume and Polarization
Energy/Force Computations

e For smooth kernels G:

fdx_dm(x)=G®fAi5(x—xi)

P
>
*The convolution theorem.
Convolution in spatial = multiplication in frequency
Fow wm=EFT ~ (FF T (kernel )x FFT (atom centers))
For N cubature samples of M atom molecules
O(NM) — naiive v
O(M logM + N'log N') > irregular FFT J_L_I_L ® /\ _

o (x X )
Bajaj, Siddahanavalli, (2005) ZA'
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FCC Cluster Hierarchy

* Clustering of atoms based on biochemical
units as well preserve molecular shape
features

Biomolecule

[ Chain nl ] [ Backbone ]

Atom | || Atom2 |,,| Atomnd q
Residue 1 Residue n2 “

Chain 1

[~ N\

Atom | |. .| Atom n3 Atom | |, Atomnd
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FCC Multi-Resolution Models
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Molecular Surface Segmentation
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- Subunit A

Subunit B
Subunit C
Subunit D

Within Subunit A
F helix

Histidine Ligand(HIS87)

I o

» Oxy process : O2 binds to the Fe2+
ion on the opposite side of the histidine
ligand. F helix shifts position through
the oxy-deoxy cycle.

September 2007




Gaussian curvature
Protein kinase (1406.pdb)

Molecular Surfaces Properties

e Curvatures

Let f (Xx,y,z) = 0 represent an implicit function in R3.

The Mean curvature H and Gaussian curvature K
H =(C(fx2 (fyy+fzz))_Z*C(fxfyfxy))/(Z*(C(fxz)
)1.5 )

and
K=(2"C (. f, (1, ) ((C(£2))7)
Where C represents a cycllc summatlon over X, y and z,
and the subscripts denote partial differentiation with

respect to those variables.

Mean curvature
Protein kinase (1406.pdb)
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Meshing

(a) monomer mAChE (b) cavity (c) interior mesh

*Y. Zhang, C. Bajaj, B.
Sohn, Special issue of
Computer Methods in

Applied Mechanics and

Engineering (CMAME) on
Unstructured Mesh
Generation, 2004.

(d) exterior meshes

*Y. Zhang, C. Bajaj,

Prac. of Meshing
Roundtable 2005. (C.;Q
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Open channel

Top view the interior mesh The exterior mesh

Closed channel

Center for Computatio
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Human Rhinovirus

The Human Rhinovirus 14 (1RVF.pdb) complexed (docked) with Immunoglobulins
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Icosahedra

Complex (Poxvirus family)

Plug Wedge
S -
Prohead I \?’ Base plate
{(no DN&)
v
Prohead II Tube
{(no DN&)
Prohead III
(509 DHA) Tube & sheath
Mature head
{10065 DN &)
Collax
Added @ ﬂ
e ~ |/
Enveloped Tai
fibre
\ /\
Infectious phage particle

Helical (tobacco mosaic virus)

Complex (tailed virus)
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Human Rhinovirus Serotype 2

e Subunit PDB id: 1FPN

* Number of subunits: 60

 Number of atoms per subunit: 6316
» Resolution (A): 2.6

» Dimension (A): 308.68 x 352.98 x 380.48
Symmetry: icosahedral, T=1
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The Capsid: Human Rhinovirus
(1FPN)

Asymmetric
Unit

A: Coat Protein VP1 B: Coat Protein VP3
C: Coat Protein VP2 D: Coat Protein VP4
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Capsomeres: (1FPN)

|so-surface rendering Volume rendering of a
of a capsomere capsomere
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5-Fold Symmetry

1) 1.00000 0.00000 0.00000 4) -0.80902 0.50000 -0.30902
0.00000 1.00000 0.00000 -0.50000 -0.30902 0.80902
0.00000 0.00000 1.00000 0.30902 0.80902 0.50000

2) 0.30902 -0.80902 0.50000 5) 0.30902 0.80902 -0.50000
0.80902 0.50000 0.30902 -0.80902 0.50000 0.30902
-0.50000 0.30902 0.80902 0.50000 0.30902 0.80902

3) -0.80902 -0.50000 0.30902
0.50000 -0.30902 0.80902
-0.30902 0.80902 0.50000
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3-Fold Symmetry

1) 1.00000 0.00000 0.00000
0.00000 1.00000 0.00000
0.00000 0.00000 1.00000

10) -0.30902 -0.80902 0.50000
0.80902 -0.50000 -0.30902
0.50000 0.30902 0.80902

11)-0.30902 0.80902 0.50000
-0.80902 -0.50000 0.30902
0.50000 -0.30902 0.80902
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2-Fold Symmetry

1) 1.00000 0.00000 0.00000 10) -0.30902 -0.80902 0.50000
0.00000 1.00000 0.00000 0.80902 -0.50000 -0.30902
0.00000 0.00000 1.00000 0.50000 0.30902 0.80902

5) 0.30902 0.80902 -0.50000
-0.80902 0.50000 0.30902
0.50000 0.30902 0.80902

6) -1.00000 0.00000 0.00000
0.00000 -1.00000 0.00000
0.00000 0.00000 1.00000

Center for Computational Visualization
Institute of Computational and Engineering Sciences
University of Texas at Austin September 2007

Department of Computer Sciences



Icosahedral Symmetry: Triangulation
Numbers

* lcosahedral symmetry overview (Caspar & Klug 1962; Baker et al. 1999)

OV ONONONEN
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YN YN N INTY

B

hk T Example

10 1 bacteriophage $X174
11 3 tomato bushy stunt virus
20 4 Sindbis virus

12 7« polyoma virus

31 13¢ reovirus

13 13« infectious bursal disease virus
40 16 herpesvirus
50 25 adenovirus
Notations: & = dewre (right handed)
¢ = laevo (left handed)

o Oatrnt
D T=7¢ (h,k=2,1) E gy
. =7¢ (h,k=2, =13¢ (h,k=3,1)
Center for Computation T=74(hk=1.2) T=134 (hk=1.3)
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Rice Dwarf Virus (High Resolution)

3.6M atoms

Texture
Sphere
Rendering

TexMol
(GPU

Q Center for Computational Visualization aCCel )
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September 2007
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Rice Dwarf Virus (medium resolution)

Fast Isocontour
rendering from UT TexMol
Blurred Maps
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Tiling Theory - Filling some Gaps
(Twarock'04)

@ Casper-Klug theory is incomplete; e.g., it cannot account for the structures of:
— Papovaviridae family, which contain cancer-causing viruses
— icosahedral viruses with pentamers, such as polyomavirus
— Sericestis and Tipula iridescent viruses (follow Goldberg polyhedral structure)

@ Viral Tiling theory closes the gap. It describes locations of protein subunits and
inter-subunit bonds based on mathematical theory of quasicrystals.

(@) root polytope, (b) some reflection planes encoded

by root vectors (a) cube inscribed in dodecahedron, (b) tetrahedron in a cube

tilings of the virus capsids of polyomavirus and simian virus 40
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Molecular Skins (or Shells)

For atom i, define the volume density as

1 Xsa-w

P:(x) =15 (x—(ai—w))3—4i2 (x=(a,-w))’ +1 a,-w<x<a, +w

X=a,+w

where x=|r-x,

P =Y pi= Y PP+ Y PP~ Y PiPPuP,  inclusion-exclusion

i<j i<j<k i<j<k<l

Molecular Skin 7~
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C”1 A-Shell Molecular Skin Models

Bajaj, Geometric Mod. Computing, (2001)
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Geometric properties: Flexibility in RNA
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Small subunit of ribosome

Beginning of RNA
chain

RNA backbone

RNA and protein
backbone End of RNA chain
A 30S ribosome molecule (1J5E.pdb) 21 chains including a single RNA chain
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Large subunit of ribosome
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Entire backbone

A 508 ribosome molecule (1JJ2.pdb) with 2 RNA chains 23S RRNA
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Ribosome Active Sites

30s Ribosomal
Subunit

tRNA

50s Ribosomal
Subunit

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences University of Texas at Austin September 2007




