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Cardiovascular Anatomy
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Imaging2Models

X-ray Crystallography = 2D Image Processing = Atomic Centers/Bonds (PDB)
= FCC - Surface, Volume Processing = BEM/FEM/Shells

Single Particle Cryo-EM -> 2D Image Processing = 3D Reconstruction = 3D
Image Processing = Symmetry, Surfaces, Volume Processing=>
BEM/FEM/Shells

Single-section EM/Anisotropic CT/MRI - 2D Image
Processing - Planar X-section Contour Stack -
BEM/FEM/Shells

Tomographic EM/MicroCT/CT/MRI = 3D Image Processing = Higher Order
3D Reconstructions, Surfaces, Skeletons 2 BEM/FEM/Shells

Time Dependent Mesh Maintenance
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Step #1: Automatic Image Alignment

Affine Transformations
(Translation, Rotation,
Scaling)
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Step #2: Semi-Automatic Image Restoration
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Step #3: Automatic Filtered Segmentation
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Step #4: Hippocampal Neuron Model Reconstruction

C.Bajaj, K. Lin, E. Coyle: Arbitrary Topology Shape Reconstruction from
Planar Cross-Sections, Graphical Models and Image Processing, 58:6, 1996,
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Heart Model via X-section Contour Lofting

First segment the heart into four independent planar contour stacks from MRI data:
background (0), heart muscle (81), left ventricle (162), right ventricle (243) and then loft

(skin) the planar contour stacks
simulation of the electronic activity of the heart.

Raw MRI data Manually digitized slices Continuous model

e

Volume rendering Smooth shading
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Abdominal Aorta
(Analysis Suitable Models)

4
]
N
i
i
]
.
y
|

Center for Computational Visualization

Institute of Cogpialigpagnd Engineering SGRNIBRBS 2 (truncated)

Department of Computer Sciences

| Solid NU
University of Texas at Austin

RRRedr 2007



Triangular Meshing

 To generate a boundary
element triangular mesh
from a stack of cross-
sectional polygonal data.

* Subproblems

— The correspondence
problem

— The tiling problem

— The branching
problem
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Sub-problems

* Tiling
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Incremental Construction

Algorithm Steps

Step a: Segment closed contours from 2D images
Step b: Create any required augmented contours
Step c: Find correspondences between contours
Step d: Form the tiling region of each vertex

Step e: Construct the tiling

Step f: Collect the boundaries of untiled regions

Step g: Form triangles to cover untiled regions based on their edge
Voronoi diagram (EVD)
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Algorithmic Subtleties

« A multi-pass tiling approach followed by the postprocessing of
untiled regions
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Algorithm Steps on actual data
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Using the Edge Voronoi Diagram as Ridges
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Boundary Element Triangular Mesh
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Tetrahedral Meshing

 To generate a 3D finite element
tetrahedral mesh of the simplicial
polyhedron obtained via the BEM
construction of cross-section
polygonal slice data.

« Subproblems

— The shelling of tetrahedra
to reduce polyhedron to
prismatoids

— The tetrahedralization of
prismatoids

, » o o o v saanZation
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What is prismatoid?

A prismatoid is a polyhedron having for bases two simple
polygons (possibly degenerate) in parallel planes, and for
lateral faces triangles or trapezoids having one vertex or

side lying in one base (or plane), and the opposite vertex
or side lying in the other base (or plane).
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The Shelling Step

« Shell tetrahedra from the polyhedron, so the
remaining part is a prismatoid or can be
divided into prismatoids.
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Prismatoid @ Tetrahedra

« To tetrahedralize a non-nested prismatoid without
Steiner points.

1. For each boundary triangle on both slices,
calculate its metric.

2. Pick up the boundary triangle with the best
metric and form one set of tetrahedra.

3. Update the advancing front and go to Step 1.

4. If the remaining part is non-tetrahedralizable,
postprocess it.
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Metric, Weight Factor, Grouping

« Metric = volume/(edge)?
* Weight factor

.
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* (Grouping can
avoid irregular
remaining part
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Protection Rule

Lemma 1. Suppose a top boundary triangle Au,u,u, is under the
constraint that no more than one type 1 triangle is between the two
type O triangles containing the contour segments u,u, and u, us.
Furthermore, let the bottom vertices of the two type 0O triangles be v,
and v,. Our grouping operation cannot apply to Au,u,u, to form a set
of tetrahedra, if and only if all the following conditions are satisfied.

1. vV, is exactly one contour segment.
2. One of the slice chords u,v, and u,v, is reflex and the other is convex.

3.  Bothu,v,and u,v, are not inside theﬁorismatoid.

Center for Computational Visualization
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Classification of Untetrahedralizable

Prismatoids
1. Has two boundary triangles on the top face and one

line segment on the bottom face.

2. Has one bottom triangle which 1s treated as three
boundary triangles.
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Multiple Tetrahedralizable Cases

Dissimilar region (the right

) Dissimilar region (the inner
bottom portion of the bottom

portion of the top contour)
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Multiple Tetrahedralizable Cases
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Multiple Tetrahedralizable Cases

top view

Multiply-nested prismatoid Solid region between two slices
of a human tibia

C Center for Computational Visualization
Institute of Computational and Engineering Sciences

Department of Computer Sciences University of Texas at Austin October 2007




Examples

(a) (b) (a) (b)
Knee joint (the lower femur, the pper Hip joint (the upper femur and
tibia and fibula and the patella) the pelvic joint)
(a) Gouraud shaded (a) Gouraud shaded
(b) The tetrahedralization (b) The tetrahedralization
@ Center for Computational Visualization
Institute of Computational and Engineering Sciences
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Mini-summary

 The characterization, avoidance of non-
tetrahedralizable polyhedra is one of the main
challenges

* The mix of numerical precision and
topological decision making needs precise
rules so errors don'’t propagate.
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Coronary Arteries
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Sweep based Hexahedral Mesh

« To project a templated quad mesh of a circle onto each cross-section of the
tube, then connect corresponding vertices in adjacent cross-sections to
form a hex mesh.

Level-1-template Level-2-template Level-3-template

Control meshes satisfy the following four requirements:
1.  Any two cross-sections can not intersect with each other.
2. Each cross-section should be perpendicular to the path line.

3. In the n-furcation region of several branches, each cross-
section should remain perpendicular to the vessel surface.

Center for Computational Visualization
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Vasculature Branchings

One-to-one sweeping requires the source and the target surfaces have similar topology.

Various templates are designed to decompose arteries into mapped meshable regions

for different branching configurations.

. n-Branching: A n-branching is a situation when n branches join together, where n = 3.

. Bifurcation: A bifurcation is a situation when three branches join together. A bifurcation is also a 3-branching.
. Trifurcation: A trifurcation is a situation when four branches join together. A trifurcation is also a 4-branching.

Bifurcation Trifurcation 7-branching

Center for Computational Visualization
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Bifurcation Templates

The bifurcation geometry is decomposed into three patches: the master
branches contain two branches and the slave branch has one branch.

Solid NURBS Hex meshes

The master and slave branch axes are not coplanar.

Center for Computational Visualization
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Trifurcation Templates

Trifurcation has one master branch and two
slave branches (4/5 patches).

(b} ©)

Trifurcation Case 1

All possible trifurcations are classified into
five cases according to the position of slave
branches relative to the master branch
(peripheral/axial).

(b)
Level-1-template for the master branch, at . Trifurcation Case 2

most two slave branches.

(d)

Level-2-template for the master branch and
Level-1-template for the slaves.

@) (b}
Axial direction, two slave branches intersect Trifurcation Case 3

with each other.

Axial direction, two slave branches do not
intersect. One trifurcation degenerates into

two bifurcations. @ b) @ @
Trifurcation Case 4

Two bifurcations merge into one

trifurcation. . ,
Center for Computational Visualizati e
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Institute of Computational and Engin
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Case 1:
Peripheral
direction

Case 2

Axial direction

Case 3

Axial direction
n-braching
degenerates
into several
m-branchings.

Case 1&2

n-branching Templates (n>4)
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Institute of Computational and Engineering Sciences

Depaplatent of Computer ScigReRs mesh

Solid NURBS:xas at Austiglex mdafteber 2007



Thoracic Aorta

(a)iSUrfagaynadel and@atter for Co(bp @etitrohméshalization (c) Solid NURBS (d) Simulation results
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Human Heart Anatomy

Heart (Right interior view) Heart (Left interior view)
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Swept Volume Model of the Heart
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Fluid Volume Mesh

NYU heart
model
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Muscle Wall
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