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Lecture 8: Geometric Modeling and Visualization

Finite Elements from Imaging I & II:
Active Contouring, Segmentation, Reconstruction

Chandrajit    Bajaj
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The Context: Structure Determination via Cryo-EM

 Cryo-EM  images
 Reconstructed density maps
 Structure Segmentation
 Sub-Atomic Modeling
 Functional Analysis
 Visualization

• Collaborators:
   Dr. Wah Chiu, NCMI,BCM(Houston);
   Dr. Andrej Sali, UCSF
• Sponsored by NSF-ITR

h=3, k=1, T=13

h=1, k=0, T=1
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Problem Description

segmented outer capsid layer           segmented asymmetric                 segmented monomer
  with icosahedral symmetry                       subunits                                        (protein)

Rice Dwarf Virus
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Algorithm Overview

• Three steps:
– Detection of critical points
      (Anisotropic vector diffusion)
– Detection of icosahedral symmetry
      (Five-fold symmetry detection)
– Segmentation of asymmetric subunits
      (A variant of the fast marching method)
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Detecting Critical Points

• Three types
– maximal, minimal, saddle

        density map                   initial gradient vector field                    diffused vector field

 digitization errors
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where           is a decreasing function
      is the angle between the central
 pixel and its surrounding pixels.

Detecting Critical Points (contd.)

!
!
"

!!
#

$

%&=
'

'

%&=
'

'

))((

))((

vgdiv
t

v

ugdiv
t

u

(µ

(µ

)(!g

!
!
"

!!
#

$

%&=
'

'

%&=
'

'

v
t

v

u
t

u

2

2

µ

µ

 Anisotropic diffusion

 where
   (u, v) are gradient vector.

 Isotropic diffusion

!

• Gradient vector diffusion:
- smoothing the vector fields

- diffusion to the flat regions
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• Sink points           maximal critical points

• Source points           minimal critical points

• Sink&source points           saddle critical points

Detecting Critical Points (contd.)
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Detecting Critical Points (contd.)

• We consider only the
maximal critical points

• Used for two purposes:
– Speed up the symmetry

detection
– Seed points in the fast

marching method
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Symmetry Detection
• Icosahedral symmetry overview (Caspar & Klug 1962; Baker et al. 1999)
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Symmetry Detection (contd.)

• Asymmetric subunits in an icosahedra

Two-fold vertices
Three-fold vertices
Five-fold vertices Task: detect all 12 five-fold symmetry axes !

P
Q

SR
T

Example:  RDV
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Symmetry Detection (contd.)

• Detect five-fold symmetry axes
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Symmetry Detection (contd.)

• Detect five-fold symmetry axes
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Symmetry Detection (contd.)

• Direct correlation

• Solutions: reduce M
– Principal axis evaluation
– Hierarchical sampling

• One solution: reduce N
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~ 46,000 angular bins

Total time: O(MN)

    M: total number of angular bins

    N: total number of voxels (e.g., 512^3)
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Symmetry Detection (contd.)

• Algorithm: detect 5-fold rotation symmetry
– Compute the scoring function

• For every angular bin Bj, compute            {
       For every critical points Ci  {

                                                                          }

                                                                }

– Locate the symmetry axes
• The 12 peaks

– Refine the symmetry axes
• In order to generate a perfect icosahedra

(rotate the axes by 00, 63.430, 116.570, 1800 )
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Symmetry Detection (contd.)

• Performance evaluation: RDV outer layer
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Asymmetric Subunit Segmentation

Infinite number of partitionings

which one is the best?

• A simple case
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Asymmetric Subunit Segmentation (contd.)

• The criterion for partitioning a symmetric image

A related problem: data clustering

Criterion: distance !

Classifying critical points

Task: distance !
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Asymmetric Subunit Segmentation (contd.)

• Marching distance

          along all paths from A to B

          (discrete form)

Closely related to the fast marching method !
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Asymmetric Subunit Segmentation (contd.)

• The fast marching method
Start from a seed and propagate by certain speed

where F is the speed function, which can be defined as:

The map T gives the marching distances from the seed
 to all the other points
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Asymmetric Subunit Segmentation (contd.)

1

3
2

• The multi-seeded fast marching method
Start from seeds and propagate independently by:

where F is the speed function, which can be defined as:

The map T gives the marching distances from the seed
to all the other points
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Asymmetric Subunit Segmentation (contd.)

1

3
2• The overall algorithm

– Detect the critical points
– Classify the critical points
– Use the multi-seeded fast marching method

• Merge for contours of the same group
• Stop for contours of different groups

• The solution
– Use multiple seed points for each subunit
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2

1

Asymmetric Subunit Segmentation (contd.)

• Segmentation of capsid layers

Bacteriophage P22

    selection of seeds (manually)                              segmented capsid layer
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Asymmetric Subunit Segmentation (contd.)

• Asymmetric subunit of icosahedral maps
– 12 vertices, 60 subunits

Start from index 0
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Asymmetric Subunit Segmentation (contd.)

• Asymmetric subunit of icosahedral maps
– 12 vertices, 60 subunits

Start from any index
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Results: Rice Dwarf Virus (6.8Å) (Zhou et al 2001)

original map

(slice)

segmented map

(slice)

segmented
outer layer

segmented
inner layer
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Results: Rice Dwarf Virus (6.8Å) (Zhou et al 2001)

asymmetric subunits of
outer layer

(five-fold & three-fold)

trimer &
segmented
mononer
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Results: Bacteriophage P22 (9.5Å)
(Jiang et al 2003)

         segmented capsid layer                        segmented asymmetric subunits (five-fold & three-fold)
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Results: Semliki Forest Virus (9.0Å)
(Mancini et al 2000)

         segmented capsid layer                        segmented asymmetric subunits (five-fold & three-fold)
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Results: Synthetic Map
 PDB ID = 1HB9, San Martin et al 2001

           synthetic capsid layer               asymmetric subunits (our method)                 true segmentation
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Results: Synthetic Map
 PDB ID = 1HB9, San Martin et al 2001

        crystal structure of subunit                            blurred map                            one subunit of our result
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Gradient Vector Diffusion (GVD)

• Partial Differential Equation (Xu and Prince, 1998)

    where   (u(t), v(t)) stands for the evolving vector field;
      µ is a constant;

        f is the original image to be diffused;
      (fx , fy) = (u(0), v(0)).

• Polar-representation version of GVD (Yu and Bajaj, ICPR02)
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1 child in 1000 is born deaf 

30 million Americans suffer from severe hearing problems
(~10% of population)

high fidelity 0.1% discrimination   (1 Hz @ 1000 Hz �)

high sensitivity responds to sound-driven vibration of 3Å

outstanding amplification -> otoacoustic emissions

high speed of detection 10 µs -> direct mechanical transduction

large bandwidth 20 - 20,000 Hz         (up to 100,000 Hz)

medical and biological importance of hearing

high dynamic range 106 / 0-120 dB -> adaptation
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1977-1987 Hudspeth & Corey

hair bundle - hearing organelle of the hair cell

- amplification spontaneous bundle oscillation,
driven by myosin-motor proteins

- adaptation machinery via non-conventional myosin 1c

- direct mechanotransduction 1-2 channels/stereocilium

1998 Garcia et al.  J. Neuroscience
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Eatock 2000

transduction & adaptation

- slipping of adaptation machinery by conformational changes of
myosin motor domain upon Ca2+ binding to calmodulin/IQ domain

- membrane depolarisation by K+, fast channel reclosure by Ca2+

- mechanical stretching of tip links opens mechanosensitive channel
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•• functional states of myosin 1c  functional states of myosin 1c 

-> rigor versus ATP-> rigor versus ATP

•• antibody labeling antibody labeling

Detergent Extraction
&

PLT dehydration

-- membranes partially dissolve membranes partially dissolve

- raft-like structures remain- raft-like structures remain
--  actin actin filaments are well preservedfilaments are well preserved

--  extracellular extracellular links remain intactlinks remain intact

200 nm

200 nm
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Imaging of a
cell organelle
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structural organization of the adaptation machinery
- electronic “dissection” of the motor complex -

non-linear non-linear 
anisotropic anisotropic 

diffusion filtereddiffusion filtered50 nm
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Side Plaque 20 nm

OG/digitonin-PLT

PLT
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Kachar et al 2000 PNAS

TIPLINKTIPLINK22ndnd
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TipLink-Cilia
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Compute Critical Points Using GVD

     :  minimum                  : maximum                       : saddle
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How GVD Helps Image Segmentation ?

• Fast Marching Method
– Initial seed points
– Stopping criterion

• Use GVD to locate seed points
– Compute min/max critical points using GVD

(discard saddle critical points)
– All such critical points are used as seeds
– Advantages: automatic, close to centers of homogenous regions,

robust to noise due to vector diffusion.
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Stopping Criteria Using Multiple-Contour

• Multiple-Contour
– Group the critical points (for example, two groups as follows:

max. critical points         feature  &  min. critical points         background)
– Each seed initializes one contour, coupled with its group’s I.D.
– Contours march simultaneously. Contours with same I.D. are merged

while contours with different I.D. stop on their common boundaries
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Segmentation of TipLink (B206a)
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How GVD Helps Image Skeletonization ?

• Use GVD to locate critical points
– Include minimum/maximum/saddle critical points

• Start from saddle points; trace integral lines along the
diffused gradient vector field           Morse graph

• Prune the Morse graph for more meaningful skeletons

• Advantages:
– Robust to noise due to vector diffusion.
– Critical points are on the “skeletons” of features even for “flat”

regions.
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Skeletons of ActinBundle (B280a)
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