Geometric Modeling and Visualization

CS 384R, CAM 395T, BME 385J: Fall 2007

Take Home Final

Return answers before December 07, 2007, 11:59pm

- Question 1: Consider a scalar function F defined on a two dimensional bounded domain D, and the level set curve family Q: F = c for various $c \in \mathbb{R}^1$. Additionally, consider the region within domain D where $\nabla F \ge 0$ as exterior to the level set. For the twin cases of D being a triangle, and D being a square,
 - (a) derive the length of Q as a function of c,
 - (b) derive the exterior and interior areas of Q as a function of c
- Question 2. Consider a scalar function F defined on a three dimensional bounded domain D, and the level set surface family Q: F = c for various $c \in R^1$. Additionally, consider the region within domain D where $\nabla F \ge 0$ as exterior to the level set. For the twin cases of D being a tetrahedron, and D being a cube,
 - (a) derive the surface area of Q as a function of c,
 - (b) derive the exterior and interior volumes of Q as a function of c
- Question 3. Consider an arrangement of n^2 charged circular disks of radius r on a uniform rectilinear 2D $n \ge n$ grid G with grid step size l. If q is the charge density per unit area of each disk, what is the total charge density of the arrangement as a function of r? Note, that the topology/geometry of the union of the disks varies for discrete ranges of r for fixed l.
- Question 4. Consider the vdW surface and the L R surface (definitions given in exercise 4) of a synthetic molecule M consisting of n^2 spherical atoms of equal radius r arranged uniformly on a rectilinear 2D $n \ge n$ grid G with grid step size l = 1.5 * r (a mono-layer sheet). For the L R surface, assume a solvent probe radius of w. What is the difference in the vdW and the L R surface areas of M as a function of n, r and w?
- Question 5. For any point p on a smooth surface S in \mathbb{R}^3 , there is a well defined tangent plane T_p which is orthogonal to the normal vector n_p . For any vector θ on T_p the normal curvature $\kappa^n(\theta)$ is the curvature of the curve which is the intersection of the plane defined by n_p and θ and the surface S. Two principal curvatures of S at $p \kappa_1$ and κ_2 of S are the minimum and maximum values of all the normal curvatures at p. The mean curvature $\kappa_H = \frac{1}{2\pi} \int_0^{2\pi} \kappa^N(\theta) d\theta$ is expressible in terms of the principal curvatures, $\kappa^N(\theta) = (\kappa_1 \cos^2(\theta) + \kappa_2 \sin^2(\theta))$, and thereby yields $\kappa_H = \frac{(\kappa_1 + \kappa_2)}{2}$. The Gaussian curvature is defined as $\kappa_G = \kappa_1 \kappa_2$. Describe an algorithm or formula for estimating the principal curvatures, and hence the mean and Gaussian curvatures, for any point p on a quadratic A-patch, defined within a tetrahedron (i.e. barycentric Bernstein-Bezier basis).