
Solution to Exercise 1: Algebraic Curve, Surface Splines - I

CS384R, CAM 395T: Fall 2008

September 16, 2008

Question 1. The singularities of an algebraic plane curve f(x, y) = 0 are given by all solutions of f(x, y) = fx =
fy = 0 where fx = ∂f(x,y)

∂x and fy = ∂f(x,y)
∂y are the partials of f with respect to x and y respectively.

(A) (a) x2 − y7 = 0
(b) x2 − y3 − y7 = 0
(c) x3 + y3 − 1 = 0
(d) 2x4 − 3x2y + 2y3 + y4 = 0

(B) Which of the curves in (A) are rational?

(C) Derive a parametric form for each of the curves, attempting to derive the simplest polynomial or
rational form for F and G, whenever possible.

Sol. (a) x2− y7 = 0, 2x = 0, 7y6 = 0 i.e., (0, 0,1) is a singular point. Also, singularities at∞ are easy
to calculate via the projective curve. This can be done by the substituting x = X

W , y = Y
W

to map the (x, y) coordinate to (X,Y,W ). This leads to, x2 − y7 = 0⇒ X2W 5 − Y 7 = 0⇒
w5 − y7 = 0. Hence the singularity at infinity (1, 0, 0) has multiplicity 5. Substituting y = t2

in the equation yields x = t7. Hence the given equation is rational.
(b) There is 1 singular point at (0,0,1) with multiplicity 2. There is a singularity at infinity

(1,0,0) with multiplicity 5. A singularity of multiplicity 5 is similar to 5(5−1)
2 10 singularities

of multiplicity 2 . One can also confirm that there are no complex singularities. For a curve
of degree 7 to be rational, requires (7−1)(7−2)

2 = 15 singularities of multiplicity 2. Hence this
curve is not rational.

(c) x3 + y3 − 1 = 0 has no singularities. Hence it has genus not equal to zero. Therefore, it is
not rational. One may parametrize it as x = 3

√
1− t3, y = t.

(d) The given equation has a singular point at (0, 0) with multiplicity 2. To parametrize setting
y = xt one has x3(2x − 3t + 2t3 + xt4) , thus x = 3t−2t3

2+t4 and y = 3t2−2t4

2+t4 . Therefore, it is
rational.

Question 2. An algebraic hyperelement is an (n − 1) dimensional set of points defined in n-dimensional space by
a single multivariate polynomial equation f(x0, x1, . . . , xn−1) = 0 on n variables. For example, a
plane algebraic curve given by f(x0, y0) = 0 is also a 2-dimensional hyperelement and an algebraic
surface f(x0, y0, z0) is a 3-dimensional hyperelement. Give a constructive proof that any quadratic
hyperelement f(x0, x1, . . . , xn) = 0 is rational i.e., derive a rational parameterization.
{Hint: Assume you have a point on the hyperelement and take a 1-dimensional family of lines through
that point.}

Sol. An algebraic hyperelement f(x0, . . . , xn−1) = 0 in an n-dimensional space of degree 2 will intersect a
line at two points (including infinity). Without loss of generality consider the case of hyperelement
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passes through the origin. In general, this may be accomplished by the translation (xi = x′i − αi),
where αi are the coordinates of any point on the hyperelement. The algebraic hyperelement may be
expressed as:

f(x0, . . . , xn−1) =
∑

0<i0+...+in−1≤2

ai0,...,in−1(xi0
0 · · ·x

in−1
n−1 ) = 0

The parametric expression in t of a generic line in En is:

x0 = s0t
. . .

xn−1 = sn−1t

Being the the equation system homogeneus one may set sn−1 = 1.

To intersect such a line with the hyperelement it suffices to substitute the parametric expression in the
algebraic equation, f(s0t, . . . , sn−1t):∑

0<i0+...+in−1≤2

ai0,...,in−1(si0
i0
· · · sin−1

in−1
)t(i0+...+in−1) = 0

Due a0...0 = 0 (passing through the origin) only terms in t2 and t are present, thus, gathering:

t

t
 ∑

i0+...+in−1=2

ai0,...,in−1(si0
i0
· · · sin−1

in−1
)

 +
∑

i0+...+in−1=1

ai0,...,in−1(si0
i0
· · · sin−1

in−1
)

 = 0

Solving for the other solution:

t =

∑
i0+...+in−1=1

ai0,...,in−1(si0
i0
· · · sin−1

in−1
)∑

i0+...+in−1=2
ai0,...,in−1(si0

i0
· · · sin−1

in−1
)

Substituting the above value of t in the parametric expression of the line one obtains a parametric
expression in s1 . . . sn−1 parameters, thus the parametric rational expression of the hypersurface:

x0 = s0

∑
i0+...+in−1=1

ai0,...,in−1 (s
i0
i0
···s

in−1
in−1

)∑
i0+...+in−1=2

ai0,...,in−1 (s
i0
i0
···s

in−1
in−1

)

. . .

xn−1 = sn−1

∑
i0+...+in−1=1

ai0,...,in−1 (s
i0
i0
···s

in−1
in−1

)∑
i0+...+in−1=2

ai0,...,in−1 (s
i0
i0
···s

in−1
in−1

)

Question 3. An algebraic space curve segment C is a connected piece of an algebraic space curve. C can be
represented by a pair of algebraic surfaces, alongwith a pair of vertices (a pair of points on the curve),
denoted as the starting vertex v1 and an ending vertex v2, of the curve segment. Additionally, a vector
t1 is provided, which is tangent to the curve segment C at v1, and specifies the points of the curve
segment from v1 to v2. Compute the intersection of a given surface S : x2 + y2 + z2 − 1 = 0 with a
space curve segment C given by the pair of surfaces (x2 + y2 − z = 0, x = 0), and a starting vertex
v1 = (0, 2, 4) and an ending vertex v2 = (0,−2, 4). Furthermore, the tangent vector t1 = (0, 1,−4) at
v1 is also given.

2



Sol. Surface S : x2 + y2 + z2 − 1 = 0 (sphere (o = (0, 0, 0), r = 1)).

Curve C : (x2 + y2 − z = 0, x = 0) (plane x = 0 ∩ conicoid aloong z axis)

Parametrizing the plane x = 0 as (x = 0, y = s, z = t) and substituting it in the conicoid: (t = s2) and
in the plane back again:

x = 0
y = s
z = s2

Points v1 = (0, 2, 4) and v2 = (0,−2, 4) mean s = 2 and s = −2. Deriving the plane curve in s:
(dx

ds = 0, dy
ds = 1, dz

ds = 2s) the tangent t1 = (0, 1,−4) is satisfied for s = 2 and ds = −1 . This means
the segment is defined by s is decreasing from v1 to v2 . Thus the segment is defined in s ∈ [2 . . .− 2]
passing through 0. One could reparametrize but it is not needed.

To intersect, one substitutes the parametric equation in the surface S havings2 + s4 − 1 = 0, solving

one has s2 = t = −1±
√

5
2 , excluding imaginary points s = ±

√
−1+

√
5

2 (inside the range of s). The
intesection points are:

x = 0

y = ±
√
−1+

√
5

2 ≈ ±0.7861

z = −1+
√

5
2 ≈ 0.6180

Question 4. A surface patch is a surface with boundary. It is also defined to be of finite area piece and therefore
possesses boundary Bc which are cycles of affine curves segments lying on the surface. An algebraic
surface patch P shall thus be represented by a single polynomial equation, and closed cycles of algebraic
space curve segments lying on the surface. The algebraic surface patch points are defined to be the left
of the algebraic curve segment cycles, when viewed from the space which contains the normal of the
surface and when traversing the boundary cycles in counter-clockwise order. Compute the intersection
of a given spherical surface patch P with (a) the plane y = z and (b) the surface y2 + z2 − 1 = 0. The
patch P is given by x2 + y2 + z2 − 1 = 0, and boundary space curve segment cycle specified by an
ordered cycle of vertices (1, 0, 0), (0,−1, 0), (−1, 0, 0), (0, 1, 0) lying on x2 + y2 − 1 = 0. Your answer
should be represented as a collection of algebraic curve segments.

Sol. Surface patch SP is desribed by: S : x2 + y2 + z2 − 1 = 0 (sphere (o = (0, 0, 0), r = 1)) delimited
by Sc : x2 + y2 − 1 = 0 (cylinder on xy plane along z axis, centered) and ordered vertices (1, 0, 0),
(0,−1, 0), (−1, 0, 0), (0, 1, 0).
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Intersect with Sa:y=z (plane bisecting y z axis) and Sb : y2 + z2 − 1 = 0 (cylinder on xz plane along y
axis, centered).

First of all by elimination between S and Sc one obtains z = 0. This means any two of this plane, Sc

or S describes the patch delimiting curve. It means also that the curve lies on the z = 0 plane. By the
ordering of the vertex one obtains the patch is the half sphere pointing towards negative z axis.

SP ∩ Sa: The curve equations describing the intersection is already fully described by S and Sa. How-
ever if one wants to compute another surface, containing the curve, which intersected with either
Sa or S will describe the curve, one may use the y = z equation to obtain either: Res0,z(S, Sa) :
x2 + 2y2 − 1 = 0 or Res0,y(S, Sa) : x2 + 2z2 − 1 = 0. The may be usefull to find another vertex
on curve segment for example when x = 0 one has z = y = 1√

2
=
√

2
2 = sin(π/4) = cos(π/4).

To compute the extreme vertex of the curve segment on must check the intersection S∩Sc ∩ Sa .
Alternatevelly one may intersect Sa, y = z, and S. Obtaining (x = ±1, y = 0, z = 0)
To sum up SP ∩ Sa is the curve segment described by the intersections of any two of Sa, S,
Res0,z(S, Sa),Res0,y(S, Sa). A convenctional choice is:

Res0,z(S, Sa) : x2 + 2y2 − 1 = 0
Res1,z(S, Sa) : x− z = 0

Hence, the arc comprising (1, 0, 0), (−1, 0, 0), (0, 0, 1) with (1, 0, 0), (−1, 0, 0) as its endpoints is the
required.

SP ∩ Sb: Similar to the above, this is Sb itself.

Question 5. Consider an arrangement (collection) of spheres of varying radii in R3 (atoms of a molecule). Each
sphere in the arrangement is described by a 4-tuple (center-coordinates, radius). Given an arrange-
ment of four spheres {(0, 0, 0, 1), (0, 0, 1, 0.75), (0, 1, 0, 0.75), (1, 0, 0, 0.25)}, compute a boundary patch
representation of the union of the arrangement (spatial description of the molecule), enumerating the
various patch descriptions. Do this in the most efficient manner possible and describe your computation
method. { Hint: Pairwise spheres and triple-wise sphere intersections need to be computed. }

Sol. The equation of the spheres S1 = [o = (0, 0, 0), r = 1], S1 = [o = (0, 0, 1), r = 0.75],S1 = [o = (0, 1, 0), r = 0.75],
S1 = [o = (1, 0, 0), r = 0.25] are:

S1 : x2 + y2 + z2 − 1 = x2 + y2 + z2 − 1 = 0
S2 : x2 + y2 + (z − 1)2 − 9/16 = x2 + y2 + z2 − 2z + 7/16 = 0
S3 : x2 + (y − 1)2 + z2 − 9/16 = x2 + y2 + z2 − 2y + 7/16 = 0
S4 : (x− 1)2 + y2 + z2 − 1/4 = x2 + y2 + z2 − 2x+ 3/4 = 0

C12 = S1 ∩ S2:

x2 + y2 + z2 − 1 = 0
x2 + y2 + z2 − 2z + 7/16 = 0

2z − 23/16 0

Thus z = 23/32, substituting in S0 : x2 + y2 + 529/1024− 1 = x2 + y2 − 495/1024 = 0
C13 = S1 ∩ S3:

x2 + y2 + z2 − 1 = 0
x2 + y2 + z2 − 2y + 7/16 = 0

2y − 23/16 = 0

Thus y = 23/32, substituting in S1 : x2 + z2 − 495/1024 = 0
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C14 = S1 ∩ S4:

x2 + y2 + z2 − 1 = 0
x2 + y2 + z2 − 2x + 3/4 = 0

2x − 7/4 = 0

Thus x = 7/8, substituting in S1 : 49/64 + y2 + z2 − 1 = y2 + z2 − 15/6 = 0

C23 = S2 ∩ S3:

x2 + y2 + z2 − 2z + 7/16 = 0
x2 + y2 + z2 − 2y + 7/16 = 0

2y − 2z − 0 = 0

Thus z = y , Substituting in either S2 or S3: 2y2 − 2y + x2 + 7/16

C24 = S2 ∩ S4:

x2 + y2 + z2 − 2z + 7/16 = 0
x2 + y2 + z2 − 2x + 3/4 = 0

2x− 2z − 5
16 = 0

Thus x− z − 5
32 = 0 (z = x− 5/32), Substituting in S4: 2x2 + y2 − 37x/16 + 793/1024

Writing the poly in x and checking the discriminant one has (− 37
16 )2−8(y2 + 793/1024) ' −8y2 +

5.347− 6.195 and is always negative for any y. The intersection is empty.

C34 = S3 ∩ S4:

x2 + y2 + z2 − 2y + 7/16 = 0
x2 + y2 + z2 − 2x + 3/4 = 0

2x− 2y − 5
16 = 0

Thus x− y + 5
32 = 0 (y = x− 5/32), Substituting in S4: 2x2 + z2 − 37x/16 + 793/1024

Similarly the discrimintant is always negative and the intersection is empty.

{P123} = C12 ∩ C23 = S1 ∩ (y = 23/32) ∩ (z = 23/32) = φ: Substituting in S1 : X2+529/1024+529/1024−
1 one has only complex solutions

{P234} = C23 ∩ C34 = φ (C34 = φ)

{P134} = C13 ∩ C34 = φ (C34 = φ)

{P124} = C12 ∩ C24 = φ (C24 = φ)

To sum up, the requisite surface comprising the patches formed by every point on S2 which satisfies
(2z ≥ 23/16), every point on S3 which satisfies (2y ≥ 23/16), every point on S4 which satisifies
(2x ≥ 7/4), every point on S1 which satisfies (2z ≤ 23/16) and (2y ≤ 23/16) and (2x ≤ 7/4).
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