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Question 1. Consider the normal r-offset surfaces Qouter and Qinner of an algebraic surface patch P inside a tetra-
hedron, where Qouter is the offset in the positive surface normal direction and Qinner is the offset in
the negative surface normal direction by r. If patch P is defined by a quadratic trivariate polynomial
equation, give the equation of the Qouter and Qinner surfaces and the patch boundaries within a r-offset
(or r-scaled) tetrahedron.

Sol. Say patch P be defined by
P : F (x, y, z) = 0 (1)

then the normal of P at point (x, y, z) is

~n = (nx, ny, nz)T = (
∂F

∂x
,
∂F

∂y
,
∂F

∂z
)T

Denote
| ~n |=

√
n2

x + n2
y + n2

z.

Let (x′, y′, z′) be the point on Qouter, then we have
x′ = x+ r

nx

| ~n |
y′ = y + r

ny

| ~n |
z′ = z + r

nz

| ~n |

(2)

Eliminate x, y, z from (??) and (??) to get an equation about x′, y′, z′. It is the equation of Qouter.

Let (x̃, ỹ, z̃) be the point on Qinner, then 
x̃ = x− r nx

| ~n |
ỹ = y − r ny

| ~n |
z̃ = z − r nz

| ~n |

(3)

Eliminate x, y, z from (??) and (??) to get an equation about x̃, ỹ, z̃. It is the equation of Qinner.

Here we give an example to show how to get the equation about x′, y′, z′.

Let F (x, y, z) = x2 + y2 + z2 − 1, then

~n = (nx, ny, nz)T = (
∂F

∂x
,
∂F

∂y
,
∂F

∂z
)T = (2x, 2y, 2z)T
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| ~n |=
√
n2

x + n2
y + n2

z = 2
√
x2 + y2 + z2 = 2.

Then 
x′ = x+ r

nx

| ~n |
= x+ r

2x
2

= (1 + r)x

y′ = y + r
ny

| ~n |
= y + r

2y
2

= (1 + r)y

z′ = z + r
nz

| ~n |
= z + r

2z
2

= (1 + r)z

(4)

So
x = x′/(1 + r), y = y′/(1 + r), z = z′/(1 + r).

Substitute is to F (x, y, z) = x2 + y2 + z1 − 1 = 0, we get

F ′(x′, y′, z′) = (x′2 + y′2 + z′2)/(1 + r)2 − 1 = 0

which is the equation of Qouter.

Similarly we can get the equation of Qinner:

F̃ (x̃, ỹ, z̃) = (x̃2 + ỹ2 + z̃2)/(1− r)2 − 1 = 0

Let the patch P be defined in the tetrahedron T : (p1, p2, p3, p4), where p1 = (x1, y1, z1), p2 = (x2, y2, z2), p3 =
(x3, y3, z3), p4 = (x4, y4, z4). Notice that p1, p2, p3 are on the surface Qouter, then

.x2
1 + y2

1 + z2
1 = (1 + r)2, x2

2 + y2
2 + z2

2 = (1 + r)2, x2
3 + y2

3 + z2
3 = (1 + r)2.

The relationship of the barycentric coordinates (α1, α2, α3, α4) and (x, y, z) is:
x
y
z
1

 = M


α1

α2

α3

α4

 =


x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4
1 1 1 1




α1

α2

α3

α4


Substitute the above equation into F ′(x′, y′, z′) = 0, we get the equation about the barycentric coordinates

G′(α1, α2, α3, α4) =
(
x1

2 + z1
2 + y1

2
)
α1

2 + (2 y2 y1 + 2x2 x1 + 2 z2 z1)α1 α2

+ (2 (y3 + y4) y1 + 2 (x3 + x4)x1 + 2 (z3 + z4) z1)α3 α1 +
(
x2

2 + z2
2 + y2

2
)
α2

2

+ (2 (x3 + x4)x2 + 2 (z3 + z4) z2 + 2 (y3 + y4) y2)α3 α2

+
(

(x3 + x4)2 + (z3 + z4)2 + (y3 + y4)2
)
α3

2 − (1 + r)2

= (1 + r)2 α1
2 + (2 y2 y1 + 2x2 x1 + 2 z2 z1)α1 α2

+ (2 (y3 + y4) y1 + 2 (x3 + x4)x1 + 2 (z3 + z4) z1)α3 α1 + (1 + r)2 α2
2

+ (2 (x3 + x4)x2 + 2 (z3 + z4) z2 + 2 (y3 + y4) y2)α3 α2

+
(
(1 + r)2 + 2x3x4 + 2z3z4 + 2y3y4 + x2

4 + y2
4 + z2

4

)
α3

2 − (1 + r)2

In many applications not only the surface equation must be offset but also the boundary. When offsetting
surface patches that are not C1 continuous the newly created surfaces will join the offset surfaces. The
offset of a curve is obtained by moving a sphere on the curve. Equivalently one moves a circumference
on a plane perpendicular to the tangent of the curve. A curve in space is defined as the intersection of
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two surfaces. The boundary curves in a-patches are the intersection of the surface equation and the plane
containing the face of the scaffolding tetrahedron.

Surface: f(x, y, z) = 0

Delimiting plane: P : ax+ by + cz + d = 0

Normal to surfaces: −→nf := ∇f = (fx, fy, fz)T and n̂f = ∇f
|∇f| (in figure shown in red at curve segment

delimiting points)

Normal to plane: −→nP = (a, b, c) and n̂P = (a,b,c)√
a2+b2+c2 .

Tangent to boundary curve: t̂ = n̂f × n̂p

For any α, β one has (αn̂f + βn̂P ) · t̂ = 0. The circunference will lay on the plane spanned by these two
vectors.

In particular b̂ = n̂f × t̂ (shown in green at delimiting point)

To build the scaffold for the offset surface and the offset of the delimiting curve and points for simplicity
will focus on the original a-patch interpolating three points on the tetrahedron. The most natural scaffold
is a prismatic scaffold, then one may add a baricentric point in each prism to divide it in 6 tetrahedrons.

The main surface positive offset surface Qouter scaffold is build by taking the normal versor n̂ at the
boundary points and multiply it by two times the offset radius 2r . Join the other extreme of 2rn̂
obtaining a prism skew in one direction. The offset surface will pass at the boundary edge exactly at rn̂.
Similarly one builds the prism for Qinner by inverting the normals (red in figure).

The scaffold offset of the boundary curve is obtained by taking the binormal versor b̂ = n̂f × t̂, multiplying
it by 2r and applying at the original boundary point and the boundary point at the end of 2rn̂. (green in
figure)

The scaffold for the offset is obtained by building an hexahedron on the extended points on the bi-normals.
(purple in figure)
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Question 2. Given a union M of n spheres (simple geometric model of a molecule), give an efficient algorithm to
generate the r-offset M+

r and M−r models of M where again M+
r is the outer offset and M−r the inner

offset. What is the relationship of the inner r-offset (M+
r )−r of M+

r with M? Provide an algorithm to
generate a model of (M+

r )−r .

Sol. A surface patch decompositionM of an union of n spheres centered at different points (p0 = (x0, y0, x0), p1 =
(x1, y1, x1), . . . pn−1 = (xn−1, yn−1, xn−1)) and with different radii (r0, r1, . . . , rn−1) is composed of patches
whose components are:

1. Spherical surfaces: Si : (x− xi)2 + (y − yi)2 + (z − zi)2 − r2i = 0

2. Boundary curves: these may be defined directly as intersection of the spheres Cij : Si ∩ Sj if not
empty, but may simplified to a plane Pij and a circunference cij on that plane.

– Without loss of generality consider the coordinate system centered in pi center of the first sphere
and the x axis pointing to pj center of the second sphere. Let dij be the distance between the
two centers. vector.

– One has:
x2 + y2 + z2 − r2i = 0

(x− dij)2 + y2 + z2 − r2j = 0
−2dijx+ d2

ij + (r2j − r2i ) = 0

– Thus the plane (in the local system) is

x = h′ij =
d2

ij + (r2j − r2i )
2dij

– Substituting in the sphere equation one has the equation of the circunference and its radius:

y2 + z2 − rij2 = 0

r′2ij = r2i − h′2ij = r2i −
(

d2
ij+r2

j−r2
i

2dij

)2

3. Intersection points of three spheres pijk = Si ∩ Sj ∩ Sk. One may more easy intersect the planes of
the boundary curves: pijk = Pi ∩ Pj ∩ Pk.
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Once the intersection planes, circumferences and points one may assemble the surface patch for M (See
Figure ??).

Figure 1: Three spheres and intersections

To calculate the an offset one has to r offset each component of the surface patch in the space [?][?]:

1. The r offset of spherical surface is very simple. Being the normal to a sphere always pointing in the
direction of the radius, the offset is just the original surface equation with the the added radius:

(S+
r )i : (x− xi)2 + (y − yi)2 + (z − zi)2 − (r + ri)2 = 0

2. The r offset of a boundary circumferences Cij will become torii TCij
with outer radius the same as

the boundary circumference r′ij and the the inner radius the offset r. It may obtained by rotating on
the x’ axis the circle (x′ − h′ij)2 + (y′ − r′ij)2 − r2 = 0 of radius r centered at (h′ij , r

′
ij):

(x− h′ij)2 + (
√
y2 + z2 − r′)2 − r2 = 0

((x− h′ij)2 + y2 + z2 − r2)2 + 4h′2ij(z2 + y2)

3. The r offset of a boundary point will be a sphere centered at the point pijk and radius r: Spijk

When calculating the outer offset of the union of spheres M+
r the offset of the spherical surfaces will

dominate in respect to the torii around the intersection circumference and the sphere centered on the
intersection points (See Figure ??).

At this point one has to compute all the components of the outer offset M+
r . The boundary circles of the

surface patch of M+
r not only have changed but new intersections may be created. Operating similarly to

the original patch, the intersection plane will be:

x′ = h′′ij =
d2

ij + ((rj + r)2 − (ri + r)2)
2dij
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The new intersection circumference (C+
r )ij will have radius:

r′′ij = (ri + r)2 − h′′2ij = (ri + r)2 −

(
d2

ij + (rj + r)2 − (ri + r)2

2dij

)2

Similarly the intersection points must be recalculated as (p+
r )ijk.

Figure 2: Outer offset components of two spheres

When calculating the inner offset (M+
r )−r , the inner surface of the torii T(C+

r )ij
created by the boundary

circles (r′′ij , h
′′
ij) of the outer offset surface M+

r will not be hidden but have the role of “smoothing” out
the spheres (See Figure ??).

The boundary between a spherical surfaces ((S+
r )−r )i and the joining torus T(C+

r )ij
will be a circumference

(See Figure ??). One may calculate the containing plane and its radius

r̂ij =
rir
′′
ij

ri + r

x = ĥij =
rih
′′
ij

ri + r

Similarly the spheres at the intersection points (p+
r )ijk will join smoothly the torii (See Figure ??).

Question 3. Consider a parallel n-stack of n-circles of different radii with one circle per plane, and at possibly a
different location (center) in each plane. Provide an A- patch representation of a smooth surface spline
which C1-interpolates the stack of n-circles.

Sol. Firstly, we compute a surface to blend two adjacent circles with some linear constraints.

Let
f1 = (x− x1)2 + (y − y1)2 − r21; g1 = z − z1;

f2 = (x− x2)2 + (y − y2)2 − r22; g2 = z − z2;

It is easy to prove there is no quadratic surface C1 interpolate the two circles.

Next we compute if there exists a cubic surface to blend the two circles with some linear constraints.
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Figure 3: Inner offset components of two spheres

Figure 4: Inner offset of two spheres, clipped at the intersection planes

Figure 5: Inner offset four spheres
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Let
xmin = min{x1 − r1, x2 − r2}, xmax = max{x1 + r1, x2 + r2},

ymin = min{y1 − r1, y2 − r2}, ymax = max{y1 + r1, y2 + r2},

zmin = min{z1, z2}, zmax = max{z1, z2}.

Then the six planes

HX1(x, y, z) = x− xmin, HX2(x, y, z) = x− xmax, HY1(x, y, z) = y − ymin,

HZ1(x, y, z) = z − zmin, HZ2(x, y, z) = z − zmax, HY2(x, y, z) = y − ymax

compose a hexahedron. Each of the planes HX1, HX2, HY1, HY2 is a tangent plane of one of the circles.

We require that the blending surface in this hexahedron. That is to say to find a blending surface with
linear constraints:

HX1(x, y, z) > 0, HX1(x, y, z) < 0, HY1(x, y, z) > 0, ∀(x, y, z) ∈ blending surface

HZ1(x, y, z) > 0, HZ2(x, y, z) < 0, HY2(x, y, z) < 0, ∀(x, y, z) ∈ blending surface

Let

a1 = 2z − (z1 + z2); b1 = −2
x1 − x2

z1 − z2
x− 2

y1 − y2
z1 − z2

y +
(x2

1 + y2
1 − r21)− (x2

2 + y2
2 − r22)

z1 − z2
;

a2 = 2z − (z1 + z2); b2 = −2
x1 − x2

z1 − z2
x− 2

y1 − y2
z1 − z2

y +
(x2

1 + y2
1 − r21)− (x2

2 + y2
2 − r22)

z1 − z2
;
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Then

f = a1f1 + b1g
2
1 = a2f2 + b2g

2
2

=
(
−1

2
z1 −

1
2
z2

)
x2 + x2z − (−x2 + x1)xz2

z1 − z2
+
(
−2x1 + 2

(−x2 + x1) z1
z1 − z2

)
xz

+
(
−2

(
−1

2
z1 −

1
2
z2

)
x1 −

(−x2 + x1) z12

z1 − z2

)
x+

(
−1

2
z1 −

1
2
z2

)
y2 + y2z

− (−y2 + y1) yz2

z1 − z2
+
(
−2 y1 + 2

(−y2 + y1) z1
z1 − z2

)
yz +

(
−2

(
−1

2
z1 −

1
2
z2

)
y1 −

(−y2 + y1) z12

z1 − z2

)
y

+
1
2

(
x1

2 + y1
2 − r12 + r2

2 − y22 − x2
2
)
z2

z1 − z2

+

(
x1

2 + y1
2 − r12 −

(
x1

2 + y1
2 − r12 + r2

2 − y22 − x2
2
)
z1

z1 − z2

)
z

+
(
−1

2
z1 −

1
2
z2

)(
x1

2 + y1
2 − r12

)
+

1
2

(
x1

2 + y1
2 − r12 + r2

2 − y22 − x2
2
)
z1

2

z1 − z2

is a cubic surface C1-interpolates the two circles.

We should check if this cubic surface is in the above hexahedron.

If the cubic surface is not in the hexahedron when z ∈ (zmin, zmax) then it must intersects at least one of
the four planes. So we only need to check if any of the equation systems{

f(x, y, z) = 0
HX1(x, y, z) = 0{
f(x, y, z) = 0
HX2(x, y, z) = 0{
f(x, y, z) = 0
HY1(x, y, z) = 0{
f(x, y, z) = 0
HY2(x, y, z) = 0

has solution in (zmin, zmax).

If neither of the equation systems has solution then this cubic surface is satisfying all the linear constraint.

Else, we must make the degree of the blending surface higher. We seek for a quartic surface to blend the
two circles. Then we can get a family of quartic surfaces. We choose one from them which satisfies all the
linear constraints.

When we get the blending surface S, then construct A-patch over this surface.
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We define A-patches in tensor domain. Consider the hexahedronH defined by the six planes V (HX1), V (HX2),
V (HY1), V (HY2), V (HZ1), V (HZ2). For each circle we partition it to four parts and project the parti-
tions to the other plane (see the figure above). Besides this we continue partitioning H with a set R of
hexahedrons s.t. any line segment joining vertices of any chosen hexahedron in R does not intersect S
more than once, and, | R | is the smallest among all possible such sets.

After we get the scaffold we can construct A-patch within each small hexahedron r.

Question 4. Consider a pair of non-parallel planes P1 and P2, where the dihedral angle between P1 and P2 is less
than forty-five degrees. Let there be a single circle C1 on P1 and two circles C2 and C3 on P2, all of
different radii and at different locations (center) in each plane. Describe a method of generating a family
of smooth low degree surface splines which C1-interpolates (joins) the circles C1, C2 and C3. What is
the algebraic and geometric degrees of your surface spline ? What parameter family did you generate ?
Provide additionally a construction that describes, either an A-patch or a tensor-product B-spline patch
representation of this smooth surface family.

Sol. Let the center of circle C2 be the origin O, the line passes by the centers of circle C2 and circle C3 to be
the x-axis, the plan P2 be X-Y plan. Denote θ the dihedral angle between P1 and P2. Then the equations
of the two planes are

P1 = x sin θ − z cos θ

P2 = z

respectively. The three circles should be defined as

C1 : g1 = (x cos θ + z sin θ − x1)2 + (y − y1)2 − r21, P1 = x sin θ − z cos θ

C2 : g2 = (x− x2)2 + (y − y2)2 − r22, P2 = z

C3 : g3 = (x− x3)2 + (y − y3)2 − r23, P3 = z
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It is easy to prove that there is no cubic surface C1-interpolating the three circles.

f = (−b2020 + a3002 + b3020 +
1

cos (θ)
(− sin (θ) b1101 + sin (θ) b1101 (cos (θ))2 + (cos (θ))3 b3020

+ (cos (θ))3 a3002 + b2020 cos (θ)− cos (θ) a3002 − b3020 cos (θ) + cos (θ) b1002 − (cos (θ))3 b1002))z2x2

+2 sin (θ) (cos (θ) a3002 − cos (θ) b1002 + b3020 cos (θ) + sin (θ) b1101)xz3 − 2 cos (θ)x1 b3020xz
2

+ (−2 (−b2020 + a3002 + b3020)x2 + 2 a3002 x2 − 2x2 b2020 + 2x2 b3020 − 2 cos (θ)x1 a3002)xz2

+ (−2 (−b2020 + a3002 + b3020) y2 + 2 y2 a3002 − 2 y2 b2020 + 2 y2 b3020 − 2 a3002 y1 − 2 y1 b3020) z2y

+
(
−b1101 cos (θ) sin (θ) + b1002 (cos (θ))2 − b3020 (cos (θ))2 − a3002 (cos (θ))2 + b3020 + a3002

)
z4

+ (b3020 + a3002) z2y2 − 2 sin (θ)x1 (b3020 + a3002) z3

+((−b2020 + a3002 + b3020)
(
x2

2 + y2
2 − r22

)
− a3002 x2

2 + a3002 r2
2 − a3002 y2

2 + b2020 x2
2

+b2020 y22 − b2020 r22 − b3020 x2
2 − b3020 y22 + b3020 r2

2 + x1
2a3002 + y1

2a3002 − r12a3002

+y12b3020 − r12b3020 + x1
2b3020)z2

is a family of quartic surfaces which C1-interpolate the three cubic surfaces, where a, b are free parameters.

Next we give another method to calculate the quartic surface which C1-interpolates (joins) the circles C1,
C2 and C3[?].

Since the circle is of degree 2, with Bezout theorem, if the quartic surface and the circle have 8 common
points, then the quartic surface must contain the whole circle. Select 8 points Pi,j (j = 1, · · · , 8) from
each of the circle Ci (i = 1, 2, 3) and substitute them into the expression of the quartic surface

f(Pi,j) = 0, j = 1, · · · , 8, i = 1, 2, 3.

Then we get 24 homogeneous linear equations.

The normal of the circle be n(x, y, z) = (nx(x, y, z), ny(x, y, z), nz(x, y, z)) where nx, ny, and nz are poly-
nomials of maximum degree 1. So for tangent condition we need another 8 conditions for each circle.

(a) Compute t(tx, ty, tz) = ∇gi(x, y, z)x∇Pi(x, y, z). Note t = (tx, ty, tz)is the tangent vector to C.

(b) Select one of the following:

i If tx 6= 0, use the equation fy · nz − ny · fz = 0.

ii If ty 6= 0, use the equation fx · nz − nx · fz = 0.

iii If tz 6= 0, use the equation fx · ny − nx · fy = 0.

Substitute each point Pij (j = 1, · · · , 8, i = 1, 2, 3) into the above-selected equation to yield 24 additional
homogeneous linear equations in the coefficients of f( x, y, z). Now we have 48 homogeneous linear
equations

MX = 0

where M ∈ R48×35 is a matrix of the linear equations, and X ∈ R35 is the vector whose elements are
unknown coefficients of surface f(x, y, z).

In order to solve the linear system in a computationally stable manner, we compute the singular value
decomposition (SVD) of M . Hence, M is decomposed as M = UΣV T where U ∈ R48×48 and V ∈ R35×35

are orthonormal matrices, and Σ = diag(σl, σ2, · · · , σs) ∈ R48×35 is a diagonal matrix with diagonal
elements σl ≥ σ2 ≥ · · · ≥ σs ≥ 0. It can be proved that the rank r of M is the number of the positive
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diagonal elements of Σ, and that the last 35Cr columns of V span the nullspace of M . (If r ≥ 35
then it means there exists no quartic surface to Hermite interpolate the three circles. For this cases we
know it exits.) Hence, the nontrivial solutions of the homogeneous linear system are compactly expressed
as
{
x( 6= 0) ∈ R35 | x = Σ35−r

i=1 ωi · Vr+i),whereωi ∈ R, andVjisthej− thcolumnofV
}

, or x = V35−rW , where
V35−r ∈ R35×(35−r) is made of the last 35− r columns of V , and W is a 35− r vector for free parameters.

From the family of quartic surfaces we need to choose one which is in a given box.

Define
xmax = max{x2 + r2, x3 + r3},

ymin = min{y1 − r1, y2 − r2, y3 − r3}, ymax = max{y1 + r1, y2 + r2, y3 + r3}.

Define four planes

HX = x− xmax, HY1 = y − ymin, HY2 = y − ymax, HXZ = x cos θ + z sin θ − (x1 + r1).

Each of the planes HX,HXZ,HY1, HY2 is a tangent plane of one of the circles. These four planes with
the planes P1 and P2 together construct a box.

Then we choose one quartic surface from the family of surfaces we obtained by SVD method which have
no intersection with any of the planes V (HX), V (HXZ), V (HY1), V (HY2), V (P1), V (P2) during the
corresponding intervals.

Next one construct A-patch representation.
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Consider the hexahedronH defined by the six planes V (HX), V (HXZ),V (HY1), V (HY2), V (HZ1), V (HZ2).
For each circle we partition it to four parts and project the partitions to the other plane. Besides this we
continue partitioning H with a set R of hexahedrons s.t. any line segment joining vertices of any chosen
hexahedron in R does not intersect S more than once, and, | R | is the smallest among all possible such
sets.

After we get the scaffold we can construct A-patch within each small hexahedron r.
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