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Lecture 6
Structure Reconstruction: Shape 
Segmentation
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Patient Specific Heart Models

Contrast Enhancement: Local Adaptive
Intensity Modulation [YB2004]

Filtering: Anisotropic Noise Reduction
[BWX2003]

Segmentation: Multi-seeded FMM
[YB2005]
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Model Reconstruction from Regularized Voxel Centers (Point Clouds)

Surface Reconstruction from Points:
[DG2003, DG2004]
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Problem Description – Surface and Medial Axis 
construction

Surface Reconstruction Problem:
Given a set of points P  sampled from S, create an approximation of S and an approximation
of the medial axis of S.

Medial Axis Transform (MAT) Problem:
Given a set of points P  sampled from S, create an approximation of M of the medial axis of S. 

Scanning Point Sample with closeup Reconstruction with closeup



Distance Function hS assigns every point x the nearest distance to S.

Approximation of hS is done via hP when S is known only via a finite set of points P on S.
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Medial Axis and Sampling Density
Medial Axis M of a shape S is defined as a set of points which has more than one nearest
point on S.

2D Illustration

Local Feature Size: Distance of a point x on surface to the medial axis. Denoted as f(x).

ε-sampling: Every point on the surface has a sample point p within εf(x).

 f(x) 
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Computational Aspects: Vor/Del of P
Voronoi diagram

Delaunay triangulation

Dual of Voronoi diagram.

Restricted Voronoi-
Delaunay
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Theory

What is a correct reconstruction?

The reconstructed surface is homeomorphic to the original surface and within a small
Hausdorff distance.

Theorem [ES1994]

If the Voronoi diagram of sample points satisfies ball-property, the restricted Delaunay
triangulation is homeomorphic to the surface.

What relation does Medial Axis have with the object? [Lieutier2004]

The medial axis is homotopy equivalent to the surface.

Ball Property: A k-dimensional Voronoi face intersects the 
surface in k-1 dimensional ball



Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences                               University of Texas at Austin   September  2006

Cocone Family – Cocone, TightCocone, RobustCocone
and Medial

Cocone:
Given a set of points P  sampled from S, create an approximation of S. Additionally detects the
undersampling present in the data.
[Amenta, Choi, Dey, Leekha 2002 – IJCGA]

TightCocone:
Given a set of points P  sampled from S, create a watertight approximation of S.
[Dey, Goswami 2003 – ACM Solid Modeling]

RobustCocone:
Given a set of (noisy) points P  sampled from or near S, create a watertight approximation 
of S.
[Dey, Goswami 2004 – ACM SoCG]

Medial Axis Transform:
Given a set of points P  sampled from S, approximate the medial axis of S. 
[Dey, Zhao 2003 – Algorithmica]
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Cocone with Undersampling Detection

Algorithm:

1. Compute Delaunay of P
2. Compute pole at every p. (Poles approximate normals)
3. Select set of Delaunay triangles incident at p that fall within Cocone of 

p. Call them candidate triangles.
4. Extract the surface from the candidate triangles by collecting
        the outer layer.

Theorem: Reconstructed surface is homeomorphic to S if P is an ε sample of S with ε < 0.06.

Pole

Cocone

Cocone estimates the tangent plane.

Results

Pole: Furthest Voronoi vertex in the Voronoi cell of a point p.

Vector vp denotes the vector from p to the pole. This estimates
the normal at p.
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Undersampling - TightCocone

Algorithm

1. Compute initial surface using Cocone.
2. Marking: Around every point with manifold neighborhood,
        mark the tetrahedra IN and OUT.
3. Peeling: Starting from convex hull, peel all OUT tetrahedra.

Marking : Any point whose neighborhood on 
the initial reconstructed surface is a disk, 
separates the incident tetrahedra into IN and 
OUT.
Goal is to propagate the marking consistently.

Peeling : Starting from convex hull, ``walk’’ 
among the OUT tetrahedra to sculpt them 
away leaving the set of IN tetrahedra whose 
boundary is the surface.

Results

Problem : Medial Axis passes through sharp corners.
Feature size = 0. Requires infinite sampling to satisfy
sampling density condition.
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Noisy Sample - RobustCocone

Noise Model

Problem

Pipeline

Big Delaunay Ball

Theorem:

Boundary of the big Delaunay balls is homeomorphic to the surface.

Algorithm:

1. Identify the big Delaunay balls. 
2. Separate the IN and OUT balls.
3. Output the boundary of the union.

Noisy Horse

Reconstruction from Volumetric Point Sample

Projection of the samples on the 
surface is a dense sample.

The samples are not too far away
from the surface.

Any two sample points can not 
come arbitrarily close.

Observation: Noise creates small bubbles (pink) near 
surface. Goal is to remove them.
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Point Cloud Reconstruction Examples - BioMed
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Medial Axis Approximation

ResultsAlgorithm

1. Compute Vor-Del of P.
2. Collect all the Voronoi facets whose
dual Delaunay edges satisfy both angle and 
ratio  condition.

Umbrella: The plane normal to the pole vector intersects some of the 
Voronoi edges. Dual Del triangles to those edges form the Umbrella at p.

Angle Condition (θ): Edge pq satisfies angle condition if it makes large 
angle with all the umbrella triangles at p and q.

Ratio Condition (ρ): Length of pq is larger than (ρ times) the 
circumradius of the umbrella triangles at p and q.
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Results of Medial Axis Classification and 
Curation 

Headless Man Noisy Horse

Blood Vessel

Aorta1IRK – 8AHandMug
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Classification of Medial Axis

Step 1: Vor/Del(P) computation (using CGAL).

Step 2: Identification of Interior Medial Axis M.

Step 3: 
   3.a: Identification of Critical points of distance function from Vor/Del(P).
   3.b: Selection of Critical points only on  M. 
             [By DGRS2005, Critical points are either near S or near M]

Step 4: Classification of Medial Axis via 
   4.a: U1 – Unstable Manifold of index 1 saddle point on M
   4.b: U2 – Unstable Manifold of index 2 saddle point on M.

Step 5: Width Test to select the subsets of U1 (β-sheets) and U2 (α-helices).

Goswami,Dey, Bajaj, ICVGIP’2006
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Critical Points, their Indices, and their Manifolds
Critical Point of a smooth function is a point where the gradient of the function vanishes.

Index of a critical point is the number of independent directions in which the function decreases.

In 3D, four types of critical points

Integral curve : A path in the domain of the function on which at every point the tangent to the curve 
equals the gradient of the function.

Stable Manifold of a critical point is the union of all integral curves ending at the critical point.

Unstable Manifold of a critical point is the union of all integral curves starting at the critical point.

1. Minima – index 0
2. Saddle of index 1
3. Saddle of index 2
4. Maxima – index 3

From EHNP SoCG’03
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Vor/Del of P and Critical Points of hP
Voronoi diagram

Delaunay triangulation

Dual of Voronoi diagram.

Critical points of hP can be computed from the Vor/Del(P). These are the intersection of 
Voronoi and their dual Delaunay objects.

Minimum

Saddle
Maximum

Siersma et al.
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Computation of U2

• Start from an index-2 saddle point.

• Generic step: Once reaching a VV, decide if the 
flow goes through a VE or if it enters a VF.

• Terminate at a local maximum.

Part of U2 along Voronoi edge

Part of U2 through Voronoi facets

Voronoi vertex on U2

Non-Voronoi vertex on U2

Start

Generic Step

Structure of U2



Center for Computational Visualization       http://www.ices.utexas.edu/CCV
Institute of Computational and Engineering Sciences
Department of Computer Sciences                               University of Texas at Austin   August  2007

Computation of U1

• Start from the VF containing an index-1 
saddle point.

• Generic step: Identify the VE s on the 
boundary which are active. Expand the unstable 
manifold by collecting their acceptor VF s.

Active Voronoi edges to extend U1

Passive Voronoi edges defining the 
boundary of U1

Active VE

Acceptor VF
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Secondary Structure of RDV Outer Capsid Coat Protein P8

Surface U1 U2
U1 and U2

Closeup

Helices Helices and Sheets
Another View

Ribbon Diag. of PDB

3D EM map of P8 segmented out from cryo-EM map of 
Rice Dwarf Virus (RDV) at 6.8 A resolution

α-helices 15/16 
β-sheets 3/3
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#5B(I)b:Tertiary Structure Elucidation

Step 1: Vor/Del(P) computation (using CGAL).

Step 2: Identification of Interior Medial Axis M

Step 3: 
   3.a: Identification of Critical points of hP from Vor/Del(P).
   3.b: Selection of Critical points only on  M. 
             [By DGRS2005, Critical points are either near S or near M

Step 4: Decomposition of shape via S3 stable manifold of maxima on M

Step 5: Width Test to select the subsets of S3 .
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Tertiary Structure Elucidation

The tertiary fold of 1AOR is a  β-sandwich (two red sheets),
which is surrounded by the differently colored helical segments.

The tertiary fold of 1TIM is .a α/β-barrel.
The β -region in the middle is segmented as red while the helical segments
surrounding it are colored differently.
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Modeling Human Joint Dynamics and Stress
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Non-Linear Algebraic Curve and Surface Finite 
Elements ?

a200

a020 a002

a101a110

a011

The conic curve interpolant is the zero of the bivariate quadratic 
polynomial interpolant over the triangle
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A-spline segment over BB basis
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Examples of Discriminating Curve Families
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Regular A-spline Segments

If B0(s), B1(s), … has one sign 
change, then the curve is

(a)   D1 - regular curve.

(b)   D2 - regular curve.

(c)   D3 - regular curve.

(d)   D4 - regular curve.

For a given discriminating family D(R, R1, 
R2), let f(x, y) be a bivariate polynomial . If 
the curve f(x, y) = 0 intersects with  each  
curve in D(R, R1, R2) only once in the 
interior of R,  we  say  the  curve f = 0 is 
regular(or A-spline segment) with respect 
to D(R, R1, R2). 
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Constructing Scaffolds
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Input:

G1 / D4 curves:
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A-patch Surface  (C^1) Interpolant 

• An implicit single-sheeted polynomial interpolant 
on a tetrahedron
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A-Patches

•  Given tetrahedron vertices pi=(xi,yi,zi), i=1,2,3,4,

 ! is barycentric coordinates of p=(x,y,z) :

• function f(p) of degree n can be expressed in Bernstein-Bezier form :

• Algebraic surface patch(A-patch) within the tet is defined as f(p)=0.
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Algebraic Patches: Smooth Boundary Elements

<cube> <tetrahedron>

<triangular prism> <square pyramid>

• Implicit form of Isocontour : f(x,y,z) = w
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A-patch Contouring
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A-patches [Bajaj, Chen, Xu 1994]

– Zero contour of a trivariate polynomial:  
f(x,y,z)=0

– Single-sheeted patches
–C1 smoothing of arbitrary polyhedra
–Conversion to  Trimmed NURBS
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Computing functions on surface

– Surface: Weighted least squares 
approximation of data points and signed-
distance samples

– Function:Weighted least squares 
approximation of function values
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A-patch Contouring
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A-Patch Approximation 

• ~9200 points, 406 patches (degree 3), 1% error
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Automatic CAD Model (features) Reconstruction 
from Point Clouds

Points Triangle mesh Reduced mesh Smooth model

3D Delaunay tri. 
and α−solid

Mesh
reduction

A-patch
fitting
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Sculpturing

before sculpturing

after sculpturing

α -solid is refined by iteratively 
removing tetrahedra adjacent 
to the boundary, based on two 
principles:
– remove if a data point is occluded
– remove if sum of dihedral angles 
decreases

Dihedral angles
formed by 
boundary faces



Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences                               University of Texas at Austin   September  2006

 Mesh reduction

• Mesh reduction technique for 
triangle meshes with multivariate 
data 

• Based on incremental deletion of 
vertices and retriangulation

• Guaranteed, global error-bound
• Sharp feature recognition and 

preservation
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 Surface Fitting

– Uses cubic A-patches 
(algebraic patches)

– C1 continuity
• Sharp features (corners, 

sharp curved edges)
• Singularities
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Further Reading: Point-set Surface Reconstruction
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3(4), pp 266–286.
2. Edelsbrunner, H., and Mucke, E. P., 1994, “Three-dimensional Alpha Shapes,” ACM Trans. Graphics, 13, pp 43–72.
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SIGGRAPH, pp. 109–118.
4. Amenta, N., Bern, M., and Kamvysselis, M., 1998, “A New Voronoi-based Surface Reconstruction Algorithm,” ACM 

SIGGRAPH, pp 415-421.
5. Amenta, N., Choi, S., Dey, T. K., and Leekha, N., 2002, “A Simple Algorithm for Homeomorphic Surface Reconstruction,” 

Internat. J. Comput. Geom. & Applications, 12, pp. 125-141.
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pp. 249-260.
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Further Reading: Medial Axis Transform (MAT)

• H. Edelsbrunner and N. Shah. Triangulating topological spaces. Proc. 10th ACM Sympos. Comput. 
Geom., (1994), 285-292.

• T. K. Dey and W. Zhao. Approximate medial axis as a Voronoi subcomplex. Proc. 7th ACM Sympos. 
Solid Modeling Appl., 2002, 356--366.

• Nina Amenta and Ravi Krishna Kolluri, "The medial axis of a union of balls", Computational Geometry 
2001“ 20(1-2) pages "25-37",

• F. Chazal, A. Lieutier,  The Lambda Medial Axis, Graphical Models,  Volume 67, Issue 4 , July 2005, 
Pages 304-331

• André Lieutier: Any open bounded subset of has the same homotopy type as its medial axis. 
Computer-Aided Design 36(11): 1029-1046 (2004)

• Joachim Giesen, Edgar A. Ramos, Bardia Sadri: Medial axis approximation and unstable flow complex. 
Symposium on Computational Geometry 2006: 327-336
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Further Reading: A-splines  & A-patches
1. G. Xu, C. Bajaj, S. Evans

C1 Modeling with Hybrid Multiple-sided A-patches
Special issue on Surface and Volume Reconstructions in the International Journal of Foundations of Computer Science, 
13, 2, 261-284. 

2. C. Bajaj, G. Xu, R. Holt, A. Netravali
Hierarchical Multiresolution Reconstruction of Shell Surfaces
Computer Aided Geometric Design, 19:2(2002), 89-112.

3. G. Xu, C. Bajaj, H. Huang
C1 Modeling with A-patches from Rational Trivariate Functions
Computer Aided Geometric Design, 18:3(2001), 221-243. 

4. C. Bajaj, G. Xu
Regular Algebraic Curve Segments (III) - Applications in Interactive Design and Data Fitting
Computer Aided Geometric Design, 18:3(2001), 149-173.

5. C. Bajaj, G. Xu

6. Smooth Shell Construction with Mixed Prism Fat Surfaces
Brunett, G., Bieri,H., Farin, G. (eds.), Geometric Modeling Computing Supplement, 14, (2001), 19-35.

7. G. Xu, C. Bajaj, W. Xue
Regular algebraic curve segments (I)-Definitions and characteristics
Computer Aided Geometric Design, 17:6(2000), 485-501.

8. G. Xu, C. Bajaj, C. Chu
Regular Algebraic Curve Segments (II) - Interpolation and Approximation
Computer Aided Geometric Design, 17:6(2000), 503-519

9. C. Bajaj, G. Xu
A-Splines: Local Interpolation and Approximation Using Gk- Continuous Piecewise Real Algebraic Curves
Computer Aided Geometric Design, 16:6(1999), 557-578.


