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Cell Machinery of Life

 “The World of the Cell”, 1996)

Hippocampal Neurons

Transmission  Electron

Microscopy, Thin

Sections:

Data Courtesy: Kristen Harris,

University of Texas at Austin

Addtl. Collab: Tom Bartol, Justin Kinney, Terry Sejnowski, Salk
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Imaging2Models

1. X-ray Crystallography ! 2D Image Processing ! Atomic Centers/Bonds (PDB)

! FCC ! Surface, Volume Processing ! BEM/FEM/Shells

2. Single Particle Cryo-EM ! 2D Image Processing ! 3D Reconstruction ! 3D

Image Processing ! Symmetry, Surfaces, Volume Processing!

BEM/FEM/Shells

3. Single-section EM/Anisotropic CT/MRI ! 2D Image
Processing ! Planar X-section Contour Stack !
BEM/FEM/Shells

4. Tomographic EM/MicroCT/CT/MRI ! 3D Image Processing ! Higher Order

3D Reconstructions, Surfaces, Skeletons ! BEM/FEM/Shells

5. Time Dependent Mesh Maintenance
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Step #1: Automatic Image Alignment

Affine Transformations

(Translation, Rotation,

Scaling)
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Step #2: Semi-Automatic Image Restoration
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Step #3: Automatic Filtered Segmentation
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Step #4: Hippocampal Neuron Model Reconstruction

C.Bajaj, K. Lin, E. Coyle: Arbitrary Topology Shape Reconstruction from

Planar Cross-Sections, Graphical Models and Image Processing, 58:6, 1996,

(a) (b) (a) (b)
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Heart Model via X-section Contour Lofting

First segment the heart into four independent planar contour stacks from MRI data:

background (0), heart muscle (81), left ventricle (162), right ventricle (243) and then loft

(skin) the planar contour stacks



Theoretical Basis - I

Definition
Two algebraic surfaces f (x , y , z) = 0 and g(x , y , z) = 0 meet with Ck

rescaling continuity at a point p or along an irreducible algebraic curve
C if and only if there exists two polynomials a(x , y , z) and b(x , y , z),
not identically zero at p or along C, such that all derivatives of af − bg
up to order k vanish at p or along C.
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Theoretical Basis - II

Theorem

Let g(x , y , z) and h(x , y , z) be distinct, irreducible polynomials. If the
surfaces g(x , y , z) = 0 and h(x , y , z) = 0 intersect transversally in a
single irreducible curve C, then any algebraic surface f (x , y , z) = 0
that meets g(x , y , z) = 0 with Ck rescaling continuity along C must be
of the form f (x , y , z) = α(x , y , z)g(x , y , z) + β(x , y , z)hk+1(x , y , z). If
g(x , y , z) = 0 and h(x , y , z) = 0 share no common components at
infinity. Furthermore, the degree of α(x , y , z)g(x , y , z) ≤ degree of
f (x , y , z) and the degree of β(x , y , z)hk+1(x , y , z) ≤ degree of
f (x , y , z).

Higher-Order Interpolation and Least-Squares Approximation Using
Implicit Algebraic Surfaces ACM Transactions on Graphics, (1993)
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See Lofting movies
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Triangular Meshing

• To generate a boundary
element triangular mesh
from a stack of cross-
sectional polygonal data.

• Subproblems

– The correspondence
problem

– The tiling problem

– The branching
problem
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Sub-problems

• Correspondence

• Tiling

• Branching
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Incremental Construction

Algorithm Steps

Step a: Segment closed contours from 2D images

Step b: Create any required augmented contours

Step c: Find correspondences between contours

Step d: Form the tiling region of each vertex

Step e: Construct the tiling

Step f: Collect the boundaries of untiled regions

Step g: Form triangles to cover untiled regions based on their edge

Voronoi diagram (EVD)
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Algorithmic Subtleties

• A multi-pass tiling approach followed by the postprocessing of

untiled regions
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Algorithm Steps on actual data
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Using the Edge Voronoi Diagram as Ridges
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Boundary Element Triangular Mesh
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Tetrahedral Meshing

• To generate a  3D finite element
tetrahedral mesh of the simplicial
polyhedron obtained via the BEM
construction of cross-section
polygonal slice data.

• Subproblems

– The shelling of tetrahedra
to reduce polyhedron to
prismatoids

– The tetrahedralization of
prismatoids
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What is prismatoid?

A prismatoid is a polyhedron having for bases two simple

polygons (possibly degenerate) in parallel planes, and for

lateral faces triangles or trapezoids having one vertex or

side lying in one base (or plane), and the opposite vertex

or side lying in the other base (or plane).
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The Shelling Step

• Shell tetrahedra from the polyhedron, so the

remaining part is a prismatoid or can be

divided into prismatoids.



Center for Computational Visualization

Institute of Computational and Engineering Sciences

Department of Computer Sciences                               University of Texas at Austin   October  2007

Prismatoid ! Tetrahedra

• To tetrahedralize a non-nested prismatoid without

Steiner points.

1. For each boundary triangle on both slices,

calculate its metric.

2. Pick up the boundary triangle with the best

metric and form one set of tetrahedra.

3. Update the advancing front and go to Step 1.

4. If the remaining part is non-tetrahedralizable,

postprocess it.
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Metric, Weight Factor, Grouping

• Metric = volume/(edge)3

• Weight factor

•  Grouping can

avoid irregular

remaining part
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Protection Rule
Lemma 1: Suppose a top boundary triangle !u1u2u3 is under the

constraint that no more than one type 1 triangle is between the two
type 0 triangles containing the contour segments u1u2 and u2 u3.
Furthermore, let the bottom vertices of the two type 0 triangles be v1

and v2. Our grouping operation cannot apply to !u1u2u3 to form a set
of tetrahedra, if and only if all the following conditions are satisfied.

1. v1v2 is exactly one contour segment.

2. One of the slice chords u2v1 and u2v2 is reflex and the other is convex.

3. Both u1v2 and u3v1 are not inside the prismatoid.
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Classification of Untetrahedralizable

Prismatoids
1. Has two boundary triangles on the top face and one

line segment on the bottom face.

2. Has one bottom triangle which is treated as three

boundary triangles.
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Multiple Tetrahedralizable Cases

One-to-many branching

many-to-many branching

Dissimilar region (the right

bottom portion of the bottom

contour)

Dissimilar region (the inner

portion of the top contour)
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Appearing/disappearing vertical

feature of a solid interior

Appearing/disappearing vertical feature

(the top inner contour) of a void interior

A branching, a dissimilar portion (the inner

portion of the top right contour), and an

appearing/disappearing vertical feature (the

inner contour at the left of the top slice)
Nested prismatoids

Multiple Tetrahedralizable Cases
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Multiply-nested prismatoid Solid region between two slices

of a human tibia

Multiple Tetrahedralizable Cases
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Knee joint (the lower femur, the pper

tibia and fibula and the patella)

(a) Gouraud shaded

(b) The tetrahedralization

Hip joint (the upper femur and

the pelvic joint)

(a) Gouraud shaded

(b) The tetrahedralization

Examples
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Mini-summary

• The characterization, avoidance of non-

tetrahedralizable polyhedra is one of the main

challenges

• The mix of numerical precision and

topological decision making needs precise

rules so errors don’t propagate.
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