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1 Piecewise Polynomials

1.1 Barycentric and Bernstein-Bézier Bases

Barycentric coordinates are a natural method for describing a function defined on a triangle. We
begin with the simplest possible case of describing a line passing through a triangle. Let T be a
triangle with vertices (x1, y1), (x2, y2), (x3, y3). To represent a line C implicitly, we could find real
coefficients cij ∈ R of a function

g(x, y) =
∑
i+j≤1

cijx
iyj = c00 + c10x+ c01y

such that C = {g = 0}. Since the function g is defined in terms of the global coordinates x and y,
it is not immediately obvious given the coefficients cij whether C passes through T at all. Thus,
we transform the (x, y) coordinates to real barycentric coordinates (λ1, λ2, λ3) via x

y
1

 =

 x1 x2 x3

y1 y2 y3

1 1 1

 λ1

λ2

λ3
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Under the mapping, (x1, y1) becomes (1, 0, 0), (x2, y2) becomes (0, 1, 0), and (x3, y3) becomes
(0, 0, 1). We can now seek real coefficients γi ∈ R of a function

g(λ1, λ2, λ3) =

3∑
i=1

γiλi

such that C = {g = 0}. The coefficients are very easily described: γi is the value of g at (xi, yi).
Accordingly, if at least one γi is positive and at least one is negative, C will pass through T ,
intersecting at the edges between vertices with opposite signs. Thus, barycentric coordinates give
us an easy way to define and control the shape of lines through a triangle.

To describe more complicated curves through T , we use a generalization of barycentric coordi-
nates. Fix a degree n ≥ 1 and compute the trinomial expansion of

(λ1 + λ2 + λ3)d = 1.

This will yield
(d+ 2

2

)
terms of the form λi1λ

j
2λ

k
3 with i + j + k = n. These functions, called the

Bernstein polynomials, form a basis for degree n polynomials in R2 and can be used analogously
to the linear case. In standard coordinates, we could find real coefficients cij ∈ R

g(x, y) =
∑
i+j≤n

cijx
iyj

such that C = {g = 0}. This problem is much more difficult than the linear case, making the
barycentric coordinate change essential. We seek instead the real Bernstein-Bézier coefficients
γijk ∈ R of the function

g(λ1, λ2, λ3) =
∑

i+j+k=n

γijk
d!

i!j!k!
λi1λ

j
2λ

k
3 (1)

such that C = {g = 0}. As with barycentric coordinates, the coefficient at a vertex of the triangle
is exactly the value of g at the vertex, for example

γ300 = g(1, 0, 0) = g(x1, y1).

The remaining coefficients control the properties of g (and hence its level sets) within T . The
coefficients are associated to the domain points on a regular subdivision of the triangle. We show
examples of such subdivisions for n = 2 and n = 3 in Figure 1.

Figure 1: Domain points associated to Bernstein-Bézier coefficients for n = 2 (left) and n = 3
(right).

The bases are defined for restricted subdomains of the defining space as opposed to the power
basis which is defined for all points of the space. The example formulations given below are defined
for values of each of the variables x, y and z in the unit interval [0,1].

3



Bernstein-Bézier Basis (BB)
Univariate:

P (x) =
m∑
j=0

wjB
m
j (x)

where

Bm
i (x) =

(
m

i

)
xi(1− x)m−i

Bivariate: (1) Tensor:

P (x, y) =

m∑
i=0

n∑
j=0

wijB
n
i (x)Bn

j (y)

(2) Barycentric:

P (x, y) =

m∑
i=0

m−i∑
j=0

wijB
n
ij(x, y)

where

Bm
ij (x, y) =

(
m

ij

)
xiyj(1− x− y)m−i−j

Trivariate: (1) Tensor:

P (x, y, z) =
m∑
i=0

n∑
j=0

p∑
k=0

wijkB
n
i (x)Bn

j (y)Bn
k (z)

(2) Mixed:

P (x, y, z) =
m∑
i=0

m−i∑
j=0

p∑
k=0

bijkB
n
ij(x, y)Bn

k (z)

(3) Barycentric:

P (x, y, z) =
m∑
i=0

m−i∑
j=0

m−i−j∑
k=0

wijkB
m
ijk(x, y, z)

where

Bm
ijk(x, y, z) =

(
m

ijk

)
xiyjzk(1− x− y − z)m−i−j−k

Multivariate (n-variate):

p(x1, . . . , xd) =

n1∑
i1=0

. . .

nd∑
id=0

bi1i2...id B
n1
i1

(t1)Bn2
i2

(t2) . . . Bnd
id

(td) (2)

where

(x1, . . . , xd)
T ∈ [a1, b1]× [a2, b2]× . . .× [ad, bd]

ti = xi−ai
bi−ai , i = 1, 2, . . . , d

Bn
i (t) = n!

i!(n−i)! t
i(1− t)n−i

Bernstein Form on a Simplex

Let p0, . . . ,pd ∈ Rd be affine independent. That is the matrix

[
p0 p1 . . . pd
1 1 . . . 1

]
is non-

singular. Let
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x1
...
xd
1

 =

[
p0 p1 . . . pd
1 1 . . . 1

] 
α0

α1
...
αd

 (3)

Then the Bernstein form on the simplex [p0, . . . ,pd] is

p(x1, . . . , xd) =
∑

i0+i1+...+id=n

bi0i1...id B
n
i0i1...id

(α0, . . . , αd) (4)

where
(x1, . . . , xd)

T ∈ [p0, . . . ,pd],

Bn
i0i1...id

(α0, . . . , αd) =
n!

i0!i1! . . . id!
αi00 α

i1
1 . . . α

id
d

Since
d∑
j=0

ij = n,
d∑
j=0

αj = 1

(1.6) can also be written as

p(x1, . . . , xd) =
∑

i1+...+id≤n
bi1...idB̃

n
i1...id

(α1, . . . , αd) (5)

where

B̃n
i1...id

(α1, . . . , αd) =
n!

i1!i2! . . . id!(n− i1 − . . .− id)!
αi11 α

i2
2 . . . α

id
d (1− α1 − . . .− αd)n−i1−...−id

and bi1...id = bi0...id .

Mixed Multivariate Bernstein Form

Let d = d1 + d2, p0, . . . ,pd1
∈ Rd1 be affine independent. Then the mixed Bernstein form is

p(x1, . . . , xd) =
∑

i1+...+id1
≤m

n1∑
j1=0

. . .

nd2∑
jd2

=0

bi1...id1
j1...jd2

B̃m
i1...id1

(α1, . . . , αd1) Bn2
j1

(t1) . . . B
nd2
jd2

(td2)

(6)
where

(x1, . . . xd)
T ∈ [p0, . . . ,pd1

]× [a1, b1]× . . .× [ad2 , bd2 ]
x1
...
xd1

1

 =

[
p0 p1 . . . pd1

1 1 . . . 1

] 
α0

α1
...
αd1


and

ti =
xd1+i − ai
bi − ai

i = 1, 2, . . . , d2

If d1 = 0, then p is the Bernstein form on hypercube. If d2 = 0, then p is the Bernstein form on
simplex.
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1.2 B-Spline Basis

The B-spline basis over the unit interval [0,1] is easily generated by a fractional linear recurrence
as given below for the univariate case. The bivariate and trivariate forms can also be similarly
generated from this in either tensor product or barycentric form, as given for the BB form above.
Univariate:

Pn =
m∑
l=0

plN
n
l (x)

where

N1
l (x) =

{
1 for xl ≤ xl+1

0 otherwise.

and knot sequence 0 = u0 ≤ u1 < . . . < um+1 = 1

Nn
l (x) =

x− xl−1

xl+n−1 − xl−1
Nn−1
l (x) +

xl+n − x
xl+n − xl

Nn−1
l+1 (x)

Both the parametric and the implicit representation of algebraic curve segments and algebraic
surface patches can be represented in either of the above BB or B-spline bases. Note that the
canonical representation of a parametric plane curve segment and surface patch in x, y, z space are
given as follows.
Curve: 

x = P1(t),

y = P2(t),

w = P3(t).

Surface: 
x = P1(s, t),

y = P2(s, t),

z = P3(s, t),

w = P4(s, t).

where the Pi are polynomials in any of the above appropriate bases and the variables/parameters
s, and t range over the unit interval [0,1].

An implicit curve segment and surface patch can be defined in x, y, z space by
Curve:

z = P (x, y) ∧ z = 0

Surface:
w = P (x, y, z) ∧ w = 0

where the P is a polynomial in any of the above appropriate basis and the variables x, y, z range
over the unit interval [0,1].

The work of characterizing the BB form of polynomials within a tetrahedron such that the zero
contour of the polynomial is a single sheeted surface within the tetrahedron, has been attempted
in the past. In [90], Sederberg showed that if the coefficients of the BB form of the trivariate
polynomial on the lines that parallel one edge, say L, of the tetrahedron, all increase (or decrease)
monotonically in the same direction, then any line parallel to L will intersect the zero contour alge-
braic surface patch at most once. In [59], Guo treats the same problem by enforcing monotonicity
conditions on a cubic polynomial along the direction from one vertex to a point of the opposite face
of the vertex. From this he derives a condition aλ−e1+e4 − aλ ≥ 0 for all λ = (λ1, λ2, λ3, λ4)T with
λ1 ≥ 1, where aλ are the coefficients of the cubic in BB form and ei is the i-th unit vector. This
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Figure 2: (a) A three sided patch tangent at P1, P2, and P4. (b) A degenerate four sided patch
tangent to face [p1p2p4] at p2 and [p1p3p4] at p3
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Figure 3: (a) A three sided patch interpolating the edge CD (b) A three sided patch interpolating
edges BD and CD
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condition is difficult to satisfy in general, and even if this condition is satisfied, one still cannot
avoid singularities on the zero contour.

In[14, 15] sufficient conditions of a smooth, single sheeted zero contour generalizes Sederberg’s
condition and provides with an efficient way of generating nice implicit surface patches in BB-form
(called A-patches for algebraic patches). See Figures 2 and 3.

1.3 Trimmed Freeform Patches

Definition 1.1. Let p = (a, b, c) be a point with an associated “normal” m = (mx,my,mz) in R3.
An algebraic surface S : f(x, y, z) = 0 is said to smoothly contain p if
(1) f(p) = f(a, b, c) = 0, (containment condition)
and
(2) ∇f(p) is not zero and ∇f(p) = αm, for some nonzero α. (tangency condition)

1.4 Implicit Algebraic Surface Patches

An implicit algebraic surface patch can be defined in x, y, z space by :

w = P (x, y, z) ∧ w = 0

where the P is a polynomial in any of the above appropriate basis and the variables x, y, z range
over the unit interval [0,1]. Alternatively, the surface patch can be defined by a closed cycle of
trimming curves which may be defined with rational parametric equations or implicitly or both.
In section 3 the surfaces patches are defined implicitly with a closed triple (triangle) of rational
trimming curves.

As in the Rational parametric representation, we have many elements over which we can define
the patches. In general, the simplest polyhedron we consider are

• Cube (Tensor domain) The parameters x, y, z are defined over the interval [0,1]. ( x ∈
[0, 1], y ∈ [0, 1], z ∈ [0, 1] ) This yield a tensor product Bernstein-Bézier coordinate system for
trivariate polynomials.

• Tetrahedron The parameters x, y, z are defined with the condition: 0 ≤ x + y + z ≤ 1. This
yields a barycentric coordinate system for trivariate polynomials.

• Triangular prism The parameters x, y, z are now defined as follows: z is defined over the
interval [0,1]. ( z ∈ [0, 1] ) and x, y range over 0 ≤ x+ y ≤ 1

• Square pyramid The parameters x and y satisfy x ∈ [0, 1] and y ∈ [0, 1], while z satisfies the
condition 0 ≤ x+ y + z ≤ 1

2 Piecewise Representation of Curves

2.1 Implicit Curves, Parametric Curves

2.1.1 Approximatory A-splines in R2

Let p1, v1 and p2 be three affine independent points in the xy-plane (see Figure 2.1.1). Then we
consider the two line segments [p1v1] and [v1p2] as a segment of a polygon, denoted by p̂1v1p2.
We shall consider v1 as a controller and p1 and p2 as interpolation points. An arbitrary polygon
chain(or polygon for brevity) consists of a sequence of consecutive polygon segments denoted by
{ ̂pivipi+1}mi=0. A polygon { ̂pivipi+1}mi=0 is said to be of type G1 (see Figure 2.1.1) if

(vi − pi+1) = αi(vi+1 − pi+1), αi < 0, for i = 0, · · · ,m.
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If p0 = pm+1, then the polygon is closed. Note that a G1 polygon can be trivially constructed from
an arbitrary polygon by inserting one vertex per edge of the polygon.

2.1.2 Single Sheeted, Singularity-Free A-Splines

Let F (α1, α2, α3) be defined as (1) on the triangle [p1p2v1]. Since there is constant multiplier to
the equation F (α1, α2, α3) = 0, we may assume b00n = −1 if b00n 6= 0.

Theorem 2.1. For the given polynomial F (α1, α2, α3) defined as (1), if there exists an integer
K(0 < K < n) such that (see figure 3.1 for n = 3 and K = 1)

bijk ≥ 0 for j = 0, 1, · · · , n− k; k = 0, 1, · · · ,K − 1 (7)

bijk ≤ 0 for j = 0, 1, · · · , n− k; k = K + 1, · · · , n (8)

and
∑n

j=0 bn−j,j0 > 0,
∑n−k

j=0 bn−j−k,jk < 0 for at least one k (K < k ≤ n), then for any β that
0 < β < 1, the straight line

(α1, α2, α3)(t) = (1− t)(β, 1− β, 0) + t(0, 0, 1) (9)

that passes through v1 and βp1 + (1 − β)p2, intersects the curve F (α1, α2, α3) = 0 one and only
one time(counting multiplicity) in the interior of the triangle [p1p2v1].

Proof. Substituting (α1, α2, α3)(t) into F (α1, α2, α3) we have

Bβ(t) := F ((1− t)β, (1− t)(1− β), t)

=
∑

i+j+k=n

bijk
n!

i!j!k!
tk(1− t)i+jβi(1− β)j

=
∑

i+j+k=n

bijkB
n
k (t)Bi+j

i (β)

=
n∑
k=0

bk(β)Bn
k (t)

(10)

where

bk(β) =
∑

i+j=n−k
bijkB

n−k
i (β), Bn

j (t) =
n!

j!(n− j)!
tj(1− t)n−j

9



It follows from (7)–(8) that b0(β) > 0, bk(β) ≥ 0, k = 1, ...,K − 1, bk(β) ≤ 0, k = K + 1, ..., n.
If l(0 ≤ l ≤ n −K − 1) is the integer such that bn(β) = · · · = bn−l+1(β) = 0; bn−l(β) < 0, then
Bβ(t) can be written as

Bβ(t) = (1− t)l
n−l∑
k=0

ck(β)Bn−l
k (t)

where c0 > 0, cn−l < 0 and the sequence c0, c1, · · · , cn−l has one sign change. By variation dimin-
ishing property [53], the equation Bβ(t) = 0 has exactly one root in (0, 1).

This theorem guarantees that there is one and only one curve segment of F (α1, α2, α3) = 0
within the triangle under the given condition. The term algebraic spline or A-spline that we
use is a chain of such curve segments with fixed continuity at the join points. We should mention
that the curve F (α1, α2, α3) = 0 passes through v1 if b00n = 0. However, we do not use this part of
the curve. In applications, we usually take b00n to be −1.

Remark 2.2. Formulas (9) and (10) could be used to evaluate the curve F (α1, α2, α3) = 0. That
is, for a given sequence of points of β ∈ (0, 1), solve the equation Bβ(t) = 0 for t ∈ (0, 1). Then
substituting (β, t) into (9), we then obtain a sequence of points, in terms of barycentric coordinates,
on the curve. For n ≤ 4, a closed form for the solution of Bβ(t) = 0 exists. For n ≥ 5, numerical
methods have to be employed to solve the equation. However, since the equation has a single root
in (0, 1), Newton iterations combined with bisection suffice.

The next theorem goes further about the smoothness of the curve F (α1, α2, α3) = 0 and the
properties on the boundary of the triangle.

Theorem 2.3. Let F (α1, α2, α3) be defined as Theorem 2.1, then
(i) The curve F (α1, α2, α3) = 0 is smooth in the interior of the triangle [p1p2v1].
(ii) If we further assume bn−k,0k = 0 for k = 0, ...,K, bn−(K+1),0,K+1 < 0 and bn−1,10 > 0, then

the curve in the triangle passes through p1, tangent with the line α2 = 0 with multiplicity K+1 at p1

and no other intersection with α2 = 0 for α1 > 0, α3 > 0. Similarly, if b0,n−k,k = 0 for k = 0, ...,K,
b0,n−(K+1),K+1 < 0, and b1,n−1,0 > 0, then the curve passes through p2, tangent with the line α1 = 0
with multiplicity K + 1 at p2 and no other intersection with α1 = 0 for α2 > 0, α3 > 0.

(iii) If bn00 = bn−1,01 = bn−1,10 = 0, then p1 is a singular point of the curve. Similarly, if
b0n0 = b1,n−1,0 = b0,n−1,1 = 0, then p2 is a singular point of the curve.

Since it is obvious that the quadratic A-spline is convex, we consider now the convexity of the
cubic spline. At present, the convexity characterization of the general case for n ≥ 4 degree A-spline
is left as an open problem. Even for the cubic case, the convexity is not always guaranteed. If
the curve segment is tangent with the sides of the triangle at p1 and p2, i.e., a G1 A-spline as in
Theorem 2.3.ii. , then it is convex. This is of course a special case, but it is the case we most often
use.

Theorem 2.4. The cubic A-spline defined in Theorem 2.3.ii has no inflection point inside its
reference triangle.

2.1.3 Gk A-Splines

In this section, we connect the A-Spline segments to form a piecewise Gk continuous spline curve.
For simplicity we assume that we are given a polygon in the plane, that is we have an ordered point
set {pi}m+1

i=0 , and additionally a vertex set {vi}mi=0 (see figure), such that the three points pi, vi and
pi+1 are affine independent (non-collinear). The Gk continuity of an A-spline is achieved by the
following steps:
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1. Form a G1 control polygon { ̂pivipi+1}.
2. Compute the first k terms of the local power series expansion of the A-spline at the join points
pi from the given data at these points.

3. Determine the coefficients of F such that F = 0 has the same first k terms of local power
series at the join points.

Several schemes exist which produce a desired polygon chain from scattered data [51, 99]. To
produce a G1 polygon from a polygonal chain is trivial and amounts to inserting a single additional
vertex per polygon edge. We first define the local power series and then compute the coefficients
of F . Then we compute the power series for three fitting problems: (a) fit to a parametric curve;
(b) fit to discrete data; (c) fit to a higher degree implicit curve.

2.1.4 Coefficients of F from Local Power Series Expansion

We consider first a two segment A-spline curve

Fl(α1, α2, α3) =
∑

i+j+k=n

b
(l)
ijkB

n
ijk(α1, α2, α3) =

∑
i+j+k=n

b̃
(l)
ijkα

i
1α

j
2α

k
3 = 0

on triangles [p
(l)
1 p

(l)
2 v

(l)
1 ] for l = 1, 2 with p

(1)
1 = p

(2)
2 as join point (see Figure 5), where b̃

(l)
ijk = n

i!j!k!b
(l)
ijk

. We want to join these curve segments with the desired smoothness at p
(1)
1 .

In the triangle [p
(l)
1 p

(l)
2 v

(l)
1 ], we require our A-spline passing through p

(1)
1 and tangent with the

line [p
(1)
1 v

(1)
1 ] at p

(1)
1 . Hence we assume b

(1)
n−1,1,0 > 0, b

(2)
1,n−1,0 > 0. This implies that the curves

Fl(α1, α2, α3) = 0 are regular at p
(1)
1 . Therefore, the curve F1(1 − α2 − α3, α2, α3) = 0 can be

represented as a power series at p
(1)
1

α2 =
∞∑
i=0

a
(1)
i αi3 =

∞∑
i=0

a
(1)
i (p

(1)
1 )αi3, α1 = 1− α2 − α3 (11)

with a
(1)
0 = a

(1)
0 (p

(1)
1 ) = 0, where we relate the coefficients a

(1)
i to p

(1)
1 to emphasize that the

expansion is performed at p
(1)
1 . Similarly, F2(α1, 1− α1 − α3, α3) = 0 can be represented as

α1 =

∞∑
i=0

a
(2)
i αi3 =

∞∑
i=0

a
(2)
i (p

(2)
2 )αi3, α2 = 1− α1 − α3 (12)

at p
(2)
2 with a

(2)
0 = 0. It follows from Theorem 2.3 that the curve F1 = 0 is tangent with [p

(1)
1 v

(1)
1 ]

n− 2 times at p
(1)
1 if and only if

b
(1)
n−k,0,k = 0, for k = 0, 1, · · · , n− 2 (13)

or if and only if a
(1)
k = 0, for k = 0, 1, · · · , n− 2. The same is true for the curve F2 = 0 at p

(2)
2 , that

is, the curve is tangent with [p
(2)
2 v

(2)
1 ] at p

(2)
2 n− 2 times if and only if

b
(2)
0,n−k,k = 0, for k = 0, · · · , n− 2. (14)

Now we assume (13) and (14) hold. Hence (11) and (12) become

α2 =

∞∑
i=n−1

a
(1)
i αi3, α1 = 1− α2 − α3, (15)

α1 =

∞∑
i=n−1

a
(2)
i αi3, α2 = 1− α1 − α3 (16)
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respectively. Substitute (15) into F1(1− α2 − α3, α2, α3) = 0, we get

F1 (1− α2(α3)− α3, α2(α3), α3) =

∞∑
i=n−1

g
(1)
i αi3 = 0

From g
(1)
i = 0 for i = n− 1, · · · , 2n− 3, we derive

b̃
(1)
n−1,10 = −

b̃
(1)
10,n−1

a
(1)
n−1

(17)

b̃
(1)
n−2,11 = −

−b̃(1)
10n−1 + b̃

(1)
00n + b̃

(1)
n−1,10

[
a

(1)
n − (n− 1)a

(1)
n−1

]
a

(1)
n−1

(18)

b̃
(1)
n−i−2,1,i+1 = −

∑i
j=0 b̃

(1)
n−1−j,1,j

∑n−1−j
l−0 (−1)lC ln−1−ja

(1)
n+i−l−j

a
(1)
n−1

(19)

for i = 1, 2, · · · , n−3, where Ckn = n!
k!(n−k)! , a

(1)
j = 0 if j < n−1. That is, the coefficients determined

by (17) – (19) will lead to the curve F1(α1, α2, α3) = 0 matching the power series (15) up to the first
2n − 3 terms. It is noted that, each of the formulas (17) – (19) determines one of the coefficients
b′s, and introduces one of the coefficients a′s. Among all the coefficients b′s, there is one degree of
freedom.

Since b
(1)
n−1,10 > 0, b

(1)
10,n−1 < 0, (17) implies that a

(1)
n−1 > 0. The correct sign of b

(1)
n−1−k,1k can be

obtained by giving a
(1)
n+k−1 properly.

For the curve F2 = 0 at p
(2)
2 , we similarly have,

F2(α1(α3), 1− α1(α3)− α3, α3) =

∞∑
i=n−1

g
(2)
i αi3 = 0.

From which we have

b̃
(2)
1,n−1,0 = −

b̃
(2)
01,n−1

a
(2)
n−1

(20)

b̃
(2)
1n−2,1 = −

−b̃(2)
01,n−1 + b̃

(2)
00n + b̃

(2)
1,n−1,0

[
a

(2)
n − (n− 1)a

(2)
n−1

]
a

(2)
n−1

(21)

b̃
(2)
1,n−i−2,i+1 = −

∑i
j=0 b̃

(2)
1,n−1−j,j

∑n−1−j
l=0 (−1)lC ln−1−ja

(2)
n+i−l−j

a
(2)
n−1

(22)

for i = 1, 2, · · · , n− 3. If we further assume

a
(1)
n−1 = b

(1)
1,0,n−1 = 0 (23)

then similar to the discussion above, we have

b̃
(1)
n−1,1,0 = − b̃

(1)
00n

a
(1)
n

(24)

b̃
(1)
n−i−1,1,i = − 1

a
(1)
n

 i−1∑
j=0

b̃
(1)
n−1−j,1,j

n−1−j∑
l=0

(−1)lC ln−1−ja
(1)
n+i−l−j

 (25)

12



Figure 5: The two different cases of G1 join polygon segments

for i = 1, 2, · · · , n− 2. Similarly, for curve F2 = 0 at p
(2)
2 , if we assume

a
(2)
n−1 = b

(2)
0,1,n−1 = 0 (26)

then

b̃
(2)
1,n−10 = − b̃

(2)
00n

a
(2)
n

, (27)

b̃
(2)
1,n−i−1,i = − 1

a
(2)
n

 i−1∑
j=0

b̃
(2)
1,n−1−j,j

n−1−j∑
l=0

(−1)lC ln−1−ja
(2)
n+i−l−j

 (28)

for i = 1, 2, · · · , n− 2.
Formulas (23)–(28) match the power series up to the first 2n− 2 terms. If we only fit the first

2n− 3 terms, b
(l)
1,1,n−2 could be free. For the G3 fitting with cubics in section 4, we choose it to be

zero.
Now we explain why we consider both of the cases of a

(l)
n−1 > 0 and a

(l)
n−1 = 0. As before, let

̂
p

(1)
1 v

(1)
1 p

(1)
2 and

̂
p

(2)
1 v

(2)
1 p

(2)
2 be two segments of a polygon. If they G1 join at p

(1)
1 , then there are two

join configurations(see Figure 5): non-convex join and convex join. In the non-convex join, p
(1)
2 and

p
(2)
1 lie on different sides of the line [v

(1)
1 v

(2)
1 ], while in the convex join, p

(1)
2 and p

(2)
1 lie on the same

side of the line [v
(1)
1 v

(2)
1 ]. Since our A-splines are always contained within the triangles considered,

if p
(1)
1 is of a non-convex join, then the curve will be tangent with the line [v

(1)
1 v

(2)
1 ] an odd number

of times, otherwise, it will be tangent with the line [v
(1)
1 v

(2)
1 ] an even number of times. Therefore,

(i). If p
(1)
1 is of a non-convex join, n is an even number then a

(l)
n−1 > 0 for l = 1, 2; if n is an odd

number, then a
(l)
n−1 = 0.

(ii). If p
(1)
1 is of a convex join, n is an even number, then a

(l)
n−1 = 0 for l = 1, 2; if n is an odd

number, then a
(l)
n−1 > 0.

Theorem 2.5. The degree n A-spline can achieve G2n−3 continuity by fitting locally the given
parametric or implicit curve at the join points.

Note 4.1. If n > 3, the coefficients bijk are free for i > 1 and j > 1. These degrees (= (n−2)(n−3)
2 )

of freedom can be used to interpolate/approximate points in the triangle, fairing the constructed
curve, or to achieve even higher order continuity at the joins.
Note 4.2. If n is an odd/even number and all the points are non-convex/ convex join, then each
b1,1,n−2 is free. This degree of freedom can be used to interpolate points in the triangle or to achieve
G2n−2 continuity(see §4.3).

2.1.5 Local Power Series Computation

A. Fitting to a parametric curve.
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Suppose we are given a parametric curve X(t) = [φ(t), ψ(t)]T in the neighborhood of p
(1)
1 and

assume X(0) = p
(1)
1 . Now we compute a

(1)
i defined in (11) (a

(2)
i are similarly computed). It follows

from (40) that the curve (15) and (16) in Cartesian xy-coordinates can be expressed as

Y1(α3) = [x1(α3), y1(α3)]T

= p
(1)
1 +

[
v

(1)
1 − p

(1)
1

]
α3 +

[
p

(1)
2 − p

(1)
1

] ∞∑
i=n−1

a
(1)
i (p

(1)
1 )αi3 (29)

Y2(α3) = [x2(α3), y2(α3)]T

= p
(2)
2 +

[
v

(2)
1 − p

(2)
2

]
α3 +

[
p

(2)
1 − p

(2)
2

] ∞∑
i=n−1

a
(2)
i (p

(2)
2 )αi3 (30)

Now we need to determine the so called β-matrix(see [93])

C(l) =


β1

β2 β2
1

β3 3β1β2 β3
1

β4 3β2
2 + 4β1 β3 6β2

1β2 β4
1

... ... ... ... ... ...

 =
[
β

(l)
ij (p

(1)
1 )
]

and a
(l)
i (p

(1)
1 ) for l = 1, 2 and i = n− 1, · · · , so that

Y ′l (0)
Y ′′l (0)

...
Y k
l (0)

 = C(l)


X ′(0)
X ′′(0)

...
Xk(0)

 , l = 1, 2 (31)

(31) is the condition of Gk continuity between two parametric curves. From (29)–(30) and (31), we
have

v
(l)
1 − p

(1)
1 = β

(l)
11 (p

(1)
1 )X ′(0)

Hence

β
(l)
11 (p

(1)
1 ) = (−1)l−1 ‖v

(l)
1 − p

(1)
1 ‖

||X ′(0)||
, l = 1, 2

Let nx = (v
(1)
1 −p

(1)
1 )/‖v(1)

1 −p
(1)
1 ‖ and ny be two unit vectors such that nTxny = 0 and det[nx, ny] = 1.

Let
X(i)(0) = γi(p

(1)
1 )ny + δi(p

(1)
1 )nx, i = 1, 2, · · · (32)

Then, γ1(p
(1)
1 ) = 0, δ1(p

(1)
1 ) = ‖X ′(0)‖ and

γi(p
(1)
1 ) = det

[
nx, X

(i)(0)
]
, δi(p

(1)
1 ) = det

[
X(i)(0), ny

]
and

Y
(k)
l (0) =

k∑
i=1

β
(l)
ki (p

(1)
1 )X(i)(0)

=

[
k∑
i=1

β
(l)
ki (p

(1)
1 )γi(p

(1)
1 )

]
ny +

[
k∑
i=1

β
(l)
ki (p

(1)
1 )δi(p

(1)
1 )

]
nx

14



where β
(l)
ki (p

(1)
1 ) are known for i = 2, · · · , k and l = 1, 2. Let

p
(1)
2 − p

(1)
1 = s(1)nx + t(1)ny, p

(2)
1 − p

(2)
2 = s(2)nx + t(2)ny

It follows from (29) and (30) that

Y
(k)
l (0) = k!a

(l)
k (p

(1)
1 )

[
s(l)nx + t(l)ny

]
, k ≥ 2, l = 1, 2

We have

β
(l)
k1 (p

(1)
1 ) =

∑k
i=2 β

(l)
ki (p

(1)
1 )

[
s(l)γi(p

(1)
1 )− t(l)δi(p(1)

1 )
]

t(l)‖X ′(0)‖

a
(l)
k (p

(1)
1 ) =

1

k!t(l)

k∑
i=2

β
(l)
ki (p

(1)
1 )γi(p

(1)
1 )

B. Fitting to discrete data
Suppose we are given a set of points {pi}. Let

∆0pi = pi

∆j+1pi =
σ(∆jpi+1 −∆jpi)

||pi+1 − pi||
+

(1− σ)(∆jpi −∆jpi−1)

||pi − pi−1||

where σ = ||pi−1−pi||
||pi+1p−pi||+||pi−pi−1|| . Then ∆jpi can be an approximation of Xj(t) at pi with X(t) as

an imaginary space curve.

The computation of a
(j)
i from Xj(t) is the same as before.

C. Fitting to an implicit curve.
Let g(x, y) = 0 be a given implicit curve to be approximated. First compute the singular points

and inflection points. These points will divide the curve into smooth and convex segments. For
each segment, form a point list by a tracing (see [31]) scheme, such that the normals at two adjacent
points have angle < π

2 . Then a G1 polygon for one segment is formed by the tangent lines at the
point list.

For each triangle, say [p1p2v1], the curve g(x, y) = 0 passes through p1, p2 and is tangent with
the line [piv1] for i = 1, 2. Let G(α1, α2, α3) be the barycentric form of g(x, y) over [p1p2v1]. Let
G1(α2, α3) = G(1− α2 − α3, α2, α3), then at p1, G1(α2, α3) = 0 can be expressed as a power series
α2 =

∑∞
i=0 aiα

i
3 by the following algorithm for f(x, y) = 0. Let

f0(x, y) = f(x, y) = y − a2x
2 + a0

0(x) + a0
1(x)y + · · ·+ a0

n(x)yn

with ord(a0
0) > 2. As a function of x, y = y(x) has order ≥ 2. Let y1 = y − a2x

2. Then the order
of y1 = y1(x) is ≥ 3. Let

f1(x, y1) = f0(x, y1 + a2x
2)

= y1 − a3x
3 + a1

0(x) + a1
1(x)y1 + · · ·+ a1

n(x)yn1

then ord(a1
0) > 3. Repeating this procedure, we get a2x

2, a3x
3 · · · . Then

∑∞
i=2 aix

i is the power
series expansion.

This algorithm is simple and easy to implement. If we want to compute a2x
2, a3x

3 · · · up to
akx

k, then the terms in aji (x) with degree > k − (j + 2)i can be deleted during the computation,

since these terms have no contribution to
∑k

i=2 aix
i. Hence the algorithm is also space effective.
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2.1.6 Cubic A-Splines Example

As an example, we describe cubic A-splines in detail. We omit the detail discussion of quadratic
A-splines, since it is easier and the conclusions arrived are similar to the ones in the literature [53]
and [80].

Suppose we are given parametric data at the join points, that is Xk, k = 1, 2, · · · . We shall
determine the coefficients bijk so that G2n−3 continuity is achieved. Furthermore, for the error
estimation (see section §5), we require

bijk+e3 <
bijk+e1

2
+
bijk+e2

2
(33)

G3 continuity: Consider a two segments cubic A-spline as in §4.1. Now suppose p1 is the join

point and assume that the coefficients b
(l)
111 = 0 for both segments. There are two cases that need

to be considered:

1. p1 is of non-convex join.
In this case, we have

a
(1)
2 (p1) = a

(2)
2 (p1) = 0, b̃

(1)
210 =

1

a
(1)
3 (p1)

, a
(1)
3 (p1) > 0,

b̃
(2)
120 =

1

a
(2)
3 (p1)

, a
(2)
3 (p1) > 0.

Since

a
(l)
3 =

1

6t(l)(p1)

[
β

(l)
32 (p1)γ2(p1) + β

(l)
33 (p1)γ3(p1)

]
=

1

6t(l)(p1)

[
β

(l)
33 (p1)γ3(p1)

]
=

1

6t(l)(p1)

[
β

(l)
11 (p1))3γ3(p1)

]
and (−1)l−1β

(1)
11 (p1) > 0, we have (−1)l−1t(l)(p1)γ3(p1) > 0. The geometric meaning is X ′′′(0) and

p2 − p1 are on the same side of the line < p1v1 >.

2. p1 is of convex join.
In this case, we have

b̃
(1)
210 = − b̃

(1)
102

a
(1)
2 (p1)

, b̃
(2)
120 = − b̃

(2)
012

a
(2)
2 (p1)

b̃
(1)
111 =

b̃
(1)
102

[
a

(1)
3 (p1)− a(1)

2 (p1)
]

+ a
(1)
2 (p1)[

a
(1)
2 (p1)

]2 = 0 (34)

b̃
(2)
111 =

b̃
(2)
012

[
a

(2)
3 (p1)− a(2)

2 (p1)
]

+ a
(2)
2 (p1)[

a
(2)
2 (p1)

]2 = 0 (35)

Since b̃
(1)
102 < 0, b̃

(2)
012 < 0, we require a

(l)
2 (p1) > 0, l = 1, 2. Since a

(l)
2 = β

(l)
22 (p1)γ2(p1)/2t(l)(p1), we

need to have t(l)(p1)γ2(p1) > 0. Hence X ′′(0) points to the inside of the polygon. It follows from
(34) and (35) that

b̃
(1)
102 = − a

(1)
2 (p1)

a
(1)
3 (p1)− a(1)

2 (p1)
, b̃

(2)
012 = − a

(2)
2 (p1)

a
(2)
3 (p1)− a(2)

2 (p1)
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In order to satisfy (33), we require

3a
(l)
3 (p1)− 4a

(l)
2 (p1) ≥ 0, l = 1, 2

These two inequalities, which have three unknowns γ2(p1), δ2(p1), γ3(p1), will have infinitely many
solutions. Therefore, we have proved the following theorem.

Theorem 2.6. At each non-convex join point, if X ′, X ′′ and X ′′′ are given such that γ1 = γ2 = 0,
(−1)l−1t(l)γ3 > 0 and at each convex join point, if X ′, X ′′ and X ′′′ are given such that γ1 = 0,

t(l)γ2 > 0 and 3a
(l)
3 − 4a

(l)
2 ≥ 0, l = 1, 2, then G3 continuous cubic A-splines exist that fit the given

data X ′, X ′′ and X ′′′ (with possibly different magnitudes).

G4 continuity: In order to achieve G4 continuity, we assume each join point is a non-convex join.
Consider the curve F =

∑
i+j+k=3 bijkB

n
ijk = 0 on the triangle [p1p2v1]. All the coefficients, except

b111 that is free, are determined as in the G3 continuity case. Now we use the free b111 to achieve
G4 continuity. It follows from (24)–(28) that

b̃
(1)
111 = −a

(1)
4 (p1)− 2a

(1)
3 (p1)[

a
(1)
3 (p1)

]2 = −a
(2)
4 (p2)− 2a

(2)
3 (p2)[

a
(2)
3 (p2)

]2 (36)

Since

a
(l)
4 (pl) =

β
(l)
43 (pl)γ3(pl) + β

(l)
44 (pl)γ4(pl)

24t(l)(pl)
, l = 1, 2

a
(l)
4 (pl) depend linearly on γ4(pl). Hence (36) can be written as

c1γ4(p1) + c2γ4(p2) = c3 (37)

This system of linear equations always have solutions and has one degree of freedom. Therefore,
we have

Theorem 2.7. If each join point is a non-convex join, and the data X(i), (i = 1, ..., 4) at each
join point are given such that

γ1 = γ2 = 0, (−1)l−1t(l)γ3 > 0, l = 1, 2

and (37) holds, then the G4 continuous cubic A-splines exist that fits the given points and derivative
data.

2.1.7 Parameterization of general algebraic plane curves by A-splines

In general, a degree d curve can be parameterized if it satisfies the Cayley - Riemann criterion.
Consider a curve Cd, with a d − 1 singular point. By sending that point to infinity, we can draw
lines which intersect the curve at one point each. The slopes of these pencil of lines obtains the
parameterization of the curve.

An A-spline of degree n over the triangle [p1p2p3] is defined by

Gn(x, y) := Fn(α) = Fn(α1, α2, α3) = 0, (38)

where

Fn(α1, α2, α3) =
∑

i+j+k=n

bijkB
n
ijk(α1, α2, α3), Bn

ijk(α1, α2, α3) =
n!

i!j!k!
αi1α

j
2α

k
3 ,
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Figure 6: (a): Convex case; (b) Non-convex case; (c) C0 A-spline; (d) Quadratic A-spline.

and (x, y)T and (α1, α2, α3)T are related by x
y
1

 =

[
p1 p2 p3

1 1 1

] α1

α2

α3

 . (39)

Here the objective is to get an A-spline parameterization of the following form:

X(t) =
n∑
i=0

wiB
n
i (t)bi

/ n∑
i=0

wiB
n
i (t), t ∈ [0, 1], (40)

where bi ∈ R3, wi ∈ R, and Bn
i (t) = {n!/[i!(n − i)!]}ti(1 − t)n−i. Without loss of generality, we

may assume that w0 = 1 (otherwise we could divide through by t and have a parameterization of
one lower degree). Next, under the transformation

t =
t′ + at′

1 + at′
, a > −1, t′ ∈ [0, 1], (41)

the curve (40) will preserve its form, that is

X(t) =

n∑
i=0

(1 + a)iwiB
n
i (t′)bi

/ n∑
i=0

(1 + a)iwiB
n
i (t′), t′ ∈ [0, 1].

Therefore, we may assume further that wn = 1 by setting a = w
−1/n
n −1, which makes (1+a)nwn =

1, in the transformation (41).
We consider first convex C1 continuous A-splines (see Figure 6(a)). An A-spline being C1

implies that bn00 = b0n0 = bn−1,01 = b0,n−1,1 = 0, as shown in [30]. The C0 continuous A-splines
on the triangle [p1p2p3] can be made into C1 continuous A-splines on the triangle [p1p2p

′
3] (see

Figure 6(c)) through the use of the subdivision formula (see [53]). In our applications in the
parameterization of cubic (n = 3) A-patches, the coefficients a, b, c are fixed and d, e, f are
parameters to be determined, where

a = b210, b = b120, c = b111, d = b102, e = b012, f = b003.

The non-convex case (see Figure 6(b)) can be converted to the convex case by first computing the
intersection point p′2, which leads to a linear equation for n = 3, and then computing the tangent
of the curve at p′2. Note that this tangent does not depend upon the coefficients d, e, f .

Quadratic A-splines It is not difficult to see that the parametric form of a C1-continuous
quadratic A-spline should have the following form (see Figure 6(d)) since it interpolates the points
p1 and p2 and is tangent to the lines [p1p3] and [p2p3] at the points p1 and p2, respectively.

X(t) =
p1B

2
0(t) + w1p3B

2
1(t) + p2B

2
2(t)

B2
0(t) + w1B2

1(t) +B2
2(t)

, t ∈ [0, 1], (42)
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where w1 is a parameter to be determined. This is called a (2/2) rational parameterization because
the of the numerator and denominator are each of degree 2 in t. In order for the quadratic A-spline
to be rationally parameterizable, we must have

w1 =

√
− b110

2b002
≥ 0. (43)

Cubic A-splines We first show that an irreducible C1-continuous cubic A-spline never has a
(2/2) rational parameterization. If we substitute the αs defined by (39) into F3(α) = 0, we have∑6

i=0 ciB
6
i (t) ≡ 0, where

c0 = b300, c1 = b201w1, c2 =
1

5
b210 +

4

5
b102w

2
1, c3 =

3

5
b111w1 +

2

5
b003w

3
1,

c6 = b030, c5 = b021w1, c4 =
1

5
b120 +

4

5
b012w

2
1.

Since B6
i (t), i = 0, . . . , 6, are linearly independent, we have ci = 0, i = 0, . . . , 6. It then follows

that
a+ 4dw2

1 = 0, 3cw1 + 2fw3
1 = 0, b+ 4ew2

1 = 0

and hence w1 =
√
−a/4d. The coefficients of the A-spline must satisfy

d

a
=

f

6c
=
e

b
, (44)

where
a = b210, b = b120, c = b111, d = b102, e = b012, f = b003.

However, the substitutions (44) turn the A-spline F3(α) = 3aα2
1α2 +3bα1α

2
2 +6cα1α2α3 +3dα1α

2
3 +

3eα2α
2
3 + fα3

3 = 0 into F3(α) = (α1α2 + d/a α2
3)(aα1 + bα2 + 2cα3) = 0, which is the product of

a line and an ellipse. The parameterization covers the ellipse, and is essentially the same as the
(2/2) parameterization of a quadratic A-spline.

The (3/3) rational parametric form of a C1-continuous cubic A-spline should have the following
form in order to interpolate the points p1 and p2 and be tangent to the lines [p1p3] and [p2p3] at
p1 and p2, respectively:

X(t) =
p1B

3
0(t) + w1[p1 + α(p3 − p1)]B3

1(t) + w2[p2 + β(p3 − p2)]B3
2(t) + p2B

3
3(t)

B3
0(t) + w1B3

1(t) + w2B3
2(t) +B3

3(t)
, (45)

where α, β, w1, w2 are parameters to be determined.
We will show that the equation

G[p1p2p3](a, b, c, d, e, f) = 48a3e3f2 − 9a2b2f4 + 72a2bcef3 − 72a2bde2f2 − 96a2c2e2f2

− 288a2cde3f + 432a2d2e4 + 72ab2cdf3 − 72ab2d2ef2 − 8abc3f3

− 552abc2def2 + 1152abcd2e2f − 864abd3e3 + 48ac4ef2 + 576ac3de2f (46)

− 864ac2d2e3 + 48b3d3f2 − 96b2c2d2f2 − 288b2cd3ef + 432b2d4e2

+ 48bc4df2 + 576bc3d2ef − 864bc2d3e2 − 288c5def + 432c4d2e2 = 0

gives a condition on the A-spline coefficients that guarantee the A-spline has a rational parameter-
ization. The proof of this is rather technical.

We will wish to construct rationally parameterizable cubic A-splines defined on a triangle
[p1p2p3] and passing through p1 and p2, that are not necessarily tangent to the edges [p1p3]
and [p2p3] at p1 and p2. This situation is illustrated in Figure 6(c), where the tangent lines at p1

and p2 intersect at some other point p′3. These cubic A-splines will have one degree of freedom, the
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weight b003, which we will use to satisfy (46). In order to accomplish this we define a coordinate
system α′1α

′
2α
′
3 (where α′1 + α′2 + α′3 = 1) that has its origin (0, 0, 1) at p′3 instead of p3, while

keeping the points (1, 0, 0) and (0, 1, 0) fixed.
The general cubic curve passing through p1 and p2 is

3b210α
2
1α2 + 3b201α

2
1α3 + 3b120α1α

2
2 + 6b111α1α2α3 (47)

+ 3b102α1α
2
3 + 3b021α

2
2α3 + 3b012α2α

2
3 + b003α

3
3 = 0 .

The tangent lines to this curve at p1 and p2 are

b210α2 + b201α3 = 0

b120α1 + b021α3 = 0 ,

and these intersect at the point

(α1, α2, α3) =
(b210b021, b201b120,−b210b120)

b210b021 + b201b120 − b210b120
.

The linear transformation that maps
(α1, α2, α3) = (1, 0, 0), (0, 1, 0), (b210b021, b201b120,−b210b120)/(b210b021+b201b120−b210b120) into (α′1, α

′
2, α
′
3) =

(1, 0, 0), (0, 1, 0), (0, 0, 1), respectively is

α1 = α′1 +
b210b021

b210b021 + b201b120 − b210b120
α′3

α2 = α′2 +
b201b120

b210b021 + b201b120 − b210b120
α′3 (48)

α3 = − b210b120

b210b021 + b201b120 − b210b120
α′3

with the inverse

α′1 = α1 −
b021

b120
α3

α′2 = α2 −
b201

b210
α3 (49)

α′3 = −b210b021 + b201b120 − b210b120

b210b120
α3

Thus the transformation (48) maps (47) into an equation of the form

a′α′1
2
α′2 + 3b′α′1α

′
2

2
+ 6c′α′1α

′
2α
′
3 + 3d′α′1α

′
3

2
+ 3e′α′2α

′
3

2
+ f ′α′3

3
= 0 .

Parameterization of algebraic space curves Space curves are projected to planes to obtain
plane curves, which are then parameterized by the method described in the previous sections. It is
shown that such a projection always exists. We need to obtain a birational map, which maps the
space curve to a plane curve which has the same genus.

2.1.8 Inversion of Parameterizations

Parameterizations tell how to map a point in parameter space to a curve. The inversion of this map,
called a chart in differential topology, tells how to map a point on a curve to its parameter value.
Certain assumptions must be made on the parameterization in order for it to have a computable
inverse.
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Similar to the case of curves, a parametric surface is a very special algebraic variety of dimension
2 in x, y, z, s, t space, since the surface lies in the 3-dimensional subspace defined by x, y, z and
furthermore points on the surface can be put in 1-to-1 rational correspondence with points on the
2-dimensional sub-space defined by s, t.

Example parametric (rational algebraic) surfaces are degree two algebraic surfaces (quadrics)
and most degree three algebraic surfaces (cubic surfaces). The cylinders of nonsingular cubic curves
and the cubic surface cone are of not rational.

Other examples of rational algebraic surfaces are Steiner surfaces which are degree four surfaces
with a triple point, and Plücker surfaces which are degree four surfaces with a double curve. In
general, a necessary and sufficient condition for the rationality of an algebraic surface of arbitrary
degree is given by Castelnuovo’s criterion: Pa = P2 = 0, where Pa is the arithmetic genus and P2

is the second plurigenus [107]. Algorithms for symbolically deriving the parametric equations of
degree two and three rational surfaces are given in [4, 5, 92].

Both the parametric and the implicit representation of algebraic curve segments and algebraic
surface patches can be represented in either Bernstein-Bézier or B-spline bases.

Rational parametric algebraic surface The canonical representation of a rational parametric
algebraic surface patch in x, y, z space are given by

X = P1(s, t),

Y = P2(s, t),

Z = P3(s, t),

W = P4(s, t).

or 
x = X/W,

y = Y/W,

z = Z/W,

where the Pi are polynomials in any of the above appropriate bases and the variables/parameters
s, and t range over a finite interval (or canonically the unit interval [0,1], see [28]).

The domain of the mapping for rational algebraic parametric surfaces is usually one of the
following two kinds:

• Tensor domain: The parameters s, t are defined over the interval [0,1]. ( s ∈ [0, 1], t ∈ [0, 1] )

• Barycentric domain: This is a triangular domain, with the parameters ranging over a finite
interval and satisfying the condition: 0 ≤ s, t ≤ 1.

Multi-sided patches:
Base points are isolated pairs of parameter values which satisfy P1 = P2 = P3 = P4 = 0 and

hence cause the parametric map to be ill-defined (0/0).
For example, in the hyperboloid of 1 sheet, we see a pair of lines being absent due to the

ill-formed mapping.
The image in x, y, z of the base points in the parameter domain, are in general curves, yielding

multi-sided patches.

2.2 Standard Rational Representation

Quite often geometric designers and engineers using RBB (Rational Bernstein-Bézier) curve like to
have it in a standard form, where the denominator polynomial has only positive coefficients. This
assumption is quite strong, but rids the curve of real poles (roots of the denominator polynomial)
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and gives the RBB curve its convex hull property. In this gem, we show how to convert a smooth
rational curve with no poles in the interval [a, b] into a finite number of C∞ standard RBB curve
segments. We also show that for a degree n smooth rational curve, the number of converted RBB
curve segments is bounded above by n(n−1)

2 .
Without loss of generality, we assume that the given rational curve has no poles in the interval

[a, b], since it is straightforward to break the curve first at the poles. An essential step is to transform
the rational curve into Bernstein-Bézier (BB) form. Let

R(s) = [x(s), y(s), z(s)]T /w(s)

be a space rational curve on the interval [a, b], where x(s), y(s), z(s) and w(s) are polynomials of
degree n. Since

ti =
n∑
j=i

Cji
Cni

Bn
j (t)

where

t =
s− a
b− a

∈ [0, 1], Bn
j (t) = Cni t

j(1− t)n−j , Cni =
n!

i!(n− i)!
we have, for any polynomial P (s) of degree n

P (s) =
n∑
i=0

cit
i =

n∑
i=0

(
i∑

j=0

Cij
Cnj

cj)B
n
i (t) =

n∑
i=0

b′iB
n
i (t)

where b′i =
∑i

j=0

Ci
j

Cn
j
cj . Therefore R(s) can be expressed as a RBB curve over [a,b]

R(s) =

n∑
i=0

wibiB
n
i (t)/

n∑
i=0

wiB
n
i (t)

where wi ∈ IR, bi ∈ IR3 are Bézier weights and points, respectively.

2.2.1 Converting a Rational Curve to a Standard Rational Bernstein-Bézier Repre-
sentation

The remaining step now is to transform the RBB curve into the standard RBB representation,
where the denominator polynomial, say P (t), has only positive coefficients.

We now show how the denominator polynomial P (t) =
n∑
i=0

wiB
n
i (t), t ∈ [0, 1] is divided

over subintervals, say, 0 = t0 < t1 < . . . < tl+1 = 1, such that the BB-form of P (t) on each of the
subintervals P (t)|[titi+1] = Pi(t) = Pi(ti+(ti+1−ti)s) = P̃i(s) =

∑
wijB

n
i (s) has positive coefficients.

We assume P (t) > 0 over [0,1] since the RBB has no poles in [0,1]. Compute the first breakpoint
t1 = c as explained below. The remaining breakpoints can be computed in a similar fashion. By
the subdivision formula, Bn

i (ct) =
∑n

j=0 Bj
i (c)B

n
j (t). We have in [0,c], (s = ct; t ∈ [0, 1])

P (s) = P (ct) =

n∑
i=0

wiB
n
i (ct)

=

n∑
i=0

wi

n∑
j=0

Bj
i (c)B

n
j (t)

=

n∑
j=0

qj(c)B
n
j (t)
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Old control point

New control point

Breakpoint

Figure 7: Denominator Polynomial with Positive Bézier Coefficients.

where qj(c) =
∑j

i=0wiB
j
i (c) is a degree j polynomial in BB form.

Note that the limc→0 qj(c) = w0, since Bj
0(0) = 1, Bj

i (0) = 0, i > 0. But P (0) = w0, and since
P (t) > 0 for t ∈ [0, 1] we know that w0 > 0. Take c < min{all roots of qj(c) in [0, 1]} and c > 0.
This c will guarantee that all qj(c) are positive.

Example 2.8. Figure 7 shows an example of this conversion for the denominator polynomial
(1− x)5 − x(1− x)4 + 2x2(1− x)3 + x3(1− x)2 − x4(1− x) + 0.5x5

The initial quintic Bézier coefficients over [0,1] are

bb[0] = 1.000000 bb[1] = −0.200000 bb[2] = 0.200000

bb[3] = 0.100000 bb[4] = −0.200000 bb[5] = 0.500000

of which two coefficients are negative. The control points are plotted in Figure 1 with dark colored
dots. The above conversion yields two pieces in standard BB form over [0,1] with 0.640072 as the
breakpoint. The new coefficients of the two quintic BB pieces are

bb[0] = 1.000000 bb[1] = 0.231913 bb[2] = 0.119335

bb[3] = 0.111575 bb[4] = 0.060781 bb[5] = 0.060781

and

bb[0] = 0.060781 bb[1] = 0.060781 bb[2] = 0.076842

bb[3] = 0.125649 bb[4] = 0.248051 bb[5] = 0.500000

The new control points are plotted in Figure 1 with circles. The curve itself is, of course, the same.

2.2.2 Upper Bound on RBB pieces

We give an upper bound for the total number of RBB pieces required for a degree n rational curve.
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Theorem. Let p(x) =
∑n

i=0wiB
n
i (x),deg(p) = n, and p(x) > 0 on [0, 1]. Then there exists

0 = x0 < x1 < x1 < . . . x` < x`+1 = 1 (1)

with

` ≤ n(n− 1)

2
(2)

such that the BB form of p(x) on [xi, xi+1] has positive and monotonic coefficients.

Proof. Let Z =
⋃n−1
i=1 {x : p(j)(x) = 0}. Then the cardinality of Z ≤ n(n−1)

2 . Take distinct xi in
Z
⋂

(0, 1) and arrange them in increasing order, to obtain (1) and (2). Next subdivide the interval
[0,1] into sub-intervals (xi, xi+1) for (i = 0, 1, . . . , `), such that p(j)(x) has no zero in (xi, xi+1) for

j = 0, 1, . . . , n − 1. Let qi(t) := p(xi(1 − t) + xi+1t). Then djqi(t)
dtj

= djp(x)
dxj

(xi+1 − xi)j . Hence

q
(j)
i (t) has no zero in (0,1) for j = 0, 1, . . . , n− 1. Further, q

(0)
i (t) has no zero on [0,1] by the earlier

assumption.

Now we prove that the BB form qi(t) =
∑n

j=0w
(i)
j B

n
j (t), i = 0, 1, . . . , ` has positive and mono-

tonic coefficients. In fact we prove a more general conclusion.

Lemma. If q(t) is a polynomial of degree n, and q(j)(t) has no zero in the open interval (0,1) for

j = 0, 1, . . . , n, then the coefficients of the BB form representation q(j)(t) =
∑n−j

i=0 w
(j)
i Bn−j

i (t) are
monotonic and have the same sign for any fixed j.
Proof. We prove this fact by induction. For j = n, q(j)(t) is a nonzero constant and the required
conclusion is obviously true. In general, suppose the Lemma is true for j + 1, then for j we have

since q(j)(t) =
∑n−j

i=0 w
(j)
i Bn−j

i (t)

q(j+1)(t) =

n−j−1∑
i=0

w
(j+1)
i Bn−j−1

i (t)

=

n−j−1∑
i=0

∆w
(j)
i Bn−j−1

i (t).

where ∆w
(j)
i = w

(j)
i+1 − w

(j)
i , i.e., w

(j)
i+1 − w

(j)
i = w

(j+1)
i . Since w

(j+1)
i does not change sign, hence

w
(j)
i is monotonic. But w

(j)
0 = q(j)(0) and w

(j)
n−j = q(j)(1) have the same sign. Hence w

(j)
i has the

same sign and the induction is complete.

Back to the proof of the theorem. We know from the above Lemma that the coefficients w
(i)
j of

qi(t) are monotonic for fixed i. Hence they are positive since w
(i)
0 and w

(i)
n are positive.

It should be noted that the partition given in the Theorem guarantees not only positivity but
also monotonicity of coefficients. This is often important because this stronger condition on the
coefficients prevents the standard RBB representation from having very small positive denominator
coefficients.

2.3 Dynamic Curves

2.3.1 Energy Formulations of A-Splines

2.3.2 Arc Length

Recall that cartesian and barycentric coordinates are related by x
y
1

 =

 x1 x2 x3

y1 y2 y3

1 1 1

  α1

α2

α3

 . (50)
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Equation (50) may be rewritten without the use of α3 as[
x
y

]
=

[
x1 − x3 x2 − x3

y1 − y3 y2 − y3

] [
α1

α2

]
+

[
x3

y3

]
= J−1

[
α1

α2

]
+

[
x3

y3

]
(51)

J is the Jacobian of α in terms of x and y:

J =
∂(α1, α2)

∂(x, y)
=

1

∆

[
y2 − y3 x3 − x2

y3 − y1 x1 − x3

]
, (52)

where

∆ =

∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

1 1 1

∣∣∣∣∣∣ . (53)

Given an implicit function F (x, y) = 0, assume that x and y, and thereby the arc length s, are
all smooth functions of an independent variable u. Then by the arc length relation (ds/dx)2 =
1 + (dy/dx)2 and by differentiating

with respect to u to obtain dp/du = J−1dα/du, we also have(
ds

du

)2

=

(
dx

du

)2

+

(
dy

du

)2

=

(
dpT

du

)(
dp

du

)
(54)

=

(
dαT

du

)
J−TJ−1

(
dα

du

)
= d2

13

(
dα1

du

)2

+ 2c12

(
dα1

du

)(
dα2

du

)
+ d2

23

(
dα2

du

)2

where

dij =
√

(xi − xj)2 + (yi − yj)2

c12 = (x1 − x3)(x2 − x3) + (y1 − y3)(y2 − y3) .

2.3.3 Curvature

Given an implicit function F (x, y) = 0, we have dF = 0, or

Fxdx+ Fydy = 0 (55)

Assuming that in a small neighborhood of point (x, y), y is a function of the independent variable
x, from (55) we have

yx = −Fx
Fy

(56)

By differentiating (56) with respect to x, we obtain

yxx = − ∂

∂x

(
Fx
Fy

)
= −

FyyF
2
x + FxxF

2
y − 2FxyFxFy

F 3
y

.
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This allows us to express the curvature of the function F (x, y) = 0, or S(α1, α2) = 0 in BB
form, as

κ =
|yxx|

(1 + y2
x)3/2

=

∣∣∇FTPT∇2FP∇F
∣∣

(∇FT∇F )3/2
(57)

=

∣∣∇STJPTJT∇2SJPJT∇S
∣∣

(∇STJJT∇S)3/2

where the permutation matrix P is defined as

P =

[
0 1
−1 0

]
.

Recall that smoothness of certain degrees and local interpolation of certain degrees are enforced
by some linear equality constraints

bTC(p) = 0 , (58)

and connectedness of the curve is enforced by additional linear sign inequalities

bTS > 0 . (59)

2.3.4 Elastic curves

Let a be the material coordinate of a point on a plane curve C with parameterization w(a). For a
parametric representation w(a), the elastic potential energy of a deformable curve is as follows:

E =

∫
C

[β(a)|wa|2 + γ(a)|waa|2] da (60)

where a is the intrinsic or material coordinate of the curve. Most of the elastic curves that are built
on parameterizations other than the intrinsic, are referred to as “elastica” (Jou and Han, 1990a;
Mumford, 1994).

The first step of defining the elastic energy of a geometric entity is actually the mapping between
the material coordinates and some parameterization of the geometric entity. For a piecewise repre-
sentation, the joining points of the pieces could be identified as such a parameterization. Namely,
each joining point is associated with fixed material coordinates during a deformation process. How-
ever, such a parameterization is too coarse. A second level parameterization is needed to describe
detail changes, especially when there is substantial freedom within each entity. In the following
energy curves, we assume that the material is uniformly distributed along the curve. Thus in place
of the material coordinate a we will use the arc length coordinate s, and the elastic potential energy
in (60) becomes (Mumford, 1994):

E =

∫
C

(β + γκ2) ds . (61)

The terms β and γκ2 represent the stretching and bending energy, respectively.

2.3.5 Elastic strain energy model of A-splines

Let S(α1, α2) = 0 be an A-spline defined within a triangle ∆p1p2p3 (see figure 8). The curved piece
interpolates p1 and p3 and is tangent to p1p2 and p3p2 at p1 and p3 respectively. Let F (x, y) = 0
be the representation of the spline in Cartesian coordinates. The Cartesian coordinates of p1,
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Figure 8: Representation of points in local BB coordinates. Point pi has Cartesian coordinates
(xi, yi), i = 1, 2, 3. A point (α1(u), α2(u)) is given by the intersection of the spline with the line
connecting the points (u, 0) and (0, 1) (p2) in BB coordinates.

p2 and p3 are (x1, y1), (x2, y2) and (x3, y3), respectively, and their local barycentric coordinates,
suppressing the third coordinate α3 = 1− α1 − α2, are (1, 0), (0, 1), and (0, 0), respectively.

For several purposes, such as computing the energy (61) below, we need to express the spline co-
ordinates as functions of a single parameter, say u. One effective way of doing this is to parametrize
the A-spline within a control triangle by finding its point of intersection with a line segment con-
necting the apex point (p2) to a point on the base (p3p1). It was shown in (Bajaj and Xu, 1992)
that such a line segment always intersects the A-spline exactly once when the constraints (58)
and (59) are satisfied, and there this technique was used to obtain parameterizations of various
quadratic and cubic A-splines. We simply let u parametrize the line segment p3p1, so that in BB
coordinates, p3p1 is given by (u, 0), 0 ≤ u ≤ 1.

Now using (61), (57), and (54) we can write the total energy as

Etotal =

∫
C

(β + γκ2) ds

=

∫ 1

0

[(
dαT

du

)
J−TJi

(
dα

du

)]1/2 (
β + γκ2

)
du (62)

=

∫ 1

0

[(
dαT

du

)
J−TJ−1

(
dα

du

)]1/2
[
β +

γ
(
∇STJPTJT∇2SJPJT∇S

)2(
∇STJJT∇S

)3
]
du

2.3.6 Simplified Elastic Strain Energy Model of A-Splines

Since the integrand, call it g(u), in (62) cannot be integrated symbolically in general, we wish
to find an approximation to the total energy that can be computed quickly compared to the
time- consuming numerical integration involved with (62). An ideal candidate is apply Simpson’s
rule. Using just three points in the interest of computational speed, this gives the approximation
Etotal = [g(0) + 4g(1/2) + g(1)]/6. However, for many common parameterizations g(u) → ∞ as
u → 0 or 1. In this case we make a change of variables to eliminate the singularity, and use a
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Simpson’s rule approximation to the result.

2.3.7 Energy Optimization

We now consider how to minimize the different energy functions of the earlier section over the
constrained degrees of freedom (domain vertices and control weights) of the A-spline curve.

2.3.8 Local Minimization of Total Energy

Here we take into account both the bending and stretching energy as defined in equation (61) and
expressed by equation (62). The minimization is obtained locally by varying the free weights of
each individual A-spline curve within its triangle.

An energy-minimized setting is a solution to

∇bEtotal = 0 (63)

or ∫ 1

0
∇b

{[(
dαT

du

)
J−TJ−1

(
dα

du

)]1/2
[
β +

γ
(
∇STJPTJT∇2SJPJT∇S

)2(
∇STJJT∇S

)3
]}

du = 0 .

2.3.9 Exact solutions

System 63 is in general a nonlinear system of b. A nonlinear system is not guaranteed to be solvable.
However, by restricting the freedom to one variable, we reduce to the system to a univariate non-
linear system, which is easy to solve.

Let b be a vector function of some parameter t. For an A-spline curve, system 63 is reduced to

dE(t)

dt
= 0 .

Let

f(t) =
dE(t)

dt

=

∫ 1

0

d

dt

{[(
dαT

du

)
J−TJ−1

(
dα

du

)]1/2
[
β +

γ
(
∇STJPTJT∇2SJPJT∇S

)2(
∇STJJT∇S

)3
]}

du

so that

f ′(t) =

∫ 1

0

d2

dt2

{[(
dαT

du

)
J−TJ−1

(
dα

du

)]1/2
[
β +

γ
(
∇STJPTJT∇2SJPJT∇S

)2(
∇STJJT∇S

)3
]}

du .

f(t) and f ′(t) are both continuous.
In order to solve these equations, we need a parameterization of the A-spline.
We can use standard methods, such as Newton’s method, to solve for the roots. Note that the

evaluations of f(t) and f ′(t) would involve numerical integrations.

2.3.10 Low degree A-splines

We now proceed to derive parameterizations of linear and quadratic A-splines. Doing the linear
case first, we observe that a parameterization of a general line in BB form

S(α1, α2) = b100α1 + b010α2 + b001(1− α1 − α2) = 0 (64)
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is given by
α1 = u α2 = 0 (α3 = 1− u) , (65)

0 ≤ u ≤ 1 .

Then ∇S = [0 1]T and ∇2S is the 2 × 2 zero matrix, so κ = 0 in (57) and (62), which must be
the case for a straight line segment. Thus only the stretching energy is present in this formulation.
Equation (62) then reduces to

Etotal = βd13 , (66)

a multiple of the arc length, here the distance from p1 to p3, as expected.
Now we present an example of an energy-minimizing quadratic A-spline with C1 continuity.

First we derive the general equation for such a curve in BB form. The general quadratic spline is
S(α1, α2) = b200α

2
1 +2b110α1α2 +2b101α1(1−α1−α2)+b020α

2
2 +2b011α2(1−α1−α2)+b002(1−α1−

α2)2 = 0. However, S(1, 0) = 0 ⇒ b200 = 0 and S(0, 0) = 0 ⇒ b002 = 0. Furthermore, the tangent
to S(α1, α2) at (1, 0) is parallel to the line α1+α2 = 1. Therefore dα2/dα1 = −(dS/dα1)/(dS/α2) =
−1, or dS/dα1 = dS/dα2 at that point. This now implies that b110 = 0. Also, the tangent to
S(α1, α2) at (0, 0) is parallel to the α2-axis. Therefore dS/dα2 = 0 there, and this implies that
b011 = 0. We now have

S(α1, α2) = 2b101α1(1− α1 − α2) + b020α
2
2 = 0 , (67)

in accordance with Bajaj and Xu (1996).
We now parametrize the quadratic spline as described in Section 2.3.5. Intersecting the curve

(67) with the line α1 = u(1− α2) yields (Bajaj and Xu, 1992):

α1(u; b) =
u

1 +
√

2b101u(1− u)
α2(u; b) =

√
2b101u(1− u)

1 +
√

2b101u(1− u)
, (68)

0 ≤ u ≤ 1 .

Here b denotes the column vector of the coefficients bijk, and in this case b consists of the single
element b101.

We find that

J−TJ−1 =

 d2
13 c12

c12 d2
23

 , JPJT =

 0 − 1
∆

1
∆ 0

 ,

JPJT =

 0 1
∆

− 1
∆ 0

 , JJT =


d2

23

∆2 −c12

∆2

−c12

∆2

d2
13

∆2

 ,

[(
dαT

du

)
J−TJ−1

(
dα

du

)]1/2

={
4u(1− u)d2

13 + 2b
√
u(1− u)[(1− 2u)(d2

23 − d2
12) + d2

13]

+b2[−u(1− 2u)d2
12 + u(1− u)d2

13 + (1− u)(1− 2u)d2
23]
}1/2

/{
2
√
u(1− u)[1 + b

√
u(1− u)]2

}
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and that the curvature satisfies

κ2 =

(
∇STJPTJT∇2SJPJT∇S

)2(
∇STJJT∇S

)3
= 4b2∆2

[
1 + b

√
u(1− u)

]6
/{

4u(1− u)d2
13 + 2b

√
u(1− u)[(1− 2u)(d2

23 − d2
12) + d2

13]

+b2[−u(1− 2u)d2
12 + u(1− u)d2

13 + (1− u)(1− 2u)d2
23]
}3

.

Consequently the total energy as given by (62) equals

Etotal =

∫ 1

0

{
β

( {
4u(1− u)d2

13 + 2b
√
u(1− u)[(1− 2u)(d2

23 − d2
12) + d2

13]

+b2[−u(1− 2u)d2
12 + u(1− u)d2

13 + (1− u)(1− 2u)d2
23]
}1/2

/
{

2
√
u(1− u)

[
1 + b

√
u(1− u)

]2
})

+ γ

[
2b2∆2

[
1 + b

√
u(1− u)

]4
/(√

u(1− u)
{

4u(1− u)d2
13 (69)

+ 2b
√
u(1− u)[(1− 2u)(d2

23 − d2
12) + d2

13]

+b2[−u(1− 2u)d2
12 + u(1− u)d2

13 + (1− u)(1− 2u)d2
23]
}5/2

)]}
du .

Note that as b→ 0, the conic spline approaches the line segment from p1 to p3, and Etotal → βd13,
in accord with (66).

Numerical integration of (69) can be tricky because the integrand, call it g(b, u), goes to infinity
as u approaches 0 or 1. It is true that g(b, u) is integrable over [0, 1] since infinity is approached
as u−1/2 as u → 0 and as (1 − u)−1/2 as u → 1. Numerical evaluation of this integral is made
easier with the following changes of variable: Let u = v2 for u ∈ [0, 1/2] and let u = 1 − w2 for
u ∈ [1/2, 1]. These substitutions eliminate the singularities at the endpoints, and we have this
equivalent expression for the total energy:
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Etotal =

∫ 1/
√

2

0

[
β
({

4v2(1− v2)d2
13 + 2bv

√
1− v2

[
(1− 2v2)(d2

23 − d2
12) + d2

13

]
+b2[−v2(1− 2v2)d2

12 + v2(1− v2)d2
13 + (1− v2)(1− 2v2)d2

23]
}1/2

/
[√

1− v2
(

1 + bv
√

1− v2
)2
])

+ 4γ∆2b2
(

(1 + bv
√

1− v2)4
/

√
1− v2

{
4v2(1− v2)d2

13 + 2bv
√

1− v2
[
(1− 2v2)(d2

23 − d2
12) + d2

13

]
+b2[−v2(1− 2v2)d2

12 + v2(1− v2)d2
13 + (1− v2)(1− 2v2)d2

23]
}5/2

)]
dv

+

∫ 1/
√

2

0

[
β
({

4w2(1− w2)d2
13 + 2bw

√
1− w2

[
(1− 2w2)(d2

12 − d2
23) + d2

13

]
(70)

+b2[(1− w2)(1− 2w2)d2
12 + w2(1− w2)d2

13 − w2(1− 2w2)d2
23]
}1/2

/
[√

1− w2
(

1 + bw
√

1− w2
)2
])

+ 4γ∆2b2
(

(1 + bw
√

1− w2)4
/

√
1− w2

{
4w2(1− w2)d2

13 + 2bw
√

1− w2
[
(1− 2w2)(d2

12 − d2
23) + d2

13

]
+b2[(1− w2)(1− 2w2)d2

12 + w2(1− w2)d2
13 − w2(1− 2w2)d2

23]
}5/2

)]
dw

Case study

Suppose a quadratic curve F (x, y) = 0 passes through the points p3 = (0, 0) and p1 = (1, 0),
and that we are given that the tangent lines at these points have slopes 2 and −3, respectively.
Then the intersection of the tangent lines is p2 = (3/5, 6/5). In this case (51) gives (α1, α2) =
((2x − y)/2, 5y/6). We take b020 = −1 as in (Bajaj and Xu, 1992), and take β = 1 and γ = 1.
Then d12 = 2

√
10/5, d13 = 1, d23 = 3

√
5/5, ∆ = 6/5, and the integral we wish to minimize is this

specialization of (70):

Etotal =

∫ 1/
√

2

0

[({
4v2(1− v2) + 4bv

√
1− v2(3− v2)/5 + b2[(29v4 − 30v2 + 9)/5]

}1/2
/

[√
1− v2

(
1 + bv

√
1− v2

)2
])

+ (144/25)b2
(

(1 + bv
√

1− v2)4
/

√
1− v2

{
4v2(1− v2) + 4bv

√
1− v2(3− v2)/5 + b2[(29v4 − 30v2 + 9)/5]

}5/2
)]

dv

+

∫ 1/
√

2

0

[({
4w2(1− w2) + 4bw

√
1− w2(2 + w2)/5 + b2[(29w4 − 28w2 + 8)/5]

}1/2
/

[√
1− w2

(
1 + bw

√
1− w2

)2
])

(71)

+ (144/25)b2
(

(1 + bw
√

1− w2)4
/

√
1− w2

{
4w2(1− w2) + 4bw

√
1− w2(2 + w2)/5 + b2[(29w4 − 28w2 + 8)/5]

}5/2
)]

dw
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Figure 9: In these figures p1 = (1, 0), p2 = (3/5, 6/5), and p3 = (0, 0) in Cartesian coordinates.
(a): The exact energy-minimizing quadratic A-spline (72), with C1 continuity at the endpoints,
obtained when b101 = 0.356. (b) The simplified energy-minimizing A-spline (75), obtained when
b101 = 0.366. (c) Superposition of the curves in (a) and (b).

The function in (71) could not be integrated symbolically, so it and its derivative with respect
to b were integrated numerically for several different values of b =

√
b101. The integral attained its

minimum value of 5.63763 at b = 0.844, or b101 = 0.356. This gives an ellipse whose equation in
Cartesian coordinates is

6.408x2 − 1.068xy + 5.182y2 − 6.408x+ 3.204y = 0 . (72)

This elliptic arc is shown in Figure 9(a).

2.3.11 Local Minimization of Simplified Energy

Since the expression (69) for the strain energy is quite complicated, a simplified form of the energy
may be desired as indicated in Section 2.3.6. We would like a simple approximation to the integral
in (69). This can be tricky because the integrand, call it g(b, u), goes to infinity as u approaches 0
or 1. It is true that g(b, u) is integrable over [0, 1] since infinity is approached as u−1/2 as u → 0
and as (1−u)−1/2 as u→ 1. Numerical evaluation of this integral is made easier with the following
changes of variable: Let u = v2 for u ∈ [0, 1/2] and let u = (1 − w)2 for u ∈ [1/2, 1]. These
substitutions eliminate the singularities at the endpoints, and we have this equivalent expression
for the total energy:

We now apply Simpson’s rule using the three points at v or w = 0, 1/2
√

2, and 1/
√

2. This
approximation is best for moderate values of b, say 0.8 ≤ b ≤ 4 ↔ 0.32 ≤ b101 ≤ 8, and naturally
more accurate approximations may be obtained using more points. We select this approximation
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in the interest of computational speed. The result is

Esimp = β

(
b(d12 + d23)

6
√

2
+

2d13

3(2 + b)

+
32

3
√

7(8 +
√

7 b)2

{
[28d2

13 + 4b
√

7(−3d2
12 + 4d2

13 + 3d2
23) + b2(−6d2

12 + 7d2
13 + 42d2

23)]1/2

+ [28d2
13 + 4b

√
7(3d2

12 + 4d2
13 − 3d2

23) + b2(42d2
12 + 7d2

13 − 6d2
23)]1/2

} )
+ γ∆2

(√
2

3b3

(
1

d5
12

+
1

d5
23

)
+

8b2

3(2 + b)d5
13

(73)

+
128b2(8 +

√
7 b)4

3
√

7

{
[28d2

13 + 4b
√

7(−3d2
12 + 4d2

13 + 3d2
23) + b2(−6d2

12 + 7d2
13 + 42d2

23)]−5/2

+ [28d2
13 + 4b

√
7(3d2

12 + 4d2
13 − 3d2

23) + b2(42d2
12 + 7d2

13 − 6d2
23)]−5/2

} )
.

To illustrate the accuracy of the simplified energy, we present a couple examples, one with
an equilateral control triangle and one where angle ∠p1p2p3 is obtuse. The first example has
d12 = d13 = d23 = 1, ∆ =

√
3/2. We obtain

True Simplified True Simplified
b b101 Stretching Energy Bending Energy

0.6 0.180 1.120 1.126 5.000 5.419
0.8 0.320 1.166 1.172 3.941 3.984
1.0 0.500 1.209 1.215 3.628 3.646
1.5 1.125 1.304 1.316 3.841 3.792
2.0 2.000 1.380 1.408 4.500 4.297
3.0 4.500 1.494 1.580 6.158 5.680
4.0 8.000 1.573 1.749 7.958 7.323

The simplified stretching and bending energies are within approximately 10% of the true energies
for 0.6 < b < 4.0, or 0.18 < b101 < 8.00. This covers most of the splines occurring in actual practice.

In the second example, d12 = d23 = 1, d13 =
√

3, ∆ =
√

3/2. Here we get

True Simplified True Simplified
b b101 Stretching Energy Bending Energy

0.8 0.320 1.770 1.775 1.043 1.613
1.0 0.500 1.780 1.785 0.804 1.014
1.5 1.125 1.804 1.813 0.619 0.635
2.0 2.000 1.824 1.846 0.611 0.613
3.0 4.500 1.854 1.931 0.725 0.727
4.0 8.000 1.876 2.041 0.890 0.879

In this example the simplified energies are accurate to within 20% for 1 ≤ b ≤ 4, or 0.5 ≤ b101 ≤ 8.
Case Study

Using the same setup as in the example in Section 2.3.10, we find that we need to minimize this
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specialization of (73):

b(4 + 3
√

2)

12
√

5
+

2

3(2 + b)
+

32
[
(140 + 92

√
7 b+ 365b2)1/2 + (140 + 68

√
7 b+ 317b2)1/2

]
3
√

35(8 +
√

7 b)2

+
12

25

{
25
√

5

b3

(
1

128
+

√
2

243

)
+

8b2

2 + b
(74)

+
128b2(8 +

√
7 b)4

√
35

[
1

(140 + 92
√

7 b+ 365b2)5/2
+

1

(140 + 68
√

7 b+ 317b2)5/2

]}
.

This function is minimized when b = 0.856, or b101 = 0.366, and the minimum value of the
simplified energy is 5.66611. This gives an ellipse whose equation in Cartesian coordinates is

6.588x2 − 1.098xy + 5.152y2 − 6.588x+ 3.294y = 0 . (75)

This elliptic arc is shown with in Figure 9(b), and is quite close to the arc obtained by using the
exact representation, as is evidenced by the superposition of the two curves in Figure 9(c).

2.3.12 Global Minimization of Simplified Energy

Here we consider the minimization of the simplified energy by varying the domain endpoint vertices
of a chain of quadratic A-spline curves. With the chain we are minimizing a sum of expressions
(73) instead of just a single one. Suppose we have n + 1 junction points on a curve, and we wish

to pass a spline through all these points. Label them p1, p3 = p′1, p′3 = p′′1, . . . , p
(n−1)
3 = p

(n)
1 ,

p
(n)
3 , where superscript i denotes i primes and p

(n)
3 = p1 if and only if the curve is to be a closed

contour. The apex points p
(i)
2 will be the intersections of the tangent lines through p

(i)
1 and p

(i)
3 .

Recognizing that the djk and ∆ are functions of the coordinates of p1, p2, and p3, we can express
the simplified energy in (73) as

E
(i)
simp = Esimp(bi,p

(i)
1 ,p

(i)
2 ,p

(i)
3 ;β, γ) . (76)

Thus our objective is to minimize

Esimp =
n−1∑
i=0

E
(i)
simp

for an open contour and

Esimp =

n∑
i=0

E
(i)
simp

for a closed one over all possible locations of the p
(i)
j and values of bi.

Case Study

As a simple example, suppose we have (1, 0) and (−1, 0) as two fixed points on the unit circle, and
we wish to find the point (x0, y0) on the unit upper semicircle such that the simplified energy is
minimized. This will require the sum of two components, the first of which has p1 = (x1, y1) = (1, 0)
and p3 = (x0, y0), and the second with p′1 = (x′1, y

′
1) = (x0, y0) and p′3 = (−1, 0) (see Figure 10).

The points p2 = (x2, y2) and p′2 = (x′2, y
′
2) are the intersections of the tangent lines to the

circle through p1 and p3 and through p′1 and p′3, respectively; these will be (1, (1 − x0)/y0) and
(−1, (1 + x0)/y0) in the two cases. Since all the points can be expressed in terms of x0 via y0 =
(1− x2

0)1/2, this problem is a minimization over the three remaining unknowns x0, b, and b′, with
the restrictions |x0| < 1 and b, b′ > 0.
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Figure 10: Initial configuration. The point p3 = p′1 is allowed to slide along the semicircle.
The spline labeled “initial curve” is a typical minimal-energy spline if p3 = p′1 is at the location
indicated.
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Figure 11: Optimal configurations for (a): β = 1/12, γ = 1; (b): β = 1, γ = 1/12 .

We illustrate the results for β = 1/12, γ = 1 and for β = 1, γ = 1/12. In the first case, the
global minimum occurs when x0 = 0 and b = b′ = 1.501 (b101 = 1.126), yielding a total energy
of 3.414. For ∆p1p2p3, we have α1 = 1 − y and α2 = x + y − 1 (from (51)), and the Cartesian
equation of this portion of the arc, that of an ellipse, is given by

x2 − 0.252xy + y2 + 0.252x+ 0.252y − 1.252 = 0 .

The second part of the spline, the piece within ∆p1p2p3, is the reflection of the first piece across
the y-axis. In the second case, the global minimum is at x0 = 0 and b = b′ = 1.077 (b101 = 0.580),
yielding a total energy of 3.382. The Cartesian equation of the part of the arc in the first quadrant
is

x2 + 0.840xy + y2 − 0.840x− 0.840y − 0.160 = 0 .

These two cases are shown in Figure 11. Note that as β increases with respect to γ, the
stretching component of the total energy becomes more important than the bending component,
and as a result the length of the simplified energy minimizing spline in 11(b) is less than that in
11(a).

Case Study

For another example, we consider the problem of minimizing the total simplified energy of a closed
contour with one point on each of the sides of the triangle 4p2p

′
2p
′′
2, where p2 = (0, 0), p′2 = (7, 0),
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p3 = p1′

p3′′ = p1

p3′ = p1′′
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p2′′

Figure 12: Initial configuration. The points p1, p′1, and p′′1 slide along the edges of 4p2p
′
2p
′′
2 in

such a way that p2p
′
1/p2p

′
2 = p′2p

′′
1/p

′
2p
′′
2 = p′′2p1/p

′′
2p2 = u for some u in [0, 1].

and p′′2 = (6, 5). The three points on the sides of 4p2p
′
2p
′′
2 will be denoted by p3 = p′1, p′3 = p′′1,

and p′′3 = p1, as in Figure 12. We will also impose the condition that each of p1, p′1, and p′′1 is
the same fraction along the way of their respective edges. That is, p2p

′
1/p2p

′
2 = p′2p

′′
1/p

′
2p
′′
2 =

p′′2p1/p
′′
2p2 = u for some u in [0, 1]. With this condition the points on the edges of 4p2p

′
2p
′′
2 are

found to be p1 = (6 − 6u, 5 − 5u), p′1 = (7u, 0), and p′′1 = (7 − u, 5u). With all points expressed
in terms of u, minimizing the total simplified energy amounts to minimizing (76) over the four
unknowns u, b, b′, and b′′, where 0 < u < 1 and the b(i) > 0.

We illustrate the results for various values of β/γ:

β/γ 1/10 1/3 1 3 10

u 0.5111 0.5109 0.5092 0.5057 0.5030

b101 0.318 0.264 0.189 0.123 0.074
b′101 0.916 0.789 0.604 0.409 0.243
b′′101 0.627 0.564 0.456 0.322 0.196

Figure 13 shows the resulting closed contour for these five cases. Here we have the same phenomenon
which occurred in the previous example: as β/γ increases, the stretching energy component becomes
more important as compared to the bending component, and the length of the closed contour for the
simplified energy minimizing spline decreases. Also, for each value of β/γ we have b101 < b′101 < b′′101,
so that the ordering of these coefficients is the same as the order of the size of the angle of the

apexes of their corresponding triangles (∠p
(i)
1 p

(i)
2 p

(i)
3 ).

2.3.13 Conclusion

Several elastic models using A-splines have been proposed, each of which has its own advantages
and shortcomings. Besides the traditional energy model adapted from theory of elasticity, we give
several different simplified models that take advantage of the A-spline formulation and also yield
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Figure 13: Optimal configurations for (a): β = γ/10; (b): β = γ/3; (c): β = γ; (d): β = 3γ; (e):
β = 10γ.

efficient computation of the minimum energy solution. A subsequent paper will report the use of
these energy splines in image processing applications.

One problem of great interest is the efficient computation of the minimum energy for the exact
model presented in Section 2.3.9. If such a problem can be restricted to having just one control
weight being free, then the energy-minimizing problem reduces to a non-linear univariate equation.
In the much more common situation where this is not possible, one possibility is to generate a
piecewise linear approximation of the A-spline such that the denominator in the expression (62),
(∇STJJT∇S)3, over each piece is nearly constant. While the resulting system is sparse and may
be solved iteratively, generally a large number of pieces will be required. For example, in the
case study in Section 2.3.10, the denominator ranges from 0.254 when α1 = 0 down to 0.110 at
α1 = 0.535 and back up to 0.719 when α1 = 1. Thus if we wanted the denominator to vary by at
most 1 percent over each subinterval and were able to divide the interval [0, 1] of the α1-axis at
precisely the right points, we would need 133 subintervals. If we were willing to relax the condition
to a 5 percent variance, we would still need 27 subintervals. Furthermore, finding the values of
α1 at which the break points should be located is in itself a significant problem. In practice these
locations will not be known beforehand, and one may have to make a conservative subdivision of
the interval α1 ∈ [0, 1] to ensure the desired accuracy.

2.4 Interpolation with Cubic Algebraic Curves

In this section, we focus on implicitly defined cubic algebraic curves, and give conditions on the
coefficients of cubic algebraic curves that guarantee nice properties inside regions bounded by
triangles. These conditions can be equally applied to cubic curves in the restricted or the general
basis.

Paluszny and Patterson [78] considered a special family of implicit cubic curves which yields
tangent continuous cubic splines. Our method here differs in that both tangents and curvatures
are specified and the splines are not limited to be convex inside the bounding triangles. Bajaj and
Xu [29] show how to construct C3 continuous cubic algebriac splines, however their method is not
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Figure 14: An Effective Spline Curve

directly applicable for symmetric restricted bases.
A general 1 cubic algebraic curve in the Bernstein basis is defined as B3(u, v) =∑
i+j≤3wijB

3
ij(u, v) = 0. (For introduction to barycentric coordinates, see [52].) Sederberg [89]

proposed to view an algebraic curve as the intersection of the explicit surface w = Bd(u, v) with
the plane w = 0, hoping to associate geometric meanings to the coefficients of the polynomial.
Especially, the coefficients in the polynomial are considered as the w coordinates of the control net
of a triangular Bernstein-Bézier surface patch, where the coefficient wij corresponds to the control
point bij = ( i3 ,

j
3) in the Bernstein basis. The coefficients wij is relative to selection of a control

triangle T = (P00, P30, P03) in the power basis. There are ten coefficients, and since dividing the
equation out by a nonzero number would not change the algebraic curve, we see that there are nine
degrees of freedom. For symmetric restricted cubic algebraic curves in the Bernstein basis there are
only five degrees of freedom. Hence, three degrees of freedom are left after C2 interpolation with
general cubic algebraic curves, and one for C1 interpolation with restricted cubics.

Computation of Effective Cubic Algebraic Spline Curves We describe in some detail the
case of C2 continuous general algebraic cubic splines. Computation of C1 continuous restricted
algebraic cubic splines can be achieved along similar lines. Let CB0(t) and CB1(t) be two truncated
power series of degree two that describe geometric properties at two points π0 and π1, respectively.
One of goals we try to accomplish is to find a triangle within which a single connected smooth
segment of a cubic algebraic curve is confined such that the curve segment achieves C2 continuity
at π0 and π1 and subdivides the triangle into a positive and a negative space. (See Figure 2.4.)

Definition 2.9. Let T be a triangle made of three vertices P00, Pd0, P0d. Consider a smooth curve
segment of degree n on Bd(u, v) = 0 whose two end points are on the two sides P00Pd0 and P00P0d.
The curve segment is called an effective algebraic spline associated with the bounding triangle T if
the curve segment intersects exactly once a line segment connecting P00 and any point on the side
Pd0P0d.

The restriction imposed in the definition of an effective spline reomves disconnected curve
segments, loops, unwanted extra pieces and singularities from within the bounded triangle. It also

1We use the adjectives general and restricted to distinguish cubic algebraic curves in the general and the restricted
bases, respectively.
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forces the spline curve segment to subdivide a bounding triangle into a positive and a negative
space. The ability of finding an effective spline with a proper bounding triangle is essential in that
it allows easy implementations of many geometric modeling operations [11]. A point can be easily
classified as in, out, or on the boundary of an object that is made of several algebraic splines. This
point-classification operation is a primitive operation to high level geometric modeling operations.

For a spline curve segment that is C2 continuous at the end points π0 and π1 within the triangle
T , interpolation of the respective truncated power series at these points with a cubic polynomial
generates six constraints, leaving three degrees of freedom. After solving the homogeneous linear
system with ten unknowns, and six linearly independent constraints, the ten coefficients can be
expressed in terms of linear functions in four free parameters λ0, λ1, λ2, and λ3. We next set
up constraints on these free parameters such that for feasible values of λi, i = 0, 1, 2, 3, the curve
segment is a single piece within T . Note that the feasible values of λi, i = 0, 1, 2, 3, are those for
which the triangular Bernstein-Bezier surface patch corresponding to T intersects the plane w = 0
within T exactly once and as shown in Figure 15.

Lemma 2.10. Let ten coefficients wij of B3(u, v) be expressed linearly in terms of λj, j = 0, 1, 2, 3
after C2 interpolation of CB0(t) and CB1(t) at π0 and π1, respectively, with respect to a control
triangle T . Then, there exists an effective cubic algebraic spline associated with T if and only if there

exists some λj, j = 0, 1, 2, 3 such that the univariate cubic polynomial G(x)
def
= B3((1− α)x, αx) =

g3(α)x3 + g2(α)x2 + g1(α)x+ g0(α) has one and only one root in 0 ≤ x ≤ 1 for all α ∈ [0, 1]. The
gi(α), (i = 0, 1, 2, 3) are polynomials of degree i in α with coefficients which are linear relations on
wij and hence of the free parameters λj, (j = 0, 1, 2, 3).

Proof : See [20]. �

Due to the limited space, we now present only the final results Details can be found in [20].
Consider the three cases where hi(α), (i = 0, 1, 2, 3) is a degree 3− i polynomial in α and a linear
combination of the above gi(α) polynomials. The coefficients of hi(α) are linear combinations of
the free parameters λj , (j = 1, 2, 3) :

• [CASE 1] h3(α) = 1 > 0, h2(α)2 − 3h3(α)h1(α) ≤ 0, h0(α) < 0

• [CASE 2] h3(α) = 1 > 0, (either h2(α) ≥ 0 or h1(α) ≤ 0), h0(α) < 0

• [CASE 3] h3(α) = 1 > 0, h2(α) < 0, h1(α) > 0, h0(α) < 0, h2(α)2 −
3h3(α)h1(α) > 0, (−27h0(α)h3(α)2 + 9h1(α)h2(α)h3(α) − 2h2(α)3) > 0, (27h0(α)2h3(α)2 −
18h0(α)h1(α)h2(α)h3(α) + 4h1(α)3h3(α) + 4h0(α)h2(α)3 − h1(α)2h2(α)2) > 0

Theorem 2.11. Let ten coefficients wij of B3(u, v) be expressed linearly in terms of λj, j = 1, 2, 3
with w00 = 1 after C2 interpolation of CB0(t) and CB1(t) at π0 and π1, respectively, with respect to
a control triangle T . Then, there exists an effective cubic algebraic spline associated with T if and
only if there exists some λj, j = 1, 2, 3 such that, for all α ∈ [0, 1], either [CASE 1], [CASE 2], or
[CASE 3] is satisfied.

Theorem 2.11 generates inequality constraints whose expressions are linear, quadratic, cubic,
and quartic in λ1, λ2, λ3. Hence, all the feasible solutions (λ1, λ2, λ3) of those constraints comprise
a union of subspaces in the three dimensional λ1λ2λ3 solution space bounded by linear, quadratic,
cubic, or quartic algebraic surfaces. Choosing an effective cubic algebraic spline associated with
a bounding triangle becomes equivalent to finding feasible points in these subspaces. In our im-
plementation we currently use standard nonlinear numerical optimization techniques to compute
feasible solutions. Given the low dimensionality of the solution space and the bounded degree of the
constraints, we are currently experimenting with symbolic methods which yield a cell decomposition
of the feasible region for easy solution point generation and navigation.
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Figure 15: C2 Continuous Cubic Algebraic Spline Curves

Example 2.12. Figure 15(a), shows three instances of cubic algebraic curves that C2 interpolate
the two endpoint truncated power series C0(t) = (1 + t, t2) and C1(t) = (t, 1 − 2t2) with respect to
T = ((0.0,−1.0), (1.5, 0.5), (0.0, 1.5)). The three curves chosen from the four dimensional space are
f0(x, y) = 0.757333x3 − 1.19933x2y − 0.768667x2 + 0.534667xy2 + 0.2xy − 0.734667x + 0.004y3 −
0.246y2− 0.504y+ 0.746, f1(x, y) = 4.08x3− 7.37x2y− 5.99x2 + 0.06xy2 + 0.2xy− 0.26x− 1.42y3−
1.67y2 + 0.92y + 2.17, and f2(x, y) = 0.421333x3 − 0.575333x2y − 0.240667x2 + 0.582667xy2 +
0.2xy−0.782667x+0.148y3−0.102y2−0.648y+0.602. As C2 continuity implies, fi(Cj(t)) = O(t3),
i = 0, 1, 2, j = 0, 1. Figure 15(b) illustrates how a cubic Bernstein surface patch intersects once
with the bounding triangle to produce an effective cubic algebraic spline.

3 Operations on Spline Curve Geometric Models

3.1 Geometric Models

Algebraic Boundary Model In a boundary representation an object with general algebraic
surfaces consists of the following:

• A finite set of vertices usually specified by Cartesian coordinates.

• A finite set of directed edges, where each edge is incident to two vertices. Typically, an edge
is specified by the intersection of two faces, one on the left and one on the right. Here left and
right are defined relative to the edge direction as seen from the exterior of the object. Further
an interior point is also provided on each edge which helps remove any geometric ambiguity
in the representation for high degree algebraic curves. Geometric disambiguation may also
be achieved by adding tangent and higher derivative information at singular vertices.

• A finite set of faces, where each face is bounded by a single oriented cycle of edges. Each face
also has a surface equation, represented either in implicit or in parametric form. The surface
equation has been chosen such that the gradient vector points to the exterior of the object.

In addition edge and face adjacency information is provided. Additional conventional assumptions
are also made, e.g., edges and faces are non-singular, two distinct faces intersect only in edges, an
auxiliary surface is specified for each edge where adjacent faces meet tangentially, etc. The objects
and obstacles that we consider are solids and are assumed to enclose non-zero finite volume. Hence
non-regularities such as dangling edges and dangling faces which depending on one’s viewpoint en-
close zero or infinite volume, are not permitted. The C-spaces that we construct are also regularized
in this fashion and assumed to be solids enclosing non-zero finite volume.

Gaussian Model Let S2 be the unit sphere in R3, and Bdr(T ) be the boundary of a convex
set T ⊂ R3. For any set K ⊂ Bdr(T ), we shall define a set N (T ,K ) ⊂ S2 as follows. A point
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e ∈ S2 belongs to N (T ,K ) if there exists a point p ∈ K and a supporting plane Lp at p such that
e is an exterior normal to Lp. This set N (T ,K ) is called the Gaussian Image of K. The function
N(T, ·) : P(Bdr(T ))→ P (S2) is called the Gaussian Map of T , where P (Bdr(T )) and P (S2) are the
power sets of Bdr(T ) and S2. It is a bijective map and its inverse N−1(T, ·) : P (S2)→ P(Bdr(T ))
is called the Inverse Gaussian Map of T . For any set G ⊂ S2, the Inverse Gaussian Image of G
is defined by N−1(T,G). The Gaussian Curvature of p ∈ Bdr(T ) is the limit of the ratio (Area of
N (T ,K )) / (Area of K) as K shrinks to the point p, see [65].

Gaussian Image of Faces, Edges and Vertices Since all faces are patches of algebraic surfaces,
we may assume that each face of a convex object is either a strictly convex face (Gaussian Curvature
is positive at each point), a convex ruled surface patch, or a planar patch. The Gaussian Model
of a curved object then consists of a finite set of vertices, edges and faces on the surface of a unit
sphere as follows.

1. For a strictly convex face F , the Gaussian Image N(T, F ) is a patch of S2 with its boundary
curves determined by the normals to the tangent planes of F at the boundary. That is, the
boundary of N(T, F ) consists of the set of points ∇f(p)

‖∇f(p)‖ for p ∈ ∪E∈ΓE, where f = 0 is the
surface equation of F and Γ is the set of boundary edges of F . For a ruled surface patch
F, N(T, F ) is a degenerate curve on S2. And for a planar patch F, N(T, F ) is a degenerate
point on S2.

2. Consider an edge E defined by two intersecting faces F and G, where F and G meet either
transversally or tangentially along E. When F and G meet transversally along E, each point
p ∈ E determines two different points nF and nG on S2 determined by the exterior normals
of the tangent planes of F and G at p. Then N(T, p) is the geodesic arc γp connecting nF
and nG on S2 and N(T,E) = ∪p∈Eγp is a patch of S2. The set N(T,E) has 4 boundary

curves given by the set of points ∇f(p)
‖∇f(p)‖ for p ∈ E, the set of points ∇g(p)

‖∇g(p)‖ for p ∈ E, and the
geodesic arcs γpS and γpE , where f = 0 and g = 0 are the surface equations of F and G, and
pS and pE are the starting and ending vertices of E. When F and G meet tangentially along
E, N(T,E) is a degenerate curve on S2. In particular, N(T,E) is the common boundary

curve of N(T, F ) and N(T,G). That is, it is the set of points ∇f(p)
‖∇f(p)‖ = ∇g(p)

‖∇g(p)‖ for p ∈ E.

When F and G are planar patches, E is a linear edge and N(T,E) is a degenerate geodesic
arc γ connecting nF and nG on S2, where nF and nG are the exterior normals of F and G.

3. Consider next a vertex p defined by k adjacent faces F1, F2, . . . , Fk intersecting at p (ordered
via their normals at p in a counter–clockwise direction). Each face Fi determines a point ni
on S2 determined by the normal of Fi at p. Let γi (i = 1, . . . , k) be the geodesic arc (great
circle) on S2 connecting ni and ni+1 where nk+1 = n1. Then N(T, p) is the convex patch on
S2 bounded by the cycle of geodesic arcs γ1, γ2, . . . , γk. When Fi and Fi+1 are tangent at p,
γi is a degenerate point ni = ni+1. In the special case of all k faces being tangent at p, the
entire set N(T, p) is a degenerate point. The set N(T, p) can also be a degenerate geodesic
arc on S2 when Bdr(T ) is locally smooth at p except along a curve which is tangent at p.

Topology of Gaussian Model The Gaussian Image of Bdr(T ) covers S2 completely and par-
titions S2 into a set of generic faces (surface patches) as described above. Certain generic faces on
S2 degenerate to curves and points and are tagged appropriately. By using the adjacency graph
of vertices, edges and faces of Bdr(T ) we connect the generic faces on S2 with the same topology.
Hence we construct a face adjacency graph on S2 with degenerate faces tagged as curves and points.
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3.2 Convex Hulls of Objects Bounded by Algebraic Curves

The convex hull computation is a fundamental one in computational geometry. There are numerous
applications in which the convex hulls of complex objects can be used effectively to make certain
geometric decisions easier. For example, a null intersection between the convex hulls of two objects
implies a null intersection between the original objects. Since intersection testing for convex objects
is easier than for non-convex objects, convex hulls are used as an efficient first test in a general
object intersection detection algorithm. Additional motivation arises from the use of convex hulls
of moving object and obstacles, for heuristic collision-free motion planning.

We present an O(n · dO(1)) algorithm to compute the convex hull of a curved object bounded
by O(n) algebraic curve segments of maximum degree d.

Several linear–time algorithms for computing the convex hull of simple planar polygons are
known. These algorithms achieve the more efficient O(n) bound whereas the Ω(n log n) lower
bound applies to general problem of computing the convex hull of n points in the plane , see [81].
The above algorithms for planar polygons are iterative and vertex–based, i.e., the computation in
each step depends on the region where the next vertex lies. It is not entirely obvious how to modify
this to deal with curved planar objects with piecewise algebraic boundary curves. By generalizing
[58] to an edge–based algorithm Schäffer and Van Wyk [86] extended the planar polygon results to
a linear–time algorithm for curved objects bounded by piecewise–smooth Jordan curves. Souvaine
[49] also suggests a linear–time convex hull algorithm based on bounding polygon approach for a class
of curved objects (termed splinegons). We suggest another linear–time algorithm which reflects the
practical considerations discussed in the following. Further, our algorithm is simple and flexible to
further modifications.

There is a difference between simple polygons and curved objects, where a single edge may
intersect two different pockets. In the polygonal case, when an edge exits from a pocket, the ending
vertex should be outside of all the current pockets and becomes a vertex on the updated convex
hull boundary. Further, the interior of this edge is totally contained in the convex hull interior.
We can not assume this fact for planar curved objects; the ending vertex of an exiting edge may
lie in a pocket, and an interior point of this edge may lie on the updated convex hull boundary. To
determine the exact portion of an exiting edge which appears on the new convex hull boundary,
[86, 49] compute a common tangent line between this edge and the previous convex hull boundary.
As we will see in §2, common tangent computation is the most expensive geometric operation
among those required to compute the convex hull of an object. In practice the time spent in
the common tangent computations may dominate the overall convex hull computation. Though
common tangents should be computed for those appearing on the final output, the common tangents
computed for the intermediate steps but not on the final output are wasted. Avoiding these wasted
expensive computations is crucial for the design of an efficient convex hull algorithm for general
planar curved object. We suggest two ways of eliminating this problem. First, we do not compute
common tangents with concave edges.

This invariant has been used in the convex hull algorithms for polygons, too. We suggest a
new invariant, see (∗) in §3.1, and define a pocket which can intersect with itself. Using these new
techniques, we can eliminate the common tangent computations with concave edges. Further, we
give a simple correctness proof and a simple algorithm is designed. Another important factor to
be considered in computing with curved objects is how to precede the algorithm with approximate
solutions in the intermediate steps. Certain intermediate decisions could be made with only ap-
proximate solutions. This is an important issue in practice to save computing time. We show our
algorithm is robust for this purpose. Consider when two tangent lines have slopes very close to
each other. To compare these slopes exactly, one has to refine the approximations further. Since
both tangent lines may turn out to be useless later, this exact slope comparison may be wasted. A
better strategy is keeping both tangent lines on the stack by assuming the slope of the lower one
is smaller than that of the upper one. When these two tangents remain on the final output, we
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can apply expensive refinement computations to make an exact decision. In our algorithm keeping
both tangents is easy since we update the convex hull boundary only for convex edges or points.
However, concave edges make trouble here, too. One can not keep two tangents simultaneously.To
keep the lower one, one has to delete the upper one, and vice versa.

Though we can save computation time in the cases mentioned above, there are cases where [86,
49] performs better. There are also dual examples where ours performs better.A slight modification
of our algorithm can almost eliminate these problems. For example, we add an extra vertex to the
concave edge Cj and update the convex hull with respect to this extra vertex. Since we already
know this extra vertex is not on the final output, we even do not need to compute a tangent line from
this vertex. A line connecting this extra vertex and an appropriate vertex on the previous convex
hull boundary can also be used for the same purpose for which the common tangent line are used,
i.e. to detect the next event edge. Further modifications of our algorithm can easily be adapted
as long as one keep the invariant (∗). We concentrate on presenting an algorithm demonstrating
all the new techniques discussed above. Depending on each application, one can easily incorporate
various other heuristics, define a new sequence of event edges keeping the invariant (∗), and modify
our algorithm to a more efficient one. To simplify the design of our algorithm, we introduce a
pre-processing step which divides each edge into monotone subedges. With monotone edges, vertex
coordinate comparisons can make many geometric decisions very easily.

The rest of this paper is organized as follows. §2 describes certain preliminary informations
of use in later sections. In §2.1 we describe the boundary representation for a planar geometric
model with algebraic boundary curves. In §2.2 we present a monotone curve segmentation of
boundary curve segments (a pre-processing step of our algorithm) and basic operations on these
monotone curve segments. Algebraic curves are treated in each of two internal representations;
namely, the implicit and the parametric forms, [4, 102]. In §3 we present an O(n · d6 log d) (resp.
O(n · (d12 log d+ T (d)))) time algorithm to compute the convex hull of planar curved objects with
parametric (resp. implicit) boundary curves. Here T (d) is the worst case time taken to trace an
algebraic curve segment of degree d, [17].

Preliminaries In this section, we describe the algebraic boundary model of the planar curved
object, and consider monotone curve segmentations and other related geometric operations on
monotone curve segments.

Planar Geometric Model A planar geometric model with algebraic boundary curves has the
following boundary representation. A single simple oriented cycle of algebraic curve edges, where
each edge is directed and incident to two vertices. Each edge also has curve equations, which are
implicit and/or rational parametric equations of algebraic curves. An algebraic curve is implicitly
defined by a single polynomial equation f(x, y) = 0 and parametrically defined by the pair (x =
f1(t)
f3(t) , y = f2(t)

f3(t)), where f1, f2 and f3 are polynomials. Further an interior point is also provided
on each implicitly defined edge which helps remove any geometric ambiguity in the case of vertices
which are singularities of the algebraic curve, [82]. Finally, each vertex is exactly specified by
Cartesian coordinates.

The curve equations for each edge are chosen such that the direction of the normal at each
point of the edge is towards the exterior of the object. For a simple point on the curve the normal
is defined as the vector of partials to the curve evaluated at that point. For a singular point on
the curve we associate a range of normal directions determined by normals to the tangents at the
singular point. Further the orientation of the cycle of edges is such that the interior of the object
is to the left when the edges are traversed.

Computations with Algebraic Curves We assume some primitive geometric algorithms to
manipulate algebraic curve segments, [4, 10, 17, 22, 23, 38, 66]. Prior work has considered the
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generation of rational parametric equations for certain implicitly defined algebraic plane curves,
[4], the generation of implicit equations for parametrically defined algebraic curves, [10], as well as
the robust tracing of algebraic curve segments with correct connectivity, [17]. Tracing for instance
is very useful in determining when a given point lies within a general algebraic curve segment. For
this last problem the method of sorting along the curve [66], also provides an efficient solution for
low degree algebraic curves.

Monotone Segmentation We consider the monotone segmentation of a geometric model bound-
ary and other geometric operations on monotone curve segments. We show the time complexities
of these operations which are of relevance to timing analysis of the algorithms described in later
sections. Our model of computation is the arithmetic model where arithmetic operations have unit
time cost, see [6]. We first define monotone edges.

Definition 3.1. Let C be a directed boundary edge without any inflection or singular point. Then
(1) C is convex ⇐⇒ the gradient of C turns counter-clockwise along C
(2) C is concave ⇐⇒ the gradient of C turns clockwise along C
(3) C is monotone ⇐⇒ C is either convex, concave or linear, and the interior of C doesn’t include
any extreme point along the x or y directions.

We analyze the time complexity of solving systems of polynomial equations.

Lemma 3.2. (I) All the roots of a univariate polynomial equation of degree O(d) can be computed
in O(d3 log d) time.
(II) The common solutions of two polynomial equations of degree O(d) in two variables can be
computed in O(d6 log d) time.
(III) The common solutions of three (resp. four) polynomial equations of degree O(d) in three
(resp. four) variables can be computed in O(d12) (resp. O(d16)) time.

Proof : (I) The squarefree part of a univariate polynomial can be calculated in O(d log2 d)
time using fast techniques for the required GCD computation and division steps, [6], and further
all roots can be computed using root isolations in O(d3 log d) time, see [87].
(II) We can eliminate one variable from two polynomial equations using the Sylvester resultant
in O(d4 log3 d) time, see [23], and then compute the roots of the resulting univariate polynomial
equation of degree O(d2) in O(d6 log d) time. Doing this twice for each variable in turn together
with the pairwise substitutions then allows computing the common solutions in overall O(d6 log d)
time.
(III) We can eliminate three (resp. four) variables from three (resp. four) polynomial equations
using the u–resultant in O(d9) (resp. O(d12)) time, see [38, 100], and solve resulting equations
of degree O(d3) (resp. O(d4)) in one variable in O(d9 log d) (resp. O(d12 log d)) time. Though
the resultant computation takes naively O(d9) (resp. O(d12)) time and solving real root solutions
takes O(d9 log d) (resp. O(d12 log d)) time, the overall time is bounded by the pairwise substitution
which takes O(d12) (resp. O(d16)) time. �

The monotone segmentation requires adding singular points, inflection points and extreme
points on the curve as extra vertices. First we take care of singular points on curved edges.
Singularities are determined for each curved edge and are computed by using Lemma 2.1: I (i) and
II (i). The boundary of the object is next modified such that nonsingular edges are either convex,
concave or linear segments. Such conditions are easily met by adding extra vertices to inflection
points of curved edges. Inflection points of curves can be obtained and the edges are marked convex,
concave or linear respectively by using Lemma 2.1: I (iv), (v), (vi) and II (iv), (v), (vi). We may
also assume edges are further segmented so that extreme points along x or y directions added as
vertices. These extreme points are computed by using Lemma 2.1: I (ii), (iii) and II (ii), (iii).
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Lemma 3.3. (I) Let C : (a, b) → R2 be a curve parametrized by t ∈ (a, b) and p = C(t) =
(c1(t), c2(t)) be a point on this curve. Then
(i) p is a (non-self-intersecting) singular point ⇐⇒ c′1(t) = c′2(t) = 0,
(ii) p is a non-singular x-extreme point ⇐⇒ c′2(t) = 0 and c′1(t) 6= 0,
(iii) p is a non-singular y-extreme point ⇐⇒ c′1(t) = 0 and c′2(t) 6= 0, and
(iv) p is an inflection point of the curve C ⇐⇒ c′1(t) · c′′2(t)− c′2(t) · c′′1(t) = 0.

If C has no inflection point, then
(v) C is convex ⇐⇒ c′1(t) · c′′2(t)− c′2(t) · c′′1(t) > 0, and
(vi) C is concave ⇐⇒ c′1(t) · c′′2(t)− c′2(t) · c′′1(t) < 0.

(II) Let C be a curve implicitly defined by f(x, y) = 0 and p = (x, y) be a point on the curve C.
Then
(i) p is a singular point ⇐⇒ f = fx = fy = 0,
(ii) p is a non-singular x-extreme point ⇐⇒ f = fy = 0 and fx 6= 0,
(iii) p is a y-extreme point ⇐⇒ f = fx = 0 and fy 6= 0, and
(iv) p is an inflection point ⇐⇒ f = fxx · f2

y − 2fxy · fxfy + fyy · f2
x = 0.

If C has no inflection point, then
(v) C is convex ⇐⇒ fxx · f2

y − 2fxy · fxfy + fyy · f2
x > 0, and

(vi) C is concave ⇐⇒ fxx · f2
y − 2fxy · fxfy + fyy · f2

x < 0.

Proof : Most of these results are classical, see [102]. �

Lemma 3.4. (I) For a parametric curve segment C of degree d, a monotone segmentation can be
obtained in O(d3 log d) time.
(II) For an implicit algebraic curve segment C of degree d, a monotone segmentation can be obtained
in O(d6 log d+ T (d)) time, where T (d) is the time required for the curve segment tracing.

Proof : (I) The equations in Lemma 2.1 (I) are of degree O(d) in a single variable t.
(II) The equations in Lemma 2.1 (II) are two simultaneous polynomial equations of degree O(d)
in two variables x and y. �

Basic Operations on Monotone Curve Segments We consider primitive operations on mono-
tone curve segments C and D, and a line segment L.

1. The intersection of C and L,

2. The containment of C in the upper–left halfplane HUL(L) of L,

3. The tangent line L of C from a point q,

4. The common tangent line L of C and D.

Line–Curve Segments Intersection Suppose C is a monotone curve segment and L is a line
segment. Let R(C) and R(L) be the minimal rectangles with sides parallel to coordinate axes and
containing C and L respectively, and T (C) be the minimal triangle defined by the line connecting
both end points of C and two tangent lines of C at both end points of C. The intersection of C
and L is computed as follows.

if (R(C) ∩R(L) = ∅ or T (C) ∩ L = ∅) then C ∩ L = ∅;
else Let p1 = (x1, y1) and p2 = (x2, y2) be the starting and ending points of L′ = T (C) ∩ L,

then the intersection point(s) of C and L′ is computed by Lemma 2.4;
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Lemma 3.5. (I) If C is a parametric curve segment given by C(s) = (x(s), y(s)) with a ≤ s ≤ b,
then C intersects with L at a point p = C(s) = t · p1 + (1− t) · p2 if and only if s and t satisfy

a ≤ s ≤ b, and 0 ≤ t ≤ 1 (1)
x(s) = t · x1 + (1− t) · x2 (2)
y(s) = t · y1 + (1− t) · y2 (3)

(II) If C is an implicit algebraic curve segment given by f(x, y) = 0, then C intersects with L′ at
a point p = t · p1 + (1− t) · p2 if and only if t satisfies{

p ∈ C, and 0 ≤ t ≤ 1 (1)
f(t · x1 + (1− t) · x2, t · y1 + (1− t) · y2) = 0 (2)

Proof : Straightforward. �

Lemma 3.6. (I) For a parametric curve segment C, the curve–line segments intersection is com-
puted in O(d3 log d) time.
(II) For an implicit algebraic curve segment C, the curve–line segments intersection is computed
in O(d3 log d+ T (d)) time.

Proof : (I) The elimination of t can be done within constant time resulting in a single poly-
nomial of degree d in a single variable s. This polynomial can be solved in O(d3 log d) time. There
are at most d solutions for s with a ≤ s ≤ b and the corresponding t to each s can be solved within
constant time.
(II) When we expand the equation (2) in an increasing order of t, it gives a polynomial of degree d
in a single variable t. The expansion can be done in O(d2) time and the polynomial can be solved
in O(d3 log d) time. Finally, we need to trace along the curve segment C to check whether these
solutions are on the curve segment C in T (d) time. �

Containment in a Halfplane The halfplane containment for points and line segments can be
done within constant time. Suppose C is a convex monotone edge along which x and y-coordinates
are strictly increasing, L is an infinite line with slope m ≥ 0, and HUL(L) is the upper–left closed
halfplane of the line L. These are the only types of curved edges and halfplanes considered in §3.
Then, C ⊂ HUL(L) ⇐⇒ pS and pE ∈ HUL(L), and C ∩ L′ 6= ∅, where pS and pE are the starting
and ending points of C respectively, and L′ = T (C) ∩ L. Hence, the time complexity of halfplane
containment testing is O(d3 log d) (resp. O(d3 log d+T (d))), the same as that of line–curve segments
intersection.

Common Supporting Line of a Curve Segment and a Point Suppose L is a common
supporting line of a monotone curve segment C and a point q = (α, β) 6∈ C such that C ∪ {q} ⊂
HUL(L). Then the supporting point p of L at C is given by the following Lemma.

Lemma 3.7. (I) If C is given by a parametric curve C(t) = (x(t), y(t)) with a ≤ t ≤ b, then
p = (x(t), y(t)) is given by{

a ≤ t ≤ b (1)
(x(t)− α) · y′(t)− (y(t)− β) · x′(t) = 0 (2)

(II) If C is given by an implicit curve f(x, y) = 0, then the point p = (x, y) is given by{
f(x, y) = 0, and p = (x, y) ∈ C (1)
(x− α) · fx + (y − β) · fy = 0 (2)
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Proof : Straightforward. �

Lemma 3.8. (I) For a parametric curve segment C, the common supporting line of C and q is
computed in O(d3 log d) time.
(II) For an implicit algebraic curve segment C, the common supporting line of C and q is computed
in O(d6 log d+ T (d)) time.

Proof : Similar to Lemma 3.1.2. �

Common Supporting Line of Two Curve Segments Suppose L is a common supporting
line of two disjoint monotone curve segments C and D such that C ∪ D ⊂ HUL(L). Then the
supporting points p = (x, y) and q = (α, β) of L at C and D respectively are given by the following
Lemma.

Lemma 3.9. (I) If C and D are given by parametric curves C(s) = (x(s), y(s)) with a ≤ s ≤ b
and D(t) = (α(t), β(t)) with c ≤ t ≤ d, then p = (x(s), y(s)) and q = (α(t), β(t)) are given by

a ≤ s ≤ b, and c ≤ t ≤ d (1)
(x(s)− α(t)) · y′(s)− (y(s)− β(t)) · x′(s) = 0 (2)
(x(s)− α(t)) · β′(t)− (y(s)− β(t)) · α′(t) = 0 (3)

(II) If C is given by a parametric curve C(s) = (x(s), y(s)) with a ≤ s ≤ b and D is given by an
implicit curve g(α, β) = 0, then p = (x(s), y(s)) and q = (α, β) are given by

a ≤ s ≤ b (1)
g(α, β) = 0, and q = (α, β) ∈ D (2)
(x(s)− α) · y′(s)− (y(s)− β) · x′(s) = 0 (3)
(x(s)− α) · gα + (y(s)− β) · gβ = 0 (4)

(III) If C and D are given by implicit curves f(x, y) = 0 and g(α, β) = 0, then p = (x, y) and
q = (α, β) are given by 

f(x, y) = 0, and p = (x, y) ∈ C (1)
g(α, β) = 0, and q = (α, β) ∈ D (2)
(x− α) · fx + (y − β) · fy = 0 (3)
(x− α) · gα + (y − β) · gβ = 0 (4)

Proof : Straightforward. �

Lemma 3.10. (I) For parametric curve segments C and D, the common supporting line of C and
D is computed in O(d6 log d) time.
(II) For a parametric curve segment C and an implicit algebraic curve segment D, the common
supporting line of C and D is computed in O(d9 log d+ T (d)) time.
(III) For implicit algebraic curve segments C and D, the common supporting line of C and D is
computed in O(d12 log d+ T (d)) time.

Proof : Though the common solutions of three (resp. four) polynomial equations as stated in
Lemma 2.1 take O(d12) (resp. O(d16)) time, for monotone curve segments and the application of
common tangents, this can be reduced to O(d9 log d+ T (d)) (resp. O(d12 log d+ T (d))) time. �

Now, initially assume there are O(m) algebraic curve segments of maximum degree d on the
model boundary. Then the monotone segmentation preprocessing can be done in O(m · d3 log d)
(resp. O(m · (d6 log d + T (d)))) time if all the boundary curve segments are parametric (resp.
implicit). By Bezout Theorem a single polynomial of degree d in one variable t can have at most d
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solutions, and a system of two polynomial equations of degree d in two variables x and y can have at
most d2 solutions. Thus, Lemma 2.1 implies that each parametric (resp. implicit) algebraic curve
segment of degree d can be segmented into O(d) (resp. O(d2)) monotone curve segments by adding
extra vertices into singular points, inflection points and extreme points. After this preprocessing
step of monotone segmentation, we let the total number of boundary edges be n, which is O(m · d)
(resp. O(m · d2)) for parametric (resp. implicit) curves. In the following, we assume the object
boundary is already segmented into O(n) monotone curve segments and the timing analysis is given
in terms of n.

Convex Hull of Geometric Model In this section we present an algorithm to compute the
convex hull of a planar geometric model bounded by O(n) monotone curve segments. The algorithm
runs in O(n) steps, where each step takes polynomial time in the degree d. In the following we
consider the construction of the lower–right subpart of the convex hull boundary which lies between
the bottommost vertex p0 and the rightmost vertex pM of the original object. The entire convex
hull is obtained by applying the same algorithm to the remaining three subparts. W.l.o.g. we may
assume there are unique bottommost and rightmost vertices.

In the following, let C1, C2, . . . , CM be a connected sequence of edges from p0 to pM , where
each Ci has pi−1 and pi as its starting and ending vertices resectively. For a point p# (resp. p#) we
denote its x and y-coordinates by x# and y# (resp. x# and y#). We also denote the line segment
connecting two points p and q by L(p, q) and the path from p to q along the boundary curve by
γ(p, q). Also let A ∼ B denote everything in A which is not in B.

Sequences of Event Edge and Current Hull We give a constructive definition of a sequence
of event edges {Cik}Nk=1 with CiN = CM and a sequence of current hulls {CH k}Nk=1. Further,
we show that the N-th current hull CHN is the lower–right subpart of the convex hull boundary
between p0 and pM .

Definition of Cik and CH k Let i0 = 0 and CH 0 = {p0}. Assume that the index ik and the k-th
current hull CH k (0 ≤ k < N) have been defined. We define the (k+1)-th event edge Cik+1

and
the (k+1)-th event component ECk+1 ⊂ Cik+1

in terms of ik and CH k as follows. The terms lid
and pocket, having similar meanings as in [81], are first used without definition and are rigorously
defined later.

1. If xik+1 ≤ xik and the inner angle of pik < π, then ik+1 = min {j | j > ik and xj > xk}.

(a) EC k+1 = Cik+1
if yik+1−1 < yik+1

and Cik+1
is convex,

(b) EC k+1 = pik+1
otherwise.

2. If xik < xik+1, yik < yik+1, and the inner angle of pik <
3π
2 , then ik+1 = ik + 1.

(a) EC k+1 = Cik+1
if Cik+1

is convex,

(b) EC k+1 = pik+1
otherwise.

3. Otherwise, let j0 be the smallest j such that j > ik + 1, and either (pj−1 is not inside of any
pocket of CH k with yj−1 < yj) or (Cj intersects with a lid L(p′, p′′) at a point p∗∗, but it is
not totally inside of the pocket implied by L(p′, p′′), and further xj−1 < xj , yj−1 < yj , and
y∗∗ < min{y∗ | p∗ ∈ γ(pik , pj−1) ∩ L(p′, p′′))}.

(a) If pj0−1 is not inside of any pocket of CH k and either the inner angle of pj0−1 > π or
xj0 < xj0−1, then ik+1 = j0 − 1 and EC k+1 = pik+1

.

(b) Otherwise, ik+1 = j0 and
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i. EC k+1 = Cik+1
if Cik+1

is convex, and

ii. EC k+1 = L(pik+1−1, pik+1
) otherwise.

Next we inductively define the (k+1)-th current hull CH k+1. It is easy to show there is a
unique common tangent line Lp′,p′′ of CH k and EC k+1 (with x′ < x′′ and y′ < y′′) such that
CH k ∪ EC k+1 ⊂ HUL(L). If there is more than one choice of p′ (resp. p′′), we choose p′ (resp.
p′′) so that the distance between p′ and p′′ is minimal. Further, let FRONT CH k+1 denote the
subarc of CH k between the points p0 and p′, and REAR CH k+1 denote the subarc of EC k+1

between the points p′′ and pik+1
. The (k+1)-th current hull CH k+1 is defined as the connected

union FRONT CH k+1 ∪ L(p′, p′′) ∪ REAR CH k+1. CH k+1 is a convex arc along which both x
and y-coordinates are strictly increasing. L(p′, p′′) is called the lid determined by p′ and p′′. Let
γ̄ be the closed path given as γ(p′, p′′) followed by a path from p′′ to p′ along L(p′, p′′). If γ̄ has
no self-intersection, the region bounded by γ̄ is called the pocket determined by the lid L(p′, p′′).
Otherwise, γ(p′, p′′) has an even number of intersections with the lid L(p′, p′′) counting intersections
with multiplicities and γ̄ divides the plane into a finite number of connected regions. The union of
all the regions which are to the right of γ̄ is the pocket implied by L(p′, p′′).

Properties of CH k We prove two important properties of CH k in the following Lemmas 3.1–3.2.

Lemma 3.11. If a point p ∈ Ci (1 ≤ i ≤ ik) is on the convex hull boundary, then p ∈ CH k.

Proof : Using induction we can easily show that the interior of the path γ(pik , pik+1−1), the
arc Cik+1

∼ EC k+1, and (CH k ∪ Cik+1
) ∼ CH k+1 are in the convex hull interior. �

Lemma 3.12. If a point p ∈ CH k is on the convex hull boundary, then the subarc of CH k between
p0 and p is contained entirely in the convex hull boundary.

Proof : The case k = 1 is easy to show. By induction, we assume for k (1 ≤ k < N)
and consider k + 1. Suppose a point p ∈ CH k+1 is on the convex hull boundary. (a) If
p ∈ FRONT CH k+1 ⊂ CH k, then the statement follows by induction. (b) If p ∈ L(p′, p′′),
then L(p′, p′′) is also on the convex hull boundary. Further, FRONT CH k+1 is on the convex
hull boundary by induction. (c) If p ∈ REAR CH k+1, then there is a supporting line Lp
at p. We now prove that the lid L(p′, p′′) is on the convex hull boundary. Suppose there is
a boundary point q in the region R1. We may assume q is extreme to the outward normal
direction of the lid and thus on the convex hull boundary. (i) If q ∈ Cj (1 ≤ j ≤ ik+1),
then Lemma 3.1 implies q ∈ CH k+1, however, this is impossible since CH k+1 is convex. (ii)
Otherwise, there is a continuous path from pik+1

to q. This path should pass through either
the region R2 or R3, however, both are impossible. Hence the lid L(p′, p′′) is on the convex
hull boundary, and by induction FRONT CH k+1 is also on the convex hull boundary. Similarly
one can show that the subarc of REAR CH k+1 between p′′ and p is on the convex hull boundary. �

Since pM is on the convex hull boundary and it is the end point of CHN , Theorem 3.1 below
follows easily from Lemmas 3.1–3.2.

Theorem 3.13. CHN is the lower–right part of the convex hull boundary between p0 and pM .

Description of Algorithm We describe an algorithm to compute the sequences of event edges
{Cik}Nk=1 and current hulls {CH k}Nk=1 by using a single stack CH . CH contains segments of the
k-th current hull CH k which are subarcs of some convex edges, some linear edges and the lids of
pockets. Consecutive elements on the stack share a common end point and the connected sequence
of elements on the stack CH generate the current hull CH k (we say then that “the stack CH implies
the current hull CH k”).
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Computing Event Edges We start by pushing a single point interval [p0, p0] into an empty
stack CH . The stack CH implies the current hull CH 0 = {p0}. Assume ik is detected and the
stack CH implies the k-th current hull CH k (0 ≤ k < N). We consider how to detect ik+1 using the
stack CH . Since the cases 1 and 2 of §3.1.1 are easy, we consider only case 3. We detect j0 by using
a loop variable j initialized to ik and maintaining the following invariant for j at the beginning of
each loop :

“pj is outside (including the boundary) of any pocket of CH k and TOP(CH ) is not strictly
below the horizontal line y = yj .”

In each loop, j is first incremented by 1. Then, (1) If yj−1 ≤ yj , then j0 = j. (2) If yj−1 > yj , then
pop all the stack elements until (a) TOP(CH) which does not intersect with Cj and is not strictly
above the line y = yj , or (b) TOP(CH) which is a lid intersecting with Cj . In the case (a), repeat
the j–loop. In the case (b), initially let p∗ be the first intersection of Cj with L(p′, p′′). Next, walk
along the path γ(pj−1, pM ) and count the number of right–to–left cuts and left–to–right cuts this
path makes with the lid L(p′, p′′). At each intersection point, say p∗∗, make p∗ = p∗∗ if y∗∗ ≤ y∗.
While the number of right–to–left cuts is larger than left–to-right cuts, we are inside of the pocket
implied by L(p′, p′′). Consider when a path γ(p∗, pj) is totally contained in a self–intersecting
pocket and has its first interior intersection with a lid L(p′, p′′) in a right–to–left direction. When
γ(p∗, pj) comes out of a pocket through a point p∗∗, the total cuts in both directions are equal.
If these two numbers become equal at a point p∗∗ ∈ Cj′ , compare y∗∗ with y∗. If y∗∗ > y∗, then
continue the walking along the path γ(p∗∗, pM ). If y∗∗ ≤ y∗, then (i) let j0 = j′ if yj′−1 ≤ yj′ , and
(ii) otherwise, let j = j′ and further treat p∗∗ as pj and repeat the j-loop. It is easy to show that
the j–loop invariant holds everytime the loop is repeated and j0 is detected correctly.

procedure Detect-Event-Edge (CH,ik,ik+1,EC);
begin
if (xik+1 ≤ xik and the inner angle of pik < π) then begin

ik+1 = min {j | j > ik + 1 and xj > xik};
if (yik+1−1 < yik+1

and Cik+1
is convex) then EC = Cik+1

else EC = pik+1
end;

else if (xik < xik+1, yik < yik+1, and the inner angle of pik <
3π
2 ) then begin

ik+1 = ik + 1; if (Cik+1
is convex) then EC = Cik+1

else EC = pik+1
end;

else begin
j = ik; FOUND = false;
while (not FOUND) do begin

j = j + 1;
if (yj−1 < yj and j − 1 6= ik) then begin

FOUND = true;
if (xj−1 < xj and the inner angle of pj−1 < π) then begin

ik+1 = j; if (Cik+1
is convex) then EC = Cik+1

else EC = L(pik+1−1, pik+1
) end;

else begin ik+1 = j − 1; EC = pik+1
; end

else begin
Pop all the stack elements until (a) a lid L(p′, p′′) which contains pj in the interior of
the pocket bounded by the lid L(p′, p′′) or (b) a stack element which is not strictly
above the horizontal line y = yj ;
if (pj is an interior point of the pocket bounded by the lid L(p′, p′′) which intersects
with Cj at p∗) then begin

DONE = false; RightLeftCut = 1; LeftRightCut = 0; YMIN = y∗;
repeat

Skip all the subsequent edges until an edge Cj′ which transversally intersects
with L(p′, p′′);
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for (each transversal intersection point p∗∗ on Cj′) do begin
if (the intersection is a left-to-right cut)
then LeftRightCut = LeftRightCut + 1;
else RightLeftCut = RightLeftCut + 1;
if (y∗∗ < YMIN and RightLeftCut = LeftRightCut)
then DONE = true;
else YMIN = min (YMIN, y∗∗); end; (∗ for ∗)

until (DONE);
if (yj′−1 < yj′) then begin ik+1 = j′; FOUND = true end
else j = j′ end; end; end; end;

end; (∗ Detect-Event-Edge ∗)

Computing Current Hulls We consider next how to construct CH k+1 from CH k and EC k+1

by using the stack CH . Though we have popped some stack elements from CH, the elements on the
stack CH imply a convex arc Γ which contains FRONT CH k+1. To remove redundant elements
Γ ∼ FRONT CH k+1 from CH , we consider the top stack element TOP(CH). We check whether
TOP(CH ) contains the common tangent point p′ for the new lid L(p′, p′′) of CH k+1. Since EC k+1

is not strictly below y = yS , we have (1) p′ = pE if EC k+1 ⊂ HUL(LpE ) and EC k+1 is not strictly
below the horizontal line y = yE ; otherwise, (2) p′ ∈ TOP(CH ) if EC k+1 ⊂ HUL(LpS ), and (3) p′ 6∈
TOP(CH ) otherwise. Here pS and pE are the starting and ending points of TOP(CH ), and LpS
and LpE are the tangent lines of TOP(CH ) at pS and pE respectively. In the cases (1) and (2), p′

and p′′ can be computed by using Lemmas 2.3–2.4. In the case (3), we pop TOP(CH ) and repeat
the same procedure. Once we have computed p′ and p′′, we can adjust the stack appropriately to
imply CH k+1.

procedure Update-Current-Hull (CH,EC);
begin
DONE = false;
while (not DONE) do begin

Let pS and pE be the starting and ending points of TOP(CH);
Let LpS and LpE be the tangent lines of TOP(CH) at pS and pE respectively;
if (EC ⊂ HUL(LpE ) and EC is not strictly below the horizontal line y = yE) then begin

if (EC is a point pik+1
) then p′′ = pik+1

;
else if (EC is a convex edge Cik+1

) then p′′ = SUPP2 (pE , Cik+1
);

else if (EC is a line segment L(pik+1−1, pik+1
)) then

if (pik+1−1 ∈ HUL(L(pE , pik+1
))) then p′′ = pik+1

else p′′ = pik+1−1;
Push the lid L(pE , p

′′) into CH;
if (p′′ 6= pik+1

) then
if (EC = Cik+1

) then Push the subsegment of Cik+1
between p′′ and pik+1

into CH;
else if (EC = L(pik+1−1, pik+1

)) then Push the lid L(pik+1−1, pik+1
) into CH;

DONE = true end;
else if (EC ⊂ HUL(LpS )) then begin

if (EC is a point pik+1
) then p′′ = pik+1

and p′ = SUPP1 (TOP(CH),pik+1
);

else if (EC is a convex edge Cik+1
) then

p′ = SUPP1 (TOP(CH),Cik+1
); p′′ = SUPP2 (TOP(CH), Cik+1

);
else if (EC is a line segment L(pik+1−1, pik+1

)) then begin
p′ = SUPP1 (TOP(CH), pik+1

);
if (pik+1−1 ∈ HUL(L(p′, pik+1

))) then p′′ = pik+1
;

else p′′ = pik+1−1; p′ = SUPP1 (TOP(CH),pik+1−1) end; (∗ else if ∗)
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Let C = the subsegment of TOP(CH) between pS and p′;
Pop TOP(CH) from CH, and push C and the lid L(p′, p′′) into CH;
if (p′′ 6= pik+1

) then
if (EC = Cik+1

) then Push the subsegment of Cik+1
between p′′ and pik+1

into CH;
else Push the lid L(pik+1−1, pik+1

) into CH;
DONE = true end;

else Pop TOP(CH) from the stack CH end; (∗ while ∗)
end; (∗ Update-Current-Hull ∗)

Timing Analysis There are basically two types of operations in this algorithm. Operations to
manipulate the edge sequence itself or operations to manipulate the stack. Each edge as input is
processed within a constant number of steps before it is determined whether it is an event edge or
not. If it is an event edge, a segment of this edge is pushed on the stack. While an edge is on the
stack, it may be used to process other edges and/or be changed into a shorter subsegment. Finally,
it is popped if it is not on the convex hull boundary or it appears in the final output as an edge of
the convex hull boundary.

Before an edge is determined to be an event edge or not, we apply to this edge such computations
like coordinate comparisons, an inner angle computation, and intersections with stack elements. If
a stack element is popped after certain computations, we charge the cost of these computations
to this popped stack element. Since the popping occurs at most once to an edge, the cost at the
popping time will be charged at most once to each edge. Further, there is at most one stack element
which is involved in the operation with the input edge and still remains on the stack. We can charge
this cost and other trivial computation costs to the input edge. The most expensive computation
cost here is line–curve segment intersection which is O(d3 log d) (resp. O(d3 log d+ T (d))) time for
a parametric (resp. implicit) curve segment. Since there are totally O(n) input edges and popped
edges, the total cost for event edge detections is O(n · d3 log d) (resp. O(n · (d3 log d+T (d)))) time.

After an event edge is detected, the stack is modified to imply the new current hull. The
stack elements are popped after two halfplane containment testings which cost O(d3 log d) (resp.
O(d3 log d+T (d))) time. The new stack is constructed by computing the lid L(p′, p′′) and modifying
itself appropriately, which costs at most O(d6 log d) (resp. O(d12 log d + T (d))) time for common
tangent computations. Note that this last operation takes constant time if both p′ and p′′ are
known, and O(d3 log d) (O(d6 log d+ T (d))) time if one of p′ and p′′ is known. We charge this cost
to the event edge. Thus, the total cost for the current hull computation is O(n · d6 log d) (resp.
O(n·(d12 log d+T (d)))) time, which is also the overall time complexity of the convex hull algorithm.

We suggested an O(n · d6 log d) (resp. O(n · (d12 log d + T (d)))) time algorithm to compute
the convex hull of planar curved object bounded by O(n) rational (resp. non–rational) algebraic
monotone curve segments. Though within the same asymptotic time complexity, this improves
[86, 49] in the case of planar curved objects bounded by arbitrary algebraic curve segments. Main
differences between this algorithm and [86, 49] are as follows: (1) the boundary curves are divided
into monotone curve segments by adding inflection and extreme points as extra vertices in a prepro-
cessing step, (2) simple coordinate comparisons between vertex coordinates make many geometric
decisions very easily, (3) this algorithm reduces the number of common tangent computation by
detecting next event edges with a correct orientation, and (4) this algorithm is robust when used
with approximations to save expensive computations in the intermediate steps.

3.3 Decomposition

In this section we present an algorithm to compute the convex hull of a planar curved object
bounded by O(n) monotone curve segments. The algorithm runs in O(n) steps, where each step
takes polynomial time in the degree d. In the following we consider the construction of the lower–
right subpart of the convex hull boundary which lies between the bottommost vertex p0 and the
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rightmost vertex pM of the original object. The entire convex hull is obtained by applying the same
algorithm to the remaining three subparts. W.l.o.g. we may assume there are unique bottommost
and rightmost vertices.

In the following, let C1, C2, . . . , CM be a connected sequence of edges from p0 to pM , where
each Ci has pi−1 and pi as its starting and ending vertices resectively. For a point p# (resp. p#) we
denote its x and y-coordinates by x# and y# (resp. x# and y#). We also denote the line segment
connecting two points p and q by L(p, q) and the path from p to q along the boundary curve by
γ(p, q).

Sequences of Event Edge and Current Hull We give a constructive definition of a sequence
of event edges {Cik}Nk=1 with CiN = CM and a sequence of current hulls {CH k}Nk=1. Further,
we show that the N-th current hull CHN is the lower–right subpart of the convex hull boundary
between p0 and pM .

Definition of Cik and CH k Let i0 = 0 and CH 0 = {p0}. Assume that the index ik and the
k-th current hull CH k (0 ≤ k < N) have been defined. We define the (k+1)-th event edge Cik+1

and the (k+1)-th event component ECk+1 ⊂ Cik+1
in terms of ik and CH k as follows, see Figures

4.1.1−4.1.3.

1. If xik+1 ≤ xik and the inner angle of pik < π, then ik+1 = min {j | j > ik and xj > xk}.

(a) EC k+1 = Cik+1
if yik+1−1 < yik+1

and Cik+1
is convex,

(b) EC k+1 = pik+1
otherwise.

2. If xik < xik+1 and yik < yik+1, then ik+1 = ik + 1.

(a) EC k+1 = Cik+1
if Cik+1

is convex,

(b) EC k+1 = pik+1
otherwise.

3. Otherwise, let j0 be the smallest j such that j > ik + 1, and either (pj−1 is not inside of any
pocket of CH k with yj−1 < yj) or (Cj intersects with a lid L(p′, p′′) at a point p∗∗, but it is
not totally inside of the pocket implied by L(p′, p′′), and further xj−1 < xj , yj−1 < yj , and
y∗∗ < min{y∗ | p∗ ∈ γ(pik , pj−1) ∩ L(p′, p′′)}.

(a) If pj0−1 is not inside of any pocket of CH k and the inner angle of pj0−1 > π, then
ik+1 = j0 − 1 and EC k+1 = pik+1

.

(b) Otherwise, ik+1 = j0 and

i. EC k+1 = Cik+1
if Cik+1

is convex, and

ii. EC k+1 = L(pik+1−1, pik+1
) otherwise.

Next we inductively define the (k+1)-th current hull CH k+1. It is easy to show there is a
unique common tangent line Lp′,p′′ of CH k and EC k+1 (with x′ < x′′ and y′ < y′′) such that
CH k ∪ EC k+1 ⊂ HUL(L). If there is more than one choice of p′ (resp. p′′), we choose p′ (resp. p′′)
so that the distance between p′ and p′′ is minimal. Further, let FRONT CH k+1 denote the front
subarc of CH k between the points p0 and p′, and REAR CH k+1 denote the rear subarc of EC k+1

between the points p′′ and pik+1
. The (k+1)-th current hull CH k+1 is defined as the connected

union FRONT CH k+1 ∪ L(p′, p′′) ∪ REAR CH k+1, see Figure 4.1.4. CH k+1 is a convex arc along
which both x and y-coordinates are strictly increasing. L(p′, p′′) is called as the lid determined
by p′ and p′′. Let γ̄ be the closed path given as γ(p′, p′′) followed by a path from p′′ to p′ along
L(p′, p′′). If γ̄ has no self-intersection, the region bounded by γ̄ is called as the pocket determined
by the lid L(p′, p′′). Otherwise, γ(p′, p′′) has an even number of intersections with the lid L(p′, p′′)
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counting intersections with multiplicities and γ̄ divides the plane into a finite number of connected
regions. The union of all the regions which are to the right of γ̄ is the pocket implied by L(p′, p′′),
see Figure 4.1.5.

Properties of CH k We prove two important properties of CH k in the following Lemmas 3.1–3.2.

Lemma 3.14. If a point p ∈ Ci (1 ≤ i ≤ ik) is on the convex hull boundary, then p ∈ CH k.

Proof : Using induction we can easily show that the interior of the path γ(pik , pik+1−1), the
arc Cik+1

∼ EC k+1, and (CH k ∪ Cik+1
) ∼ CH k+1 are in the convex hull interior. �

Lemma 3.15. If a point p ∈ CH k is on the convex hull boundary, then the front subarc of CH k

between p0 and p is entirely contained in the convex hull boundary.

Proof : The case k = 1 is easy to show. By induction, we assume for k (1 ≤ k < N) and consider
k + 1. Suppose a point p ∈ CH k+1 is on the convex hull boundary. (a) If p ∈ FRONT CH k+1 ⊂
CH k, then the statement follows by induction. (b) If p ∈ L(p′, p′′), then L(p′, p′′) is also on the
convex hull boundary. Further, FRONT CH k+1 is on the convex hull boundary by induction. (c)
If p ∈ REAR CH k+1, then there is a supporting line Lp at p. We prove the lid L(p′, p′′) is on the
convex hull boundary. Suppose there is a boundary point q in the region R1, see Figure 4.1.6. We
may assume q is extreme to the outward normal direction of the lid and thus on the convex hull
boundary. (i) If q ∈ Cj (1 ≤ j ≤ ik+1), then Lemma 4.1.2 implies q ∈ CH k+1, however, this is
impossible since CH k+1 is convex. (ii) Otherwise, there is a continuous path from pik+1

to q. This
path should pass through either the region R2 or R3, however, both are impossible. Hence, the lid
L(p′, p′′) is on the convex hull boundary, and by induction FRONT CH k+1 is also on the convex
hull boundary. Similarly one can show that the subarc of REAR CH k+1 between p′′ and p is on
the convex hull boundary. �

Since pM is on the convex hull boundary and the end point of CHN , Theorem 3.1 follows easily
from Lemmas 3.1–3.2.

Theorem 3.16. CHN is the lower–right part of the convex hull boundary between p0 and pM .

Description of Algorithm We describe an algorithm to compute the sequences of event edges
{Cik}Nk=1 and current hulls {CH k}Nk=1 by using a single stack CH . CH contains segments of the
k-th current hull CH k which are subarcs of some convex edges, some linear edges and the lids of
pockets. Adjacent elements on the stack share a common end point and the connected sequence of
elements on the stack CH generates the current hull CH k (we say then that “the stack CH implies
the current hull CH k”).

Computing Event Edges We start with pushing a single point interval [p0, p0] into an empty
stack CH . The stack CH implies the current hull CH 0 = {p0}. Assume ik is detected and the
stack CH implies the k-th current hull CH k (0 ≤ k < N). We consider how to detect ik+1 using
the stack CH . Since the cases 1 and 2 of §3.1.1 are easy, we consider only the case 3. We detect j0
= min Ωk by using a loop variable j initialized to ik and maintaining the following invariant for j
at the beginning of each loop.
“pj is outside (including the boundary) of any pocket of CH k, and TOP(CH ) is not strictly below
the horizontal line y = yj .”
In each loop, j is first incremented by 1. (1) If yj−1 ≤ yj , then j0 = j. (2) If yj−1 > yj , then
pop all the stack elements until (a) TOP(CH) which does not intersect with Cj and is not strictly
above the line y = yj , or (b) TOP(CH) which is a lid intersecting with Cj . In the case (a), repeat
the j–loop. In the case (b), let p∗ be the first intersection of Cj with L(p′, p′′), walk along the path
γ(pj−1, pM ) and count the numbers of Left–to–right cuts and Right–to–left cuts this path makes
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with the lid L(p′, p′′). At each intersection point p∗∗, let p∗ = p∗∗ if y∗∗ ≤ y∗. While there are
more Left–to–right cuts than Right–to-left cuts, we are inside of the pocket implied by L(p′, p′′).
If these two numbers become equal at a point p∗∗ ∈ Cj′ , compare y∗∗ with y∗ = yminj′(L(p′, p′′)).
If y∗∗ > y∗, then continue the walking along the path γ(p∗∗, pM ). If y∗∗ ≤ y∗, then (i) let j0 = j′

if yj′−1 ≤ yj′ , and (ii) let j = j′, pretend p∗∗ as pj and repeat the j-loop otherwise. It is easy to
show that the j–loop invariant holds everytime the loop is repeated and j0 is detected correctly.

Computing Current Hulls We consider how to construct CH k+1 from CH k and EC k+1 by
using the stack CH . Though we have popped some stack elements from CH, the elements on the
stack CH imply a convex arc Γ which contains FRONT CH k+1 as its front subarc. To remove
redundant elements Γ ∼ FRONT CH k+1 from CH , we consider the top stack element TOP(CH).
We check whether TOP(CH ) contains the common tangent point p′ for the new lid L(p′.p′′) of
CH k+1. Since EC k+1 is not strictly below y = yS , we have (a) p′ = pE if and only if EC k+1 ⊂
HUL(LpE ) and EC k+1 is not strictly below the horizontal line y = yE , (b) p′ ∈ TOP(CH ) if and
only if EC k+1 ⊂ HUL(LpS ), and (c) p′ 6∈ TOP(CH ) otherwise, where pS and pE are the starting
and ending points of TOP(CH ), and LpS and LpE are the tangent lines of TOP(CH ) at pS and pE
respectively. In the cases (a) and (b), p′ and p′′ can be computed by using Lemmas 2.3–2.4. In the
case (c), we pop TOP(CH ) and repeat the same procedure. Once we have computed p′ and p′′, we
can adjust the stack appropriately to imply CH k+1.

Timing Analysis There are basically two types of operations in this algorithm, either operations
to manipulate the edge sequence itself or operations to manipulate the stack. Each edge as input
is processed within a constant number of steps before it is decided to be an event edge or not. If it
is an event edge, a piece of this edge is pushed on the stack. While an edge is on the stack, it may
be used to process other edges and/or changed into a shorter subsegment. Finally, it is popped if
it is not on the convex hull boundary, or it appears on the final output if it is.

Before an edge is decided to be an event edge or not, we apply to this edge such operations
like coordinate comparisons, an inner angle computation, and intersections with stack elements.
If a stack element is popped after certain computations, we charge the cost to this popped stack
element. Since the popping occurs at most once to an edge, the cost at the popping time will be
charged at most once to each edge. Further, there is at most one stack element which is involved in
the operation with the input edge and still remains on the stack. We can charge this cost and other
trivial costs to the input edge. So far, the most expensive cost is line–curve segment intersection
which is O(d3 log d) (resp. O(d3 log d+T (d))) time for a parametric (resp. implicit) curve segment.
Since there are total O(n) input edges and popped edges, the total cost for event edge detections
is O(n · d3 log d) (resp. O(n · (d3 log d+ T (d)))) time.

After an event edge is detected, the stack is modified to imply the new current hull. The
stack elements are popped after two halfplane containment testings which cost O(d3 log d) (resp.
O(d3 log d+T (d))) time. The new stack is constructed by computing the lid L(p′, p′′) and modifying
itself appropriately, which costs at most O(d6 log d) (resp. O(d12 log d + T (d))) time for common
tangent computation. Note that this last operation takes O(1) time if both p′ and p′′ are known, and
O(d3 log d) (O(d6 log d+ T (d))) time if one of p′ and p′′ is known. We charge this cost to the event
edge. Thus, the total cost for current hull computation is O(d6 log d) (resp. O(d12 log d + T (d)))
time, which is also the overall time complexity of this algorithm.

Decomposition of Monotone Boundary Edges In this section, we consider how to construct
a simple carrier polygon of a geometric model object with at most O(n2) edges, which is optimal
since this number is shown to be Ω(n2) in [50]. Further, we consider how to construct a simple
characteristic carrier polygon, an inner polygon and an outer polygon of the geometric model. We
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assume the model boundary has been decomposed into O(n) monotone edges in a preprocessing
step as discussed in §2.

Simple Carrier Polygon Consider the horizontal vertex visibility partition of both the interior
and exterior of a geometric model, see [50, 97], where the exterior is partitioned within a box
enclosing the object. Let H be a visibility cell of the partition, and the right and left sides of H be
bounded by the edges C and D respectively.Note that each side of H may be a proper subsegment
of C or D. Let us assume H is in the interior of the geometric model and C is a convex edge. The
cases of H being in the exterior and/or C being a concave edge can be handled in similar ways.
Let pB and pT be the bottom and top points of the right side of H, and C̄ be the subsegment of
C between pB and pT . Further, let qB and qT be the bottom and top points of the left side of H,
and D̄ be the subsegment of D between qB and qT . To make the construction easier, we add pB
and pT (resp. qB and qT ) as extra vertices to C (resp.D). Since there are only O(n) such extra
vertices, the total number of edges after this decomposition is still O(n).

We can add extra vertices p1, p2, . . . , pkC̄ to the edge C̄ so that the carrier polygonal arc PC̄
connecting the vertices pB, p1, . . . , pkC̄ , pT does not intersect with any other part of the carrier
polygon except at pB and pT and also with the extra vertices the carrier polygon has at most O(n2)
edges. This is achieved by the following construction. At each vertex p, construct a horizontal line
L containing p and parallel to the x-axis. Let p1, p2, . . . , pkC̄ (resp. q1, q2, . . . , qkD̄) be the
intersection points of C̄ (resp. D̄) with these horizontal lines. Then the corresponding carrier
polygonal arcs PC̄ and PD̄ do not intersect except at the end points and further it follows that the
carrier polygon ∪PC̄ is simple. Since there are O(n) such horizontal lines and boundary edges, and
kC̄ = O(n), the carrier polygon has O(n2) edges. Though O(n2) is optimal asymptotically, the
above construction does not generate the minimal number of extra vertices. Steps can be taken
to reduce the number of extra vertices added. For example, when the chord L(pB, pT ) of C̄ does
not intersect with D̄ except at pB and pT , we do not need to add any extra vertices. Thus PC̄ is
L(pB, pT ) with kC̄ = 0. Further, when L(pB, pT ) intersects with D̄ at a point other than pB and
pT , we construct PC̄ so that PC̄ does not intersect with PD̄ except at pB and pT though PC̄ may
intersect with the edge D̄. Thus, we construct PD̄ recursively. Assume we have constructed PD̄ by
adding a small number of extra vertices to D̄. Then by scanning H from the top to the bottom, we
can add at most kD̄ extra vertices to the edge C̄ to make the corresponding carrier polygonal arc
PC̄ simple. Thus we have the relation kC̄ ≤ kD̄. Though for simplicity we assume each boundary
edge is segmented into monotone edges and each monotone edge is further decomposed so that
each side of H is an edge, we can easily modify the above construction so that we may need to add
extra vertices only to y-extreme points and apply the same recursive construction to add a minimal
number of extra vertices to each y-monotone edge.

Theorem 3.17. Assume all the monotone edges are parametric (resp. implicit) algebraic curve
segments. A simple carrier polygon of an object with at most O(n2) edges can be constructed in
O((n log logn+k)·d3 log d) (resp. O((n log log n+k)·(d3 log d+T (d)))) time, where k is the number
of edges in the simple carrier polygon.

Proof: The horizontal vertex visibility partition of both the interior and exterior of an object
can be constructed in O(n log log n ·d3 log d) (resp. O(n log logn · (d3 log d+T (d)))) time. A simple
carrier polygon can be constructed in O(k·d3 log d) (resp. O(k·(d3 log d+T (d)))) time by computing
O(k) line–curve segment intersections. �

Simple Characteristic Carrier Polygon A carrier polygon is characteristic if, for each edge
E, S(E) is totally contained either in the interior of the geometric model or in the exterior of the
model, where S(E) is the convex region bounded by the edge E and its chord. If E is a convex
(resp. a concave) edge, then S(E) is totally contained in the interior (resp. in the exterior) of the
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model and is called an additive (resp. a subtractive) convex region. Assume C and D are the same
as C̄ and D̄ of §3.1 respectively. We can add extra vertices p1, p2, . . . , pkC to the edge C so that
the convex regions of the decomposed subsegments of C are additive convex regions. The case of
C being a concave edge can be handled in a similar way and the convex regions of the decomposed
subsegments of C become subtractive convex regions in this case. This decomposition is achieved
as follows. If S(C) and S(D) do not intersect, we do not add any extra vertex to C and S(C) is an
additive convex region, thus kC = 0. Otherwise, let L1 be the tangent line from pB to D, p1 be the
intersection point of L1 with C, and C1 be the subsegment of C between pB and p1. Then, S(C1)
is an additive convex region. Let C̄ be the subsegment of C between p1 and pT . If S(C̄) intersects
with S(D), then we compute a tangent line L2 from p1 to D and the intersection point p2 of L2

and C, and repeat the same procedure. Otherwise, S(C̄) is an additive convex region. Now, we
prove the decomposition of C terminates within a finite number of steps.

Theorem 3.18. Assume no vertex has its inner angle as 0 or 2π. Each edge C can be decomposed
into a finite number of subedges C1, C2, . . . , CkC so that the convex regions are additive.

Proof Suppose there is an infinite sequence of Ci’s (i = 1, 2, ... ) constructed as above. Let
pi be the end point of Ci, then xS < xi < xi+1 < xE for all i. Since xi is a strictly increasing
sequence bounded above, xi → x for some x ≤ xE . Let pL ∈ C be such that xL = x, then pi → pL.
In an arbitrary small neighborhood U of pL, there is an integer N such that pi ∈ U and Ci ⊂ U
for all i ≥ N . Let qi be the tangent point of L(pi−1, pi) with D, then qi ∈ U for all i ≥ N . Since
qi’s are on D and in the interior of S(C), this means that pL is a limit point of D which are in
the interior of S(C). We can easily show that D is a concave edge and pL is a common vertex of
C and D, and further the inner angle at pL > 3π/2 (resp. < π/2). Since L(pi−1, pi) is tangent to
D at qi with pi → pL and qi → pL, C and D have the same tangent line at pL. Hence, the inner
angle of the model at pL is 2π (resp. 0). It is impossible since we assume no such vertex on the
geometric model boundary. �

We call the polygonal arc PχC connecting the vertices pS , p1, . . . , pkC , pE as the first characteristic
polygonal arc of C, the union ∪PχC as the first characteristic polygon of the geometric model, and
K =

∑
(kC + 1) as the characteristic number of the object. It is easy to show that the edges

of characteristic polygon do not intersect each other transversally and two different vertices do
not overlap. However, a vertex may lie on the interior of some characteristic polygon edge. By
decomposing each edge with a vertex on its chord interior into two subedges, we can make the
carrier polygon simple. Thus, using at most 2K edges we can construct a simple characteristic
carrier polygon.

Theorem 3.19. Assume all the monotone edges are parametric (resp. implicit). A simple char-
acteristic carrier polygon of an object with at most 2K edges can be computed in O((n log log n +
K) · d3 log d) (resp. O((n log logn+K) · (d6 · log d+ T (d)))) time.

Proof: After the horizontal vertex visibility partition is computed, a simple characteristic
carrier polygon can be constructed in O(K · d3 log d) (resp. O(K · (d3 log d + T (d)))) time by
computing O(K) tangent lines from given points. �

Inner and Outer Polygons Let C be a monotone edge with pS as its starting point and pE
as its ending point. For any two different points p and q on C, L(p, q) denotes the line segment
connecting p and q, and Lp denotes the tangent line of C at p. Let p∗ be the intersection point of two
tangent lines LpS and LpE . We call the line segment L(pS , pE) as the chord of C and the polygonal
arc ∧(C) = L(pS , p

∗) ∪ L(p∗, pE) as the wedge of C. Let pS , p1, p2, . . . , pk, pE be a sequence of
points on C in the order they appear along C, then the polygonal arc P chordC (pS , p1, p2, . . . , pk, pE)
= L(pS , p1) ∪ L(p1, p2) ∪ . . . ∪ L(pk, pE) is called as the chordal polygonal arc of C determined by
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the sequence pS , p1, p2, . . . , pk, pE . Let p∗i be the intersection point of Lpi−1 and Lpi (i = 1, . . . ,

k + 1), where p0 = pS and pk+1 = pE . Then the polygonal arc P tangentC (pS , p1, p2, . . . , pk, pE) =
L(pS , p

∗
1) ∪ L(p∗1, p

∗
2) ∪ . . . ∪ L(p∗k, p

∗
k+1) ∪ L(p∗k+1, pE) is called as the tangential polygonal arc of C

determined by the sequence pS , p1, p2, . . . , pk, pE .
If we decompose the geometric model boundary so that the chords of convex (resp. concave)

decomposed edges and the wedges of concave (resp. convex) decomposed edges are totally contained
in the interior (resp. the exterior) of the model, then the union of these chords and wedges defines
an inner (resp. outer) polygon which is totally contained in the interior (resp. the exterior) of the
model. In the following, we will consider the construction of inner polygonal arcs P chordC of edges
C. The outer polygonal arcs P tangentC of edges C can be constructed in a similar way.

We first consider the case of C being a convex edge. Let PχC be the first characteristic polygonal
arc of C, then C is to the right of PχC and D is to the left of PχC . We may assume pB 6= qB or
pT 6= qT . If D is a convex edge, then PχC is the chord L(pB, pT ) of C and the chords of C and D do
not intersect except at an end point. Further, the chords of C and D are contained in the interior
of the object. We call L(pB, pT ) and L(qB, qT ) as the inner polygonal arcs of C and D respectively.
Now, if D is a concave edge, there are points q1, q2, . . . , qkC on D which are tangent to some lines
segments on PχC . Let pB, p1, p2, . . . , pkC , pT be the vertices of PχC in the order they appear along
C. Note that q1 = qB if pB = qB, and kC = 0 if D ∩ PχC = ∅. Further, qi is the tangent point
of L(pi−1, pi) on D (i = 1, . . . , kC), where p0 = pB and pkC+1 = pT . We add an extra vertex
p′i to each subedge of C between pi−1 and pi (i = 1, . . . , kC + 1). We call the polygon P innerC

connecting pB, p
′
1, p1, . . . , pkC , p

′
kC+1, pT as the inner polygonal arc of C. P innerC is strictly to the

right of PχC except the points pB, p1, p2, . . . , pkC , pT . Further, we add an extra vertex q′i to each
subedge of D between qi−1 and qi (i = 1, . . . , kC + 1), where q0 = qB and qkC+1 = qT . We choose
q′kC+1 so that the tangent line of D at this point is parallel to the line segment L(pkC−1, pkC ). Note
that qB = q′1 = q1 if pB = qB, and qT = q′kC+1 if pT = qT . We call the tangential polygonal arc

P tangentD (qB, q
′
1, q1, . . . , qkC , q

′
kC+1, qT ) as the inner polygonal arc P innerD of D.

We consider the case of C being a concave edge. Since the case of D being convex can be
handled in a similar way as above, we assume D is concave. There are two common tangent lines
L1 and L2 of C and D. Let p∗ be the intersection point of L1 and L2, and L be a line containing
the point p∗ and having its slope strictly between the slopes of L1 and L2. Let p′ (resp. q′) be a
point on C (resp. D) at which C (resp. D) has a tangent line parallel to the line L. We call the
tangential polygonal arc P tangentC (pB, p

′, pT ) (resp. P tangentD (qB, q
′, qT )) as the inner polygonal arc

P innerC of C (resp. P innerD of D). Since P innerC (resp. P innerD ) is strictly to the right (resp. to the
left) of L, P innerC ∩ P innerD = ∅.

Theorem 3.20. Assume all the monotone edges are parametric (resp. implicit). Both inner and
outer carrier polygons of an object with at most 2K edges can be computed in O((n log logn+K) ·
d3 log d) (resp. O((n log logn+K) · (d6 · log d+ T (d)))) time.

Proof: Similar to Theorem 3.2. �

Object Decompositions We consider various applications of the polygons Pχ and P inner con-
structed in §3 to the object decompositions. Dobkin, Souvaine, and Van Wyk [50] shows an
O(n log log n) algorithm to decompose a simple splinegon into a union of differences of unions of
possibly overlapping convex pieces. Our decomposotion may involve O(K) where K is often linear
in practice. Further, the decomposition structure in terms of unions and differences is simpler than
that of [50]. However, when the simple characteristic polygon has small number of edges like K
is almost linear, then our decomposition method may be more useful since this decomposition has
nicer structure.
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Convex Decomposition We can decompose the simple characteristic polygon Pχ into unions of
disjoint convex polygons ∪iPi, (see [70] for a survey on convex decomposition algorithms for simple
polygons). Let ∪jUj (resp. ∪kVk) be the union of all the additive (resp. subtractive) convex regions.
Then, the original object can be represented as (∪iPi) ∪ (∪jUj) ∼ (∪kVk). Further, the interiors
of Pi’s and Uj ’s are disjoint, and the interiors of Uj ’s and Vk’s are disjoint, however, the interiors
of Pi’s and Vk’s may have non-empty intersections. Thus the orders of union operations in the
unions (∪iPi)∪ (∪jUj) and ∪kVk are interchangeable. Further, as long as ∪iPi has been computed
first, the order of adding each Uj and subtracting each Vk is interchangeable. The construction of
Pχ is highly parallel and would be useful in a parallel implementation of the model decomposition
algorithm.

Primitive Decomposition The main purpose of geometric model decomposition is to simplify
a problem for complex geometric model into a number of simpler subproblems dealing with “nice”
boundary. In most of the cases a decomposition in terms of a union of disjoint convex pieces is
useful and this is always possible for simple polygons. However, this fact is certainly not true for
planar geometric models. In $4.1 we thus considered an alternative way, namely in decomposing
an object into unions and differences of convex objects. However, in some applications involving a
Minkowski operation (i.e. convolution) which commutes with union we may consider decomposing
a geometric model into a disjoint union of certain primitive objects.

We can decompose an inner polygon P inner into a union of disjoint convex polygons ∪iP inneri .
The difference between the model and the inner polygon P inner is the union (∪jU innerj )∪(∪kV inner

k ),

where each U innerj is an additive convex region bounded by a convex edge and its chord and each

V inner
k is a region bounded by a concave edge and its wedge. We can thus represent the original

model as a disjoint union (∪iP inneri ) ∪ (∪jU innerj ) ∪ (∪kV inner
k ).

Now, consider the application of this simple decomposition to Minkowski operation. For objects
A and B, the Minkowski addition A⊕B = {a+b | a ∈ A and b ∈ B} and the Minkowski subtraction
A 	 B = {a − b | a ∈ A and b ∈ B}. Let A = ∪iSi and B = ∪i′S′i′ , where Si and S′i′ are simple
objects. Then A⊕B = ∪(Si ⊕ S′i′) and A	B = ∪(Si 	 S′i′).

3.4 Offsets and Convolutions

Using configuration space (C-space) to plan motion for a single rigid object among physical obsta-
cles, reduces the problem to planning motion for a mathematical point among “grown” configu-
ration space obstacles, (the points in C-space which correspond to the object overlapping one or
more obstacles). For example, a rigid polyhedral object in compliant motion, viz., in continuous
contact with the boundary of obstacles in three-dimensional space can be represented as a point
constrained to move on the boundary of grown obstacles embedded in six-dimensional C-space, see
also [38]. The compliant motion technique thus initially relies in efficiently generating the boundary
of C-space obstacles. There exists numerous applications such as automated assembly, numerical
machining and part tolerancing, where motion planning in C-space has proved useful in generating
robust compliant and fine motion strategies

The only efficient algorithms known for generating C-space obstacles have been for polyhedral
(degree 1) surface objects and obstacles, using methods for efficiently computing convex hulls, and
recently efficient convolution algorithms for Minkowski sum. The methods based on generating a
cylindrical cell decomposition of free C-space, though applicable for general objects and obstacles
defined by semi-algebraic sets, are computationally too restrictive.Thus, often the object repre-
sentations that have been considered for planning motion in three-dimensional space, have been
polyhedral approximations to the curved object. However, if we approximate object and obstacle
by polyhedra, then for example, the compliant motion paths obtained are “jumpy” or provide dis-
crete contact motion. One solution to obtaining a continuous compliant motion includes generation
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of the curved surface boundary of the C-space obstacle. Further, it has progressively become easier
for geometric modeling systems to deal with objects that are defined by quadrics and higher degree
surfaces.Motion planning in these sophisticated modeling environments, for product prototyping
and simulation, suggests the need to efficiently generate the surface boundary of C-space obsta-
cles arising from the motion of objects among obstacles with algebraic surface boundaries. As we
show, one is required to generate only the specific part of the C-space obstacle boundary which
contains the desired compliant path. Piecewise algebraic, approximate shortest paths (approximate
geodesics) can then also be obtained by projecting on the curved C-space obstacle the shortest path
obtained on approximated C-space obstacles.

The main contributions of this paper are as follows. In §3 we very briefly show that the
boundary of C-space obstacles for general convex curved objects moving with fixed orientation can
be viewed as the convolution between the obstacle boundary and the reversed object boundary
(reversed with respect to a reference point on the object). In §4 we present algebraic algorithms
to generate the curves and surfaces which make up the boundary of the three-dimensional C-space
obstacles. Here again we only consider objects and obstacles which are convex. These objects
and obstacles are represented by a general algebraic boundary representation model discussed in
§2. Crucial to the algorithm time complexity and the resulting algebraic surface degree of the
C-space obstacles is the internal representation of object curves and surfaces, i.e., whether they are
parametrically or implicitly defined.2 We present algorithms for both these internal representations.
Next in §5 we show how to construct the topology of the C-space obstacle boundary. Use is
made of a Gaussian model discussed in §2. In §6 we consider motion of a point on the boundary
of C-space obstacles. With only translational parameters for the moving object one essentially
considers compliant motion wherein the contact points between object and obstacle change during
motion. Requiring the contact points to remain the same during compliant motion necessitates
the introduction of rotational parameters and thus higher dimensional C-spaces. For compliant
motion we present algebraic algorithms to compute various paths on curved algebraic surfaces in
three dimensions. Locally shortest or geodesic curves on algebraic surfaces are also considered.
Exact algebraic algorithms for geodesics are impossible in general because of the existence of non-
algebraic or transcendental geodesic curves. However, here we introduce a Gaussian polyhedral
approximation model which allows efficient piecewise algebraic approximations of geodesic paths
on curved surfaces.

3.4.1 C-space Obstacles and Convolution

Let A be a moving object with its reference point at the origin and B be a fixed obstacle, both
compact subsets of R3. A and B are modeled by the boundary representations of §2. We consider
object A to be free to move with fixed orientation. In this case configuration space is also three-
dimensional. We make the following definitions.
(1) CO(A,B) = “C-space obstacle due to A and B” = {p̄ ∈ R3 | Ap̄ ∩B 6= ∅}, where Ap̄ = {p̄+ q |
q ∈ A}.
(2) Convolution(G−A,KB) = “Convolution of G−A and KB” = {p̄ ∈ R3 | p̄ = p − q where
p ∈ KB and q ∈ G−A and B has an outward normal direction at p exactly opposite to an outward
normal A has at q}, where −A = {−p | p ∈ A}, KB ⊂ Bdr(B) and G−A ⊂ Bdr(−A).
We then note the following.

Theorem 3.21. For convex A and B, we have Bdr(CO(A,B)) = Convolution(Bdr(−A),Bdr(B)).

Proof : See [22]. �

2For example, a unit sphere is implicitly given as x2 + y2 + z2 − 1 = 0 and in rational parametric form as

x = (1−s2−t2)

(1+s2+t2)
, y = 2s

(1+s2+t2)
and z = 2t

(1+s2+t2)
.
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The above Theorem may suggest a natural method for handling non–convex object and obstacle
shapes. One first obtains a convex decomposition consisting of the union of convex pieces and then
generates the C-space obstacle as the union of C-space obstacles for convex object and obstacle
pairs, (since “convolution” commutes with “union”). Disjoint convex decompositions are possible
for polyhedral objects, [40]. However not all objects with algebraic curve and surface boundaries
permit decompositions consisting of the union of convex pieces, see [21]. For example a complete
toroidal surface cannot be decomposed into a finite union of convex pieces. To obtain convex
decompositions of general curved solid objects, when possible, say in terms of union, intersection
and difference, is a difficult and as yet unresolved problem. We restrict our attention to convex
shaped moving objects and obstacles.

3.4.2 Generating the Boundary of C-space Obstacles

Let T be −A or B, p ∈ Bdr(T ) be a boundary point, E ⊂ Bdr(T ) be an edge, and F ⊂ Bdr(T )
be a face. Let (FT , NFT

) be a pair such that FT ⊂ Bdr(T ) is a face and NFT
= N(T, FT ), where

N(T, ·) is the Gaussian Map of T . Let (ET , NET
) be a pair such that ET ⊂ Bdr(T ) is an edge

and NET
⊂ N(T,ET ) with NET

∩ N(T, p) 6= ∅ for all p ∈ ET . Let (pT , NpT ) be a pair such that
pT ∈ Bdr(T ) is a vertex and NpT ⊂ N(T, pT ) with NpT 6= ∅. Further let KB be FB, EB or pB, and
let G−A be F−A, E−A or p−A. There are nine possible (KB, G−A) pairs. We define sub-compatible
and compatible pairs as follows.

1. KB and G−A are sub-compatible ⇐⇒ N(B,KB) ∩N(−A,G−A) 6= ∅

2. (KB, NKB
) and (G−A, NG−A

) are compatible ⇐⇒ NKB
= NG−A

Further denote by KB ∼ G−A the fact that KB and G−A are sub-compatible.
Only sub-compatible pairs can contribute to the Convolution, one can show that
Convolution(Bdr(−A),Bdr(B)) = ∪KB∼G−A

Convolution(G−A,KB). We can further refine the
right-hand side to be a union of only the compatible pairs as follows. For a sub-compatible
(KB, G−A) pair, let N(KB, G−A) = N(B,KB) ∩ N(−A,G−A) be the nonempty intersection
of two Gaussian Images of KB and G−A. K(KB, G−A) = N−1(B,N(KB, G−A)) ⊂ KB and
G(KB, G−A) = N−1(−A,N(KB, G−A)) ⊂ G−A be the Inverse Gaussian Images of N(KB, G−A).
Then (K(KB, G−A), N(KB, G−A)) and (G(KB, G−A), N(KB, G−A)) are compatible. Hence, Con-
volution (Bdr(−A), Bdr(B)) = ∪KB∼G−A

Convolution(G(KB, G−A),K(KB, G−A)) and we only
need to consider compatible pairs to generate the Convolution.

When (KB, NKB
) and (G−A, NG−A

) are compatible with at least one of KB or G−A being a
vertex, the Convolution generation is especially easy, i.e. Convolution(G−A,KB) = KB ⊕G−A,
where T1 ⊕ T2 = “the Minkowski sum of T1 and T2” = {p1 + p2 | p1 ∈ T1 and p2 ∈ T2} for sets T1

and T2 ⊂ R3. Let Ch(p) = “the characteristic set of p” = {p̄ = p + q | N(B, p) ∩N(−A, q) 6= ∅}.
Ch(E ) = ∪p∈ECh(p) is called the characteristic set of E, and Ch(F ) = ∪p∈FCh(p) is called the
characteristic set of F. One can easily show that Convolution(Bdr(−A),Bdr(B)) = (∪F∈Γ1Ch(F ))∪
(∪E∈Γ2Ch(E )) ∪ (∪p∈Γ3Ch(p)), where Γ1 is the set of all faces of Bdr(B), Γ2 is the set of all edges
of Bdr(B), and Γ3 is the set of all vertices of Bdr(B).

In §4.1–4.3 we consider both the implicit and rational parametric representation of curves and
surfaces since not all algebraic curves and surfaces have rational parametrization, [107]. For the
class of rational algebraic curves and surfaces (which have a rational parametric form), algebraic
algorithms also exist for converting between the implicit and parametric representations. However
their efficiency are limited to curves and surfaces of low degree, see [3].

Growing Faces

For a face F ⊂ Bdr(B), one can easily show that Ch(F ) = (∪F ′∼FConvolution(G(F ,F ′),K (F ,F ′)))
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∪(∪E∼FConvolution(G(F ,E ),K (F ,E ))) ∪ (∪q∼FConvolution(q ,K (F , q))). One can use Theorem
3.22 of §4.1 to compute Convolution(G(F ,F ′),K (F ,F ′)) and Theorem 3.26 of §4.2 to compute
Convolution(G(F ,E ),K (F ,E )), while directly computing Convolution(G(F , q),K (F , q)) =
K (F , q)⊕ {q} as a simply translated surface patch.

Growing Edges

For an edge E ∈ Bdr(B), one can easily show that Ch(E ) =
(∪F∼EConvolution(G(E ,F ),K (E ,F ))) ∪(∪E′∼EConvolution(G(E ,E ′),K (E ,E ′))) ∪
(∪q∼EConvolution(q ,K (E , q))). One can use Theorem 3.26 of §4.2
to compute Convolution(G(E ,F ),K (E ,F )), and Theorem 3.29 of §4.3
to compute Convolution(G(E ,E ′),K (E ,E ′)), while directly computing
Convolution(q ,K (E , q)) = {q} ⊕K (E , q) as a simply translated edge segment.

Growing Vertices

For a vertex p ∈ Bdr(B), one can easily show that Ch(p) = (∪F∼pConvolution(G(p,F ), p)) ∪
(∪E∼pConvolution(G(p,E ), p)) ∪ (∪q∼pConvolution(q , p)). Since one has Convolution(G(p, F ), p)
= G(p, F ) ⊕ {p}, Convolution(G(p,E ), p) = G(p,E )⊕ {p}, and Convolution(q , p) = {q + p},
computing Ch(p) is easy.

Note: (1) For a non–smooth edge E and a non–smooth vertex p the convolution edge Con-
volution (G(p,E), p) = G(p,E) ⊕ {p} is a non–smooth edge, and (2) for non–smooth vertices p
and q the convolution vertex Convolution(q, p) = {q + p} is a non–smooth vertex. As we shall
see in §4.3, (3) we can also have a non–smooth convolution edge Convolution(E−A, EB) for a
parallel edge pair E−A and EB. These are all the non–smooth edges and vertices that may arise on
the C-space obstacle boundary. Note in this classification that all non–smooth edges and vertices
on the C-space obstacle boundary result from very special orientations between the non–smooth
edges and vertices of A and B. In general the non–smoothness in the boundaries of A and B are
removed while generating the C-space obstacle boundary. This smoothing effect of convolution,
however, raises another question viz., how to specify the edge boundary of a convolution surface
patch. Since most of the adjacent convolution faces meet tangentially to each other, computation
of the intersecting edge may be quite unstable. One solution is to additionally determine auxiliary
surfaces which intersect transversally with the convolution surfaces.

Generating Convolution(F−A, FB) In this section, we consider how to generate the surfaces,
edges and vertices of a convolution surface patch Convolution(F−A, FB). We can use Theorem
3.22 for the case of F−A and FB being implicitly defined algebraic surfaces. Corollary 3.23 is useful
when F−A is implicit and FB is parametric, or the other way around. Corollary 3.24 is useful when
both F−A and FB are parametrically defined. For sub-compatible FB and F−A, we are using the
notations N(FB, F−A) = N(B,FB)∩N(−A,F−A), K(FB, F−A) = N−1(B,N(FB, F−A)) ⊂ FB, and
G(FB, F−A) = N−1(−A,N(FB, F−A)) ⊂ F−A.

Theorem 3.22. Let FB ⊂ Bdr(B) be a patch of an algebraic surface f = 0 with gradients ∇f .
Further let F−A ⊂ Bdr(−A) be a patch of an algebraic surface g = 0 with gradients ∇g, and suppose
that FB and F−A are sub-compatible. Then Convolution(F−A, FB) = Convolution(G(FB, F−A),
K(FB, F−A)) is the set of points p̄ = (x̄, ȳ, z̄) = p+ q = (x+ α, y + β, z + γ) such that

f(x, y, z) = 0 and p = (x, y, z) ∈ K(FB, F−A) (1)
g(α, β, γ) = 0 and q = (α, β, γ) ∈ G(FB, F−A) (2)
∇f ×∇g = 0 (3)
∇f · ∇g > 0 (4)
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Proof : Since (3)–(4) imply ∇f and ∇g are in the same direction, (3)–(4) are equivalent to
the outward normal direction of B at p to be the same as that of −A at q. �

We use Theorem 3.22 as follows. First substitute x = x̄ − α, y = ȳ − β and z = z̄ − γ
in the above equations (1) and (3). Then one obtains the implicit algebraic equation of the
Convolution(F−A, FB) in terms of x̄, ȳ and z̄ by eliminating α, β and γ from the systems of equa-
tions (1)–(3). The vector equation (3) yields three polynomial equations. One of these equations is
redundant, leaving two independent equations from (3). Hence, from four non-homogeneous poly-
nomial equations we eliminate three variables α, β, γ to construct the implicit equation in terms
of x̄, ȳ, z̄. Formulas for obtaining a single multivariate resultant polynomial whose vanishing is
a necessary and sufficient condition that a system of n homogeneous polynomials in n variables
has nontrivial solutions, have been given by Cayley (see [85]), Hurwirtz (see [100]) and Macaulay
[71]. The multivariate resultant is a homogeneous polynomial in the coefficients of the system of
polynomials. In our case, we have a system of n = 4 polynomial equations in variables α, β, γ and
ω (a homogenizing variable introduced to make the polynomial equations homogeneous).

In computing the implicit equation of the C-space surfaces a time complexity analysis may be
done as follows. On substituting x = x̄−α, y = ȳ−β and z = z̄−γ in equations (1) and (3) one has
to expand each term cijk ·xdi ·ydj ·zdk = cijk ·(x̄−α)di ·(ȳ−β)dj ·(z̄−γ)dk where di+dj+dk ≤ d. This is
necessary because in computing resultants to eliminate α, β, γ one needs to simplify the equations
to be polynomials in α, β, γ with coefficients in x̄, ȳ, z̄. The polynomial f and the component
polynomials of∇f×∇g have O(d6) terms of the form cijklmn·(x̄−α)di ·(ȳ−β)dj ·(z̄−γ)dk ·αdl ·βdm ·γdn
(di, dj , dk ≤ d and dl, dm, dn ≤ d). And each of these terms will be expanded into O(d3) terms
of c′ijklmn · x̄d

′
i · ȳd′j · z̄d′k · αd′l · βd′m · γd′n (d′i, d

′
j , d
′
k ≤ d and d′l, d

′
m, d

′
n ≤ 2d). Hence, the

overall time complexity for expansion and simplification is O(d9). For an efficient computation of
the multivariate resultant for a system of n homogeneous polynomials of degree d, we rely on the

O(N2) algorithm of [38], where N =

(
nd
n− 1

)
= O((nd)n−1). In our case of n = 4, this yields an

overall time bound of O(d6) to compute the implicit equation of the convolution face. The degree
of the multivariate resultant in terms of the coefficients of any of the equations is equal to the
product of the degrees of the remaining equations, see [71]. In our four equations the powers of the
variables α, β, γ and the coefficients x̄, ȳ, z̄ are all O(d) which give an overall degree bound for the
convolution faces to be at most O(d4).

Corollary 3.23. Let FB ⊂ Bdr(B) be a patch of an algebraic surface f = 0 with gradients ∇f . Fur-
ther let F−A ⊂ Bdr(−A) be a parametric surface patch G(u, v) = (α(u, v), β(u, v), γ(u, v)) with gra-
dients Gu×Gv, and suppose that FB and F−A are sub-compatible. Then Convolution(F−A, FB) =
Convolution(G(FB, F−A),K(FB, F−A)) is the set of points p̄ = (x̄, ȳ, z̄) = p+ q = (x+α(u, v), y+
β(u, v), z + γ(u, v)) such that

f(x, y, z) = 0 and p = (x, y, z) ∈ K(FB, F−A) (1)
q = (α(u, v), β(u, v), γ(u, v)) ∈ G(FB, F−A) (2)
∇f × (Gu ×Gv) = 0 (3)
∇f · (Gu ×Gv) > 0 (4)

First substitute x = x̄− α(u, v), y = ȳ − β(u, v) and z = z̄ − γ(u, v) in the above equations (1)
and (3). Then one can obtain the implicit algebraic equation of the Convolution(F−A, FB) in terms
of x̄, ȳ and z̄ by eliminating u and v from the equations (1) and (3) by computing the multivariate
resultant. Since (3) yields two independent equations, we have three polynomial equations and
eliminate two variables u and v to construct the implicit equation.

Since G(u, v) is a rational parametric surface, we have α(u, v) = p(u, v)/w(u, v), β(u, v) =
q(u, v)/w(u, v) and γ(u, v) = r(u, v)/w(u, v) for polynomials p(u, v), q(u, v), r(u, v) and w(u, v)
of maximum degree d. At this time the expansion of each term cijk · xdi · ydj · zdk = cijk ·
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w(u, v)d−di−dj−dk · (w(u, v) · x̄− p(u, v))di · (w(u, v) · ȳ − q(u, v))dj · (w(u, v) · z̄ − r(u, v))dk/w(u, v)d

is harder than the case of Theorem 3.22. The polynomials f, fx, fy and fz have O(d3) terms of this

form. Each (w(u, v) · x̄− p(u, v))di ·(w(u, v) · ȳ − q(u, v))dj ·(w(u, v) · z̄ − r(u, v))dk can be expanded
into (w(u, v)di+dj+dk · x̄di · ȳdj · z̄dk + . . .+ (−1)di+dj+dk · p(u, v)di · q(u, v)dj · r(u, v)dk) in O(d3) time
using binomial expansion. Similarly, f and the component polynomials of∇f×(Gu×Gv) can be ex-
panded into O(d6) terms of the form (∗) c·pd1 ·qd2 ·rd3 ·wd4 ·pud5 ·pvd6 ·qud7 ·qvd8 ·rud9 ·rvd10 ·wud11 ·wvd12 ·
x̄d13 · ȳd14 · z̄d15/wd+4 (d1, d2, d3, d4 ≤ d+2, d5, . . . , d12 ≤ 2, and d13, d14, d15 ≤ d) within O(d6) time.
There are O(d4) terms of the form (∗∗)pd1 ·qd2 ·rd3 ·wd4 ·pud5 ·pvd6 ·qud7 ·qvd8 ·rud9 ·rvd10 ·wud11 ·wvd12 ,
and since the polynomials p, q, r, w have O(d2) terms, each term of the form (∗∗) can be expanded
into O(d4) terms of the form (∗ ∗ ∗)c′ · ud16 · vd17 (d16, d17 ≤ 5d2) within O(d6) time by using by
using the dynamic programming technique. Thus we can expand the overall O(d4) terms of (∗∗)
into O(d4) terms of (∗ ∗ ∗) within O(d10) time. The final conversion of terms of (∗) to the terms
of (∗ ∗ ∗∗)c′ · x̄d13 · ȳd14 · z̄d15 · ud16 · vd17/wd+4 (d13, d14, d15 ≤ d and d16, d17 ≤ 5d2) can be done by
multiplying O(d4) terms of (∗ ∗ ∗) with O(d3) terms of x̄d13 · ȳd14 · z̄d15 with O(d7) time. Hence, the
overall time complexity for expansion and simplification is O(d10). After the expansion, the power
of the variables u and v is O(d2) and the power of the coefficients x̄, ȳ, z̄ is O(d). The multivariate
resultant for a system of 3 homegenous polynomials of degree O(d2) can be constructed in O(d8)
time and the degree of the convolution faces can be at most O(d6).

The case of FB being a parametric surface and F−A being an algebraic surface is similar to
Corollary 3.23.

Corollary 3.24. Let FB ⊂ Bdr(B) be a parametric surface patch F (s, t) = (x(s, t), y(s, t), z(s, t))
with gradients Fs × Ft. Further let F−A ⊂ Bdr(−A) be a parametric surface patch G(u, v) =
(α(u, v), β(u, v), γ(u, v)) with gradients Gu×Gv, and suppose that FB and F−A are sub-compatible.
Then Convolution(F−A, FB) = Convolution(G(FB, F−A),K(FB, F−A)) is the set of points p̄ =
(x̄, ȳ, z̄) = p+ q = (x(s, t) + α(u, v), y(s, t) + β(u, v), z(s, t) + γ(u, v)) such that

p = (x(s, t), y(s, t), z(s, t)) ∈ K(FB, F−A) (1)
q = (α(u, v), β(u, v), γ(u, v)) ∈ G(FB, F−A) (2)
(Fs × Ft)× (Gu ×Gv) = 0 (3)
(Fs × Ft) · (Gu ×Gv) > 0 (4)

One can obtain the implicit algebraic equation of the Convolution(F−A, FB) by eliminating
s, t, u and v from the equations x̄ = x(s, t) + α(u, v), ȳ = y(s, t) + β(u, v), z̄ = z(s, t) + γ(u, v) and
the above equation (3). Since (3) gives two independent equations, we have 5 equations and need
to eliminate 4 variables s, t, u, v to get an implicit equation.

Each component polynomial of (Fs × Ft)× (Gu ×Gv) has 8 terms of the form xs · yt · βu · γv or
xs · yt · γu · βv, etc., and can be expanded into O(d4) terms of the form c · sdi · tdj · udk · vdl (where
di, dj , dk, dk ≤ 2d) in O(d4) time. The multivariate resultant can be constructed in O(d8) time and
the degree of the convolution faces can be at most O(d5).

Boundary Edges of Convolution(F−A, FB) For sub-compatible face pairs FB and F−A which are
relatively open with respect to Bdr(B) and Bdr(−A), each boundary edge EN of N(FB, F−A) (=
N(B,FB) ∩ N(−A,F−A)) is either a segment of a boundary edge of N(B,FB) or a segment of a
boundary edge of N(−A,F−A). Further EN is either (a) a segment of the common boundary edge of
N(B,FB) and N(B,EB) for some edge EB of FB, or (b) a segment of the common boundary edge of
N(−A,F−A) and N(−A,E−A) for some edge E−A of F−A. Similarly, each boundary edge ECO(A,B)

of the surface patch Convolution(F−A, FB) is either (a) a segment of the common boundary edge of
Convolution(F−A, FB) and Convolution(Cl(F−A), EB), or (b) a segment of the common boundary
edge of Convolution(F−A, FB) and Convolution(E−A, Cl(FB)), where Cl(FB) and Cl(F−A) are the
closures of FB and F−A with respect to Bdr(B) and Bdr(−A). This degeneracy can be eliminated

64



by perturbing A and B slightly. Edges of type (a) are described in Theorem 3.25, edges of type
(b) can be described similarly. Let sub-ConvolutionTN (G−A,KB) = “sub-Convolution of G−A and
KB restricted to the normal directions TN” = {p̄ ∈ R3 | p̄ = p + q where p ∈ KB and q ∈ G−A,
and B has a unit outward normal direction np at p which is the same as a unit outward normal A
has at q where np ∈ TN}. Since the Gaussian Image of ECO(A,B) is some edge EN of N(FB, F−A),
one can easily show ECO(A,B) = sub-ConvolutionEN

(Cl(F−A),Cl(FB)).

Theorem 3.25. Let FB and F−A be a sub-compatible face pair, EB be an edge of FB and EN
be a boundary edge of N(FB, F−A) such that EN is a segment of the common edge N(B,EB) ∩
Cl(N(B,FB)). Suppose EB is the common edge of two surface patches FB and F̂B, where FB is a
patch of an algebraic surface f = 0 with gradients ∇f , and F̂B is a patch of an algebraic surface
f̂ = 0 with gradients ∇f̂ . Then
(A) the convolution edge ECO(A,B) = sub-ConvolutionEN

(Cl(F−A), Cl(FB)) due to the normal di-
rections EN is the set of points p̄ = (x̄, ȳ, z̄) = p+ q = (x+ α, y + β, z + γ) such that

f(x, y, z) = 0 and p = (x, y, z) ∈ Cl(K(FB, F−A)) (1)

f̂(x, y, z) = 0 and p = (x, y, z) ∈ Cl(F̂B) (2)
g(α, β, γ) = 0 and q = (α, β, γ) ∈ Cl(G(FB, F−A)) (3)
∇f ×∇g = 0 (4)
∇f · ∇g > 0 (5)

(B) The surface patch defined by (1) and (3)–(5) and the surface patch defined by (2)–(5) intersect
along the convolution edge ECO(A,B).

Proof (A) The surface patch defined by (1) and (3)–(5) is the face Convolution(F−A, FB) and
all its boundary edges and vertices. Since (1)–(2) restrict the set of points p to the subsegment
E′B of EB such that E′B = N−1(B,EN ), (1)–(5) define the convolution edge ECO(A,B).
(B) Since ECO(A,B) is the common solution of (1)–(5), ECO(A,B) is the common edge of the surface
patch defined by (1) and (3)–(5) and the surface patch defined by (2)–(5). �

For each point p ∈ F̂B, f(p) = c for some level c and the corresponding point p̄ = p + q is the
translation of p by q defined by (2)–(5).

The case of a boundary edge E−A of F−A being defined by two transversally intersecting surface
patches gives a similar result. Further the cases of FB, F̂B, F−A, or F̂−A being parametric surfaces
give similar results. Also the time and degree complexity analyses are similar to those of Theorem
3.22 and Corollaries 3.23–3.24.

Boundary Vertices of Convolution(F−A, FB) For a sub-compatible face pair FB and F−A which
are relatively open with respect to Bdr(B) and Bdr(−A), each boundary vertex eN of N(FB, F−A)
(= N(B,FB) ∩N(−A,F−A)) is either (a) a boundary vertex of N(B,FB), (b) a boundary vertex
of N(−A,F−A), or (c) the intersection of one edge of N(B,FB) with another edge of N(−A,F−A).
In the case of (a), suppose p is the vertex of FB and q is a point of F−A such that p ∈ N−1(B, eN )
and q ∈ N−1(−A, eN ), then the point p + q is the vertex of Convolution(F−A, FB) such that
p+ q ∈ N−1(CO(A,B), eN ). q ∈ F−A can be computed by solving g = 0 and ∇g

‖∇g‖ = eN . The case

of (b) is similar to the case of (a). In the case of (c), the intersection eN of one edge of N(B,FB) with
another edge of N(−A,F−A) can be computed by Theorems 3.31–3.33. Suppose p ∈ Bdr(FB) and
q ∈ Bdr(F−A) be such that p ∈ N−1(B, eN ) and q ∈ N−1(−A, eN ) where Bdr(FB) and Bdr(F−A)
are the boundaries of FB and F−A with respect to Bdr(B) and Bdr(−A), then p+ q is the vertex of
Convolution(F−A, FB) such that p+ q ∈ N−1(CO(A,B), eN ). p ∈ FB can be computed by solving
f = 0 and ∇f

‖∇f‖ = eN and q ∈ F−A can be computed by solving g = 0 and ∇g
‖∇g‖ = eN .
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Generating Convolution(F−A, EB) and Convolution(E−A, FB) In this section, we consider how
to generate the algebraic surface equations, edges and vertices of convolution surface patches
Convolution(F−A, EB) and Convolution(E−A, FB). We can use Theorem 3.26 for the case of EB
being defined by the intersection of two implicit algebraic surfaces and F−A being an implicit
algebraic surface. The other combinations of implicit and parametric surfaces defining EB and
F−A have similar results as easy Corollaries of Theorem 3.26. Similar results hold for generating
Convolution(E−A, FB).

Theorem 3.26. Let EB ⊂ Bdr(B) be the common edge of two faces FB and F̂B, where FB
and F̂B ⊂ Bdr(B) are patches of algebraic surfaces f = 0 with gradients ∇f and f̂ = 0 with
gradients ∇f̂ . Further let F−A ⊂ Bdr(−A) be a patch of an algebraic surface g = 0 with
gradients ∇g. Suppose that EB and F−A are sub-compatible. Then Convolution(F−A, EB) =
Convolution(G(EB, F−A),K(EB, F−A)) is the set of points p̄ = (x̄, ȳ, z̄) = p+q = (x+α, y+β, z+γ)
such that 

f(x, y, z) = f̂(x, y, z) = 0 and p = (x, y, z) ∈ K(EB, F−A) (1)
g(α, β, γ) = 0 and q = (α, β, γ) ∈ G(EB, F−A) (2)

∇g · (∇f ×∇f̂) = 0 and ∇g
‖∇g‖ ∈ NEB

(3)

Proof : (3) is equivalent to an outward normal direction of B at p to be the same as one of
the outward normal directions of −A at q. �

One can obtain the implicit algebraic equation of the Convolution(F−A, EB) in a similar way
as in Theorem 3.22. The polynomial ∇g · (∇f ×∇f̂) can be expanded into O(d6) terms of the form
cijklmn · (x̄ − α)di · (ȳ − β)dj · (z̄ − γ)dk · αdl · βdm · γdn (di, dj , dk ≤ 2d and dl, dm, dn ≤ d) within

O(d6) time. Each of these terms and the terms of f and f̂ will be expanded into O(d3) terms of
c′ijklmn · x̄d

′
i · ȳd′j · z̄d′k ·αd′l ·βd′m ·γd′n (d′i, d

′
j , d
′
k ≤ 2d and d′l, d

′
m, d

′
n ≤ 3d). Hence, the expansion

and simplification takes O(d9) time, the multivariate resultant construction takes O(d6) time and
the convolution face degree is at most O(d4), which are the same as Theorem 3.22.

When the face F−A is a parametric surface patch G(u, v) = (α(u, v), β(u, v), γ(u, v)) with
gradients Gu × Gv, the corresponding Corollary follows by changing every ∇g into Gu × Gv
and the statement “g(α, β, γ) = 0 and q = (α, β, γ) ∈ G(EB, F−A)” into “q = (α(u, v), β(u, v),
γ(u, v)) ∈ G(EB, F−A)” in the above Theorem. Further, the corresponding time and degree com-
plexities are the same as Corollary 3.23. Similar changes yield corresponding Corollaries for the
case of FB and/or F̂B being parametric surface patches. The time and degree complexity bounds
are the same as Corollary 3.23 if at least one of FB, F̂B, F−A is an implicit and at least one is a
parametric surface patch. When all three FB, F̂B, F−A are parametric, the complexity bounds are
the same as Corollary 3.24.

When two faces FB and F̂B are tangent to each other along EB, Convolution(F−A, EB) is a de-
generate curve on the C-space obstacle boundary. Actually, it is a common edge of two convolution
faces generated in §4.1.

Boundary Edges of Convolution(F−A, EB) For a sub-compatible edge–face pair EB and F−A
where F−A is relatively open with respect to Bdr(−A) and EB is relatively open with respect to
the intersection curve of two algebraic surfaces f = 0 and f̂ = 0 defining faces FB and F̂B, each
boundary edge EN of N(EB, F−A) (= N(B,EB)∩N(−A,F−A)) is either a segment of a boundary
edge of N(B,EB) or a segment of a boundary edge of N(−A,F−A). Further EN is either (a) a
segment of the common edge of N(B,EB) and N(B,FB) for some face FB adjacent to EB, (b)
a segment of the common edge of N(−A,F−A) and N(−A,E−A) for some edge E−A of F−A, or
(c) a segment of the common edge of N(B,EB) and N(B, pB) for a vertex pB of EB. Similarly,
each boundary edge ECO(A,B) of the surface patch Convolution(F−A, EB) is either (a) a segment
of the common edge of Convolution(F−A, EB) and sub-ConvolutionCl(N(B,FB))(Cl(F−A), Cl(FB)),
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(b) a segment of the common edge of Convolution(F−A, EB) and Convolution(E−A, Cl(EB)), (c)
a segment of the common edge of Convolution(F−A, EB) and Convolution(Cl(F−A), pB) where
Cl(F−A) is the closure of F−A with respect to Bdr(−A) and Cl(EB) is the closure of EB with
respect to the intersection curve of two algebraic surfaces f = 0 and f̂ = 0 defining faces FB
and F̂B. Edges of type (a) have been described in Theorem 3.25, edges of type (b) are described
in Theorem 3.27, and edges of type (c) are described in Theorem 3.28. The proofs of Theorems
3.27–3.28 are similar to that of Theorem 3.25.

Theorem 3.27. Let EB and F−A be a sub-compatible edge–face pair, E−A be an edge of F−A
and EN be an edge of N(EB, F−A) such that EN is a segment of the common edge N(−A,E−A) ∩
Cl(N(−A,F−A)). Suppose E−A is the common edge of two surface patches F−A and F̂−A, where
F−A is a patch of an algebraic surface g = 0 with gradients ∇g, and F̂−A is a patch of an algebraic
surface ĝ = 0 with gradients ∇ĝ. Then
(A) the convolution edge ECO(A,B) = sub-ConvolutionEN

(Cl(F−A), Cl(EB)) due to the normal
directions EN is the set of points p̄ = (x̄, ȳ, z̄) = p+ q = (x+ α, y + β, z + γ) such that

g(α, β, γ) = 0 and q = (α, β, γ) ∈ Cl(G(EB, F−A)) (1)

ĝ(α, β, γ) = 0 and q = (α, β, γ) ∈ Cl(F̂−A) (2)

f(x, y, z) = f̂(x, y, z) = 0 and p = (x, y, z) ∈ Cl(K(EB, F−A)) (3)

∇g · (∇f ×∇f̂) = 0 and ∇g
‖∇g‖ ∈ N(EB, F−A) (4)

(B) The surface patch defined by (1) and (3)–(4) and the surface patch defined by (2)–(4) intersect
along the convolution edge ECO(A,B).

When the surface patches of (B) intersect tangentially, one may use different auxiliary surface
patch F̂−A. One may also select an auxiliary surface patch intersecting transversally to the surface
patches of (B) from the ideal of the curve C defining the edge ECO(A,B).

Theorem 3.28. Let EB and F−A be a sub-compatible edge–face pair, pB = (x, y, z) be a vertex
of EB and EN be a boundary edge of N(EB, F−A) such that EN is a segment of the common edge
Cl(N(B,EB))∩N(B, pB). Suppose EB is the common edge of two transversally intersecting surface
patches FB and F̂B, where FB is a patch of an algebraic surface f = 0 with gradients ∇f , and F̂B is
a patch of an algebraic surface f̂ = 0 with gradients ∇f̂ . Further let n = ∇f(pB) and n̂ = ∇f̂(pB).
Then
(A) the convolution edge ECO(A,B) = sub-ConvolutionEN

(Cl(F−A), Cl(EB)) due to the normal
directions EN is the set of all the points p̄ = (x̄, ȳ, z̄) = {pB}+ q = (x+ α, y + β, z + γ) such that

g(α, β, γ) = 0 and q = (α, β, γ) ∈ Cl(G(pB, F−A)) (1)
∇g · (n× n̂) = 0 (2)
∇g · (n− (n · n̂) n̂) ≥ 0 (3)
∇g · (n̂− (n · n̂) n) ≥ 0 (4)

(B) The surface patch defined by (1) and the surface patch defined by (2)–(4) intersect along the
convolution edge ECO(A,B)

When the surface patches of (B) intersect tangentially, one may select an auxiliary surface patch
intersecting transversally to the surface patches of (B) from the ideal of the curve C defining the
edge ECO(A,B).

Boundary Vertices of Convolution(F−A, EB) Each vertex of Convolution(F−A, EB) is ei-
ther (a) a vertex of Convolution(F−A, FB) for some adjacent face FB of EB or (b) a vertex of
Convolution(E−A, EB) for some adjacent edge E−A of F−A. The case (a) has been considered
in §4.1, and the case (b) will be considered in §4.3.
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Generating Convolution(E−A, EB) In this section, we consider how to generate the algebraic
surface equation, edges and vertices of a convolution surface patch Convolution(E−A, EB). We
can use Theorem 3.29 for the case of both E−A and EB being defined by two implicit algebraic
surfaces. The other combinations of implicit and parametric surfaces defining E−A and EB have
similar results as easy Corollaries of Theorem 3.29.

Theorem 3.29. Let EB ⊂ Bdr(B) be a segment of the common edge of two faces FB and F̂B,
where FB ⊂ Bdr(B) is a patch of an algebraic surface f = 0 with gradients ∇f and F̂B ⊂ Bdr(B) is
a patch of an algebraic surface f̂ = 0 with gradients ∇f̂ . Further let E−A ⊂ Bdr(−A) be a segment
of the common edge of two faces F−A and F̂−A, where F−A ⊂ Bdr(−A) is a patch of an algebraic
surface g = 0 with gradients ∇g and F̂−A ⊂ Bdr(−A) is a patch of an algebraic surface ĝ = 0 with
gradients ∇ĝ. Suppose that EB and E−A are sub-compatible. Then Convolution(E−A, EB) =
Convolution(G(EB, E−A),K(EB, E−A)) is the set of points p̄ = (x̄, ȳ, z̄) = p+ q = (x+ α, y +
β, z + γ) such that

f(x, y, z) = f̂(x, y, z) = 0 and p = (x, y, z) ∈ K(EB, E−A) (1)
g(α, β, γ) = ĝ(α, β, γ) = 0 and q = (α, β, γ) ∈ G(EB, E−A) (2)

λ·∇f+(1−λ)·∇f̂
‖λ·∇f+(1−λ)·∇f̂‖

∈ N(EB, E−A) and

µ·∇g+(1−µ)·∇ĝ
‖µ·∇g+(1−µ)·∇ĝ‖ ∈ N(EB, E−A)for some 0 ≤ λ, µ ≤ 1 (3)

Proof : (3) is equivalent to an outward normal direction of B at p to be the same as an
outward normal direction of −A at q. �

One can obtain the implicit algebraic equation of the Convolution(E−A, EB) in a similar way
as in Theorem 3.22. When the face FB is a parametric surface patch F (s, t) = (x(s, t), y(s, t), z(s, t))
with gradients Fs×Ft, the corresponding Corollary follows by changing every ∇f into Fs×Ft and
the statement “f(x, y, z) = 0 and p = (x, y, z) ∈ K(EB, E−A)” into “p = (x(s, t), y(s, t), z(s, t)) ∈
K(EB, E−A)” in the above Theorem. Similar changes yield corresponding Corollaries for the case
of FB, F̂B, F−A and/or F̂−A being parametric surface patches. The time and degree complexities
are the same as (1) Theorem 3.22 when all four surface patches FB, F̂B, F−A, F̂−A are implicit, (2)
Corollary 3.23 when at least one is implicit and at least one is parametric, and (3) Corollary 3.24
when all four are parametric.

When FB and F̂B are tangent to each other along EB, or F−A and F̂−A are tangent to each other
along E−A, Convolution(E−A, EB) is a degenerate curve on the C-space obstacle boundary and
is a common edge of two convolution faces generated in §4.2. In the special case of FB and F̂B being
tangent along EB, and also F−A and F̂−A being tangent along E−A, Convolution(E−A, EB) is
either a degenerate curve or a degenerate point.

Let NET
(p) = NET

∩N(T, p) for an edge ET and p ∈ ET , then NET
(p) is a geodesic arc on S2.

When two line segments in a plane intersects, either there is a unique intersection point or they
overlap entirely on the same line. One can show a similar fact for minimal geodesic arcs on S2 as
follows.

Fact 3.30. If NEB
(p) ∩ NE−A

(q) 6= ∅, either (1) NEB
(p) ∩ NE−A

(q) is a point or (2) NEB
(p) ∩

N(p, q) = NE−A
(q) ∩N(p, q) where N(p, q) = N(B, p) ∩N(−A, q).

By subdividing EB and E−A if necessary, we may assume only one of the conditions (1) or
(2) holds for the whole edges EB and E−A. We call EB and E−A to be parallel if the condition
(2) holds on the whole edges EB and E−A. If EB and E−A is a parallel edge pair, the Con-
volution(E−A, EB) generated in Theorem 3.28 is a degenerate curve on the C-space obstacle.
Otherwise it is a surface patch.
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Boundary Edges of Convolution(E−A, EB) For a sub-compatible edge pair EB and E−A where
EB (resp. E−A) is relatively open with respect to the intersection curve of two algebraic surfaces
f = 0 and f̂ = 0 defining faces FB and F̂B (resp. g = 0 and ĝ = 0 defining faces F−A and
F̂−A), each edge EN of N(EB, E−A) is either a segment of an edge of N(B,EB) or a segment of
an edge of N(−A,E−A). Further EN is either (a) a segment of the common edge of N(B,EB) and
N(B,FB) for some face FB adjacent to EB, (b) a segment of the common edge of N(−A,E−A) and
N(−A,F−A) for some face F−A adjacent to E−A, (c) a segment of the common edge of N(B,EB)
and N(B, pB) for some vertex pB of EB, or (d) a segment of the common edge of N(−A,E−A)
and N(−A, p−A) for some vertex p−A of E−A. Similarly, each boundary edge ECO(A,B) of the
surface patch Convolution(E−A, EB) is either (a) a segment of the common edge of Convolu-
tion(E−A, EB) and sub-ConvolutionCl(N(B,FB))(Cl(E−A), Cl(FB)), (b) a segment of the common
edge of Convolution(E−A, EB) and sub-ConvolutionCl(N(−A,F−A))(Cl(F−A), Cl(EB)), (c) a seg-
ment of the common edge of Convolution(E−A, EB) and Convolution(Cl(E−A), pB), or (d)
a segment of the common edge of Convolution(E−A, EB) and Convolution(p−A, Cl(EB)).
Edges of type (a)–(b) have been described in Theorem 3.27. In the case of (c), Convolu-
tion(Cl(E−A), pB) is a degenerate curve segment which is non–smooth on Bdr(CO(A,B)) and
also equals to the edge ECO(A,B). Hence, ECO(A,B) is the common edge of the face Convolu-

tion(E−A, EB) with the face Convolution(E−A, ÊB) for some edge ÊB adjacent to pB (or with
the face Convolution(F−A, pB) for some face F−A adjacent to E−A). Since Bdr(CO(A,B)) is
non–smooth on ECO(A,B), ECO(A,B) can be represented as a common edge of two transversally
intersecting convolution surface patches. The case of (d) is similar to the case of (c).

Boundary Vertices of Convolution(E−A, EB) For sub-compatible edge pairs EB and E−A,
each vertex eN of N(EB, E−A) (= N(B,EB) ∩ N(−A, E−A)) is either (a) a vertex of N(B,EB),
(b) a vertex of N(−A,E−A), or (c) the intersection of one edge of N(B,EB) with another edge of
N(−A,E−A). In the case of (a), suppose p is a vertex of EB and q is a point of E−A such that
p ∈ N(B, eN ) and q ∈ N(−A, eN ), then the point p + q is the vertex of Convolution(E−A, EB)
such that p+ q ∈ N−1(CO(A,B), eN ). Further suppose that E−A is the common edge of two faces
F−A and F̂−A defined by g = 0 and ĝ = 0 respectively, then the point q = (α, β, γ) ∈ E−A can be
computed by solving g = ĝ = 0 and (∇g ×∇ĝ) · eN = 0. The case of (b) is similar to the case of
(a). In the case (c), this intersection is also the intersection of one edge of N(B,FB) with another
edge of N(−A,F−A) where FB is a face adjacent to EB and F−A is a face adjacent to F−A. This
case has been considered in §4.1.

3.4.3 Constructing the Gaussian Model of C-space Obstacles

We now show how to construct the Gaussian Model of CO(A,B). Let S2
B and S2

−A be the Gaussian
Models of B and −A respectively. These define face adjacency graphs on S2 with degeneracies
tagged appropriately. Let a new graph S2

CO(A,B) on S2 be defined as the overlay of S2
B and S2

−A.

Then S2
CO(A,B) is the Gaussian Model of CO(A,B) and determines all sub-compatible face, edge

and vertex pairs between Bdr(B) and Bdr(−A). Further the topology of the faces, edges and
vertices of Bdr(CO(A,B)) is given by the topology of the faces, edges and vertices of S2

CO(A,B).

Construction of S2
CO(A,B) requires computing the intersections of edges of S2

B with edges of S2
−A.

These intersections can be computed by using Theorems 3.31–3.33 below. Edges of S2
B and S2

−A
are either minimal geodesic arcs on the unit sphere or curve segments of the form ∇f(p)

‖∇f(p)‖ for p ∈ E
where f = 0 is a face equation and E is an edge of this face. Note this curve segment is well
defined since we are assuming the nonsingularity of each face on its boundary. By the regularity
and convexity of the object we may assume that the end points of each minimal geodesic arc are
not antipodal points of each other. Hence, for two end points n1 and n2 of a minimal geodesic arc
one has λ ·n1 + (1−λ) ·n2 6= 0 and (λ·n1+(1−λ)·n2)

‖λ·n1+(1−λ)·n2‖ is well defined. The intersection of two minimal
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geodesic arcs can be computed by Theorem 3.31. The intersection of one general curve segment
and one minimal geodesic arc can be computed by Theorem 3.32. The intersection of two general
curve segments can be computed by Theorem 3.33.

Theorem 3.31. Let γ be a minimal geodesic arc connecting n1 and n2 on S2
B and γ′ be a minimal

geodesic arc connecting n′1 and n′2 on S2
−A. Then γ and γ′ intersect at λ·n1+(1−λ)·n2

‖λ·n1+(1−λ)·n2‖ if and only if{
(λ · n1 + (1− λ) · n2)× (µ · n′1 + (1− µ) · n′2) = 0 (1)
(λ · n1 + (1− λ) · n2) · (µ · n′1 + (1− µ) · n′2) > 0 (2)

for some 0 ≤ λ, µ ≤ 1.

Proof : (1)–(2) are equivalent to that λ · n1 + (1 − λ) · n2 is in the same direction as
µ · n′1 + (1− µ) · n′2 for some 0 ≤ λ, µ ≤ 1. �

Since the vector equation (1) gives two independent polynomial equations in two variables λ, µ,
one can solve this system of equations via the u-resultant, see [38].

Theorem 3.32. Let γ be a curve segment on S2
B given by the set of points ∇f(p)

‖∇f(p)‖ for p ∈ EB,

where EB ⊂ Bdr(B) is the common edge of two faces FB and F̂B, FB is a patch of an algebraic
surface f = 0 with gradients ∇f and F̂B is a patch of an algebraic surface f̂ = 0 with gradients
∇f̂ . And, let γ′ be a minimal geodesic arc connecting n1 and n2 on S2

−A. Then γ and γ′ intersect

at ∇f(p)
‖∇f(p)‖ if and only if

f(x, y, z) = f̂(x, y, z) = 0 and p = (x, y, z) ∈ EB (1)
∇f · (n1 × n2) = 0 (2)
∇f · (n1 − (n1 · n2)n2) ≥ 0 (3)
∇f · (n2 − (n1 · n2)n1) ≥ 0 (4)

Proof: (2)–(4) are equivalent to that ∇f is in the same direction as λ · n1 + (1 − λ) · n2 for
some 0 ≤ λ ≤ 1. (1) restricts the solution for p to the edge EB. �

Since (1)–(2) give three polynomial equations in three variables x, y, z, one can solve this system
of equations again via the u-resultant, [38]. The case of γ being a minimal geodesic arc on S2

B and
γ′ being a general curve segment on S2

−A is similar to Theorem 3.32.

Theorem 3.33. Let γ be a curve segment on S2
B given by the set of points ∇f(p)

‖∇f(p)‖ for p ∈ EB,

where EB ⊂ Bdr(B) is the common edge of two faces FB and F̂B, FB is a patch of an algebraic
surface f = 0 with gradients ∇f and F̂B is a patch of an algebraic surface f̂ = 0 with gradients
∇f̂ . And, let γ′ be a curve segment on S2

−A given by the set of points ∇g(q)
‖∇g(q)‖ for q ∈ E−A, where

E−A ⊂ Bdr(−A) is the common edge of two faces G−A and Ĝ−A, G−A is a patch of an algebraic
surface g = 0 with gradients ∇g and Ĝ−A is a patch of an algebraic surface ĝ = 0 with gradients

∇ĝ. Then γ and γ′ intersect at ∇f(p)
‖∇f(p)‖ if and only if

f(x, y, z) = f̂(x, y, z) = 0 and p = (x, y, z) ∈ EB (1)
g(α, β, γ) = ĝ(α, β, γ) = 0 and q = (α, β, γ) ∈ E−A (2)
∇f ×∇g = 0 (3)
∇f · ∇g > 0 (4)

Proof : (3)–(4) are equivalent to that ∇f is in the same direction as ∇g. (1) restricts the
solution for p to the edge EB and (2) restricts the solution for q to the edge E−A. �
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Since the vector equation (3) gives two independent polynomial equations, one has six polyno-
mial equations in six variables from (1)–(3).

Each face of the overlay graph S2
CO(A,B) corresponds to a compatible pair ((KB, NKB

), (G−A,

NG−A
)) of faces, edges and vertices of Bdr(B) and Bdr(−A). Note that we consider the degenerate

curves and degenerate points as generic faces of S2
CO(A,B). Using the formula defining KB and G−A

one can compute the equation for Convolution(G−A,KB). The edges and vertices of each face
Convolution(G−A,KB) can be computed by using the boundary informations of KB and G−A.

3.4.4 Compliant Motion in C-space

Having presented ways of constructing the curved surface boundary of the C-space obstacles our
next step is to generate piecewise continuous curves on the C-space obstacle boundary connecting
various specified start and end points. These correspond to compliant paths for the original object
and obstacles.

In the past several authors have posed solutions to finding boundary restricted paths between
points on C-space obstacles bounded by planar faces.

Finding shortest paths on curved C-space obstacles with algebraic boundary surfaces as gen-
erated in the earlier section, is correspondingly more difficult. On single surfaces such paths are
known as geodesics, and arise in cutter tool paths in machining, efficient terrain navigation and
winding rotor coils, etc. There are closed solutions of geodesics for various quadrics and surfaces
of revolution. For given two points p and q on a closed surface there exists a minimal geodesic
joining p and q, [48]. However computing exact analytical solutions for geodesics in general is quite
difficult since these are given as solutions of nonlinear ordinary differential equations. Even for
certain simple algebraic surfaces the geodesic curves are non-unique and non-algebraic in nature,
e.g., a non-algebraic helical curve is geodesic on a circular cylinder (degree two algebraic surface).

Arbitrary Compliant Paths Before considering shortest paths on curved convex C-space ob-
stacle boundaries, we first consider the generation of certain algebraic curves which lie on the
boundary and connect specified start points (si) and end points (ej) on the boundary. Such curves
provide compliant paths for a certain object and obstacle pair. Perhaps the simplest method is
to choose a point p in the interior of the convex C-space obstacle and consider the unique plane
Π containing a specified pair si and ej , and the interior point p. The intersection of Π with the
convex C-space obstacle boundary yields an algebraic curve on the boundary with breakpoints on
vertices and edges. The correctness of this procedure is justified by the following Fact which stems
from the theorem that the convexity is closed under intersection.

Fact 3.34. A plane passing through an interior point of a convex object intersects the convex object
boundary in a planar convex curve which is a Jordan curve (i.e. a curve homeomorphic to a circle).

The disadvantage of this simplistic approach is that the arbitrary choice of the interior point p
may yield undesirable algebraic curves which pass through edges and vertices of the C-space obstacle
boundary. Such paths then correspond to vertices and edges of the object riding on vertices and
edges of the obstacle during compliant motion.

To circumvent this undesirable prospect an alternate method for choosing compliant paths may
be adopted as follows. Consider the Gaussian Model of the C-space obstacle as constructed in
§5. The start and end points of the C-space obstacle surface are easily mapped to this spherical
model. Next piecewise geodesic curves on the sphere can be constructed connecting these start and
end points which avoid degeneracies on the C-space obstacle boundary. Various interior points to
surface patches on the sphere can be chosen and for each triple of points (two surface points and
the center of sphere) the corresponding plane intersection with the sphere provide geodesic curve
segments on the sphere. Discrete points p1, p2, . . . , pk on these piecewise curves are generated and
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then mapped to the points q1, q2, . . . , qk on the C-space obstacle boundary. A plane containing two
adjacent points qi and qi+1 (i = 1, . . . , k− 1) and a predefined interior point qo determines a curve
segment connecting qi and qi+1 on the C-space obstacle boundary. By taking more dense points if
necessary, we can make this boundary curve segment contained in a convolution surface patch. In
this way compliant paths which are piecewise algebraic can be determined which traverse a specific
desired sequence of surface patches or desired sequence of surface and edge contacts between object
and obstacle.

Geodesic Approximation We now describe a method of obtaining piecewise algebraic approx-
imate geodesic paths on convex C-space obstacles with algebraic surfaces. One first computes a
“good” approximate convex polyhedron of the curved convex C-space obstacle as we now describe.
Next the start and end points on the C-space obstacle boundary are mapped onto the convex poly-
hedron and the shortest path between these points is computed on this polyhedron. Finally the
approximate shortest path of the C-space obstacle boundary Bdr(CO(A,B)) can be obtained by
projecting the shortest path of the polyhedron onto Bdr(CO(A,B)).

Hierarchical Convex Polyhedral Approximation Suppose S is strictly convex, i.e. S is
convex and for each point p ∈ Bdr(S) the supporting plane Lp has only one common point (i.e. p)
with S. Strictly convex objects exclude surfaces like ruled surface patches, planar patches, etc. We
consider the strictly convex case first and then consider the general convex case by adding special
features to the strictly convex case. The following Theorems hold for the boundaries of strictly
convex objects.

Theorem 3.35. Let F ⊂ Bdr(S) be a patch of an algebraic surface f = 0 with gradients ∇f .
Suppose {e} = N(S, p) for some p ∈ F , then p = (x, y, z) is the solution of the following equations.

f(x, y, z) = 0 and p = (x, y, z) ∈ F (1)
∇f × e = 0 (2)
∇f · e > 0 (3)

Proof : (2)–(3) are equivalent to that ∇f is in the same direction as e. �

Theorem 3.36. Let (E,NE) be a pair such that E ⊂ Bdr(S) be a segment of the common edge of
two faces F and G, where F and G ⊂ Bdr(S) are patches of algebraic surfaces f = 0 with gradients
∇f and g = 0 with gradients ∇g, and NE ⊂ N(S,E) with NE ∩N(S, p) 6= ∅ for all p ∈ E. Suppose
e ∈ NE ∩N(S, p) for some p ∈ E, then p = (x, y, z) is the solution of the following equations.

f(x, y, z) = g(x, y, z) = 0 and p = (x, y, z) ∈ E (1)
e · (∇f ×∇g) = 0 and e ∈ NE (2)
e · ((∇g · ∇g)∇f − (∇f · ∇g)∇g) > 0 (3)
e · ((∇f · ∇f)∇g − (∇f · ∇g)∇f) > 0 (4)

Proof : (2)–(4) are equivalent to that e ∈ NE ∩N(S, p). �

When F is a parametric surface patch F (s, t) = (x(s, t), y(s, t), z(s, t)) with gradients Fs × Ft,
one can obtain the corresponding Corollaries by changing ∇f into Fs × Ft and the statement
“f(x, y, z) = 0 and p = (x, y, z) ∈ F” into “p = (x(s, t), y(s, t), z(s, t)) ∈ F” in the above Theorems.
Similarly in the case of G being a parametric surface patch.

Using the above Theorems we can approximate a strictly convex object S by convex polyhedra
as follows. Our approximation scheme is hierarchical and curvature dependent. At the coarsest
level we inscribe a regular polyhedron (say, icosahedron) inside a unit sphere and project it onto
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the surface of the sphere. This projection defines a regular subdivision or tesselation on S2. We can
further triangulate each polyhedral face if it is not triangular. Let S2

4 be this triangular subdivision

of S2, and S2
T be the subdivision given by the Gaussian Model of T . Further let S2

4,T be the overlay

of S2
4 and S2

T . The overlay S2
4,T can be computed by using Theorems 3.31–3.32. To compute an

approximating polyhedron of T corresponding to the triangulation S2
4 one computes the boundary

points of T at which Bdr(T ) have gradients corresponding to vertices of S2
4. For each vertex e of

S2
4, by looking at the vertex e in S2

4,T one can tell which face, edge or vertex of Bdr(T ) has e as one
of its outward normal direction(s). Suppose a face F with a surface equation f = 0 with gradients
∇f has e as one of its outward normal directions at p, then the point p can be computed by using
Theorem 3.35. When an edge E whose adjacent faces are given by f = 0 and g = 0 with gradients
∇f and ∇g, has e as one of its outward normal directions at p, then the point p can be computed
by using Theorem 3.36. If e is in the Gaussian Image of a vertex p, the point p is directly obtained
by the coordinates of p. When any of the faces are parametric surfaces, one can use a modified
version of Theorem 3.35 or 3.36 as discussed before.

Further we can approximate T by two related polyhedra V and W (an inner and an outer)
determined by the points p corresponding to the vertices e of S2

4. Let P be the set of all these
points p. Since T is convex, V = Convex-Hull(P ) ⊂ T . Let Lp be the supporting plane of T at p
and Hp = the half-space defined by Lp such that T ⊂ Hp, then T ⊂ W = ∩p∈PHp. For a strictly
convex object T each face of V is a triangle Fijk determined by three boundary points pi, pj and
pk such that the corresponding Gaussian Images ei, ej and ek makes a triangular face Nijk on the
tessellation of the Gaussian Sphere. Fijk is a planar approximation of the boundary surface patch
Tijk on which T has normal directions corresponding to angular range Nijk. Each vertex of W is a
common intersection point Hijk of three supporting planes Lpi , Lpj and Lpk . The distance between
the vertex Hijk and the face Fijk gives an estimation of how closely V and W approximates T over
Tijk. If the difference is bigger than a suitable normalized bound ε > 0, we can further triangulate
Nijk into a finer resolution and modify V and W locally by repeating the above procedure. We can
continue this refinement over all coarsely approximated faces and recursively to all the sub faces
thus obtained.

When a convex object T is not strictly convex, Bdr(T ) can have some ruled surface pathes and
planar patches which have degenerate curves and points as Gaussian Images. The degenerate point
for the Gaussian Image of a planar patch can be on the interior of a single triangular patch, on
the common edge of two triangular patches, or at a common vertex of several triangular patches.
Polygonal approximation can be obtained by connecting the vertices of the planar patch and the
vertices of the triangular patches where the degenerate point lies. The degenerate curve for the
Gaussian Image of a ruled surface patch passes through a sequence of triangular patches of the
Gaussian Sphere. By subdividing this curve into finite subsegments we can approximate the ruled
surface into a finite sequence of planar patches. Each corner of this planar patches can be connected
to the vertices of the triangular patches where the segments of the degenerate curve lie.

Approximating Shortest Path By continuing the above finer refinements upto an arbitrarily
small ε > 0, we can construct a sequence {Vn} of inscribed convex polyhedra converging to T . It
can be shown that the areas of Bdr(Vn) converges to those of Bdr(T ). Hence, this fact justifies
our strategy of using the shortest paths of Bdr(Vn) as approximate shortest paths of Bdr(T ) for
sufficiently large n.

Convex Polyhedral Approximation of C-space Obstacle One may compute a convex poly-
hedral approximation of CO(A,B) by applying the above procedure to the boundary representation
and the Gaussian Model of CO(A,B). But, since the degrees of C-space obstacle boundary sur-
faces are extremely high, it is more efficient to deal with the boundary surfaces of −A and B to
approximate CO(A,B). One can start with a triangular subdivision S2

4 as before. But, at this
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time, instead of computing the point p ∈ Bdr(CO(A,B)) which has an outward normal direction
e on the C-space obstacle boundary, one can compute pB ∈ Bdr(B) and p−A ∈ Bdr(−A) which
correspond to e on the object and obstacle boundary surface, and compute pB + p−A. One can
continue the refinement steps as above.

In this way we do not need to even construct the entire Gaussian Model of CO(A,B) either.
Computation of pB and p−A requires computing the overlays of S2

4 with S2
B and S2

−A. Only a

partial boundary of S2
CO(A,B) needs to be constructed to obtain the topology of the corresponding

partial boundary of Bdr(CO(A,B)) where the approximate shortest path lies.

Shortest Path on Convex Polyhedron and Projection onto C-space Obstacle Once we
have a convex polyhedron V approximating CO(A,B) we can compute a shortest path γ on Bdr(V )
as mentioned earlier by using the algorithm of [76]. By projecting γ from an interior point onto
Bdr(CO(A,B)) one can get an approximate shortest path on the C-space obstacle boundary. One
can choose the center of mass c of V as the projection point and consider the intersections of
the plane (containing each line segment of the shortest path on V and c) with the corresponding
surface patch of Bdr(CO(A,B)). This surface patch corresponds to the triangular facet of V which
contains the line segment which we are projecting. For certain applications with complicated C-
space obstacles, a single projection point may not give nice properties for the projected curve. We
may have this difficulty for instance when the C-space obstacle has many degenerate boundary
surfaces. In this case, we may choose a multiple projection points or use other projection methods
as appropriate for the application.

Conclusion We have described algebraic algorithms for computing C-space obstacles using
boundary representations and Gaussian Image geometric models. The numerical information defin-
ing the faces, edges and vertices of the C-space obstacle boundary were obtained by solving systems
of multivariate polynomial equations. The symbolic solution by means of multivariate resultants,
though computationally extensive, yields the implicit algebraic equations of the curves and surfaces
on the C-space obstacle boundary. The topological information defining the adjacency relationships
of faces, edges and vertices of the C-space obstacle boundary were obtained by constructing and
overlaying (merging) the Gaussian Image models of the individual moving objects and obstacles.

In comparison with the algorithms for obtaining the C-space obstacle boundary for planar case,
[22], one notes a large increase in the complexity in obtaining numerical and topological information
for C-space obstacle generation in space. A significant problem that also arises in the C-space
generation for curved objects is the analysis of singularities. While all types of point singularities
that arise in planar curves can be completely analyzed by the affine quadratic transformations of [1],
the singularities in algebraic surfaces are considerably harder to deal with. The complete analysis
of singularities in plane curves allows one to also deal with the topological constructions of C-space
obstacles for non–convex planar curved moving objects and obstacles, see [22]. A similar analysis
of the possible point and curve singularities that arise in C-space obstacle surfaces may be achieved
by a sequence of monoidal and quadratic transformations as recently given by [2]. This may be the
starting point for future research, leading to the construction of C-space obstacles for non–convex
curved solid moving objects and obstacles – one of the currently immediate open problems.

4 Piecewise Representations of Surfaces

4.1 Modeling Surfaces with Patches

While it is possible to model a general closed surface of arbitrary genus as a single implicit sur-
face patch, the geometry of such a global surface is difficult to specify, interactively control, and
polygonize. The main difficulties stem from the fact that implicit representations are iso-contours
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which generally have multiple real sheets, self–intersections and several other undesirable singu-
larities. We will present details of several implicit algebraic (polynomial) surface splines (one is
termed the A-patch) which overcome the above difficulties, and show how these are used in C1

and C2 interpolation/approximation and interactive free-form modeling schemes. The potential of
implicit polynomial (and other analytic function) patch splines remains largely latent and virtually
all commercial and many research modeling systems are based on parametric polynomial spline
representations. An exception are the toolkits of the project SHASTRA, which allows modeling
with both implicit and parametric polynomial splines [12].

The important issues in free-form polynomial patch modeling of shapes with arbitrary topology
are:

1. the patch representation (implicit or parametric, and over power, Bézier, B-spline, or other
piecewise polynomial bases)

2. the polynomial degree of the patches

3. the number of patches per face of some input or benchmarking polyhedron

4. functional connectivity and nonsingularity of the patches

5. conditions for the desired continuity between adjacent patches (patches “stitched” together
to form a smooth surface)

6. curvature and higher derivative variation of the patches, especially around the “stitches”

Chui [44], Dahmen and Michelli [45], Hollig [64] and DeBoor, Hollig and Riemenscheider [46]
summarize much of the history of multivariate splines. A significant amount of recent research
has focussed on these questions with varying emphasis on non-tensor product patches, multivariate
generalizations of B-splines, geometric continuity, approximation order, and the fairness of fit.
Common free-form patch modeling schemes include convex combinations of blending functions,
local interpolation of a mesh of curves, simplex and box based schemes, and stationary / non-
stationary recursive subdivision. In this tutorial we address some of these issues with different
implicit algebraic surface patches (A-patches) in a variety of algorithms. There are two broad
categories of data fitting algorithms : interpolatory A-patch based, and non-interpolatory A-patch
based.

We also consider patches of algebraic surfaces, i.e. closed and compact subsets of two dimen-
sional zeroes of polynomial equations. A real algebraic surface S in R3 is implicitly defined by a
single polynomial equation F : f(x, y, z) = 0, where coefficients of f are over the real numbers
R. While all real algebraic surfaces have an implicit definition F only a small subset of these real
surfaces can also be defined parametrically by the triple G(s, t) : (x = G1(s, t), y = G2(s, t), z =
G3(s, t)) where each Gi, i = 1, 2, 3, is a rational function (ratio of polynomials) in s and t over R.
The choice of algebraic surfaces was primarily motivated from the fact that manipulating polynomi-
als, as opposed to arbitrary analytic functions, is computationally more efficient [12]. Furthermore,
algebraic surfaces provide enough generality to accurately model most rigid objects. The primary
advantage of the implicit definition F is its closure properties under modeling operations such as
intersection, convolution, offset, blending, etc. The smaller class of parametrically defined algebraic
surfaces G(s, t) is not closed under any of these operations. Closure under modeling operations allow
cascading repetitions3 without any need of approximation. Furthermore, designing with the com-
plete class of algebraic surfaces leads sometimes to better possibilities (as we attempt to show here)
of being able to satisfy the same geometric design constraints with much lower degree algebraic
surfaces. The implicit representation of smooth algebraic surfaces also naturally yields half-spaces

3The output of one operation acts as the input to another operation
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Figure 16: A quadratic parametric surface with domain poles.

F+ : f(x, y, z) ≥ 0 and F− : f(x, y, z) ≤ 0, a fact quite useful for intersection and offset modeling
operations.

4.2 Triangulating Algebraic Surfaces

4.2.1 Approximation of Rational Surfaces

We consider the problem of computing piecewise linear or polygonal approximations of real algebraic
surfaces. Modern day computer graphics hardware accept such polygonal approximations and
accurately render the complicated surfaces with sophisticated lighting and shading models. Similar,
more structured, linear approximations of surfaces are required for finite element approaches to
solving system of partial differential equations.

A well-known strength of the parametric representation (its mapping from R2 to R3) is the
ease by which real points can be generated on the parametric curve or surface. To compute real
points on implicit algebraic surfaces requires the solution of polynomial equations. Furthermore,
the problem of constructing a polygonal approximation, especially for finite element meshes, is
complicated by the need for a correct topology of the mesh even in the presence of singularities
and multiple sheets of the real algebraic surface. Direct schemes which work for arbitrary implicit
algebraic surfaces are based on either the regular subdivision of the cube [35] or a finite subdivision
of an enclosing tetrahedron [103]. However, such sampling methods fail in the presence of point and
curve singularities of the algebraic surface, or yield ambiguous topologies in neighborhoods where
multiple sheets of the surface come close together. Symbolic methods are necessary to disambiguate
or calculate the correct topology for general algebraic curves and surfaces[4, 92].

While the issue of surface singularities are not as critical for rational parametric surfaces, the
problems of constructing polygonal approximations with consistent topology is still highly non-
trivial. Rational parametric surfaces have pole curves in their domain, where the denominators of
the parameter functions vanish, domain base points for which all four numerator and denominator
polynomials vanish simultaneously, and other features that cause naiive polygonal approximation
algorithms to fail. These are ubiquitous problems occurring even among the natural quadrics. We
illustrate the problems in more detail.

1. [Finite Parameter Range] To fully cover the parametric curve or surface, one must allow the
parameters to somehow range over the entire parametric domain, which is infinite. For
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Figure 17: A cubic parametric surface with seam curves due to base points.

example, the unit sphere f(x, y, z) = x2 +y2 +z2−1 = 0 has the standard rational parametric

representation (x = 2s
1+s2+t2

, y = 2t
1+s2+t2

, z = 1−s2−t2
1+s2+t2

) In this parameterization the point
(0, 0,−1) can only be reached by the parameter values s = t =∞.

2. [Complex Parameter Range] It is possible for real points of a curve or surface to be generated
only by complex parameter values. For instance, the rational algebraic curve f(x, y) =
x3 +x2 +y2 = 0 has an isolated real point at the origin. A rational parametric representation
of this curve is (x(s), y(s)) = (−(s2 + 1),−s(s2 + 1)). In this parameterization the origin can
only be reached by the complex parameter value s =

√
−1 = i.

3. [Poles] Even when restricting the surface to a bounded real part of the parametric domain,
the rational functions describing the surface may have poles over that domain. A hyperboloid
of two sheets, with implicit equation z2 + yz + xz − y2 − xy− x2 − 1 = 0, has the parametric
representation

x(s, t) =
4s

5t2 + 6st+ 5s2 − 1

y(s, t) =
4t

5t2 + 6st+ 5s2 − 1

z(s, t) =
5t2 + 6st− 2t+ 5s2 − 2s+ 1

5t2 + 6st+ 5s2 − 1

then problems arise because of the pole curve described by 5t2 + 6st + 5s2 − 1 = 0 in the
parameter domain. See Figure 16.

4. [Base Points] The rational parameter functions describing curves and surfaces are generally
assumed to be reduced to lowest common denominators, i.e., the numerator and denominator
of each rational function are relatively prime. Thus for a curve, there is no parameter value
that can cause both numerator and denominator of a rational parameter function to vanish.
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Figure 18: Triangulation of the Steiner Rational Surface f = x2y2 + y2z2 + z2x2 − 4xyz = 0 along
line singularities

For surfaces, the situation is different. A surface is defined by three bivariate rational functions

x(s, t) =
f1(s, t)

f4(s, t)

y(s, t) =
f2(s, t)

f4(s, t)

z(s, t) =
f3(s, t)

f4(s, t)

Even if F1, F2, F3, F4 are relatively prime polynomials, it is still possible that there are a finite
number of points (a, b) such that F1(a, b) = F2(a, b) = F3(a, b) = F4(a, b) = 0. Each such point
is called a base point of the parametric surface. There may also be base points at infinity in
the parameter domain, and the base points can be complex as well as real-valued. Information
about base points can be found in books on algebraic geometry such as [95, 107]. Base points
are problematic since there is no one surface point for the corresponding domain point. To
each base point there actually corresponds a curve on the surface [95], and since there is no
parameter value for surface points on such a curve, the entire curve will be missing from the
parametric surface. Such a curve is called a seam curve. See the right side of Figure 17 which
corresponds the cubic parametric surface x = t3−t+s3−s2+1

t3+s3+1
, y = 2t3−t2−s2t+2s3+2

t3+s3+1
, z = −st−s3

t3+s3+1
.

Thus for a truly accurate display of a parametric surface, one should also display the seam
curves, alongside the parametric surface. See the left side of Figure 17 where the seam curves
are bridged. Details are given in [84].

In [26] we give solutions to the above problems for the C0 meshing of rational parametric
curves, surfaces and hypersurfaces of any dimension. The technique is based on homogeneous linear
(projective) reparameterizations and yields a complete and accurate C0 planar mesh of free-form,

discontinuous rational parametric domains. For the Cartan surface (x = s, y = s2

t2
, z = t), a single

reparameterization (x = st, y = s2, z = t) removes the pole t = 0 of the original parameterization.
For the Steiner surface (x = 2st

1+s2+t2
, y = 2s

1+s2+t2
, z = 2t

1+s2+t2
), and the cubic elbow surface

(x = 4t2+(s2+6s+4)t−4s−8
2t2−4t+s2+4s+8

, y = 4t2+(−s2−6s−20)t+2s2+8s+16
2t2−4t+s2+4s+8

, z = (2s+6)t2+(−4s−12)t−s2−4s
2t2−4t+s2+4s+8

), four differ-
ent projective reparameterizations yield a complete covering of the rational parametric surface.

Figure 18 shows a triangular mesh approximating the a Steiner quartic surface. The mesh was
constructed using the surface display algorithm. The surface crosses itself along the x,y and z
axes. In this case, the mesh is actually a surface triangulation. This is a coincidence, and happens
because the four quadrants of the parameter domain happen to map onto four pieces of the surface
that meet exactly along the singular lines. Since the surface display algorithm maps each of the
four domain quadrants separately, the resulting triangles on the mesh also meet along the singular
lines.
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Suppose we apply a random linear reparameterization to get another map for the same Steiner
surface, and apply the display algorithm to generate a mesh for the new map. In general, the new
mesh will not be a surface triangulation.

In [26] for surfaces, four reparameterizations always suffice. In general 2d projective reparam-
eterizations suffice for a d dimensional parametric hypersurface, see [27]. The algorithms which
computes these reparameterizations as well as generates the C0 planar meshes have been imple-
mented in C in our GANITH toolkit[25].

4.3 Topologically Correct Approximations of Arbitrary Rational Parametric
Surfaces

Points on a parametric surface patch can be generated by sampling the parametric functions over
some region of the parameter domain. Because of this, the display of patches of parametric surfaces
is well-understood [39, 88, 69, 55, 83, 96]. Some methods address in detail the problem of generating
a polygonal mesh on a surface that is sensitive to variations in surface curvature: view-dependent
methods [101] as well as view-independent [68, 24].

The parametric functions that define a surface can be viewed as a map from R2 into R3.
“Domain sampling” methods such as the above assume that the parametric functions are defined
and continuous in the region of the parameter domain that is being mapped. If the parametric
functions are rational, however, they could be undefined at some points in R2. Many surfaces
(including simple ones such as some quadrics) are given by rational maps which are undefined at
some points.

We investigate how to correctly approximate a part of an arbitrary parametric surface, given
a rational map that defines the surface. Our techniques are applicable whether this part of the
surface is described by a bounded portion of the parameter domain, or by a bounding box in R3. If
a bounding box is specified the algorithm will use the entire (infinite) parameter domain to compute
parts of the surface that lie inside the box.

In this formulation the problem is of interest to CAD designers as well as mathematicians
interested in surface visualization. The former usually express the rational functions defining the
surface in terms of the rational Bézier or B-spline bases [36] with non-negative weights, restricting
the rational functions to a standard part of the domain. However, researchers are considering
generalizations to rational patches in which the rational functions are not defined everywhere [54,
104], making our techniques relevant.

In addition to topologically correct approximations, we consider the problem of constructing
triangulations on arbitrary rational parametric surfaces, especially surfaces that self-intersect. Con-
structing triangulations on surfaces is useful for mesh generation in finite-element analysis. It turns
out that our surface approximation technique can be extended in a straightforward way to handle
this useful companion problem.

Thus our surface approximation techniques find application in the mathematical visualization
of surfaces (our original motivation), rendering of arbitrary NURBS, and in finite-element meshing.

Let a parametric surface be given by a rational map of three rational functions:

x(s, t) =
X(s, t)

W (s, t)
,

y(s, t) =
Y (s, t)

W (s, t)
,

z(s, t) =
Z(s, t)

W (s, t)

(77)

where X,Y, Z,W are polynomials with real coefficients and no common factor. Then we for-
mulate two problems as follows:
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• Given a portion of the domain, compute a topologically correct piecewise-linear approximation
to the corresponding part of the surface defined by (77). Or, given a bounding box in R3, compute
a topologically correct piecewise-linear approximation to the parts of the surface lying inside the
box. We assume the latter case of the problem since the techniques to be discussed apply to the
former case also.
• As above, except we further require the piecewise-linear approximation to be a surface trian-

gulation, i.e. it must be a triangular mesh whose edges meet only at vertices and along edges.
Our basic approach to constructing a surface triangulation is to map a domain triangulation

onto the surface using the parametric map, as in common. However, the domain triangulation is
constructed carefully so that the surface triangulation is topologically correct.

We describe various subproblems that arise in trying to solve the above problems when we don’t
place any restrictions on the rational functions x(s, t),y(s, t),z(s, t). We then give a solution for
each subproblem, and combine the solutions in an algorithm for generating topologically correct
triangulations on arbitrary rational parametric surfaces.

The subproblems are explained in detail in section 3. They are: domain poles, domain base
points, surface self-intersections, complex parameter values, and infinite parameter values. We
describe them briefly here.

1. Domain poles. The map is undefined at points satisfying W (s, t) = 0. There is a one-
dimensional family of such domain points. The parametric functions can’t be evaluated at
such points; even if they never are, we might construct a surface approximation that does not
represent its shape correctly.

2. Domain base points. The map is undefined at points satisfying X(s, t) = Y (s, t) =
Z(s, t) = W (s, t) = 0. There are finitely many such points, called domain base points.
It is known that an entire curve on the parametric surface corresponds to each base point;
the points of this curve can’t be directly computed using the rational map. Ignoring base
points can lead to a topologically incorrect surface approximation.

3. Surface self-intersections. The surface intersects itself. Even if the rational map has no
poles or base points, mapping an arbitrary domain triangulation onto a parametric surface
may not yield a surface triangulation because surface triangles cross each other.

4. Complex parameter values. Some real points of the surface are generated only by complex
parameter values.

5. Infinite parameter values. Some finite points of the surface are generated only by infinite
parameter values.

For graphics display and NURBS rendering, subproblem (3) is not necessary (although z-
buffering still causes wavy lines along polygon intersections due to aliasing). If finite-element
meshing is the application, subproblem (3) is of interest.

The problems can be extended to include rational parametric surfaces in higher dimensions, but
we don’t discuss this here. The general flavor of the methods discussed will still apply, although
implementing higher-dimensional methods would require more tools.

In a preliminary paper [26] we discussed subproblems (1) and (5). In the current paper we give
solutions for (2), (3), and (4) as well. Because of this, the current paper has a much broader scope
and more applications than [26].

The rest of this paper is organized as follows. First, we discuss two approaches: either directly
approximating the surface in the range space of the parametric functions, or computing those
portions of the domain that map onto the desired parts of the surface. We argue that the domain-
space approach is preferable in this context. After explaining the above subproblems in detail, we
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present techniques for dealing with each subproblem. We then use these techniques in an algorithm
for generating topologically accurate surface triangulations. After explaining the algorithm detail
we discuss situations in which it can fail and where it could be improved, based on extensive
experimentation.

4.3.1 Domain space vs. range space approaches

One way to construct a piecewise-linear approximation to a parametric surface is to evaluate the
parametric functions at various points on the parameter domain, and link together the resulting
surface points to form an approximating mesh. When considering arbitrary rational parametric
surfaces, the parametric functions may not be defined at some points, since rational functions are
not defined at points where the denominator vanishes. Such points are called poles, and usually
correspond to surface points at infinity. The exception occurs when all the polynomials X,Y, Z,W
vanish there (an event that can happen only finitely many times since they have no common divisor,
by assumption). In this case the parameter point is a domain base point.

We shall later explore poles and base points in detail, showing examples of how they can cause
domain sampling techniques to fail.

Another way to approach the problem is to work directly in the range space of the rational
function map. Since we are only interested in portions of a surface inside a bounding box, and
poles correspond to surface points at infinity, a range-space method can avoid explicitly evaluating
the rational functions at poles (base points still cause problems).

The following system of equations is equivalent to (77):

W (s, t)x−X(s, t) = 0

W (s, t)y − Y (s, t) = 0

W (s, t)z − Z(s, t) = 0

One can theoretically implicitize the parametric surface by eliminating s, t from this system
[71] using several available methods [37, 42, 41, 56, 73] and then approximate the resulting implicit
surface directly. Note that a parametric surface of degree n could have an implicit equation of
degree n2.

However, implicit surface approximation techniques [18, 35, 42, 60, 79, 98] don’t handle surface
self-intersections very well, although research is being done to overcome this [8, 9, 32]. Since we
would like to display surfaces with complicated singularities and several real sheets, we avoid the
range-space approach. We show instead that a careful evaluation of the domain is sufficient to
generate an accurate piecewise-linear approximation of the parametric surface.

Difficulties in domain sampling In this section we explain why domain base points and poles
sometimes cause sampling techniques to fail, and give simple examples that are representative of
the kinds of failures that occur. The main problem is that domain sampling techniques which
don’t take poles and base points into account can generate surface approximations which do not
accurately represent the topology of the surface.

Domain poles Inability to evaluate a rational function at a pole (i.e., generating a divide by
zero exception in a numerical program) is not the main reason that domain sampling methods fail
when poles are present. Even if a domain sampling method avoids evaluating a rational map at a
pole, it may construct an approximation that does not reflect the actual shape of the surface. This
happens when a part of the domain that contains a pole is mapped onto the surface.
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Figure 19: Disjoint branches being wrongly connected (Mathematica)

When a parameterization contains poles, the surface may have multiple branches or sheets. We
show a simple example using a parametric curve. The hyperbola given by

x(s) = s, y(s) =
1

s

has a pole at s = 0. The real part of the curve consists of two branches.
A simple domain sampling algorithm for approximating this hyperbola might select a closed

interval [a, b] in the parameter domain, generate n equally-spaced parameter values si = a +
i( b−an−1), i = 0, . . . , n, and then connect the points (x(si−1), y(si−1)), (x(si), y(si)) with a straight-
line segment. In this example, a line segment could be drawn between points whose parameter
values lie on opposite sides of a pole. As a result, the approximation does not accurately represent
the shape of the curve.

Figure 19 shows the output of the program Mathematica for plotting the hyperbola over the
domain interval s ∈ [−1

2 ,
1
2 ].

With surfaces the problem is acute, and poles can cause problems even when the surface has a
single real sheet. For instance, a hyperboloid of one sheet with implicit equation x2+y2−z2−1 = 0 is
a surface whose real part is single-sheeted (i.e. connected). However, if we work from the equivalent
parametric representation

x(s, t) =
t2 − s2 + 1

s2 + t2 − 1
, y(s, t) =

2st

s2 + t2 − 1
, z(s, t) =

2t

s2 + t2 − 1
(78)

then problems arise because of the pole curve described by s2 + t2−1 = 0 in the parameter domain.
The right picture in

Figure 20 shows the output produced by MapleV for this surface with (s, t) ∈ [−2, 2] × [−2, 2]
(a domain region containing the pole curve).
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Figure 20: Single-sheeted surface with domain poles (Maple)

A small digression is in order about the programs Mathematica and MapleV. Both programs
use sophisticated strategies for graphing curves and surfaces that are generally effective. However,
they use domain sampling techniques which are not equipped to handle parametric functions that
are not defined everywhere, and hence fail for simple examples such as the above.

Domain base points We assumed that the numerators and common denominator of the rational
map (77) have no common factor. It is still possible that there are a finite number of points (a, b)
such that X(a, b) = Y (a, b) = Z(a, b) = W (a, b) = 0. Each such point is called a base point of the
parametric surface. Information about base points can be found in books on algebraic geometry
such as [61, 94, 106]. Interesting material on base points in the context of CAGD appears in
[41, 74, 91, 104]. In particular, [104] shows how to represent patches with up to six sides in the
triangular rational Bézier patch form, by a clever use of domain base points.

Base points are problematic since there is no one surface point for the corresponding domain
point. To each base point there actually corresponds a rational curve on the surface [94]. Ap-
proaching the base point along different directions leads to different points on the surface; the
points corresponding to all directions form a space curve that lies on the surface. Since there is
no parameter value for points on this curve (at which the surface map is defined), the entire curve
will be missing from the parametric surface. Such a curve is called a seam curve. Even if poles
are taken care of in some way, the seam curves can show up as gaps on the surface. This figure
shows the hyperboloid of one sheet given by (78). This parameterization has the two base points
(s, t) = (±1, 0). The corresponding seam curves can be parameterized in parameters u, v, giving
the lines (x(u), y(u), z(u)) = (−1, u, u) and (x(v), y(v), z(v)) = (−1, v,−v) on the surface.

If base points are not taken into account, the domain sampling density may need to be unnec-
essarily dense (with respect to surface curvature) in order for the gaps to be narrow. Furthermore,
even if the gap is narrow enough to suffice for display, the surface approximation will not correctly
represent the surface’s topology because of the gap.
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Figure 21: Hyperboloid of 1 sheet with seam curve gaps

Surface self-intersections A triangular mesh on a parametric surface is derived by constructing
a planar triangulation in the domain and mapping it onto the surface. However, when a planar
domain triangulation is mapped onto a curved surface, the resulting triangles in space may no
longer form a triangulation.

There are two reasons for this. First, if the domain sampling density is not fine enough with
respect to the surface curvature, two surface triangles may overlap each other. Second, if the
surface actually crosses itself, some surface triangles near the crossing may cross each other. For
finite-element mesh generation, surface triangulations are preferred. Even for display, a surface
triangulation is preferable. This is because scanline-rendering algorithms suffer from aliasing effects
along triangle intersections; this causes what should appear as a sharp edge on the screen to appear
wavy.

Complex parameter Values While the parameterization (77) defines a map from R2 into R3,
it also defines a unique algebraic surface in C3 which can be given by a single equation in three
variables, with real coefficients. This algebraic surface may contain real points which are not
mapped by any real parameter values. If we want to view the entire real part of the algebraic
surface defined by the map, and not just the image of R2, additional computations are needed.

For instance, consider a Steiner surface given implicitly by F (x, y, z) = x2y2 + y2z2 + x2z2 −
2xyz = 0, or parametrically by

x(s, t) =
2s

s2 + t2 + 1
, y(s, t) =

2t

s2 + t2 + 1
, z(s, t) =

2st

s2 + t2 + 1

(it is a quartic algebraic surface defined by a quadratic rational map).
Note that the x, y and z axes lie entirely on the algebraic surface F (x, y, z) = 0. Let us consider

the parametric map to see which parameter values give rise to the x axis, which is described by
y = z = 0. Setting y(s, t) = z(s, t) = 0 and solving for s, t yields t = 0. Thus (x(s, 0), 0, 0) =
(2s/(s2 + 1), 0, 0), s ∈ R, are the points on the x axis that are given by the map. This shows that
any parameter value s ∈ R yields a surface point (x, 0, 0) with |x| ≤ 1.
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Figure 22: Infinite parameter values mapping to finite point

To find parameter values giving rise to the remaining surface points on the x-axis we must
extend the parameter domain to C2.

Infinite parameter values Consider the following map for the unit sphere in R3:

x =
1− s2 − t2

s2 + t2 + 1

y =
2s

s2 + t2 + 1

z =
2t

s2 + t2 + 1

The (finite) point (−1, 0, 0) on the sphere is the image of the entire line at infinity in R2. Simply
using large parameter values to represent infinity is not enough to construct a topologically correct
polygonal approximation; the polygons will approach the “missing point” ever closer but never fill
the gap.

To compute certain finite points on the surface we may need to extend the parameter domain to
include parameter values at infinity, i.e. extend the parameter domain to be the projective plane.

We have described the main problems that occur in constructing topologically accurate polyg-
onal meshes on rational parametric surfaces, when no restriction is placed on the rational map
defining the surface.

These problems generally occur because a particular rational map for the surface can be locally
“bad” near some domain points. However, from any single map for the parametric surface we can
extract all information necessary to compute all parts of the surface inside the bounding box.

Techniques for overcoming difficulties In this section we outline the basic idea for solving
each of the problems addressed above. Additional details are given in the next section, when the
complete algorithm is shown.

Partition of domain by pole curves Rational functions are undefined at points in the domain
where their denominator vanishes, and continuous everywhere else. Hence, the pole curve parti-
tions the parameter domain into regions, such that inside each (open) region the functions of the
parametric map are defined and continuous.
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Therefore, our approach to handling pole curves is simple: we partition the domain by the
pole curve. In particular, we construct a special triangulation of the domain that respects this
partition. In this triangulation, a domain triangle contains pole points only on its boundary and
not in its interior. Since pole curves may not be lines, in practice we shall construct a piecewise-
linear approximation of the pole curve and then identify linear curve approximants with edges of
the triangulation.

Once such a triangulation is constructed, we know that each domain triangle maps onto a single-
sheeted patch, since there are no pole points in the interior (pole points at a vertex correspond to
points at infinity, and therefore the patch may be semi-infinite). A conventional domain sampling
technique is used in the interior of the triangle to mesh the patch to any desired precision. The
patch can then be clipped against a bounding box, if necessary.

If base points are not present, domain partitioning combined with the handling of infinite pa-
rameter values (discussed below) suffices to generate a topologically correct mesh of the parametric
surface, even if it is multi-sheeted.

Base points and seam curve parameterizations When base points are present, it is not
sufficient to just handle pole curves as gaps may still be present. The surface approximation will
then not be topologically correct, since the surface approximation will be “torn” along the seam
curves.

To handle base points, we must “stitch” the surface up along seam curves. This can be done
in the framework of domain partitioning, as follows. We compute all base points and insert them
into the domain triangulation as additional vertices – thus base points will occur explicitly at the
vertices of a domain triangle.

In general, approaching a base point along different directions in the domain leads to a different
surface point (in the limit). Thus a base point “blows up” onto an entire “seam” curve on the
surface [94] – each point of this curve corresponds to a different limit direction at the base point. A
consequence of this fact is that a domain triangle with a base point vertex maps onto a four-sided
patch on the surface. In general, a triangle with b base point vertices maps onto a (b + 3)-sided
patch – a fact exploited in [104] to represent multi-sided patches over triangular domains.

Once we have a parameterization of the seam curves, it is easy to generate the patch corre-
sponding to a domain triangle with base point vertices, however many sides it has. Each of the
two edges adjacent to a base point vertex corresponds to a particular direction, and therefore to
a particular parameter value. The two parameter values then define a segment of the seam curve.
This curve segment is the side on the patch that corresponds to the domain base point.

We now discuss the computation of seam curve parameterizations. Points on a rational paramet-
ric surface are given as follows (temporarily using projective coordinates for notational convenience):

ρX = X(s, t), ρY = Y (s, t), ρZ = Z(s, t), ρW = W (s, t)

where ρ is a non-zero constant of proportionality (we still use an affine domain, which is sufficient
as we later show).

Then, let O be a common solution of the curves X = 0, . . . ,W = 0. Furthermore, let us suppose
that O is a point of multiplicity q on each of the curves X = 0, . . . ,W = 0, and that the curves
have no common tangent at O. Then the image of the base point O is a rational curve of degree q
on the surface [94].

In [41], a method is given to find the parametric equations of this curve. The basic idea is to
pass a pencil of lines through the base point and then use the slope of these lines as a parameter,
since approaching the base point from each direction leads to a different point on the seam curve.
The seam curve equations are not given explicitly, but as quotients of certain polynomials. The
algorithm fails when the curves X = 0, . . . ,W = 0 have common tangents at O; in this case the
parametric equations given by this algorithm generate only a single point of the seam curve.
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In [74] a method is given for parameterizing seam curves that works for all cases (i.e., even
when the tangents are equal). However, it is much more expensive than the previous method and
not currently practical: multivariate resultants are used to compute a projection onto a plane of
all the seam curves simultaneously, yielding a bivariate equation. Along with the projection, a
rational map R is computed between the projection and the curves on the surface. A bivariate
factorization algorithm (over the complexes) such as [13, 67] must first be applied to separate out
the the projections of the individual curves. Each projected seam curve is then parameterized
using a general curve parameterization technique [4], and finally mapped onto the surface using the
rational map M .

The method of [41] is much simpler than that of [74], and could be implemented as part of the
surface display algorithm. However, we present a further simplification of [41] based on the the same
idea, which is found in algebraic geometry textbooks such as [94] (and hence it also fails when the
tangents at O are all equal). This simplification makes the method easier to implement numerically,
since we find an explicit formula for the parametric equations of the seam curve. Furthermore, the
formula clearly shows how the number of common tangents of X = 0, . . . ,W = 0 at the base point
affects the seam curve, explaining why this method breaks down when the tangents at the base
point are all equal.

Theorem 4.1. Let (a, b) be a base point of multiplicity q. Then for any m ∈ R, the image of a
domain point approaching (a, b) along a line of slope m is given by (X(m), Y (m), Z(m),W (m)) =(

q∑
i=0

(
∂qX

∂sq−i∂ti
(a, b)

)(
q

i

)
mi, . . . ,

q∑
i=0

(
∂qW

∂sq−i∂ti
(a, b)

)(
q

i

)
mi

)
(79)

PROOF. Consider the image of a point (s, t) as it approaches (a, b) along the line of slope m
through (a, b). Expressing the line as t = m(s− a) + b, this yields the point

lim
s→a

(X(s,m(s− a) + b), Y (s,m(s− a) + b), Z(s,m(s− a) + b),W (s,m(s− a) + b)) (80)

Expanding X(s, t) in a Taylor series at (a, b) yields

X(s, t) =

p∑
k=0

k∑
i=0

(s− a)i(t− b)k−i
(
k
i

)
k!

∂kX

∂si∂tk−i
(a, b) (81)

Substituting t = m(s− a) + b in (81) yields

X(s) =

p∑
k=0

k∑
i=0

(s− a)k
(
k
i

)
mk−i

k!

∂kX

∂si∂tk−i
(a, b)

= (s− a)q
p∑
k=q

k∑
i=0

(s− a)k−q
(
k
i

)
mk−i

k!

∂kX

∂si∂tk−i
(a, b)

where q is the multiplicity of the base point (a, b), which implies that all derivatives of X(s, t) up
to order q − 1 vanish at (a, b).

Substituting t = m(s − a) + b into the Taylor expansions of Y (s, t), Z(s, t),W (s, t) yields
(X(s), . . . ,W (s)) =

(s− a)q

 p∑
k=q

k∑
i=0

(s− a)k−q
(
k
i

)
mk−i

k!

∂kX

∂si∂tk−i
(a, b), . . . ,

p∑
k=q

k∑
i=0

(s− a)k−q
(
k
i

)
mk−i

k!

∂kW

∂si∂tk−i
(a, b)



87



We drop the factor of proportionality (s− a)q and compute the limit (80):

lim
s→a

(X(s), Y (s), Z(s),W (s)) =
1

q!

(
q∑
i=0

(
q

i

)
mq−i ∂qX

∂si∂tq−i
(a, b), . . . ,

q∑
i=0

(
q

i

)
mq−i ∂qW

∂si∂tq−i
(a, b)

)

=

(
q∑
i=0

(
∂qX

∂sq−i∂ti
(a, b)

)(
q

i

)
mi, . . . ,

q∑
i=0

(
∂qW

∂sq−i∂ti
(a, b)

)(
q

i

)
mi

)

Thus for each m ∈ R there is a corresponding point (79) on the parametric surface. These
points collectively form a one-dimensional family or curve on the surface. �

Corollary 4.2. If the curves X(s, t) = 0, . . . ,W (s, t) = 0 share t tangent lines at (a, b), then the
seam curve (X(m), Y (m), Z(m),W (m)) has degree q−t. In particular, if X(s, t) = 0, . . . ,W (s, t) =
0 have identical tangents at (a, b), then for all m ∈ R the coordinates (X(m), . . . ,W (m)) represent
a single point.

PROOF. The equations of the tangent lines to the curve X(s, t) = 0 at (a, b) are given by
equating to zero the factors of the following curve, which are all linear (since it is homogeneous):

q∑
i=0

(
∂qX

∂sq−i∂ti
(a, b)

)(
q

i

)
sq−iti = 0 (82)

and similarly for Y (s, t) = 0 etc. Moreover, there is a 1-1 correspondence between the linear
factors of this curve and the roots of the polynomial X(m) in (79). Thus each common tangent
of X(s, t) = 0, . . . ,W (s, t) = 0 at (a, b) leads to a common root, and hence a common factor,
among X(m), . . . ,W (m). If there are t common tangents there will be a common factor of degree t,
which can be divided out of the seam curve parameterization (X(m), . . . ,W (m)) since proportional
homogeneous coordinates represent the same point. Thus the seam curve is of degree q − t. �

Partitioning along surface self-intersections Earlier, we mentioned two reasons why a do-
main triangulation might not stay a triangulation when it is mapped onto a parametric surface.
The first reason was because the domain sampling density was not high enough, and the second
reason was because the surface might self-intersect.

The first case can be handled by increasing the domain sampling density (either locally or glob-
ally, although local curvature-sensitive sampling is much preferred since it generates fewer poly-
gons). Several domain sampling techniques already adjust the sampling density due to curvature,
so we focus on the second case.

The domain-partitioning technique lends itself to generating triangulations on surfaces that
self-intersect. The key idea is to compute those points and curves in the parametric domain that
map onto surface self-intersections, and then partion the domain by these points and curves (as
well as by the pole curves). If this is done, no domain triangle will contain in its interior a point
that map onto a surface singularity. Hence, triangles on the surface will meet only along their edges
or at their vertices, even if the surface is singular.

Domain curves (and points) mapping onto surface singularities can be computed by solving
systems of polynomial equations. For instance, cuspidal singularities correspond to domain points
where the Jacobian matrix of the rational map does not have full rank. We can compute the
symbolic Jacobian matrix and equate its minors to zero, yielding a set of polynomial equations
whose common solution are domain points that map onto surface cusps. Nodal singularities can
also be computed by solving a system of polynomial equations.

The system of equations has a one-dimensional solution set in general. Multivariate resultants
[71, 72, 16, 73] can be used to project the solutions onto the parameter plane, after which a
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Figure 23: Triangulation of parametric surface with point singularity

curve-tracer can be used to compute an approximation. For tracing the curve one can use either
subdivision methods, e.g. [57], or a marching method such as [17].

For example, consider the surface given by the the following equations, taking x(s, t) =
X(s, t)/W (s, t), etc.

X(s, t) = s3 + st2 − 3s

Y (s, t) = (s2 + t2)2 − 3(s2 + t2)

Z(s, t) = s2t+ t3 − 3t

W (s, t) = (s2 + t2)2 + 2(s2 + t2) + 1

By substitution, one can verify that its implicit equation is

F (x, y, z) = z4 + 2y2z2 + 3yz2 + 2x2z2 + y4 − y3 + 2x2y2 + 3x2y + x4 = 0

This is a surface of revolution; it has a point singularity at the origin.
It can be shown that the domain points mapping onto the surface singularity satisfy (t2 +

s2 − 3)(t2 + s2) = 0. Thus the circle of radius
√

3 centered at the origin, and the origin itself
both map onto the surface (nodal) self-intersection at (0, 0, 0). This circle and the origin partition
the parameter domain into regions that meet at the surface self-intersection. By partitioning the
parameter domain by the curve t2 + s2 − 3 = 0 and the point (0, 0), as by pole curves, we can
construct a triangulation on this surface.

Computing complex parameter values We now show one way to compute the complex pa-
rameter values that map onto these points. Let the parameters s, t denote complex numbers given
as s = a+ bi, t = c+ di, where a, b, c, d ∈ R and i =

√
−1.

Then the parametric map from C2 → R3 can be expressed as

x(s, t) = x(a+ bi, c+ di) = XR(a, b, c, d) +XI(a, b, c, d) · i
y(s, t) = y(a+ bi, c+ di) = YR(a, b, c, d) + YI(a, b, c, d) · i
z(s, t) = z(a+ bi, c+ di) = ZR(a, b, c, d) + ZI(a, b, c, d) · i
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where XR denotes the real part of x(a+ bi, c+ di) and XI denotes its imaginary part, etc.
Then XI(a, b, c, d) = 0, YI(a, b, c, d) = 0, ZI(a, b, c, d) = 0 form a system of three equations in

four unknowns whose solutions give parameter values that map to real surface points. In general,
such a system has a one-dimensional solution set.

Note that this particular system has the trivial two-dimensional solution b = d = 0 which
must be excluded. Thus the marching method [17] cannot be used directly; rather, as for surface
self-intersections, we must use resultants to first compute a projection of the space curve. After
deleting the extraneous component due to the trivial solution, we can trace the projected plane
curve and finally map it onto the space curve using the inverse of the projection.

The points (a, b, c, d) of the space curve give complex parameter values s = a+ bi and t = c+di
that map onto real points of the surface.

Mapping infinity using projective reparameterization To handle infinite parameter values,
we use projective reparameterizations. In [47], a technique called “homogeneous sampling” is used
to sample finite and infinite points of a surface equally. We use similar idea based on projective
reparameterizations, so that only affine parameter values are needed. Specializing theorem 1 of
[27], we use four reparameterizations of the original rational map, given by

s = ± u

1− u− v
t = ± v

1− u− v

Each reparameterized map needs to be sampled only over the unit triangle of its domain (u ≥ 0,
v ≥ 0, u+v ≤ 1), yielding a triangular patch. The patches meet along their boundaries and together
cover the entire surface (including finite points that were generated by infinite parameter values in
the original surface).

4.4 Spline Approximations of Real (Implicit) Algebraic Surfaces

Real algebraic surfaces are often used to cope with the problem of modeling complicated shapes.
Implicitly defined algebraic surfaces have both advantages, and disadvantages over functional and
parametric surfaces. The class of implicit algebraic surfaces is closed under several geometric
operations (intersections, union, offset, etc.), often desired in a solid modeling system. On the
other hand, free-form geometric modeling (display and shape control) is much easier with parametric
curve and surface spline representations (and evidenced by available software systems). This largely
motivates the need for constructing parametric spline approximations of real algebraic surfaces.

As the role of implicit algebraic surfaces are increasing in importance in geometric model-
ing, rendering and approximating implicit algebraic surfaces becomes crucial in surface design. In
computer graphics, most rendering algorithms for implicit surfaces rely on piecewise linear approx-
imations (polygons) based on space subdivision or polyhedron continuation. Bloomenthal [35] used
octrees by spatial partition to reach a polygonal approximation. Micchelli and Prautzsch [75] used
uniform refinement algorithms for surface generation. Allgower and Gnutzmann, et al, [7], used
simplicial continuation or pivoting algorithms to generate a triangular or quadrilateral polygonal
approximations. For the similar purpose, Chuang [43] used cubic continuation technique.

We use neither space subdivision nor polyhedron continuation. Instead, we use triangular
surface patch expansion by choosing first three points on the surface and then constructing a wire
frame (with normal functions for G1 continuity) and finally finding a patch to cover the wire frame.
Comparing with the approaches above mentioned, the patch expansion uses fully the property of
the function to be approximated locally, it therefore is adaptive.

Once a wire frame is established, we are lead to an interpolation problem. Relating to this,
there are many prior works. Bajaj and Ihm [19] use implicitly defined surface to accomplish the
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task but it can not serve us for our purpose. A lot of works deal with Ck continuity problem
under various assumptions. For example, Nasri [77] consider surface interpolation on irregular
networks with normal conditions at vertices but without specifying space wire frame. Herron [62]
uses parametric surfaces interpolating function values and tangential derivatives at the vertices of
a triangle. His method was generalized [63] to cover G1 continuity case for closed surfaces. The
interpolation problems are solved by two approaches. One is using functional patch by subdividing
each triangular patch into three smaller patches. The other approach is using parametric patches
to cover a wire frame. Compared with the method given in [63], the second approach leads to a
lower degree of approximation.

4.4.1 The Main Steps of the Algorithm

1. Singularity Computation. The algorithm itself is an expansion approach of triangular
patch from a given seed point on the surface. This expansion approach works in the smooth
part of the surface. Hence the singularity of the surface must be treated separately. The
Singularity Computation includes the computation of singular points and singular curves in
the given bounding box. For the singular curves, we provide a list of points on each curve.

2. Triangulation. This step will provide a piecewise linear(triangular) approximation of the
surface with correct topology. The approximation of the smooth part is based on the power
series expansion and from which triangles are produced. When the vertices of the triangles
approach to the singular points, the vertices will be stitched to the singular points by adding
edges. This will guarantee the triangulation have correct topology.

3. Wire Construction. This step will construct a wire frame by providing normals at each
vertex of the triangulation and then building a space curve and a normal function for each
edge such that the curve passes the two vertices of the edge and the normal function has
the given normal at the vertices and orthogonal to the tangent of the curve. The normal at
a point that is the smooth point of the original surface is provided by the surface. At the
singular points, the surface normals are not well defined, the wire frame do not take account
the normal condition.

4. Patch fitting. For each three wires with normal functions over a triangle, construct a
surface patch that contains the wires and has the normal function on the boundary. Hence
the composite surface is G1 continuous.

4.4.2 Adaptive Triangulation

Edge Expansion Approach We begin with a few notational definitions

Expansible edge. During the process of expansion of the triangular polygon, an edge is called
expansible if we can go further outward from this edge to get a new triangle. That is

(a) this edge is on the boundary of the present constructed polygon,

(b) this edge is inside the given boundary box.

P -plane, The P-expression, expansion point.

Let p0 = (x0, y0, z0) be a point on the surface f(x, y, z) = 0. Then the orthogonal transform

T :

 X
Y
Z

 =

 c2 s2 0
−c1s2 c1c2 s1

s1s2 −s1c2 c1

 x− x0

y − y0

z − z0
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with

c1 = fz(p0)/‖∇f(p0)‖, c2 = −fy(p0)/
√
fx(p0)2 + fy(p0)2,

s1 =
√
fx(p0)2 + fy(p0)2/‖∇f(p0)‖, s2 = fx(p0)/

√
fx(p0)2 + fy(p0)2

establishes an one-to-one map between (x, y, z) space and (X,Y, Z) space. It is easy to see
that the XY -plane is the tangent plane of the surface f(x, y, z) = 0 at the point p0. We call
this plane as projection plane of f = 0 at p0, denoted as P-plane. The projection of a space
point p on P-plane is denoted by P (p) that is consists of the first two components of T (p). On
the P-plane, f(x, y, z) = 0 can be expressed locally as a power series Z = φp0(X,Y ). We call
its trunction up to degree k a P-expression, denoted by φp0,k(X,Y ). The point p0 is referred
to as expansion point.

(p, k, ε)–circle, (p, k, ε)–sphere, (p, k, ε)–radius

If the maximal r = r(p, k, ε) for which

‖φp,k(X,Y )− φp(X,Y )‖ < ε for X2 + Y 2 ≤ r2

Then we say the circle X2 + Y 2 = r2 is a (p, k, ε)–circle X2 + Y 2 +Z2 = r2 is (p, k, ε)–sphere
of f at p and r is (p, k, ε)–radius.

It is easy to see that r(p, k, ε) converge to the convergence radius of φp(X,Y ) at p as k →∞.

Now we can state the steps of expansion of polygons. Let S be the collection of singular points and
point lists on the singular curves.
Algorithm 1

1. Initial Step. For a given smooth point p0 on one component of the surface f(x, y, z) = 0
and in the given bounding box, we first compute the P -expression Z = φp0,k(X,Y ). On the
P -plane, then find the (p0, k, ε)–radius. Take three points on the (p0, k, ε)–circle uniformly,
say q0, q1, q2, and refine the points (qi, φp0,k(qi)) by Newton method such that the resulted
points Vi are on the surface. If Newton method fails, reduce the radius of the circle and
then try again. If the point Vi is outside the bounding box, then adjust it to the boundary.
The triangle [V0, V1, V2] is the first one we wanted. And then the angle at each vertex of the
triangle that is defined by the adjacent edges counted outward are computed. In this initial
case, each edge is expansible except the one that is on the boundary.

2. General Step. Suppose we have constructed several space triangles that forms one or more
than one connected mesh consisting of triangles. For each mesh, we keep the boundary
information such as edges with related expansion point, vertices with angles. Assume now
that at least one of the edges is expansible. Then the general step is to construct one more
triangle that joins the original one and enlarge the mesh.

(a) Find a vertex on the present boundary such that the angle at this point is minimal and
the related two boundary edges are expansible. Start from one of the two expansible
edges that has longer length, say [V1, V2] which is also the edge of triangle [V0, V1, V2]
with expansion point p0 and P -expression Z = φp0,k(X,Y ). Choose one point q on
P -plane outward the present triangle and within the (p0, k, ε)–circle such that q is on
the middle-perpendicular line of [P (V1), P (V2)] and as far as possible from P (p0).

(b) Refine the point (q, φp0,k(q)) by Newton method to get a new expansion point p1. As
before, if Newton method fails, a nearer point q to the circle center is used.

(c) Compute the new P -expression Z = φp1,k(X,Y ) and new (p1, k, ε)–circle X2 + Y 2 = r2
1.
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(d) In the new P -plane at p1, choose a point q1 on the intersection of the the middle-
perpendicular line of [P (V1), P (V2)] and the new (p1, k, ε)–circle. Then form a new
triangle according to the following cases:

• If the line segment [(P (V1) + P (V2))/2, q1] intersect a previous edge’s projection on
the P -plane and the point T−1(q1, φp1(q1)) lies on a previous surface patch, we take
the intersection point to be q1 and a new triangle [V1, V2, T

−1(q1, φp1(q1))] is formed,
or alternatively, if the vertices is near(within ε) to a singular point in S, then a new
edge is added by connecting the vertices to the nearest singular point. In practice,
this ε would be chosen interactively. Otherwise,

• Let [V2, V4] be the other edge connecting to the present vertex. Then if the an-
gle < P (V4)P (V2)P (V1) ≤ π

2 , the new triangle is formed by the three points
V4, V2, V1.Otherwise,

• If angle < P (V4)P (V2)P (V1) > π
2 , the new triangle is (V1, V2, P

−1(q1, φp1(q1)).

3. Final Step. Use general step iteratively, until every edge is non-expansible. Then we finish
the generation of the triangle polygon for one component of the surface.

Vertex Expansion Approach In this subsection, we describe another way for constructing the
triangular polygon by expansion from vertex. The approach start from one initial vertex on the
surface and then expand outward by using degree k power series expansions as a tool and a ε as a
controller. We refer to it as (k, ε)–Triangulation. For easy of description of the algorithm, we first
introduce some terminologies.

Expansible vertex. During the process of expansion of the triangular polygon, a vertex is called
expansible if it is a smooth point of the surface f = 0, it is in the interior of the given
boundary box and it is on the boundary of the present constructed polygon.

Binary partition process.

For a given point p on the surface, its (p, k, ε)–circle and two points q1 and q2 on the circle, let
pi = (qi, φp(qi)). The binary partition process is to produce a series triangles by the following
process.

a. If ∠p1pp2 ≥ π, then choose a point q in the middle of q1 and q2 and on the circle and
define pi = (q, φp(q)). If the point pi is outside the given bounding box, then adjust it to the
boundary. Repeat this step till the angle is less than π.

b. If ∠p1pp2 ≤ π, then if p2 is in (p1, k, ε)–sphere and p1 is in (p2, k, ε)–sphere, then [p1, p2] is
a new edge and a new triangle [p1, p2, p] is formed. Otherwise, a new point q′ on the (p, k, ε)–
circle and in the middle of q1 and q2 is taken and a new vertex p′ = (q′, φp(q

′)) is defined. If
p′ is outside the given bounding box, then adjust it to the boundary. This step is repeated
untill (p, k, ε)–sphere of every vertex p contains its neighbor vertices. The connection of all
the points whose projection on the edges with p forms the triangles

Now we can state the steps of expansion of polygons.
Algorithm 2

1. Initial Step. For a given smooth point p0 on one component of the surface f(x, y, z) = 0, we
first compute the P -expression Z = φp0,k(X,Y ). On the P -plane, then find the (p0, k, ε)–
circle with center P (p0) = (0, 0). Take three equally distributed points qi, i = 1, · · · , 3 on the
circle and let pi = (qi, φp0,k(qi)). For each pair of pi and pi+1, the binary partition process is
conducted.
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In this initial case, all the boundary vertices are expansible except the one that is not inside
in the given box. Then compute the angle at each boundary vertex of the triangle that is
defined by the adjacent edges counted outward.

2. General Step. Suppose we have constructed several space triangles that form one or more
than one connected mesh. For each mesh, we keep the boundary information such as edges,
vertices with angles. Assume now that at least one of the boundary vertices is expansible.
Then the general step is to construct more triangles that join the original ones and enlarge
the mesh. We shall try to keep mesh as convex as possible, so we always expand at the vertex
that has sharpest angle.

Find an expansible vertex, say p0, on the present boundary such that the angle at p0 is
minimal. Let the two related boundary edges be [p1, p0] and [p0, p2], Compute P -expression
Z = φp0,k(X,Y ) and (p0, k, ε)–radius r(p0, k, ε). Let [q′1, q

′
0] and [q′0, q

′
2] be the projection of

[p1, p0] and [p0, p2] on the P -plane Let q1 and q2 be the intersection of rays [q′0, q
′
1〉 and [q′0, q

′
2〉

with (p0, k, ε)–circle. Then perform the binary partition process for q1 and q2.

• If the line segment [qi, q0] intersect a previous edge’s projection on the P -plane and
the point T−1(qi, φ(qi)) lies on a previous surface patch, then the new vertex become
no-expansible. Then local re-triangulation is needed.

3. Final Step. Use general step iteratively, until every vertex is non-expansible. Then we finish
the generation of the triangle polygon for one component of the surface.

5 Operations on Spline Surfaces

5.1 Piecewise Parameterization of Surface Patches and their Trimming Curves

5.1.1 Tetrahedral patches

An A-patch of degree n over the tetrahedron [p1p2p3p4] is defined by

Gn(x, y, z) := Fn(α) = Fn(α1, α2, α3, α4) = 0, (83)

where
Fn(α1, α2, α3, α4) =

∑
i+j+k+l=n

aijklB
n
ijkl(α1, α2, α3, α4), (84)

Bn
ijkl(α1, α2, α3, α4) =

n!

i!j!k!l!
αi1α

j
2α

k
3α

l
4,

and (x, y, z)T and (α1, α2, α3, α4)T are related by
x
y
z
1

 =

[
p1 p2 p3 p4

1 1 1 1

]
α1

α2

α3

α4

 . (85)

The construction details of cubic A-patches can be found in [15]. With all these computational
formulas, there are still several degrees of freedom. Specifically, the weights am1110, am1002, am0102,
am0012, am0003, and bm2001 may be chosen freely. We wish to use these degrees of freedom to make the
cubic A-patch single-sheeted and have boundary curves that are rational parametric.
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Figure 24: (a) Four free weights of a cubic A-patch for a face tetrahedron. (b) One free weight of
a cubic A-patch for an edge tetrahedron.

5.1.2 Rational parametric boundary curves

For the face A-patch, we have four weights free [15] (see Figure 24(a)). These weights will be used
to make the three boundary curves rationally parameterizable. Since forcing a C1-continuous cubic
A-spline to be rationally parameterizable requires the imposition of a single constraint (46), the
splines on the three faces [p1p2p4], [p2p3p4], and [p3p1p4] lead to three equations:

G[p1p2p4](a2100, a1200, a1101, a1002, a0102, a0003) = 0

G[p1p3p4](a1020, a2010, a1011, a0012, a1002, a0003) = 0 (86)

G[p2p3p4](a0210, a0120, a0111, a0102, a0012, a0003) = 0 ,

where G[pipjpk](·, ·, ·, ·, ·, ·) is defined by (46), and four unknowns (a1002, a0102, a0012, a0003).

For the edge patch, we have one weight free on the interface [p2p3p
′′
1] (see Figure 24(b)). If we

let bijkl denote the weights for tetrahedron [p′′1p2p3p4], then the free weight is b3000. Solving the
equation G[p2p3p

′′
1 ](b0210, b0120, b1110, b2100, b2010, b3000) = 0, provides the required coefficient.

If we are given two rationally parameterized curves on a cubic surface, we can obtain a rational
parameterization for the surface in a manner similar to that in [33]. The idea is that a line that
passes through two nonsingular real points on a cubic surface must intersect the surface in a third
real point. Let the two curves on the surface f(x, y, z) = 0 be

c1(u) = [x1(u) y1(u) z1(u)]T and c2(u) = [x2(u) y2(u) z2(u)]T .

Then the cubic parameterization formula for a point p(u, v) on the surface is

p(u, v) =

 x(u, v)
y(u, v)
z(u, v)

 =
ac1 + bc2

a+ b
=
a(u, v)c1(u) + b(u, v)c2(v)

a(u, v) + b(u, v)
(87)

where
a = a(u, v) = ∇f(c2(v)) · [c1(u)− c2(v)]
b = b(u, v) = ∇f(c1(u)) · [c1(u)− c2(v)] .

A simpler, lower degree parameterization can be obtained if we know and can use two skew
lines on the cubic surface rather than cubic curves. This was the approach in [33], and results in
a 1-to-1 covering of the cubic surface, while using cubic curves as c1 and c2 can result in a 9-to-1
covering. Nonsingular cubic surfaces can be put into five categories based on the number of real
lines upon them, and rational parameterizations are possible in four of them.
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5.1.3 Addition of a singular point

In this section we determine the free coefficients (dropping the superscript 1) a1002, a0102, a0012,
and a0003 of tetrahedron [p1p2p3p4] by forcing the cubic surface to have a singular point at a
specific location outside the tetrahedron, say at p0 : (α1, α2, α3, α4) = (−k,−k,−k, 3k + 1) for
some k ≥ 0. A singular point on the surface S(α) = 0 is one where the gradient vanishes, so that
∇S(p0) = 0. Here S is considered to be a function of the three independent variables {α1, α2, α3}.
The conditions that S(−k,−k,−k) = 0 and (∂S/∂αi)α=p0

= 0, i = 1, 2, 3, are equivalent to

0 = −3k3(a2100 + a2010 + a1200 + 2a1110 + a1020 + a0210 + a0120)

+ 3k2(3k + 1)(a2001 + 2a1101 + 2a1011 + a0201 + 2a0111 + a0021)

− 3k(3k + 1)2(a1002 + a0102 + a0012) + (3k + 1)3a0003,

0 = k2(2a2100 + 2a2010 + a1200 + 2a1110 + a1020 − a0201 − 2a0111 − a0021)

− k(7k + 2)a2001 − 2k(4k + 1)(a1101 + a1011) + 2k(3k + 1)(a0102 + a0012)

+ (5k + 1)(3k + 1)a1002 − (3k + 1)2a0003,

0 = k2(a2100 − a2001 + 2a1200 + 2a1110 − 2a1011 + 2a0210 + a0120 − a0021)

− k(7k + 2)a0201 − 2k(4k + 1)(a1101 − a0111) + 2k(3k + 1)(a1002 + 8a0012)

+ (5k + 1)(3k + 1)a0102 − (3k + 1)2a0003,

0 = k2(a2010 − a2001 + 2a1110 − 2a1101 + 2a1020 + a0210 − a0201 + 2a0120)

− k(7k + 2)a0021 − 2k(4k + 1)(a1011 + a0111) + 2k(3k + 1)(a1002 + 8a0102)

+ (5k + 1)(3k + 1) + a0012 − (3k + 1)2a0003,

and this system has the solution

a1002 = k[−(2a2100 + 2a2010 + a1200 + 2a1110 + a1020)k

+ 2(3k + 1)(a2001 + a1101 + a1011)]
/

(3k + 1)2,

a0102 = k[−(a2100 + 2a1200 + 2a1110 + 2a0210 + a0120)k

+ 2(3k + 1)(a1101 + a0201 + a0111)]
/

(3k + 1)2,

a0012 = k[−(a2010 + 2a1110 + 2a1020 + a0210 + 2a0120)k

+ 2(3k + 1)(a1011 + a0111 + a0021)]
/

(3k + 1)2,

a0003 = 3k2[−2(a2100 + a2010 + a1200 + 2a1110 + a1020 + a0210 + a0120)k

+ (3k + 1)(a2001 + 2a1101 + 2a1011 + a0201 + 2a0111 + a0021)]
/

(3k + 1)3 . (88)

According to the inequality constraints in [15], a2100, a2010, a1200, a1110, a1020, a0210 and a0120

are all negative, while a2001, a0201, and a0021 are all positive. The conditions that the cubic A-patch
is single-sheeted are that a1002, a0102, a0012, and a0003 must all be positive. This will be the case
for k > 0 when a1101 + a1011 > −a2001, a1101 + a0111 > −a0201, a1011 + a0111 > −a0021. These three
conditions guarantee that a1002, a0102, and a0012 are positive, while combined they are equivalent
to a1101 +a1011 +a0111 > −(a2001 +a0102 +a0021)/2, which guarantees that a0003 is positive. Even if
these conditions is not satisfied, there may be values of k for which the solution for a0003 as given by
(88) is positive. These conditions are more easily satisfied the more negative the quantities a2100,
a2010, a1200, a1110, a1020, a0210 and a0120 are.

Next, points on the cubic A-patch are parameterized by lines passing through the singular point
and the plane determined by p1, p2, and p3. Lines passing through a singular point, or double
point, intersect the cubic surface in exactly one more point. These lines have the form

L(t) = t(up1 + vp2 + wp3) + (1− t)p0,
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where u+ v + w = 1. Thus we make the substitutions

α1 = tu− (1− t)k, α2 = tv − (1− t)k,
α3 = tw − (1− t)k, α4 = (1− t)(3k + 1), (89)

and (88) into the cubic A-patch (84). This produces an equation which is linear in t. The region
in the uv-plane over which the parameterization takes place can be described by 0 ≤ u ≤ 1,
0 ≤ 1− u ≤ v. Let

P2 = [k(a2100 + a2010)− (3k + 1)a2001]u2 + 2[k(a2100 + a1200 + a1110)− (3k + 1)a1101]uv

+ [k(a1200 + a0210)− (3k + 1)a0201]v2 + 2[k(a2010 + a1110 + a1020)− (3k + 1)a1011]uw

+ [k(a1020 + a0120)− (3k + 1)a0021]w2 + 2[k(a1110 + a0210 + a0120)− (3k + 1)a0111]vw

and

P3 = a3000u
3 + a2100u

2v + a2010u
2w + a1200uv

2 + 2a1110uvw

+ a1020uw
2 + a0300v

3 + a0210v
2w + a0120vw

2 + a0030w
3, (90)

so that P2 and P3 consist of quadratic and cubic terms in {u, v, w}, respectively. Then t satisfies

t =
P2

P2 + P3
, and 1− t =

P3

P2 + P3
. (91)

Now considering (89), each of α1, α2, α3, and α4 is seen to be a quotient of cubic polynomials in
u, v, and w. Writing w = 1 − u − v, each of the α is seen to be a function of two independent
variables.

Of particular interest is the situation when k = 0, for in that case the cubic splines which
are the intersections of the cubic A-patch with the side faces of the tetrahedron are immediately
parameterizable. Equations (89) with w = 0, v = 0, and u = 0 will parameterize the faces where
α3 = 0, α2 = 0, and α1 = 0, respectively. In order for this to work, p4 must be chosen sufficiently
far from [p1p2p3]. In this case, we have

P2 = −(a2001u
2 + 2a1101uv + 2a1011uw + a0201v

2 + 2a0111vw + a0021w
2). (92)

A sufficient condition that the A-patch is single-sheeted in this case is for the de-
nominator in (91) to always have the same sign, say negative, and this can be
guaranteed if the coefficients {a2001, a1101, a1011, a0201, a0111, a0021} are all positive while
{a2100, a2010, a1200, a1110, a1020, a0210, a0120} are all negative.

5.1.4 Parameterizing the base triangle in the non-convex case

If the triangle [p1p2p3] is non-convex, or is convex but not all of its neighbors are convex with
the same sign, we are in the non-convex case, and the cubic A-patch intersects [p1p2p3] in a cubic
curve C(α1, α2, α3) =

∑
i+j+k=3[3!/(i!j!k!)]aijk0α

i
1α

j
2α

k
3 = 0, where a3000 = a0300 = a0030 = 0. Let

(d, e, f, g, h, i, j) = (3a2100, 3a2010, 3a0210, 3a1200, 3a1020, 3a0120, 6a1110).

Then each of {d, e, f, g, h, i} is determined, but we still have one degree of freedom left in the
coefficients j. This degree of freedom can sometimes be used to make C(α1, α2, α3) rationally
parameterizable.

As triangle [p1p2p3] lies on the plane α4 = 0, it can be regarded as a function of two variables,
say x and y, where (α1, α2, α3) = (x, y, 1 − x − y). An irreducible plane cubic curve F (x, y) =
0 is singular if it has a double point, that is, a point (x0, y0) where F (x0, y0) = Fx(x0, y0) =
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Fy(x0, y0) = 0. By taking resultants of these polynomials and eliminating x0 and y0, we obtain this
polynomial whose vanishing guarantees either the existence of a double point on C(α1, α2, α3) or
that C(α1, α2, α3) is reducible:

H(j) = t1 j
6 − t2t3 j5 + [t23 + t4(t22 − 12t1)]j4 + t2(8t3t4 − t22 + 36t1)j3

+ [8(6t1 − t22)t24 − 8t23t4 − 6(12t1 + 5t22)t3]j2 (93)

− 4t2[4t3t
2
4 + 9(4t1 − t22)t4 − 24t23]j

+ 8(2t24 − 9t3)t4(t22 − 4t1) + 16t23t
2
4 − 64t33 − 27(t22 − 4t1)2,

where
t1 = defghi, t2 = dfh+ egi,

t3 = defi+ dghi+ efgh, t4 = di+ ef + gh.

If this H(j) = 0 has real solutions, then C(α1, α2, α3) is singular and can be rationally parameter-
ized. If all the solutions of H(j) = 0 are complex, then we use the approximate (within any given
approximation error) parameterization method given in [31].

If H(j) = 0 is satisfied, then the following is the (3/3) rational parameterization, which is
obtained by intersecting the curve with lines (1− u)(y − y0) = u(x− x0) through the double point
(x0, y0):

x = {[−2(e− h)x0 − t5y0 − (e− 2h)](1− u)3 + [−t5x0 − 2t6y0 − (2h+ 2i− j)]u(1− u)2

+ [−3(f − i)y0 + (f − 2i)]u2(1− u) + (f − i)x0u
3}/D

y = {[−t6x0 − 2(f − i)y0 − (f − 2i)]u3 + [−2t5x0 − t6y0 − (2h+ 2i− j)]u2(1− u)

+ [−3(e− h)x0 + (e− 2h)]u(1− u)2 + (e− h)y0(1− u)3}/D (94)

where

D = (e− h)(1− u)3 + t5u(1− u)2 + t6u
2(1− u) + (f − i)u3

t5 = d− e+ 2h+ i− j
t6 = −f + g + h+ 2i− j .

The existence of the condition (93) also provides a method for finding the “best singular ap-
proximation” to a nonsingular cubic curve. Given a set {d0, e0, f0, g0, h0, i0, j0}, one seeks the value
of j, say j1, nearest j0 for which (93) is satisfied for the set {d0, e0, f0, g0, h0, i0, j1}. All these curves
intersect the lines x = 0, y = 0, and x + y = 1 in the same points, namely (1, 0), (0, 1), (0, 0),
(−h/(e− h), 0), (0,−i/(f − i)), (−g/(d− g), d/(d− g)). As j changes continuously from j0 to j1,
the topology of the cubic curve within the triangle can change only at the endpoint j = j1, a value
of j for which the cubic curve is singular. In particular, the same points of intersection with the
sides will be connected by non-crossing arcs for all j strictly between j0 and j1.

5.1.5 Prism patches

Here we outline the construction steps of prism A-patches (we refer the interested reader to [105]).
Step 1. For each triangle [pipjpk], construct a prism Dijk as (see Figure 25)

Dijk := {p : p ∈ ∆ijk(λ), λ ∈ Iijk} ,

where ∆ijk(λ) = {p ∈ IR3 : p = pijk(b1, b2, b3, λ), bi ≥ 0} is a triangle for each fixed λ with

pijk(b1, b2, b3, λ) = b1vi(λ) + b2vj(λ) + b3vk(λ), b1 + b2 + b3 = 1 ,

and vl(λ) = vl + λnl, nl = Nl/‖Nl‖, l = i, j, k; and Iijk is a maximal open interval such that
0 ∈ Iijk and for any λ ∈ Iijk, the points vi(λ), vj(λ) and vk(λ) are not collinear. For varying
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Figure 25: Each prism is defined over a triangle. Each patch is defined within a prism.

λ ∈ Iijk, vi(λ) vj(λ) and vk(λ) are the edges of the prism. A face of the prism is a ruled surface
defined by two of its edges.

Step 2. Construct 3D function values and gradients on each of the three edges of the prism
using the normal information. For instance, on the edge vi(λ) of prism Dijk, F (vi(λ)) = ‖Ni‖λ,
∇F (vi(λ)) = Ni for λ ∈ Iijk.

Step 3. Construct 3D function values and gradients on each of the three faces of the prism
using the information on the edges that have been constructed in Step 2. Given two edges on the
face being considered, the function on the face is defined by Hermite interpolation of the data on
these edges. The gradient is similarly defined by linear interpolation of the gradients on the edges.

Step 4. Construct 3D function values within the prism using the information on the faces that
have been constructed in Step 3. The approach used is transfinite interpolation of the data on the
faces.

These are the basic steps of constructing F . Additional degrees of freedom may be introduced
to improve the surface quality (see [105]) for more detail).

After these steps, function F is piecewise constructed, and the composite function is C1 over
the collection of the prisms (prism hull) and interpolates the C1 vertex data (vertex positions and
normals). The zero contour of F is a smooth surface that passes through the vertices and has the
given normal at each vertex.

In each prism, F := F (b1, b2, b3, λ) depends upon the local barycentric coordinate (b1, b2, b3)
and λ. Hence, the zero contour is defined as follows: for each (b1, b2, b3), find λ := λ(b1, b2, b3), such
that F (b1, b2, b3, λ) = 0. Then the surface point is defined by

Pijk(b1, b2, b3) = b1vi(λ(b1, b2, b3)) + b2vj(λ(b1, b2, b3)) + b3vk(λ(b1, b2, b3)) .

5.1.6 Approximation by Triangular Rational Bézier

From the construction of the function F , we know that the surface patch in each volume can be
expressed in parametric form with ∆ = {(b1, b2, b3) : bi ≥ 0; b1 + b2 + b3 = 1} as the parametric
domain. However, this parametric form has no closed form representation. Hence, we appeal to
rational Bézier form approximation instead of exact conversion. With the increase of the degree of
rational Bézier, the error of the approximation will decrease. Let d be the degree of the rational
Bézier patch, the approximant is obtained as follows:

1. Generate a degree d−1 functional Bézier form approximation λ̃(b1, b2, b3) of λ(b1, b2, b3). This
is a classical polynomial approximation problem on a triangle. To obtain a global C0 approximation,
we generate this approximant in the following steps:

a. Compute Bézier coefficients of λ̃(b1, b2, b3) on the three boundaries by interpolating
λ(b1, b2, b3).
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Figure 26: Related Bézier coefficients by G1 continuity for d = 4.

b. The inner coefficients are defined by the least square fitting:∫ ∫
∆
‖λ̃(b1, b2, b3)− λ(b1, b2, b3) dS‖ = min

The integration above is computed on regularly subdivided triangles and on each sub-triangle, a
6-points numerical quadrature rule (see [34], page 35) is employed.

2. Generate a G0 degree d parametric form Bézier representation by

P
(0)
ijk (b1, b2, b3) = b1vi(λ̃(b1, b2, b3)) + b2vj(λ̃(b1, b2, b3)) + b3vk(λ̃(b1, b2, b3))

The collection of P
(0)
ijk define a continuous (not smooth) parametric surface.

3. Generate G1 degree d parametric form Bézier coefficients. Let

P
(0)
ijk (b1, b2, b3) =

∑
l+m+n=d

b
(0)
lmnB

d
lmn(b1, b2, b3). (95)

Then we adjust the coefficients b
(0)
lmn for l ≤ 1, m ≤ 1 and n ≤ 1 so that the G1 continuous condition

i

d

[
[α1pi−1 + (1− α1)ri−1]− [β1qi−1 + (1− β1)qi]

]
=

−(1− i

d
)
[
[α0pi + (1− α0)ri]− [β0qi + (1− β0)qi+1]

]
, i = 0, 1, · · · , d , (96)

given by Farin in [53] (see pages 334–339), is satisfied. Using Farin’s notation qi represents the
Bézier coefficients on the boundary (see Figure 26), and ri and pi represent the Bézier coefficients
near the boundary coefficients on two adjacent triangles.

The condition (96) is applied as follows: For fixed q0,q1,p0, and r0, we solve α0 and β0

from the equation (96) for i = 0. Similarly, α1 and β1 are solved from (96) for i = d and for
fixed qd−1,qd,pd−1, and rd−1. After α0, α1, β0 and β1 are determined, the other equations (i =
1, · · · , d − 1) are used to solve for the other coefficients. For our problem, q0 and qd are known,
as they are the vertices. To ensure that equation (96) for i = 0 has a unique solution, we need
to adjust the coefficients q1,p0 and r0 so that the four points q0,q1,p0 and r0 are coplanar. We
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adjust these coefficients so that they lie on the boundaries of the prisms considered and the tangent
plane defined by the normal n0 at q0. For example, q1 is adjusted as

q1 +
t[(d− 1)n0 + nd]

d
, t =

dnT0 (q0 − q1)

d− 1 + nT0 nd
,

where nd is the given normal at qd. These adjustments need to be made to the coefficients qd−1,
pd−1 , and rd−1 as well.

For d ≥ 4, the system (96) for i = 1, · · · , d− 1 is underdetermined. It has d− 1 equations and

3d − 7 unknowns. We solve this system by approximating the corresponding coefficients of P
(0)
ijk

that are defined in the last step. This solving strategy leads to a restricted least square problem{
MX −B = 0,
‖X − C‖2 = min

where X is a vector consisting of unknowns. B is the left-hand side. C consists of the corresponding

known coefficients of P
(0)
ijk . We solve this problem by singular value decomposition of the matrix

M . The details are omitted.
4. Produce the rational Bézier representation

P
(1)
ijk (b1, b2, b3) =

∑
l+m+n=d+2

blmnB
d
lmn(b1, b2, b3)∑

l+m+n=d+2

wlmnB
d
lmn(b1, b2, b3)

, (97)

where blmn ∈ R3, wlmn ∈ R. It should be noted that when solving (96) for each edge, the
coefficients at the corner, that is, p1, r1, pd−2 and rd−2 (they are called twist term), are doubly
determined. We take their average as the required value. However, such defined twist terms will
destroy the G1 continuity. To satisfy the G1 condition (96), a rational function Rd(b1, b2, b3), that
is given as follows, is added to the Bézier function (95):

Rd =
1

b2b3 + b1b3 + b1b2

[
(b1b3b

(1)
d−2,1,1 + b1b2b

(2)
d−2,1,1)Bd

d−2,1,1(b1, b2, b3)

+ (b1b2b
(2)
1,d−2,1 + b2b3b

(0)
1,d−2,1)Bd

1,d−2,1(b1, b2, b3)

+ (b2b3b
(0)
1,1,d−2 + b1b3b

(1)
1,1,d−2)Bd

1,1,d−2(b1, b2, b3)
]

(98)

where b
(1)
d−2,1,1 is defined by the G1 condition on edge 1 less the corresponding average value, and

similarly for the other coefficients. The degree d Bézier form polynomial (95) plus the rational
function (98) can be written in the rational form (97).

It should be noted that the vertices of the triangle are base points of the surface (97). To
eliminate these base points, we perturb the denominator of (98) into b2b3+b1b3+b1b2+ε(b21+b22+b23)
and the numerator of (98) into[

b1b3b
(1)
d−2,1,1 + b1b2b

(2)
d−2,1,1 +

ε

2
b21(b

(1)
d−2,1,1 + b

(2)
d−2,1,1)

+
ε

2
b22b

(2)
d−2,1,1 + +

ε

2
b23b

(1)
d−2,1,1

]
Bd
d−2,1,1(b1, b2, b3)

+
[
b1b2b

(2)
1,d−2,1 + b2b3b

(0)
1,d−2,1 +

ε

2
b21b

(2)
1,d−2,1 +

ε

2
b22(b

(2)
1,d−2,1 + b

(0)
1,d−2,1)

+
ε

2
b23b

(0)
1,d−2,1

]
Bd

1,d−2,1(b1, b2, b3)

+
[
b2b3b

(0)
1,1,d−2 + b1b3b

(1)
1,1,d−2 +

ε

2
b21b

(1)
1,1,d−2 +

ε

2
b22b

(0)
1,1,d−2

+
ε

2
b23(b

(0)
1,1,d−2 + b

(1)
1,1,d−2)

]
Bd

1,1,d−2(b1, b2, b3) ,
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where ε > 0 is a small number which is chosen so that the function value is not affected by this ε for
fixed word-length computation. Hence, the perturbation has no influence on the patch in practice.
Let R̃d(b1, b2, b3) be the perturbed function of Rd. Let R̃d(b1, b2, b3) be the perturbed function of
Rd. Then it was found experimentally that

‖R̃d(b1, b2, b3)−Rd(b1, b2, b3)‖ ≤ 0.0013 ε max |bijk|

From this bound, we could determine an ε so that the right-hand sided of the above inequality is
less than the chosen word-length accuracy.

Trimmed NURBs Patch Representation NURBs (Non Uniform Rational B-Splines) are
bounded with trimming curves defined over the surface. We can define the trimming curves over
the domain of the mapping to obtain the bounding curves in the new dimension for the NURBs
surface.

Let the surface S be defined with parameters s, t. Then we can define rational parametric
univariate functions to represent the trimming curves as s = f1/f2 and t = f3/f4
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