
Chapter 4: Geometric Modeling

Chandrajit Bajaj and Andrew Gillette

October 22, 2010

Contents

1 Smoothing Polygons 3
1.1 Smoothing Polygonal Chains . 5

1.1.1 Polygonal Chain Approximation by D4–Regular Spline Curves 5
1.1.2 Polygonal Chain Approximation by D3–Regular Curves 10

2 Smoothing Polyhedra 13
2.1 C1 Continuity and Compatibility Conditions . 13

2.1.1 Necessary and Sufficiency Conditions . 14
2.1.2 Compatibility and Non-Singularity Constraints 14

2.2 Polyhedra Smoothing Algorithm . 16
2.3 Wireframe Construction for Implicit Algebraic Splines 17

2.3.1 Choice of Vertex Normals . 17
2.3.2 Generation of a Conic Wireframe . 18
2.3.3 Assigning Normals along Edge curves . 19

2.4 Local Interpolatory Patch Generation . 20
2.4.1 Conditions for Low Degree Interpolants . 20
2.4.2 C1 Interpolation of a Conic Wireframe . 22

2.5 Surface Selection and Local Shape Control . 22
2.5.1 Solution of Interpolation and Least-Squares Matrices 22
2.5.2 Display of the Triangular Algebraic Patch . 24
2.5.3 Smoothing a Convex Polyhedron . 25

2.6 Normals and the Simplicial Hull . 28
2.7 Construction of a C1 Interpolatory Surface using Cubic A-Patches 31

2.7.1 The Construction of a Piecewise C1 Cubic Function 31
2.7.2 The Solvability of the Related System . 35

2.8 Construction of Single Sheeted A-Patches . 35
2.9 Shape Control . 36
2.10 Curvilinear Patch Construction . 37

2.10.1 Constructions of Wire Frames . 37
2.10.2 Parametric Surface Patches Interpolation . 43
2.10.3 G0 Interpolation . 44

2.11 C1 Modeling with Hybrid Multiple-Sided A-patches 47
2.11.1 Bases . 48
2.11.2 Finite Element Hull . 51
2.11.3 C1 Modeling of Surface by Rational A-patches 51
2.11.4 Evaluate the Surfaces . 57

2.12 Adaptive Model Reconstruction by Triangular Prism A-Patches 58
2.12.1 Construction of the Triangular Surface Patches 60

1

2.12.2 Optimized the Shape of the Surface Patch . 63
2.12.3 Evaluation of the Surface Patch and Error Computation 63
2.12.4 The Condition of the Triangulation . 64
2.12.5 Approximation by Parametric Rational Bezier 65

3 Filling Holes and Blending 70
3.1 G1 Spline Surface Construction By Geometric Partial Differential Equations 70

3.1.1 Preliminaries and Notations . 71
3.1.2 Construction GPDE Spline Surfaces . 74
3.1.3 Implementation and Experimental Results . 78
3.1.4 Derivation of Variational Forms . 81

3.2 Discrete Surface Modeling Using PDEs . 82

4 Reconstruction of Point Clouds 97
4.1 Smooth Reconstruction from Scattered Data . 97
4.2 Volumetric Data Fitting . 98

4.2.1 Outline of the algorithm . 100
4.2.2 From surface data to volume data: the signed-distance function 100
4.2.3 Piecewise polynomial approximation of signed-distance 102
4.2.4 C1 Interpolation of C3 data by (3, 3, 3)- and (2, 2, 2)-polynomials 104

4.3 Hierarchical Multiresolution Reconstruction of Shell Surfaces 105
4.3.1 Notation for Shell Surfaces . 106
4.3.2 Algorithm Outline . 108
4.3.3 Hierarchical Representation of Prism Scaffold 109
4.3.4 Adaptive Extraction of Shell Surface Support 110
4.3.5 Construction of C1 Trivariate Functions on Hierarchy 111
4.3.6 Function over the Finest Level S0 . 111
4.3.7 Minimal Prism with ε Offset . 112
4.3.8 Computation of Face Data . 113
4.3.9 Construction of C1 Spline Approximations 114
4.3.10 F on Prisms . 114
4.3.11 Hierarchical Representation of Correction Term 115

5 Reconstruction of Cross-Sectional Polygons and Splines 115
5.1 Algorithms Using Cubic A-splines . 118
5.2 Extracting an Iso-Contour from a Grey-scale Image 119
5.3 Computation of Junction Points . 119
5.4 Generating Derivatives at Junction Points . 121
5.5 Exact and Least-Squares Fitting with C2 and C3 cubic A-splines 123
5.6 Surplus Degrees of Freedom . 125

6 Contour-Based Meshing 125
6.1 Adaptive and Quality 3D Meshing from Imaging Data 125

6.1.1 Overview . 126
6.1.2 3D Mesh Extraction . 128
6.1.3 Uniform 2D Triangulation . 128
6.1.4 Uniform 3D Tetrahedralization . 130
6.1.5 Adaptive 2D Triangulation . 131
6.1.6 Adaptive 3D Tetrahedralization . 131
6.1.7 Error Metric . 133
6.1.8 Quality Improvement . 134

2

6.1.9 Results . 135
6.2 Adaptive and Quality Quadrilateral/Hexahedral Meshing from Volumetric Imaging

Data . 136
6.2.1 Overview . 136
6.2.2 Starting Octree Level Selection . 139
6.2.3 Quad Isosurface Extraction . 139
6.2.4 Hexahedral Mesh Extraction . 142
6.2.5 Mesh Adaptivity . 147
6.2.6 Quality Improvement . 153
6.2.7 Results and Applications . 153

6.3 Efficient Delaunay Mesh Generation From Sampled Scalar Functions 154
6.3.1 Problem and Motivation . 155
6.3.2 Prior Work . 156
6.3.3 Background . 157
6.3.4 Algorithm . 157
6.3.5 Implementation and Results . 164

7 Modeling and Visualizing Functions on Surfaces 166
7.1 Modeling Scattered Surface Data On Curved Surfaces 166

7.1.1 Notation and Preliminary Details . 167
7.1.2 Simplicial Hull . 169
7.1.3 C1/C2 Interpolation by Cubic/Quintic . 170
7.1.4 Visualization and Examples . 173

7.2 Algebraic Spline Molecular Surfaces . 174
7.2.1 Algebraic spline model . 176
7.2.2 Error of the ASMS model . 179
7.2.3 Application to the biomolecular energetic computation 181

In geometric design and computer graphics one often uses rational algebraic curves and sur-
faces because of the advantages obtained from having both the implicit and rational parametric
representations [9], [214]. While the rational parametric form of representing a curve allows effi-
cient tracings, ease for transformations and shape control, the implicit form is preferred for testing
whether a point is on the given curve, is on the left or right of the curve and is further conducive to
the direct application of algebraic techniques. Simpler algorithms are also possible when both repre-
sentations are available. For example, a straightforward method exists for computing curve - curve
and surface - surface intersection approximations when one of the curves, respectively surfaces, is
in its implicit form and the other in its parametric form. Global parameterization algorithms exist
for implicit algebraic curves of genus zero [2, 1] which allows one to compute this dual representa-
tion. A solution to our rational approximation problem yields a rational representation, although
approximate, and with all the above advantages for arbitrary genus algebraic plane curves. Perhaps
even more important, there are requirements to approximate the algebraic curves in a computer
aided geometric design environment. A contour of an algebraic surface, even in its functional form
z = f(x, y) is an algebraic curve. The offset of an algebraic curve, even its parametric form, is an
algebraic curve either.

1 Smoothing Polygons

Modern applications require the use of curves and surfaces not easily described by a single function,
implicitly or parametrically. Hence, pieces of curves and surfaces are stiched together piecewise to

3

form elaborate shapes and to allow local control of shape parameters. The difficulty in constructing
a piecewise function appropriate for modeling is in ensuring that it has as many desirable properties
as possible. These properties include low polynomial degree, high continuity degree at join points,
close and error-bounded approximation of the control net, and the absence of singularities such as
cusps or self-intersections.

Spline curve problems are of two types: approximate and interpolate. The techniques used to
solve each kind are slightly different so we state each problem independently in a very general form.
Let p0, . . . ,pN−1 be a set of N points in the plane i.e. pi = (xi, yi) ∈ R2. We always take indices
mod N . Let L denote the control net of the pi, that is, L is the piecewise linear curve formed by
connecting pi to pi+1 for all i.

Problem 1.1 (Curve Approximation). Find a closed curve C near to L and smoother than L.

Problem 1.2 (Curve Interpolation). Find a closed curve C passing through the pi in sequential
order and smoother than L.

pN−1

p0

p1pN−1

p0

p1

Figure 1: For a set of points pi, the piecewise linear control net L is shown in black and solutions
to curve approximation (Problem 1.1, left) and curve interpolation (Problem 1.2, right) are shown
in blue.

We show a simple example of each problem in Figure 1. The problems as stated are significantly
underconstrained, for instance, the notions of “near” and “smoother than L” have not been defined.
Thus, the problems are open to a wide variety of constrained sub-problems depending on the
application context. The distinction between parametric and implicit solutions is easiest to describe
in regards to the interpolation problem so we start there.

The parametric solution to Problem 1.2 works as follows. Let [pi,pi+1] denote the linear segment
between the two points. Find a set of N functions fi : [pi,pi+1] → R2 such that fi(pi) = pi and
fi(pi+1) = pi+1. This guarantees that the images of the fi pass through the points pi and meet
with C0 continuity to form a closed curve C.

To get more than C0 continuity from a parametric scheme, we can impose the additional
constraint that the tangent vector of fi at pi+1 be a scalar multiple α of the tangent vector of
fi+1 at pi+1. We call such a curve G1 continuous since the geometry of the curve C will appear
to have degree 1 continuity. The term C1 continuous is reserved for the case of α = 1, i.e. the
parameterizations on adjacent pieces agree not only on the tangent direction of the curve at pi+1

but also its magnitude. This is a more restrictive constraint usually irrelevant to domain and
function modeling. We show an example of a portion of a C1 parametric curve in Figure 2.

The implicit solution to Problem 1.2 requires a set SL ⊂ R2 containing L where the implicit
function will be defined. The domain SL is called the scaffold of L and is usually a union of
triangles or quadrilaterals attached to L. A typical approach is as follows. Let ci be a point near
[pi,pi+1] and let Ti be the triangle formed with base [pi,pi+1] and distinguished vertex ci. We
discuss details of how to choose such ci in Section [add ref]. Find a set of N functions gi : Ti → R
such that gi(pi) = gi(pi+1) = 0 and the level set {~x ∈ R2 : gi(~x) = 0} is a curve Ci ⊂ Ti connecting

4

Figure 2: An interpolatory parametric curve (left) is controlled by the tangent vectors at the pi.
An interpolatory implicit curve (right) is controlled by a scaffold SL of triangles (or other shapes)
attached to the control mesh.

pi and pi+1. This guarantees that the level set {~x ∈ R2 : ∃j gj(~x) = 0} is a closed curve C passing
through the points pi with C0 continuity.

To get more than C0 continuity from an implicit scheme, we can impose the additional constraint
that the functions gi and gi+1 have identical power series expansions up to the first k terms at pi+1.
If we also use gi which are at least Ck continuous on Ti, then we produce a level set C which is Gk

continuous globally. We show an example of a portion of a C1 implicit curve and its scaffold SL in
Figure 2.

The advantages and drawbacks of the two approaches to Problem 1.2 are now easy to identify.
The parametric schemes allow control of curve shape by modifying the direction of the tangent
vectors at the pi. The construction of a scaffold SL is not required, although some additional
control points are typically used to define the functions fi. A drawback of G1 parametric spline
solutions to Problem 1.2 is the presence of undesirable topological features such as self-intersections
and cusps as well as local behavior deviating far from the linear interpolation. We show some
examples in Figure 3. In general, to achieve Gk continuity with parametric curves, the functions
fi must be polynomials of degree k + 1.

Figure 3: Parametric splines with G1 continuity may have cusps, self intersections, or undesirable
local behavior.

The implicit schemes, on the other hand, can achieve Gk continuity using polynomial functions

gi of degree ≤
⌊√

4(k + 1) + 9
4 −

1
2

⌋
. This saves significant computational expense for higher values

of k. The most difficult aspect of the implicit scheme is defining gi so that the zero level set within
Ti will be a single connected component and free of singularities. The scaffold SL aids in the
definition as there is a rich theory of splines defined over triangles, quadrilaterals, and other simple
polygons which can be leveraged to control the shape and properties of the level sets.

1.1 Smoothing Polygonal Chains

1.1.1 Polygonal Chain Approximation by D4–Regular Spline Curves

Given an input polygonal chain {vi}Ni=0, we use D4–regular curves to smoothly approximate it, by
interpolating the vertices with given first (for G1 continuity) and the second (for G2 continuity)
order derivatives.

5

v

v

v

v

v

v

r

r

r

r

r

r

0

0

1
1

2
2

3

3

4

4

5

5

(1)

(1)

(1)

(1)

(1)

(1)

Figure 4: Parallelogram chain.

Step 1. Form a parallelogram chain
For each line segment (edge) of the polygonal chain, construct a parallelogram such that (see

Figure 4, where the arrows are tangent vectors): (i) the line segment is one of the diagonals of the
parallelogram; (ii) the tangent line of a vertex is contained in the two incident parallelograms.

For a convex edge [vi−1vi], the corresponding parallelogram can be formed by the four points
p2, vi−1, p3, vi, where p2 is the intersection point of the two tangents, p3 = vi−1 + vi − p2. For a
non-convex edge, take one point on each side of the edge such that p3 − vi−1 = vi − p2. These two
points and the endpoints of the edge form the parallelogram.
Assumption 4.1 For the convex edge [vi−1vi], the tangent lines vi−1 + sr

(1)
i−1 and vi + tr

(1)
i have

intersection point at (s∗, t∗) with s∗ > 0.
It should be noted that under Assumption 4.1, it is always possible to construct a parallelogram

chain, and that this construction is not unique. In the construction of G1 curves for convex edges,
we shall allow p2 and p3 to vary along a line (see Figure 5(a) and relation (2) for varying p2, p3

that depend on a parameter λ). In other cases, these points are fixed.
Step 2. Construct D4–Regular Curves

For each parallelogram, construct a D4–regular curve, such that it interpolates the endpoints
of the line segment and has the given first order or second order derivatives. Let Gmn(u, v) = 0 be
the curve defined on [p1p2p4p3], where p1 and p4 are the interpolation points. In the following, we
shall determine the minimal m and n, and provide the formulas for computing the coefficients of
Gmn(u, v) for G1 and G2 continuity. These formulas are derived using G1 and G2 conditions.

A G1 Curve Spline Family A. Convex edge. Let [p1p4] be a convex edge, and [p1p2p3p4]
be the parallelogram. Assume p1 = r(a), p4 = r(b) for some a and b with a < b, and assume
β1(a) > α1(a), β1(b) < α1(b). Take m = n = 1.
1. Construction Formulas.

b00 = b11 = 0, b10 = 1, b01 =
1− λ
λ
∈ (−1, 0), λ > 1, (1)

p2 = λp′2 + (1− λ)p′3, p3 = (1− λ)p′2 + λp′3, (2)

where p′2 is the intersection point of the tangent lines of p1 and p4 (see Figure 5(a)), p′3 = p1+p4−p′2
and λ is a free parameter.
2. Reformulation. Let p = (p′3− p1)s+ (p′2− p1)t+ p1. The curve G11(u, v) = 0 could be redefined
on the smaller parallelogram [p1p

′
2p
′
3p4] as:

Bλ : [4s− (s+ t)2]λ2 − [4s− (s+ t)2]λ+ s(1− t) = 0. (3)

6

p

p

p

p

p

p

p

p

p’

p’
1

3

4

2

3

2

1

3

2

4

(a) (b)

(1)
r (a)

(1)r (b)

(1)
r (a)

(1)r (b)

Figure 5: (a). Symmetric parallelogram about the tangent and the curve family for a convex edge.
The dotted curve is B∞. The shaded part is E1; (b). The curve family for a non-convex edge. The
dotted curves are L0 and L∞. The shaded part is E2.

3. Bounding Curves. When λ = 1, the curve G11(u, v) = 0 degenerates to straight lines s = 0 (the
edge [p1p

′
2]) and t = 1 (the edge [p′2p4]), while λ = ∞, the curve G11(u, v) = 0 degenerates to the

curve B∞ : 4s− (s+ t)2 = 0.
4. Interpolation of an Interior Point. For any given point p∗ = (p′3− p1)s∗+ (p′2− p1)t∗+ p1 in the
interior of the region E1 enclosed by the curves B1 and B∞, there exists a unique λ ∈ (1,∞), that
is

λ =
1
2

+
t∗ − s∗√

4s∗ − (s∗ + t∗)2
, (4)

such that the curve G11(u, v) = 0 interpolates the point p∗.

Theorem 1.3. For a convex edge, there exists a degree (1,1) (m = n = 1) D4–regular curve family
G11(u, v) = 0, defined by (1)–(2), with a free parameter λ ∈ (1,∞), in the region E1 enclosed by
the curves B1 and B∞. Each curve in the family G1 interpolates the endpoints of the edge. For
any given point p in the interior of E1, there exists a unique curve, defined by (1)–(2) and (4), in
this family that interpolates the point p.

Note that the curve Bλ defined by (3) on [p1p
′
2p
′
3p4] is not in the form G11. However, if we

transform it into barycentric form on the triangle [p1p
′
2p4], then we can show that the curve is

D1–regular on the triangle.
It is obvious that for fixed p2 and p3 that satisfy (2), there exists a unique curve G11(u, v) = 0

that G1 interpolates the edge.
Parameterization. FromG11(u, v) = 0, we obtain the parameterized expression v = u

u−b01(1−u) , u ∈
[0, 1].
B. Non-convex edge . We assume β1(a) ≥ α1(a), β1(b) ≥ α1(b). Take m = 1, n = 2. If
β1(a) ≤ α1(a), β1(b) ≤ α1(b), take m = 2, n = 1.
1. Construction Formulas.

b00 = b12 = 0, b10 = 1, (5)

b01 = −1
2
δ ≤ 0, b11 = −1

2
γb02 > 0, (6)

where δ = α1(a)
β1(a) , γ = α1(b)

β1(b) and b02 < 0 is a signed free parameter (see Figure 5(b) for the curve
family).
2. Bounding Curves.

L0 : u(1− v)− δ(1− u)v = 0,
L−∞ : (1− u)v − γu(1− v) = 0.

7

p

p

p

p

p

p

p

p

1

3

4

2

1

3

2

4

(a) (b)

(1)
r (a)

(1)r (b)

(1)
r (a)

(1)r (b)

Figure 6: (a). G2 curve family for a convex edge. The shaded part is E3; (b). G2 curve family for
a non-convex edge. The shaded part is E4

3. Interpolation of an Interior Point. For any given point p = (u, v)T in the interior of the region
E2 enclosed by L0 and L−∞, take

b02 = −(1− v)[u(1− v)− δ(1− u)v]
v[(1− u)v − γv(1− v)]

, (7)

then the curve determined by b02 interpolates the point p.

Theorem 1.4. For a non-convex edge, there exists a degree (1,2) (or (2,1)) D4–regular curve
family, defined by (5)–(6) with a free parameter b02 ∈ (0,−∞), in the region E2 enclosed by L0 and
L−∞, whose members G1 interpolate the endpoints of the edge. For any given point p in E2, there
exists a unique curve, defined by (5)-(7), in this family that interpolates the point p.

Parameterization. Since m = 1, n = 2, the curve can be expressed in rational parameterized
form

u = − b01B
2
1(v) + b02B

2
2(v)

B2
0(v) + (b11 − b01)B2

1(v)− b02B2
2(v)

, v ∈ [0, 1].

Shape Control Handles. For the given polygonal chain, the shape control handles are: (i) the
direction of tangent vector at each vertex; (ii) an interpolating point p in the region E1, for convex
edges, or E2, for non-convex edges.

A G2 Curve Spline Family A. Convex edge. Let [p1p4] be a convex edge and [p1p2p3p4] be
the parallelogram. Again, we assume β1(a) > α1(a), β1(b) < α1(b). Furthermore, we assume that
the the parallelogram is constructed so that α1(a) = β1(b) = 0. Now we need to take m = n = 2.
1. Construction Formulas.

b00 = b01 = b12 = b22 = 0, b02 = −1, (8)

b10 =
β1(a)2

α2(a)
> 0, b21 = −α1(b)2

β2(b)
> 0, (9)

4b11 = 2b10 + 2b21 + 1− b20, (10)

where b20 is a free parameter (see Figure 6(a) for the curve family).
2. Interpolation of an Interior Point. Parameter b20 can be used to interpolate one point (u, v)T

in the interior of the parallelogram with u < v. By G22(u, v) = 0, we have

b20 =
B2

0(u)B2
2(v)−b10B

2
1(u)B2

0(v)−[b21B
2
2(u)+b11B

2
1(u)]B2

1(v)
B2

2(u)B2
0(v)

. (11)

3. Reformulation. Let α1 = 1 − v, α2 = v − u, α3 = u. Represent G22(u, v) in the barycentric
coordinate form G̃22(α1, α2, α3) over the triangle [p1p2p4]:

G̃22(α1, α2, α3) :=
∑

i+j+k=3

aijkB
3
ijk(α1, α2, α3) (12)

8

with

a300 = a210 = a003 = a012 = 0, a111 =
2b10 + 2b21 + b02 − b20

6
, (13)

a201 =
2
3
b10, a102 =

2
3
b21, a120 = a021 =

1
3
b02, a030 = b02. (14)

Theorem 1.5. For a convex edge, say [p1p4], there exists a degree (2,2) convex curve family in
the triangle E3 = [p1p2p4], defined by (8)–(10), with b20 as a free parameter. Each member in
the family G2 interpolates the endpoints of the edge. If b20 > 0, the curve is D4–regular in the
parallelogram [p1p2p4p3]. If b20 ≤ 0, the curve, that is re-defined by (12-(14), is D1–regular on the
triangle [p1p2p4]. For any given point p in the interior of E3, there exists a unique curve, defined
by (8)–(11), in this family that interpolates the point p.

B. Non-convex edge. Assume β1(a) ≥ α1(a), β1(b) ≥ α1(b) and the parallelogram is constructed
so that α1(a) = 0 or α1(b) = 0. That is, at least one of the tangent lines at p1 and p4 coincides
with one of the edges of the parallelogram (see Figure 6(b)). Again, we take m = n = 2.
1. Construction Formulas.

b00 = b22 = 0, b01 = −δb10, b21 = −γb12, (15)
4b11 = 2(b12 + b01 + b10 + b21)− (b02 + b20), (16)

b10 =
1
∆
{α1(a) [β1(a)− α1(a)] [γβ2(b)− α2(b)]

+ 2α1(a)β1(a) [β1(b)− α1(b)]2 }b20

− 1
∆
{β1(a) [β1(a)− α1(a)] [γβ2(b)− α2(b)]}b02, (17)

b12 =
1
∆
{α1(b)[β1(b)− α1(b)] [α2(a)− δβ2(a)]

+ 2α1(b)β1(b) [β1(a)− α1(a)]2 }b02

− 1
∆
{β1(b)[β1(b)− α1(b)] [α2(a)− δβ2(a)]}b20, (18)

where δ = α1(a)
β1(a) , γ = α1(b)

β1(b) , ∆ = [α2(a) − δβ2(a)][γβ2(b)− α2(b)], b02 = −1 and b20 > 0 is a free
parameter (see Figure 6(b) for the curve family).
2. Bounding Curves. The bounding curves of the curve family are defined by taking b20 = 0 and
b20 = ∞. Let G22(u, v, b02, b20) be defined by (15)–(18). Then G22(u, v, b02, 0) = b02G22(u, v, 1, 0),
G22(u, v, 0, b20) = b20G22(u, v, 0, 1). Hence the bounding curves are G22(u, v, 1, 0) = 0, G22(u,
v, 0, 1) = 0.

Theorem 1.6. For a non-convex edge, we have a one parameter D4–regular curve family {b20G22

(u, v, 0, 1)−G22(u, v, 1, 0) = 0 : b20 > 0} whose members G2 interpolate the edge and have only one
inflection point. For any given point p = (u∗, v∗)T in the interior of the region E4 enclosed by the
curves G22(u, v, 0, 1) = 0 and G22(u, v, 1, 0) = 0 in the parallelogram, there exists a unique curve in
the family with b20 = G22(u∗, v∗, 1, 0)/G22(u∗, v∗, 0, 1) that interpolates the point p.

Curve Evaluation and Display. Since G22(u, v) could be expressed as
∑2

i=0 Bi(v)B2
i (u) with

B0(v) < 0, B2(v) > 0 on (0, 1), the curve G22(u, v) = 0 can be evaluated for each v in (0, 1) by
finding the zeros of a quadratic polynomial, here Bi(v) =

∑2
j=0 bijB

2
j (v). For the case of a convex

edge, it is possible that the quadratic has two zeros in (0, 1), and the correct one is such that u < v.
For the non-convex edge, the quadratic has exactly one zero in (0, 1).

For intensive evaluation of the curve, the quarterly subdivision process for G22(u, v) on the
rectangle [0, 1]× [0, 1] could be used (see [187]) while discarding those sub-rectangles on which the

9

v
0

r
0

v
1

r1

v
2

r
2

v
3

r3

v
4

r4

v
5

r
5

(1)

(1)

(1)

(1)

(1)

(1)

Figure 7: Rectangular chain. The width of the rectangle for edge [vi−1vi] is 2εi.

subdivision polynomials have only positive or negative coefficients. On each sub-rectangle, a bi-
linear function, that interpolates function values on the four vertices, is used to evaluate the curve
intersection points. It follows from [84] that such a subdivision will have quadratic convergence.
For example, ten steps of subdivision will reduce the distance between the polynomial and the BB
net to become (1/210)2 ≈ 10−6 times the initial distance. By keeping a tree data structure, we
achieve a progressive display scheme for our curve splines.
Shape Control Handles. For the given polygonal chain, the shape control handles of the curve
are: (i) the direction of tangent vector at each vertex; (ii) the magnitude of the second order
derivative vector (related to curvature) at each vertex; (iii) an interpolating point in the region E3

for convex edges, or E4 for non-convex edges.

1.1.2 Polygonal Chain Approximation by D3–Regular Curves

We shall use D3–regular curve to smoothly approximate the polygon by interpolating the vertices
together with the given tangents at the vertices. We could also interpolate second order derivatives
at the polygon vertices to achieve G2 continuity. Here we only detail G1 continuity. The G2

construction is very similar. The construction consists of the following two steps:
Step 1. Form a Rectangular Chain

For each line segment (edge) [vi−1vi] of the polygonal chain, construct a rectangle such that (see
Figure 7, where the arrows are tangent vectors) the line segment is in the middle of the rectangle.
That is, two edges are parallel to the line segment at an equal distance εi from it, and the other
two edges are orthogonal to the line segment and pass through the endpoints of the line segment.
Since the determined curve shall lie within the rectangle, εi serves as a natural error controller of
the approximation. The effect of εi will be discussed further in section 1.1.2.
Assumption 5.1 For each edge [vi−1vi], (vi − vi−1)T r(1)

i−1 > 0, (vi − vi−1)T r(1)
i > 0.

Step 2. Construct the D3-regular Curves
For each rectangle, construct a D3–regular curve, such that it interpolates the endpoints of

the line segment and has given first order derivatives. Let [p1p2p3p4] be a given rectangle, v0 =
(p1 + p2)/2, v1 = (p3 + p4)/2 be the interpolation points and r

(1)
0 , r

(1)
1 be the tangent vectors.

A G1 Curve Spline Family A. Convex edge. Suppose [v0v1] be a convex edge. From As-
sumption 5.1, we have α1(a) > 0, α1(b) > 0. Now assume β1(a) > 0, β1(b) < 0 (the case β1(a) < 0,
β1(b) > 0 is similar) and take m = 2, n = 1.
1. Construction Formulas.

b00 = 1, b21 = −b20, b01 = −1, (19)

b10 + b11 = 2α = −2βb20, b20 = −αβ−1 > 0, (20)

10

v v
0 1

v v
0 1

(a) (b)

conic

Figure 8: (a). Non-convex curve; (b). Convex curves (the solid curves). The shaded part is E5

v
0

v
1

v
0

v
1

(a) (b)

Figure 9: (a) The case α ≤ β; (b) The case α > β.

where α = β1(a)
α1(a) , β = β1(b)

α1(b) , b11 as a free parameter (see Figure 8(b) for the curve family).
2. Limitations on Free Parameters. To make the curves D3–regular and convex, we enforce

b11 < b∗11 := min
{√
−αβ−1, − 1

2
+ α

[
1 + β−1

]}
. (21)

Theorem 1.7. For a convex edge, let G21(u, v, b11) be defined by (19)–(20), then we have a convex
D3–regular curve family {G21(u, v, b11) = 0 : b11 < b∗11}, whose members G1 interpolate the
endpoints of the edge. For any given point p = (u∗, v∗)T in the region E5 enclosed by the curve
G21(u, v, b∗11) = 0 and the line v = 1

2 there exists a unique b11 satisfying G21(u∗, v∗, b11) = 0 such
that the curve G21(u, v, b11) = 0 interpolates the point p.

B. Non-convex edge. Assume β1(a) ≥ 0, β1(b) ≥ 0. Take m = 3, n = 1.
1. Construction Formulas.

b00 = b30 = 1, b01 = b31 = −1, (22)

b10 + b11 =
4
3
α, b20 + b21 = −4

3
β, (23)

b11 + b20 = b10 + b21, (24)

b10 = b20 +
2
3

(α+ β), b21 = b11 −
2
3

(α+ β), (25)

where α = β1(a)
α1(a) , β = β1(b)

α1(b) , b20 or b11 is a free parameter (see Figure 9 for the curve family).

2. Limitations on Free Parameters. To ensure the curves are D3–regular and have only one
inflection point, we require

b20 > max
{
b∗20,

α− β − 2αβ
3α

,
β − α− 2β2

3β

}
when α ≤ β, (26)

b11 < min
{
b∗11,

β − α+ 2α2

3α
,
α− β + 2αβ

3β

}
when α > β, (27)

where b∗20 is the largest negative root of h(b20) = 0, b∗11 is the smallest positive root of g(b11) = 0
with

h(b20) := 1 + 4b310 + 4b320 − 3b210b
2
20 − 6b10b20,

g(b11) := 1− 4b311 − 4b321 − 3b211b
2
21 − 6b11b21.

11

3. Interpolation to a Normal. It should be noted that all the curves pass through the same point
(u∗, 1

2)T with u∗ = α
α+β (see Figure 9). Since

∇G31(u∗,
1
2

)=
[
− 2αβ
α+ β

,−2(α3+β3)
(α+ β)3

− (6b20+4β)αβ
(α+ β)2

]T
,

by assigning a normal at (u∗, 1
2)T , the unique b20 is determined.

Theorem 1.8. For a non-convex edge, there exists a D3–regular curve family {G31 (u, v) = 0}
that has the following properties: (i). Each curve in the family G1 interpolates the edge. (ii). Each
curve passes through the point (u∗, 1

2)T . (iii). There is only one curve in that family that has the
given normal at (u∗, 1

2)T . (iv). The curve v = 1
2 and the curve given by b20 = b∗20 (if α ≤ β) or

b11 = b∗11 (if α > β) are the two limit curves of the family.

Parameterization. Since the curve is defined by Gm1(u, v) =
∑m

i=0 bi0B
m
i (u) + v

∑m
i=0(bi0 −

bi1)Bm
i (u) = 0, it follows that

p = (p3 − p1)u− (p2 − p1)
∑m

i=0 bi0B
m
i (u)∑m

i=0(bi0 − bi1)Bm
i (u)

+ p1, u ∈ [0, 1].

Shape Control Handles. For the given polygonal chain, the shape control handles of the curve
are: (i) the direction of the tangent vector at each vertex; (ii) an interpolating point in the region
E5, for convex edges, or a normal at (u∗, 1

2)T , for non-convex edges.

The Effect of the Size of Rectangle In the construction of rectangles in Step 1 at the beginning
of this section, the widths of the rectangles, namely 2εi, are arbitrarily chosen. One may ask: what
is the effect of this εi on the constructed curves for a given edge [vi−1vi]? The conclusion is the
following: The curve family for smaller εi is a subset of the curve family for larger εi, for each of
the two cases discussed in section 1.1.2. That is, εi will not change the shape of the curves but
changes the “number” of curves in the family. When εi > 0 becomes successively smaller, more and
more curves are expelled from the curve family, and the remaining curves (still infinitely many)
are successively close to edge (see Figure 11(c) and (d)). To prove this conclusion, suppose εi is
magnified by a factor θ > 1, and suppose the notation on the enlarged rectangle is the same as the
original one but with an added prime. It is then easy to see that

α′1(l) = α1(l), β′1(l) = θ−1β1(l), u = u′, v = θ(v′ − 1
2

) +
1
2
.

Hence

B1
0(v) =

1
2

(1 + θ)B1
0(v′) +

1
2

(1− θ)B1
1(v′),

B1
1(v) =

1
2

(1− θ)B1
0(v′) +

1
2

(1 + θ)B1
1(v′).

Substituting these into Gm1(u, v), we have

Gm1(u, v) = θG′m1(u′, v′) = θ

m∑
i=0

1∑
j=0

b′ijB
m
i (u′)B1

j (v′)

with

b′i0 =
(1 + θ)bi0 + (1− θ)bi1

2θ
, b′i1 =

(1− θ)bi0 + (1 + θ)bi1
2θ

.

12

Figure 10: The left figure shows the input polygon. The right shows the G1 D4-regular curves and
Bézier points interpolating the vertices of the polygon within prescribed bounds.

−1.5 −1 −0.5 0 0.5 1 1.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1.5 −1 −0.5 0 0.5 1 1.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1.5 −1 −0.5 0 0.5 1 1.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1.5 −1 −0.5 0 0.5 1 1.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) (c) (d)(a)

Figure 11: (a) G1 families on parallelograms. (b) G2 families on parallelograms. (c) G1 families on
rectangles with εi = 1.0. (d) G1 families on rectangles with εi = 0.2.

Using these relations, we verify that b′ij satisfies all the relations as bij does. Therefore, curve
Gm1(u, v) = 0 defined on the smaller rectangle is in the curve family defined on the larger rectangle.
Note that this statement holds for both the cases of the convex edge and the non-convex edge
discussed in section 1.1.2.
Note. In the six spline families we discuss in sections 1.1.1 and 1.1.2, there are four cases with
min{m,n} = 1. In these cases, rational parametric expressions are easily derived. Hence, for these
cases, we have both the implicit form and the parametric form. For example, the G1 D3-regular
curve could be transformed into parametric rational Bézier curve of degree 4.

The right figure of Figure 10 shows the Bézier points of G1 D3-regular curve as well as the
rectangle chain for the input polygonal chain (right figure). It is clear that the rectangles enclose
more tightly the curve than the convex hull of the Bézier points. Furthermore, the shape of curve
is easier to control using its implicit form than using its parametric form, since the implicit form
has one free parameter while the rational Bézier of degree 4 has many more degrees of freedom.
Also, the parameter change of the rational Bézier form may lead the curve out of the G1 D3-regular
curve family.

2 Smoothing Polyhedra

2.1 C1 Continuity and Compatibility Conditions

An algebraic surface in R3 is implicitly defined by a single polynomial equation f(x, y, z) =∑
cijkx

iyjzk = 0, where the coefficients cijk of f are real numbers. The normal or gradient of

13

f(x, y, z) = 0 is the vector ∇f = (fx, fy, fz). A point p = (x0, y0, z0) on a surface is a regular point
if the gradient at p is not null; otherwise the point is singular. An algebraic surface f(x, y, z) = 0
is irreducible if f(x, y, z) does not factor over the field of complex numbers.

An algebraic space curve is defined by the common intersection of two or more algebraic surfaces.
In geometric design we restrict our consideration to space curve segments and assume they are
contained in the intersection of exactly two algebraic surfaces. A rational parametric space curve
is represented by the triple G(s) = (x = G1(s), y = G2(s), z = G3(s)), where G1, G2 and G3 are
rational functions in s. We assume that the curve is only singly defined under the parameterization
map, i.e., each triple of values for (x, y, z), corresponds to a single value of s.

The degree of an algebraic surface is the number of intersections between the surface and a line,
counting complex, infinite and multiple intersections. This degree is also the same as the degree
of the defining polynomial. The degree of an algebraic space curve is the number of intersections
between the curve and a plane, counting complex, infinite and multiple intersections. The degree
of an algebraic curve segment given as the intersection curve of two algebraic surfaces is also no
larger than the product of the degrees of the two surfaces. Furthermore, the degree of a rational
algebraic curve is the same as the maximum degree of the numerator and denominator polynomials
in the defining triple of rational functions.

2.1.1 Necessary and Sufficiency Conditions

The followings are definitions and lemmas pertinent to the algorithm for C1 smoothing of polyhedra:

Definition 2.1. Let p = (a, b, c) be a point with an associated “normal” m = (mx,my,mz) in R3.
An algebraic surface S : f(x, y, z) = 0 is said to contain p with C1 continuity if
(1) f(p) = f(a, b, c) = 0, (containment condition)
and
(2) ∇f(p) is not zero and ∇f(p) = αm, for some nonzero α. (tangency condition)

Definition 2.2. Let C be an algebraic space curve with an associated varying “normal” n(x, y, z) =
(nx(x, y, z), ny(x, y, z), nz(x, y, z)), defined for all points on C. An algebraic surface S : f(x, y, z) =
0 is said to contain C with C1 continuity if
(1) f(p) = 0 for all points p of C. (containment condition)
and
(2) ∇f(p) is not identically zero and ∇f(p) = αn(p), for some α and for all points p of C.
(tangency condition)

Lemma 2.3. A necessary condition for smoothing a polyhedron with tangent-plane-continuous
triangular surface patches is a unique tangent plane at each vertex of the polyhedron.

Towards sufficiency conditions of C1 smoothing of polyhedra

2.1.2 Compatibility and Non-Singularity Constraints

We first review some basic concepts from differential geometry [96, 180]. A surface S ⊂ R3 is
regular at a point p ⊂ S if there exists a neighborhood V ⊂ R3 and a map x : U −→ V ∩ S of an
open set U in R2 onto V ∩ S ⊂ R3 such that x(u, v) = (x(u, v), y(u, v), z(u, v)) is differentiable,
homeomorphic, and its differential dxq : R2 −→ R3 is one-to-one for each q ∈ U . A surface S is
regular if, at each point on S, S is regular. A tangent vector to a regular surface S at a point p ∈ S
is the tangent vector α′(0) of a differentiable curve α : (−ε, ε) −→ S with α(0) = p. The plane
Tp(S) spanned by all tangent vectors to S at p, is called the tangent plane to S at p that is, in fact,
a two dimensional vector space. For a regular point p ∈ S, a unit vector which is perpendicular to
Tp(S) is called a unit normal vector at p. For each q ∈ x(U), we define a differentiable field of unit
normal vectors N : x(U) −→ R3 such that N(q) = xu×xv

‖xu×xv‖(q), where xu = ∂x
∂u and xv = ∂x

∂v . The

14

map N : S −→ G, taking its values in the unit sphere, is called the Gauss map of S, where G is
a unit sphere. Then the Gauss map is differentiable, and its differential dNp of N at p is a linear
map from Tp(S) to Tp(S). It measures the rate of the normal vector N in a neighborhood of p.

The following lemma provides a condition which must be satisfied when the unit normal vectors
of a surface S change in the neighborhood of regular points. Its proof is found in Chapter 3, pp.
140 [96].

Lemma 2.4. The differential dNp : Tp(S) −→ Tp(S) of the Gauss map is a self-adjoint linear map,
that is, (dNp(w1), w2) = (w1, dNp(w2)) where w1 and w2 are two independent tangent vectors at a
regular point p, and (·, ·) is an inner product of two vectors.

The symmetry of the linear map dNp, implied by Lemma 2.4, entails a necessary condition that
must be satisfied between tangent vectors and the rates of changes of normal vectors at a regular
point. It implies that, given two regular curves passing through a regular point on a surface, the
unit normal vector must change along each curve satisfying the equality in the lemma.

Consider the problem of tangent-plane-continuous interpolation of two parametric space curves
with normal directions, meeting at a point. Let C1(u) and C2(v) be two parametric curves with
parametrically specified normal directions N1(u) and N2(v) such that C1(0) = C2(0) = p, and
N1(0) and N2(0) are proportional, that is, the two curves meet at p and they share the same
normal direction at the point. We look for a surface S which smoothly interpolates the curves, that
is,

• S must contain C1(u) and C2(v),

• the normals of tangent planes of S along the curves must coincide with the normals of the
curves, and

• S is regular at p.

Suppose that there exist such a surface S. Then, we have a local parametrization x : U −→ V ∩ S
of an open set U in R2 onto V ∩ S ⊂ R3 for a neighborhood V of p such that

• x(0, 0) = p,

• xu = ∂x
∂u (0, 0) = C ′1(0) and xv = ∂x

∂v (0, 0) = C ′2(0), and

• the Gauss map N of S is such that N(C1(u)) = N1(u)
‖N1(u)‖ and N(C2(v)) = N2(v)

‖N2(v)‖ .

Then, by Lemma 2.4, in order for S to be regular at p, it should be that

(dNp(xu),xv) = (xu, dNp(xv)). (28)

By the definition of the differential,

dNp(xu) =
dN(C1(u))

du
|u=0

=
d(N1(u)
‖N1(u)‖)

du
|u=0

=
N ′1(u) ‖ N1(u) ‖ −N1(u) ‖ N1(u) ‖′

‖ N1(u) ‖2
|u=0

=
N ′1(0) ‖ N1(0) ‖ −N1(0) ‖ N1(u) ‖′u=0

‖ N1(0) ‖2
.

15

Since (N1(0),xv) = 0, (dNp(xu),xv) = (N ′1(0),xv)
‖N1(0)‖ = (N ′1(0),C′2(0))

‖N1(0)‖ . In the same way, we get

(xu, dNp(xv)) = (C′1(0),N ′2(0))
‖N2(0)‖ . Hence, the equation (28) becomes

(N ′1(0), C ′2(0))
‖ N1(0) ‖

=
(C ′1(0), N ′2(0))
‖ N2(0) ‖

. (29)

The above argument implies that enforcing two curves to have the same normal vectors at a
common point does not guarantee the regularity of an interpolating surface at the point. The
equation (29) is a necessary condition for regularity, indicating that, if the given curves and their
normals do not satisfy the equation (29), any smoothly interpolating surface must be singular at p.

Theorem 2.5. Let C1(u) and C2(v) be two parametric curves with parametric normal directions
N1(u) and N2(v) such that C1(0) = C2(0) = p, and that N1(0) and N2(0) are proportional. Then,
any surface S, which interpolates the curves with tangent plane continuity, is singular at p unless
(N ′1(0),C′2(0))
‖N1(0)‖ = (C′1(0),N ′2(0))

‖N2(0)‖ .

In conclusion we shall not impose the above compatibility constraints on the choice of normals
along curves and thereby allow singularities at vertex points...

2.2 Polyhedra Smoothing Algorithm

We present below a sketch of the algorithm to C1 smooth a simple polyhedron P with tangent-
plane-continuous implicit surface patches.

Algorithm

1. Triangulate each of the non-triangular polygonal faces of the given polyhedron P. Any simple
polygon is easily triangulable by adding non-intersecting inner diagonals.

2. Specify a unique “normal” vector at each vertex of P. This provides a unique tangent plane
for all patches which shall C1 interpolate that vertex.

3. Next, construct a curvilinear wire frame by replacing each edge of P with a curve which C1

interpolates the end points of the edge and the specified “normals”. Any remaining degrees
of freedom of the C1 interpolatory curve are used to select a desired shape of the curve and
indirectly thereby a desired shape of the smoothing surface patch.

4. Specify normal vectors at each point along each of the edge curves. This provides the tangent
planes for the two incident patches which shall C1 interpolate the edge curves. If it is required
that the individual patches are non-singular at the vertices of P, then the variation of normals
along different edge curves incident at the same vertex need also to be made compatible.

5. Finally, C1 interpolate the three edge curves and curve normals of each face. The remaining
degrees of freedom for each individual patch are chosen via weighted least squares to achieve
a suitably shaped single-sheeted surface patch. The resulting surface patches yield a globally
C1 smooth curved model for the given polyhedron.

Details of each of the steps 2 to 5 of the algorithm are presented in subsequent sections 2.3, 2.4
and 2.5.

16

2.3 Wireframe Construction for Implicit Algebraic Splines

2.3.1 Choice of Vertex Normals

The unique “normal” vector assigned to each vertex of the triangulated polyhedron P can be chosen
independently and quite arbitrarily. However the relative directions of each adjacent vertex normal
pair affects the degree of the C1 interpolating edge curve which replaces the straight edges of P.
Let the two normal vectors at the two endpoints of an edge be called an edge-normal-pair. Certain
relative directions of an edge-normal-pair induce an inflection point (zero curvature point) for any
C1 interpolating curve. Since conics do not have inflection points one is then forced to either
switch to cubic curves at the least or to artificially split the edge. Splitting an edge in turn induces
splitting of the triangular face of P, a case considered for parametric surface patches in [] and for
implicit surface patches in []. Here we restrict ourselves to surface fitting without the splitting of
any triangular faces of P.

We first derive a necessary and sufficient condition for the relative directions of an edge-normal-
pair to allow a C1 conic interpolation. Here, the interpolation is strict in that the curve’s normal
at the vertex points and the prescribed vertex normal are in the same direction and not opposite.
This restriction guarantees the construction wire frames which are free of cusp-like connections. In
the following definitions and lemmas we make all of this more precise.

Definition 2.6. Let P0 = (p0, n0) and P1 = (p1, n1) be an edge-normal-pair. A conic segment
S(P0, P1) is said to C1-interpolate P0 and P1 if there exists a non-degenerate conic curve f(x, y) =
ax2 + 2hxy + by2 + 2gx+ 2fy + c such that

• S(P0, P1) is a continuous segment of f(x, y) = 0,

• p0 and p1 are the end points of S(P0, P1), and

• the gradients of f(x, y) = 0 at p0 and p1 have the same directions as n0 and n1, respectively.
In other words, (∇f(p0),n0)

‖∇f(p0)‖·‖n0‖ = 1, and (∇f(p1),n1)
‖∇f(p1)‖·‖n1‖ = 1.

Given a pair P = ((px, py), (nx, ny)), we can define TP (x, y) = nx(x − px) + ny(y − py) = 0
which is the equation of the tangent line that passes through (px, py) and has a normal direction
(nx, ny). Note that the tangent line TP (x, y) = 0 contain the same direction as (nx, ny), and
divides a plane into a positive halfspace {(x, y) ∈ R2|TP (x, y) > 0}, and a negative halfspace
{(x, y) ∈ R2|TP (x, y) < 0}.

Lemma 2.7. Let p0 and p1 be on a proper conic f(x, y) = ax2 + 2hxy + by2 + 2gx+ 2fy + c = 0.
Then, T(p0,∇f(p0))(p1) · T(p1,∇f(p1))(p0) > 0.

Proof : Without loss of generality, we assume that p0 = (0, 0), and p1 = (1, 0). Since ∇f(x, y) =
(2ax + 2hy + 2g, 2hx + 2by + 2f), ∇f(0, 0) = (2g, 2f) and ∇f(1, 0) = (2a + 2g, 2h + 2f). Hence,
T(p0,∇f(p0))(x, y) = 2gx + 2fy, and T(p1,∇f(p1))(x, y) = (2a + 2g)(x − 1) + (2h + 2f)y. ¿From the
containment conditions of the two points, f(0, 0) = c = 0, and f(1, 0) = a + 2g + c = 0. Then,
T(p0,∇f(p0))(p1) · T(p1,∇f(p1))(p0) = 2g(−2a− 2g) = 2g(−2(−2g)− 2g) = 4g2 ≥ 0. If g = 0, it follows
that a = c = g = 0 in which case f(x, y) reduces into two lines. Since we assume that f(x, y) is
proper, g 6= 0, and we have proven the lemma. �

The geometric interpretation of the inequality T(p0,∇f(p0))(p1) · T(p1,∇f(p1))(p0) > 0 is that p0 is
on the positive (negative) halfspace of TP1 if and only if p1 is on the positive (negative) halfspace
of TP0 . The following theorem shows that this condition is, in fact, a sufficient and necessary
condition.

Theorem 2.8. There exists a conic segment S(P0, P1) that smoothly interpolates two pairs P0 =
(p0, n0) and P1 = (p1, n1) if and only if TP0(p1) · TP1(p0) > 0.

17

Proof : (⇒) Let f(x, y) = 0 be a conic for a smoothly containing conic segment. From our
definition of smooth interpolation, it follows that TP0(p1) ·TP1(p0) = T(p0,∇f(p0))(p1) ·T(p1,∇f(p1))(p0)
which is positive according to Lemma 2.7.
(⇐) If TP0(p1) · TP1(p0) > 0, then the conic in q(x, y) = L(x, y)2 − κ · TP0(x, y) · TP1(x, y) = 0 or
−q(x, y) = 0 will smoothly interpolate the two pairs where L(x, y) = 0 is the line connecting p0

and p1, and κ is a constant [201].1 �
Now, back to the original problem of computing a quadric wire smoothly interpolating two

given point and unit normal vector pairs P0 = (p0, n0) and P1 = (p1, n1) in R3. The concept of
the tangent line in a plane is naturally extended to an oriented tangent plane TP (x, y, z) = nx(x−
px) +ny(y− py) +nz(z− pz) = 0 given P = ((px, py, pz), (nx, ny, nz)) in 3D space, and this tangent
plane divides 3D space into two halfspaces. In fact, we see that the inequality TP0(p1) ·TP1(p0) > 0
is also a criterion which determines if a quadric wire can smoothly interpolate two given pairs of
points and normal vectors.

Corollary 2.9. Given two point and unit normal vector pairs P0 = (p0, n0) and P1 = (p1, n1) in 3D
space, there exists a quadric wire W (t) = (C(t), N(t)), contained in a plane determined by a given
plane normal vector npl01, that smoothly interpolates the pairs if and only if TP0(p1) · TP1(p0) > 0.

Proof : Consider the two pairs P0 and P1, their two tangent planes TP0 and TP1 , and the plane
H which is defined by nplij . Then, the intersection lines of H and TP0 and TP1 become the tangent
lines in H to which a conic curve must be tangent. That is, the normal vectors of the tangent
lines are the projections of the normal vectors of the tangent planes. Note that the positiveness
and negativeness of halfspaces are inherited from 3D space to the plane H. Hence, we see that the
inequality TP0(p1) · TP1(p0) > 0 holds in 3D space if and only if its 2D version holds in H.

If there exists a conic curve in H, we can find a quadric surface which smoothly interpolates
the given pairs, as explained before, and take W (t) from this quadric surface that has the same
gradient directions as the given two normal vectors. �

2.3.2 Generation of a Conic Wireframe

First, we give a definition of the quadric wire.

Definition 2.10. Let C(t) = (x(t)
w(t) ,

y(t)
w(t) ,

z(t)
w(t)) and N(t) = (nx(t)

w(t) ,
ny(t)
w(t) ,

nz(t)
w(t)) be two triples of

quadratic rational parametric polynomials. Then, the pair W (t) = (C(t), N(t)) is called a quadric
wire if there exists a quadratic surface q(x, y, z) = 0 such that q(C(t)) = 0 and ∇q(C(t)) is propor-
tional to N(t) for all real t.

The first step to smoothing a convex polyhedron is to compute a conic curve given two point
and unit normal vector pairs (p0, n1), (p1, n1) and a normal npl of a plane such that

1. the computed conic curve passes through p0 and p1,

2. its tangents at p0 and p1 are perpendicular to n0 and n1, respectively, and

3. it is contained in the plane which contains p0 and p1, and has the plane normal npl.

Especially, we force W (0) ≡ (p0, n1) and W (1) ≡ (p1, n1), 2 and hence use a segment of W (t),
0 ≤ t ≤ 1. To compute C(t), the normal vectors n0 and n1 are projected into the plane P on which
C(t) will be. (See Figure 12).

1Thanks to J. Yu for pointing this.
2By ≡, we mean the points are the same, and the normal vectors are proportional.

18

Figure 12: Computation of a Conic Curve

This projection results in a control triangle p0 − p2 − p1. Lee [150] presents a compact method
for computing a conic curve C(t) from such a control triangle. In his formulation, the conic is
expressed in Bernstein-Bézier form :

C(t) =
w0p0(1− t)2 + 2w2p2t(1− t) + w1p1t

2

w0(1− t)2 + 2w2t(1− t) + w1t2
,

where wi > 0, i = 0, 1, 2 are shape control parameters. An often used parameterization, called the
rho-conic parameterization, is given by the special choice w0 = w1 = 1 − ρ, w2 = ρ, ρ > 0. By
introducing the parameter ρ, we can control the shape of a conic intuitively. Let p01 = (p0 + p1)/2
be the midpoint of the chord p0p1. Then, ρ has a property that C(0.5)− p01 = ρ(p2 − p01). From
this, we can see that as ρ is increased, the conic gets more curved. In particular, it can be proven
that ρ = 0.5 for parabola, 0 < ρ < 0.5 for ellipse and 0.5 < ρ < 1.0 for hyperbola.

2.3.3 Assigning Normals along Edge curves

Once C(t) is fixed, we find a quadratic surface q(x, y, z) = 0 such that N(t), which is a restriction
of ∇q(x, y, z), interpolates n0 and n1. Consider a quadratic surface q(x, y, z) = c0x

2 + c1y
2 + c2z

2 +
c3xy + c4yz + c5zx+ c6x+ c7y + c8z + c9 = 0. q(x, y, z) = 0 has 10 coefficients, and since dividing
the surface by any nonzero coefficient does not change the surface, there are 9 degrees of freedom.
The first requirement is that q(x, y, z) = 0 must contain the computed conic C(t). Our Hermite
interpolation algorithm gives 5 linear equations in terms of the unknowns ci for the containment
requirement. It is obvious that 5 constraints on ci are required considering the Bezout theorem
which says if a conic intersects with a quadratic surface at more than 4 points, the curve is contained
in the surface.

Hence, 4 (= 9−5) degrees of freedom in choosing ci are left, and these must be used to interpolate
the normal vectors at the two end points. Interpolating n0 and n1 at p0 and p1, respectively, gives 2
more linear constraints which leaves 2 degrees of freedom in choosing the quadratic surface. But we
can see that requiring only one more normal vector at a point on the curve fixes the normal vectors
along the whole conic. Consider the gradient vector ∇q(x, y, z) whose components are linear. Then,
the vector function ∇q(C(t)) is a degree 2 polynomial parametric curve in the projective space, and
hence, three independent constraints fixes the curve ∇q(C(t)), or the normal vector along C(t).

19

After we specify one more normal vector at a point on the conic, we obtain a family of quadratic
surfaces q(x, y, z) with one degree of freedom where all the surfaces in the family contain C(t), and
share the same gradient vectors along C(t). This observation leads to the following lemma :

Lemma 2.11. Let W (t) = (C(t), N(t)) be a quadric wire. Then, the quadratic surfaces which
smoothly interpolate W (t) comprises a family of surfaces with one degree of freedom.

What we do in our implementation in order to fix the normal vector is the following : first,
the average n01 = (n0 + n1)/2 is computed, and then n01 is projected into a plane which contain
C(0.5), and is perpendicular to the tangent vector C ′(0.5). Then, we require the projected vector
to be the normal vector at C(0.5). Once the normal vectors along C(t) is fixed, we define N(t) to
be the vectors.

2.4 Local Interpolatory Patch Generation

2.4.1 Conditions for Low Degree Interpolants

We first compute general degree bounds for interpolatory triangular patches with degree d inter-
polatory curves.

Definition 2.12. An augmented triangle is an 9-tuple T = (p0, p1, p2, n0, n1, n2, npl01, npl12, npl20)
where the points pi are three vertices of a triangle with the corresponding unit normal vectors ni,
and nplij is the normal of the plane which will contain the quadric wire made from (pi, ni) and
(pj , nj).

Definition 2.13. A quadric triangle is a triple QT = (W0(t),W1(t),W2(t)) of quadric wires such
that W0(1) ≡W1(0), W1(1) ≡W2(0), and W2(1) ≡W0(0).

Given an augmented triangle, each quadric wire is computed as described in the foregoing
subsection. Now the quadric triangle is to be fleshed using an algebraic surface f(x, y, z) = 0.
The algebraic surface to be used should be flexible enough to interpolate the three quadric wires
smoothly, i.e., with tangent plane continuity. Though higher degree algebraic surfaces provide more
flexibility, the number

(
n+3

3

)
of coefficients of a degree n algebraic surface grows dramatically as n

increases. Hence, for fast computation and less numerical errors, keeping the degree of a surface in
a reasonable range is very important. In the below, we give the low bound of degree which must
be used for interpolation of a quadric triangle.

First, let’s assume that we use a degree n algebraic surface f(x, y, z) = 0 to smoothly interpolate
a wire of degree d W (t) = (C(t), N(t)). According to the Bezout theorem, dn + 1 constraints on
the coefficients of f are required for f to contain C(t) which is of degree d. For tangent plane
continuity, consider the restricted normal vector ∇f(C(t)). Since the degree of each component of
∇f(x, y, z) is, at most, n − 1, each component of ∇f(C(t)) has the degree d(n − 1). This vector
function is, in fact, a degree d(n− 1) parametric polynomial curve in the projective space. Hence
d(n − 1) + 1 independent constraints are enough to fix the gradient of f along the curve C(t),
making ∇f(C(t)) proportional to N(t) which is the requirement of tangent plane continuity.

Lemma 2.14. Let W (t) = (C(t), N(t)) be a degree d wire. For an algebraic surface f(x, y, z) = 0
of degree n to smoothly interpolate W (t), at most 2dn−d+ 2 (= dn+ 1 +d(n−1) + 1) independent
linear constraints on the f ’s coefficients must be satisfied.

For C1 interpolation of a triangular patch we observe some geometric dependency between the
three wires which leads to algebraic dependency. First, since the curvess intersect pairwise, there
must be three rank deficiencies between the equations from the containment conditions. 3 Secondly,

3This dependency gets more evident to see the Hermite interpolation algorithm. In the algorithm in Section 4.2.1
[26], if we always choose the intersection points for the list Lc of each conic, three equations are generated twice.

20

at each vertex of the curvlinear triangle, two incident curves automatically determine the normal
at the vertex. It is obvious, from the way the curve wire construction, this vector is proportional to
the given unit normal vector. So, we see that satisfying the containment conditions for the 3 curves
guarantees that any interpolating surface has gradient vectors at the three points as required. This
fact implies that, for each conic, there are two rank deficiencies between the linear equations for
the containment conditions, and the equations for its tangency condition. 4 Hence, 6 additional
rank deficiencies with the previous 3 yield a total of 9 deficiencies.

Lemma 2.15. Let QT = (W0(t),W1(t),W2(t)) be a conic triangle. The rank of the linear system
MIx = z which is constructed by the Hermite interpolation algorithm for the algebraic surface
f(x, y, z) = 0 of degree n that smoothly fleshes QT , is at most 12n− 9.

Proof. For C1 of all three wires requires 3(4n − 2 + 2) = 12n using lemma 2.14 minus the 9
deficiencies.

Since f(x, y, z) = 0 of degree n has
(
n+3

3

)
coefficients, and the rank of the linear system should

be less than the number of coefficients for a nontrivial surface to exist, we see that 5 is the minimum
degree required. In the quintic case, there are 56 coefficients (55 degrees of freedom) and the rank
is at most 51, which results in a family of interpolating surfaces with at least 4 degrees of freedom
in selecting an instance surface from the family.

Even though some special combination of three quadric wires can be interpolated by a surface
of degree less than 5, for example, three quadric wires from a sphere, the probability that such
spatial dependency occurs, given an arbitrary triple of conics with normals, is infinitesimal. Hence,
we can say that 5 is the minimum degree required with the probability one.

Lemma 2.16. Let QT = (W0(t),W1(t),W2(t)) be a cubic triangle. The rank of the linear system
MIx = z which is constructed by the Hermite interpolation algorithm for the algebraic surface
f(x, y, z) = 0 of degree n that smoothly fleshes QT , is at most 18n− 12.

Proof. For C1 of all three wires requires 3(6n − 3 + 2) = 18n − 3 using lemma 2.14 minus the 9
deficiencies.

The minimum degree of the interpolating surface is 7. In the quintic case, there are 120
coefficients (119 degrees of freedom) and the rank is at most 114, which results in a family of
interpolating surfaces with at least 5 degrees of freedom in selecting an instance surface from the
family.

Lemma 2.17. Let QT = (W0(t),W1(t),W2(t)) be a conic triangle with one edge a cubic curve.
The rank of the linear system MIx = z which is constructed by the Hermite interpolation algorithm
for the algebraic surface f(x, y, z) = 0 of degree n that smoothly fleshes QT , is at most 14n− 10.

Proof. For C1 of all three wires requires 2(4n− 2 + 2) + (6n− 3 + 2) = 14n− 1 using lemma 2.14
minus the 9 deficiencies.

The minimum degree of the interpolating surface is 6. In the degree 6 case, there are 84 coeffi-
cients (83 degrees of freedom) and the rank is at most 74, which results in a family of interpolating
surfaces with at least 9 degrees of freedom in selecting an instance surface from the family.

Lemma 2.18. Let QT = (W0(t),W1(t),W2(t)) be a cubic triangle with one edge a conic curve.
The rank of the linear system MIx = z which is constructed by the Hermite interpolation algorithm
for the algebraic surface f(x, y, z) = 0 of degree n that smoothly fleshes QT , is at most 16n− 11.

4Again, for each curve, we can choose point-normal pairs at the two end points. The resulting two linear equations
should be linearly dependent on the equations from the containment requirement.

21

Proof. For C1 of all three wires requires (4n− 2 + 2) + 2(6n− 3 + 2) = 16n− 2 using lemma 2.14
minus the 9 deficiencies.

The minimum degree of the interpolating surface is 7. In the degree 7 case, there are 120
coefficients (119 degrees of freedom) and the rank is at most 101, which results in a family of
interpolating surfaces with at least 18 degrees of freedom in selecting an instance surface from the
family.

2.4.2 C1 Interpolation of a Conic Wireframe

As mentioned previously, each triangular face of a polyhedron is replaced by a triangular patch.
To do so, each edge is replaced by a quadric wire forming a wire frame for the polyhedron.

Even though some special combination of three quadric wires can be interpolated by a surface
of degree less than 5, for example, three quadric wires from a sphere, the probability that such
spatial dependency occurs, given an arbitrary triple of conics with normals, is infinitesimal. Hence,
we can say that 5 is the minimum degree required with the probability one.

2.5 Surface Selection and Local Shape Control

As a result of smooth interpolation of a quadric triangle QT with a quintic surface, a family of
algebraic surfaces f(x, y, z) = 0 with, at least, 4 degrees of freedom is obtained. The family is
expressed as the nontrivial coefficients vectors in the nullspace of MI. To select a quintic surface
from this family, those 4 degrees of freedom must be consumed. Least squares approximation is
well suited for this purpose. We can additionally specify a set of points inside the quadric triangle,
which approximately describes a desirable surface patch. The final fitting surface can be obtained
by consuming the remaining degrees of freedom through least squares approximation to this set of
points.

While it is chosen from the family via least squares approximation, the final quintic surface is
not always good in the light of geometric modeling. For example, a surface which self-intersects
inside the quadric triangle is not practically useful though it approximates the additional points
best as well as satisfies the smooth interpolation requirement. Hence, in the approximation step,
we need to be careful not to select a surface which is singular inside the quadric triangle. First of
all, it is observed that, in general, any surface which smoothly interpolates the quadric triangle,
that is, three conics with normal directions, is singular at the three vertices. In Section 2.1.2, we
show that just making the normals of the conics consistent at the intersection points is not enough
to have a regular surface. In fact, the velocities of changes of the normal vectors at the intersection
points affect the regularity of a surface at the points. However, the singularities only at the three
vertices, not along the whole curve, does not harm the smooth continuity between surface patches.
More serious problem is the singularity of a surface inside a quadric triangle.

2.5.1 Solution of Interpolation and Least-Squares Matrices

The Hermite interpolation algorithm takes as input positional and first derivative (normal) infor-
mation on points and algebraic space curves. For an algebraic surface S : f(x, y, z) = 0 of degree n,
it produces a homogeneous linear system MIx = z, MI ∈ Rni×nv of ni equations and nv unknowns
where x is a vector of the nv(=

(
n+3

3

)
)5 coefficients of S.

Then, the nontrivial solutions in the nullspace of MI form a family of all possible algebraic
surfaces of degree n, satisfying the given input constraints, whose coefficients are expressed by
homogeneous combinations of q free parameters where q = nv− r is the dimension of the nullspace.
Since dividing f(x, y, z) = 0 by a nonzero number does not change the surface, there are, in fact,

5There are
`
n+3

3

´
coefficients in f(x, y, z) of degree n.

22

nv − r− 1 degrees of freedom in choosing an instance surface from the family. Hence, the rank r of
MI must be less than the number of the coefficients nv, should there exist an interpolating surface.

After a family of algebraic surfaces is obtained, we should select an instance surface from the
family for geometric design. For this process, called shape control, Bajaj and Ihm [29] proposed to
use least squares approximation which leads to the following computational model :

minimize ‖MAx ‖2
subject to MIx = z

xTx = 1,

where MA ∈ Rna×nv is the matrix for least-squares approximation. MA is constructed the same
as MI is, however, there are more linear constraints provided than the remaining degrees nv−r−1
of freedom such that least squares approximation is applied. For example, we can additionally
construct enough number of points or curves around the given input data, which approximately
specifies a desirable surface. The final instance surface is obtained by consuming the remaining
degrees of freedom through least-squares approximation to the additional data set.

In this article, we use a slightly different model which is :

minimize ‖MAx− b ‖2
subject to MIx = z.

Suppose that S0 = {vi ∈ R3|i = 1, · · · , l} be a set of points which approximately describes
a desirable surface patch. Then, we can get a linear system MAx = z, where each row of MA

is obtained from f(vi) = 0. Then the conventional least squares approximation is to minimize
‖ MAx ‖2 over the nullspace of MI. However, our experimentation shows that in many cases,
singularities occur inside the quadric triangle. Minimizing ‖ MAx ‖2 makes the resulting surface
well approximate the set of points, however, this simple algebraic approximation can not prevent
the resulting surface from self-intersecting inside the triangle.

To provide more geometric control in least squares approximation, we suggest that contour levels
be approximated rather than only the surface itself. In fact, the implicit surface f(x, y, z) = 0 is
the zero contour of the function w = f(x, y, z). Consider some smooth region of a surface. Since
the derivatives of w = f(x, y, z) are well defined in the region, the contour levels behaves well in the
proximity of the zero contour. In our scheme, we first generate S0 = {(vi, ni)|i = 1, · · · , l} where
vi are approximating points, and ni are approximating gradient vectors at vi. Then, from this set,
we construct two more sets S1 = {ui|ui = vi + αni, i = 1, · · · , l}, and S−1 = {wi|wi = vi − αni, i =
1, · · · , l} for some small α > 0. Then, we get the least squares system MA = b from three kinds of
equations : f(vi) = 0, f(ui) = 1, and f(wi) = −1. These equations give an approximating contour
level structure of the function w = f(x, y, z) near the inside of a quadric triangle. We found out
that forcing a well behaved contour levels gets rid of self-intersection in the region significantly. We
will give a heuristic algorithm for generation of the point-normal set S0 in the last paragraph of
Subsection 2.5.2.

As a result of least squares approximation of the function’s contour levels, we lead to the
following computational model :

minimize ‖MAx− b ‖2
subject to MIx = z,

where MI ∈ Rni×56 is a Hermite interpolation matrix, and MA ∈ Rna×56 and b ∈ Rna are matrix
and vector, respectively, for contour level approximation, and x ∈ R56 is a vector containing
coefficients of a quintic algebraic surface f(x, y, z) = 0.

To find the nullspace of MI in a computationally stable manner, the singular value decomposi-
tion (SVD) of MI is computed [119] where MI is decomposed as MI = UΣV T where U ∈ Rni×ni

and V ∈ R56×56 are orthonormal matrices, and Σ = diag(σ1, σ2, · · · , σs) ∈ Rni×56 is a diagonal

23

matrix with diagonal elements σ1 ≥ σ2 ≥ · · · ≥ σs ≥ 0 (s = min{ni, 56}). It is known that the
rank r of MI is the number of the positive diagonal elements of Σ, and that the last 56− r columns
of V span the nullspace of MI. Hence, the nullspace of MI is expressed as :
{x ∈ R56 |x =

∑56−r
i=1 wivr+i, where wi ∈ R, and vj is the jth column of V }, or x = V56−rw

where V56−r ∈ R56×(56−r) is made of the last 56 − r columns of V , and w a (56 − r)-vector.
6 x = V56−rw compactly expresses all the quintic surfaces which Hermite-interpolate the three
quadric wires.

After substitution for x, we lead to ‖MAx− b ‖ = ‖MAV56−rw − b ‖. Then, an orthogonal
matrix Q ∈ Rna×na is computed such that

QTMAV56−r = R =
(
R1

z

)
where R1 ∈ R(56−r)×(56−r) is upper triangular. (This factorization is called a Q-R factoriza-
tion [119]). Now, let

QT b =
(
c
d

)
where c is the first 56 − r elements. Then, ‖ MAV56−rw − b ‖2 = ‖ QTMAV56−rw − QTb ‖2 =
‖ R1w− c ‖2 + ‖ d ‖2. The solution w can be computed by solving R1w = c, from which the final
fitting surface is obtained as x = V56−rw.

2.5.2 Display of the Triangular Algebraic Patch

As implicitly defined algebraic surfaces have become increasingly important in geometric modeling,
several algorithms for displaying them have emerged. Implicit algebraic surfaces lend themselves
naturally to ray tracing [126]. Sederberg and Zundel [215] uses a scan line display method which
offers improvement in speed and correctly displays singularities. Even though both approaches
produce images of good qualities, the computational cost is high. Also, the static processes do not
allow interactive display of surfaces. On the other hand, polygonization of implicit surfaces [57] can
use the capability of the graphics hardware which provides very fast interactive rendering. In [57],
Bloomenthal presents a numerical technique that approximates an implicit surface with a polygonal
representation. The technique is to surround the implicit surface with an octree, at whose corners
the implicit function is sampled to generate polygons. Although, in general, they sample implicit
surfaces well, these polygonization methods are not well suited to our purpose which is to draw
a implicit triangular surface patch with singular vertices. A major problem is how to isolate only
the necessary part or the triangular patch from the whole implicit surface. Clipping surfaces could
be added to the polyonization algorithms, however, the current polygonization algorithms do not
handle singularities quite well.

In our display routine, we walk over implicit quintic surfaces only around the necessary regions
producing polygons which approximate triangular patches. Since smooth segments of intersection
curves of two algebraic surfaces are well traced [25], and we are to display smooth portions of
implicit surfaces, the algebraic space curve tracing routines performs well for the walk-over. Note
that though the fleshing quintic surface are usually singular at the three vertices of a quadric
triangle, the boundary curves can be traced easily from their parametric equations.

The following simple recursive procedure produces adaptive polygonization of a triangular al-
gebraic surface patch. Let f(x, y, z) = 0 be a primary surface whose triangular portion clipped by
three planes hi(x, y, z) = 0, i = 1, 2, 3 is to be polygonized. Initially, the triangle T0 = (P0, P1, P2)
is a rough approximation of the surface patch. Each boundary curve decided by f and hi is traced

6As mentioned before, in most cases, the rank r of MI is 51. However, we keep the variable r because it is possible
that there are more dependency between boundary curves and normal vectors though the chances are rare.

24

producing a digitized linear approximation to the space curve, then the linear approximation is
segmented adaptively into a new segment of order 2d for some given d. (See, for example, [135]
for an adaptive segmentation algorithm of space curves.) Then, T0 is refined into four triangles by
introducing the 3 points Q0, Q1, and Q2 where Qi, i = 0, 1, 2 is the center point of each adaptive
segmentation of order 2d. The clipping planes of subdivided triangles can be computed by averag-
ing the normals of the two triangles incident to the edge. Then, each new edge is traced, and then
its adaptive linear approximation of order 2d−1 is produced. In this way, this new approximation
is further refined by recursively subdividing each triangle until some stopping criterion is met.

While the method produces a regular, but adaptive, network of polygons, it might be improved
to generate more adaptive polygonization. Rather than subdividing all the triangles up to the
same level, each triangle is examined to see if it is already a good approximation to the surface
portion it is approximating. It is refined only when the answer is no. Some criterions for such
local refinement are suggested in [57]. However, to design an irregular adaptive polygonization
algorithm with robust local refinement criterions, is an open problem.

We also use the above recursive subdivision scheme to produce S0 = {(vi, ni)|i = 1, · · · , l}.Initially,
only the boundary curves are known, and each time a new curve is to be traced in the algorithm, a
quadric wire is computed. from the information on the initial and final points, their normals and
clipping plane. The generated quadric wire gives approximate curve and normal information, and
is traced to generate points and normals. The final polygonal approximation obtained in this way
gives a set of points which is used in least squares approximation. We observe that this heuristic
method work quite well when the ρ value is in the reasonable range, say, 0.25 ≤ ρ ≤ 0.75.

2.5.3 Smoothing a Convex Polyhedron

In Section 2.4, we have described how to compute a quintic triangular algebraic surface patch from
a given augmented triangle. A convex polyhedron is smoothed by replacing its faces with the
triangular patches meeting each other with tangent plane continuity. For the augmented triangles
T = (p0, p1, p2, n0, n1, n2, npl01, npl12, npl20) of the faces of a polyhedron, the normal data, i.e.,
three vertex normals and three edge normals, must be provided as well as the given three vertices.
In some applications, the normal data may come with a solid, but, in general, only vertices and
their facial information are provided. The vertex normal ni at each vertex pi can be computed by
averaging the normals of the faces incident to the vertex.

Example 2.19. Construction of Quadric Wire Frames

Example 2.20. Smoothed Polyhedrons Using Quintic Implicit Surfaces

Each of 32 faces of the polyhedron in Example 2.19 is replaced by a quintic implicit algebraic
surface which smoothly fleshes its quadric triangle. The result is the piecewise tangent-plane-
continuous quintic algebraic surface meshes which smooth the given polyhedron. As explained
before, ellipses, parabolas, and hyperbolas are used as quadric wires for ρ = 0.4, 0.5, and 0.75,
respectively. �

Problem 2.21. Given a list of data points P = {p1, . . . ,pk} ∈ R3 and a surface triangulation T
of these points, construct a mesh of low degree algebraic surfaces such that the composite surface is
single sheeted C1 continuous and has the same topology as T .

Let {p1, . . . ,pj} ∈ R3 with j ≤ 4. Then the convex hull of these points is defined by
[p1p2...pj] = {p ∈ R3 : p =

∑j
i=1 αipi, αi ≥ 0,

∑j
i=1 αi = 1} and the affine hull is defined by

〈p1p2...pj〉 = {p ∈ R3 : p =
∑j

i=1 αipi,
∑j

i=1 αi = 1}. The interior of the convex hull [p1p2...pj]
is denoted by (p1p2...pj) = {p ∈ R3 : p =

∑j
i=1 αipi, αi > 0,

∑j
i=1 αi = 1}.

25

(a) (b) (c) (d)

Figure 13: C1 Smoothing of some regular polyhedra with trihedral corners.

(b) (d)(c)(a)

Figure 14: C1 smoothing of some regular and stellated polyhedra with non-trihedral corners.

Sufficient Conditions of an A-Patch Let F (α) =
∑
|λ|=n bλB

n
λ(α) be a given polynomial of

degree n on the simplex(tetrahedron) S = {(α1, α2, α3, α4)T ∈ R4 :
∑4

i=1 αi = 1, αi ≥ 0}. The
surface patch within the simplex is defined by SF ⊂ S : F (α1, α2, α3, α4) = 0. The following two
conditions on the trivariate BB-form will be used.
Smooth vertices condition. For each i(1 ≤ i ≤ 4), there is at least one non-zero bλ1λ2λ3λ4 for
λi ≥ n− 1.
Smooth edges condition. For each pair (i, j)(1 ≤ i, j ≤ 4, i 6= j), there is either at least one
non-zero bmei+(n−m)ej for m = 0, 1, · · · , n, or the polynomials

∑n−1
m=0 bmei+(n−1−m)ej+ekB

n−1
m (t) and∑n−1

m=0 bmei+(n−1−m)ej+elB
n−1
m (t) have no common zero in [0, 1], for distinct i, j, k, l.

If the surface SF contains a vertex/edge, then it is easy to show by the formulas of directional
derivatives(see [108], p. 312) that the surface is smooth there if the smooth vertices/edges conditions
above are satisfied.
Definition 3.1. Three-sided patch.

Let the surface patch SF be smooth on the boundary of the tetrahedron S. If any open line
segment (ej , α∗) with α∗ ∈ Sj = {(α1, α2, α3, α4)T : αj = 0, αi > 0,

∑
i 6=j αi = 1} intersects SF at

most once(counting multiplicities), then we call SF a three-sided j-patch (see Figure 16).
Definition 3.2. Four-sided patch.

Let the surface patch SF be smooth on the boundary of the tetrahedron S. Let (i, j, k, `) be
a permutation of (1, 2, 3, 4). If any open line segment (α∗, β∗) with α∗ ∈ (eiej) and β∗ ∈ (eke`)
intersects SF at most once(counting multiplicities), then we call SF a four-sided ij-k`-patch (see
Figure 16).

It is easy to see that if SF is a four-sided ij-k`-patch, it is then also a ji-`k-patch, a `k-ji-patch,
and so on.

Lemma 3.1. The three-sided j-patch and the four-sided ij-k`-patch are smooth (non-singular).

26

(b) (c)(a)

(e) (f)(d)

Figure 15: Interactive deformation of a sphere defined by C2 continuous quintic A-patches. (a)
Shading to show patches. (b) Pulled towards one control vertex. Mean curvature texture. (c)
Pulled towards two control vertices. Gaussian curvature texture. (d) Pulled towards the four
control vertices of a face of the cube. Mean curvature texture. (e) Pulled towards all six faces of
the cube. Gaussian curvature texture. (f) Shading to show the final patches.

Theorem 3.2. Let F (α) =
∑
|λ|=n bλB

n
λ(α) satisfy the smooth vertices and smooth edges conditions

and j(1 ≤ j ≤ 4) be a given integer. If there exists an integer k(0 ≤ k < n) such that

bλ1λ2λ3λ4 ≥ 0, λj = 0, 1, . . . , k − 1, (30)

bλ1λ2λ3λ4 ≤ 0, λj = k + 1, . . . , n (31)

and
∑
|λ|=n
λj=0

bλ > 0 if k > 0,
∑
|λ|=n
λj=m

bλ < 0 for at least one m(k < m ≤ n), then SF is a three-sided

j-patch.

Theorem 3.3. Let F (α) =
∑
|λ|=n bλB

n
λ(α) satisfy the smooth vertices and smooth edges conditions

and (i, j, k, `) be a permutation of (1, 2, 3, 4). If there exists an integer k(0 ≤ k < n) such that

bλ1λ2λ3λ4 ≥ 0; λi + λj = 0, 1, . . . , k − 1, (32)

bλ1λ2λ3λ4 ≤ 0; λi + λj = k + 1, . . . , n (33)

and
∑

|λ|=n
λi+λj=0

bλ > 0 if k > 0,
∑

|λ|=n
λi+λj=m

bλ < 0 for at least one m(k < m ≤ n), then SF is

four-sided ij-k`-patch.
Note. The conditions on the coefficients bλ in Theorems 3.2 and 3.3 are sufficient but not necessary.
For example if we want some Bl < 0, it is not necessary to let every bλ < 0, for |λ| = n, λ4 = `.

Some properties of A-patches.

27

Figure 16: Three-sided and four-sided tetrahedral patches.

a. For a three-sided j-patch, if bλ = 0 for λ = (n − `)em + `ej, ` = 0, 1, . . . , k(m 6= j, k < n),
and bλ 6= 0 for λ = (n − 1)em + es, s 6= j,m, then the edge [ejem] is tangent with SF at em with
multiplicities k.

b. For a four-sided ij-k`-patch, if bλ = 0 for λ = (n−q1−q2)ek+q1ei+q2ej , q1+q2 = 0, 1, . . . , s;
and bλ 6= 0 for λ = (n− 1)ek + e`, then SF is tangent s times with face [eiejek] at ek.

Note that a four sided patch may degenerate into a two sided patch. However, we do not need
to treat the degenerate patches any different and consider it to be a special four sided patch.

c. For a three-sided j-patch, if bλ = 0 for λ = (n − m)ei + mek, m = 0, 1, . . . , n, then SF
contains the edge [ei, ek]. If further, bλ = 0, for λ = (n−m− 1)ei +mek + ej, m = 0, 1, . . . , n− 1,
then the SF is tangent with the face [eiejek].

2.6 Normals and the Simplicial Hull

For the given point set P = {p1, . . . , pk} ∈ R3 and their surface triangulation T , we first construct
a normal set N = {n1, . . . , nk} ∈ R3 for P . That is, for each point pi, we associate a normal ni. We
will force the constructed surface to interpolate these point pi and at each point have a normal ni
for i = 1, · · · , k. These normals therefore also provide a mechanism to control the shape of the C1

interpolating surface. Common approaches to construct these normals at a point pi nclude (a) an
average of the face normals of the incident faces (b) the gradient of a local spherical fit to the surface
triangulation at each vertex. Computing an optimal normal assignment is yet an unsolved problem
and we are experimenting with different local and global normal selections schemes [11, 189]. Of
course at times the data set can have prespecified normals and this too can be the input of the C1

fitting algorithm.
Without loss of generality we assume that the assigned normals all point to the same side of

T . If T is a closed surface triangulation (a simplicial polyhedron) then we assume the normals all
point to the exterior.

Definition 4.1. Convex edge, non-convex edge.
Let [pipj] be an edge of T . If (pj − pi)Tni (pi − pj)Tnj ≥ 0 and at least one of (pj − pi)Tni

and (pi− pj)Tnj is positive, then we say the edge [pipj] is positive convex. If both the numbers are
zero then we say it is zero convex. A negative convex edge is similarly defined. If (pj − pi)Tni (pi−
pj)Tnj < 0, then we say the edge is non-convex.

Definition 4.2. Convex face, non-convex face.
Let [pipjpk] be a face of T . If its three edges are nonnegative (positive or zero) convex and at

least one of them is positive convex, then we say the face [pipjpk] is positive convex. If all the three
edges are zero convex then we label the face as zero convex. A negative convex face is similarly
defined. All the other cases [pipjpk] are labeled as non-convex.

Note, that here we are overloading the term convex to characterize the relations between the

28

p

p

pp

p p

q
q

q

1

2

3

44

1

44

’

’
’’

’

1

p"
1

p

p

pp

p p

q

1

2

3

44

1

4

’

’

p"
1

Figure 17: The construction of tetrahedra for adjacent non-convex/non-convex faces and
convex/non-convex faces.

p

p

pp

p

p p

1

2

3

44

1

’

’’

’

1

Figure 18: The construction of tetrahedra for adjacent convex/convex faces.

normals and edges of faces. We distinguish between convex and non-convex faces in the simplicial
hull below where we build one tetrahedron for convex faces and double tetrahedra for non-convex
faces.

Definition 4.3. Simplicial hull.
A simplicial hull of T , denoted by

∑
, is a collection of non-degenerate tetrahedra which satisfies:

(1) Each tetrahedron in
∑

has either a single edge of T (then it will be called an edge tetrahedron)
or a single face of T (then it will be called a face tetrahedron).
(2) For each face of T there is/are only one/two face tetrahedron/tetrahedra in

∑
if the face is

convex/non-convex.
(3) Two face tetrahedra that share a common edge do not intersect anywhere else. This condition
is referred to as non-intersection.
(4) For each edge there is/are only one/two pair/pairs of common face sharing edge tetrahedra
in
∑

if the edge is convex/non-convex such that the pair/pairs fills the region between the two
adjacent face tetrahedra in the same side of T .
(5) For each vertex, the tangent plane defined by the vertex normal is contained in all the tetrahedra
containing the vertex. This condition is called tangent plane containment.

It should be noted that, for a given surface triangulation and normals assignment, T there may
exist infinitely many simplicial hulls or no simplicial hull may exist. We now describe a scheme
for constructing a simplicial hull for the surface triangulation T and prescribed vertex normal
assignment. We also enumerate the exceptional configurations where a simplicial hull of T is not
possible and then provide a solution for constructing the simplicial hull for a locally modified T .
1. Build Face Tetrahedra. For each face F = [p1p2p3] of T , let L be a straight line that is
perpendicular to the face F and passes through the center of the inscribed circle of F . Then choose
points p4 and/or q4 off each side of F to be the farthermost intersection points between L and the
tangent planes of the vertices of the face. If F is a non-convex face, two face tetrahedra [p1p2p3p4]
and [p1p2p3q4] are formed. If F is positive convex, then p4 is chosen on the side opposite to the
direction of the normals, and a single face tetrahedron [p1p2p3p4] is formed. If F is negative convex,
then q4 is chosen on the same side as the normals and again the single face tetrahedron [p1p2p3q4]
is formed. If F is zero convex, no tetrahedron needs to be built. Figure 18 shows the case where
both faces are convex and Figure 17 shows the cases where at least one of the two adjacent faces

29

p
p

p

p

p

n

n

n

n

n

T T

T

T

T

(p (p

(p

(p

(p

1

1

2

2

1 2

2

2

2

3

1

1

3

3

1

,n ,n

,n

,n

,n

1 2

2

3

1
))

)

)

)

(a)
(b)

Figure 19: Examples of (a) sharp edge and (b) sharp vertex.

p

p

p

p

p

p

q

q

q

q
q

1

11

11

12

12

13 13

14

14

15

15

p

p

p

p

p

p

p

q

q

q

q

q

q

qq

p

p

11

12

13

14

11

12

13

14

1

2

21

22

23

21

22

23
24

24
p

(a) (b)

Figure 20: The re-triangulation (a) sharp edge (b) and sharp vertex

is non-convex.
A sufficient condition for constructing face tetrahedra with tangent plane containment is that

the angle of the assigned normal ni at each vertex pi with each of the surrounding face’s normals
is less than π/2. If this condition is not met then an exception occurs and we term the vertex as
sharp. See Figure 19 (a).

A sufficient condition for adjacent face tetrahedra to be non-intersecting is as follows. For two
adjacent faces F = [p1p2p3] and F ′ = [p′1p2p3], the angle between them, denoted as ∠FF ′, is defined
as the outer dihedral angle if the edge between F and F ′ is negatively convex and inner dihedral
angle otherwise. For [p2p3] the common edge between F and F ′, let [p1p2p3p4] and [p′1p2p3p

′
4]

be the face tetrahedra respectively. Then the two tetrahedra are non-intersecting if the angles
∠[p4p2p3][p1p2p3] < 1

2∠FF
′ and ∠[p′4p2p3][p′1p2p3] < 1

2∠FF
′. If this condition is not met then an

exception may occur and we term the common edge [p2p3] as sharp. See Figure 19 (b).
A heuristic strategy rectify the sharp edge and sharp vertex configurations is a local retrian-

gulation of the original surface triangulation T . This strategy has worked well in several of the
experiment we have perfprmed.

(i) Sharp edge problem. Let [p1p2] be a sharp edge(see Figure 20(a)), and let [pipij] (i =
1, 2; j = 1, 2, · · · ki) be the remaining surrounding edges of pi in adjacency order. Take two spheres
S(pi, ri) with centers pi and radius ri, where ri are positive numbers that are less than the half of
the surrounding edge’s lengthes ‖pi − pij‖. The sharper one wants the constructed smooth surface
around the edge [p1p2], the smaller we take ri. Let qij be the intersection points of S(pi, ri) and
[pipij]. Then qi1, qi2, ..., qiki form two closed polygons, and pij , pij+1, qij+1, qij forms a four sided
closed polygons and finally, q11, q21, q2k2 , q1k1 forms another four sided closed polygon. Triangulate
these polygons (the dotted line in Figure 20(a)) by connecting adjacent edges of the polygons in
the least inner angle order.

(ii) Sharp vertex problem. Let p1 be a sharp vertex(see Figure 20(b)), and let [p1p1j]

30

(j = 1, 2, · · · k) be the surrounding edges of p1 in adjacency order. Take a sphere S(p1, r) with
center p1 and radius r, where r is positive number that is less than the half of the surrounding
edge’s lengthes ‖p1 − p1j‖. The sharper one wants the constructed smooth surface around the
vertex p1, the smaller we take r . Let q1j be the intersection points of S(p1, r) and [p1p1j]. Then
q11, q12, ..., q1k form a closed polygon, and p1j , p1j+1, q1j+1, q1j forms a four sided closed polygon.
Triangulate these polygons (the dotted line in Figure 20(b)) by connecting the adjacent edges of
the polygon in the least inner angle.
2. Build Edge Tetrahedra. Let [p2p3] be an edge of T and [p1p2p3] and [p′1p2p3] be the two
adjacent faces. Let [p1p2p3p4] and/or [p1p2p3q4], and [p′1p2p3p

′
4] and/or [p′1p2p3q

′
4] be the face

tetrahedra built for the faces [p1p2p3] and [p′1p2p3], respectively. Then if the edge [p2p3] is non-
convex, two pair tetrahedra need to be constructed. The first pair [p′′1p2p3p4] and [p′′1p2p3p

′
4] are

between [p′1p2p3p
′
4] and [p1p2p3p4]. The second pair [q′′1p2p3q4] and [q′′1p2p3q

′
4] are between [p′1p2p3q

′
4]

and [p1p2p3q4]. Here p′′1 ∈ (p4p
′
4) or is above (p4, p

′
4), say

p′′1 =
(1− t)

2
(p2 + p3) +

t

2
(p′4 + p4), t ≥ 1

so that p′′1 is above plane [p1p2p3] and plane [p′1p2p3]. Similarly, q′′1 ∈ (q4q
′
4) or is below (q4, q

′
4), say

q′′1 =
(1− t)

2
(p2 + p3) +

t

2
(q′4 + q4), t ≥ 1

so that q′′1 is below plane [p1p2p3] and plane [p′1p2p3]. If the edge [p2p3] is positive/negative convex,
only the first/second pair above are needed. If the edge [p2p3] is zero convex, no tetrahedron is
needed here. It should be noted that p4 and p′4(q4 and q′4) are always visible.

2.7 Construction of a C1 Interpolatory Surface using Cubic A-Patches

Having established a simplicial hull
∑

for the given surface triangulation T and a set of vertex
normals N , we now construct a C1 function f on the hull

∑
such that

f(pi) = 0, ∇f(pi) = ni, i = 1, 2, . . . , k (34)

and the zero contour of f within
∑

forms a C1 continuous single sheeted surface with the same
topology as T .

2.7.1 The Construction of a Piecewise C1 Cubic Function

The construction of the function f over two adjacent faces of T are divided into the following three
cases:

(a). Both the faces are non-convex;
(b). Both the faces are convex;
(c). One of them is convex and the other is non-convex.

(a). Both the faces are non-convex
Let F = [p1p2p3] and F ′ = [p′1p2p3] be two adjacent non-convex faces. Then we have double

tetrahedra [p1p2p3p4] and [p1p2p3q4] for F and double tetrahedra [p′1p2p3p
′
4] and [p′1p2p3q

′
4] for F ′(see

Figure 21). Let

V1 = [p1p2p3p4], V2 = [p′1p2p3p
′
4], W1 = [p′′1p2p3p4], W2 = [p′′1p2p3p

′
4]

V ′1 = [p1p2p3q4], V ′2 = [p′1p2p3q
′
4], W ′1 = [q′′1p2p3q4], W ′2 = [q′′1p2p3q

′
4]

and the cubic polynomials fi over Vi, gi over Wi, f ′i over V ′i and g′i over W ′i be expressed in
Bernstein-Bezier forms with coefficients aiλ, b

i
λ, c

i
λ, and diλ, i = 1, 2, respectively. Now we shall

determine these coefficients.

31

p

p

p"
p’

qq’
q"

2

3

4

4 4

p
4

0003
3000 0003

3000

3000

0300

1200

21000210

0120

0030
1020

2010

1110

0201

1101

20011011

0021

0102

1002
0012

0003

0003

3000

2010 1011

11012100

1020

1110

1200

10022001

0111

1

1

V

W
W

V

V

W W

V’

’’

’

2

1

1

1

12

2

2 ~

~

~ ~

~

~

~
~

f

f’

g’ g’

f’

f

g
g

2

2

2 1

1

1

2

~ a

~ c

~ d ~d

~ c

~ a

~ b
~ b

2

2

1

1

1

1
2

2

1

p’

p
1

1

negative control point

positive control points

zero control point

sign undetermined

Figure 21: Adjacent tetrahedra, functions and control points for two non-convex adjacent faces

C0 Continuity: If two tetrahedra share a common face, we equate the control points of the
associated cubic polynomials on the common face(see Lemma 2.2):

aiλ1λ2λ30 = ciλ1λ2λ30, ai0λ2λ3λ4
= bi0λ2λ3λ4

, b1λ1λ2λ30 = b2λ1λ2λ30

ci0λ2λ3λ4
= di0λ2λ3λ4

, d1
λ1λ2λ30 = d2

λ1λ2λ30

Interpolation: Since zero contours of fi f ′i and gi and g′i pass through p2 and p3, aiλ = biλ = ciλ =
diλ = 0 for i = 1, 2 and λ = 0300, 0030.

Normal Condition: We have, for j = 2, 3

a1
2ej+e1

= 1
3(p1 − pj)Tnj , a2

2ej+e1
= 1

3(p′1 − pj)Tnj
a1

2ej+e4
= 1

3(p4 − pj)Tnj , a2
2ej+e4

= 1
3(p′4 − pj)Tnj ,

b12ej+e1 = 1
3(p′′1 − pj)Tnj , d1

2ej+e1
= 1

3(q′′1 − pj)Tnj ,
c1

2ej+e4
= 1

3(q4 − pj)Tnj , c2
2ej+e4

= 1
3(q′4 − pj)Tnj

(35)

C1 Conditions: At present, set ai2e4+ej
, ci2e4+ej

, j = 1, 2, 3, 4 , bi2001, and di2001 to any value(free
parameters) and determine the other control points

1. Interface of [p2p3p4] and [p2p3p
′
4]. Suppose

p′′1 = β1
1p1 + β1

2p2 + β1
3p3 + β1

4p4, β1
1 + β1

2 + β1
3 + β1

4 = 1
p′′1 = β2

1p
′
1 + β2

2p2 + β2
3p3 + β2

4p
′
4, β2

1 + β2
2 + β2

3 + β2
4 = 1

(36)

Then, the C1 conditions require(see Lemma 2.2)

bi1λ2λ3λ4
= βi1a

i
1λ2λ3λ4

+ βi2a
i
0λ2λ3λ4+0100 + βi3a

i
0λ2λ3λ4+0010 + βi4a

i
0λ2λ3λ4+0001 (37)

for λ2λ3λ4 = 002, 101, 011, 110. Hence bi1002, bi1101, and bi1011 are defined, leaving ai1011 and
ai1101 to be determined. Equation (37) for λ2λ3λ4 = 110 will be treated later.

2. Interface at [p2p3p
′′
1]. Let

p′′1 = µ1p4 + µ2p
′
4 + µ3p2 + µ4p3, µ1 + µ2 + µ3 + µ4 = 1 (38)

32

then C1 conditions require

biλ1λ2λ30+1000 = µ1b
1
λ1λ2λ31 + µ2b

2
λ1λ2λ31 + µ3b

i
λ1λ2λ30+0100 + µ4b

i
λ1λ2λ30+0010 (39)

for λ1λ2λ3 = 200, 110, 101, 011. Hence bi3000, bi2100, and bi2010. are defined. The equation for
λ1λ2λ3 = 011 will be treated later together with (37).

3. Interface between [p2p3q4], [p2p3q
′′
1] and [p2p3q

′
4]. All control points of g′i and some of the

control points of f ′i can be fixed as fi and gi. That is, the relations (37)–(39) hold when
the quantities a′s, b′s, β′s, µ′s are substituted by c′s, d′s, γ′s, η′s respectively. The two
untreated equations left are

di1110 = γi1a
i
1110 + γi2a

i
0210 + γi3a

i
0120 + γi4c

i
0111 (40)

di1110 = η1c
1
0111 + η2c

2
0111 + η3a

i
0210 + η4a

i
0120 (41)

where the coefficients γi and ηi are defined by

q′′1 = γ1
1p1 + γ1

2p2 + γ1
3p3 + γ1

4q4, γ1
1 + γ1

2 + γ1
3 + γ1

4 = 1
q′′1 = γ2

1p
′
1 + γ2

2p2 + γ2
3p3 + γ2

4q
′
4, γ2

1 + γ2
2 + γ2

3 + γ2
4 = 1

q′′1 = η1q4 + η2q
′
4 + η3p2 + η4p3, η1 + η2 + η3 + η4 = 1

(42)

4. Interface between [p1p2p3] and [p′1p2p3]. Let

q4 = α1
1p1 + α1

2p2 + α1
3p3 + α1

4p4, α1
1 + α1

2 + α1
3 + α1

4 = 1
q′4 = α2

1p
′
1 + α2

2p2 + α2
3p3 + α2

4p
′
4, α2

1 + α2
2 + α2

3 + α2
4 = 1

(43)

Then we have
ci0111 = αi1a

i
1110 + αi2a

i
0210 + αi3a

i
0120 + αi4a

i
0111 (44)

Now we treat the equations (37), (39), (40), (41) and (44). It follows from (37), (39), (40)
and (41) that

µ1a
1
0111 + µ2a

2
0111 + µ3a

i
0210 + µ4a

i
0120 = βi1a

i
1110 + βi2a

i
0210 + βi3a

i
0120 + βi4a

i
0111 (45)

η1c
1
0111 + η2c

2
0111 + η3a

i
0210 + η4a

i
0120 = γi1a

i
1110 + γi2a

i
0210 + γi3a

i
0120 + γi4c

i
0111 (46)

Therefore, (44)–(46) form a linear system with six equations and six unknowns ai0111, ai1110,
ci0111 for i = 1, 2. It is important to point out that this is not an independent system(see
Theorem 5.1 for the solvability of the system). It has 4 independent equations and has
infinitely many solutions. In fact, if we assume p1, p2, p3, p

′
1 are not coplanar and then denote

p4 = θ1
1p1 + θ1

2p2 + θ1
3p3 + θ1

4p
′
1, θ1

1 + θ1
2 + θ1

3 + θ1
4 = 1

p′4 = θ2
1p1 + θ2

2p2 + θ2
3p3 + θ2

4p
′
1, θ2

1 + θ2
2 + θ2

3 + θ2
4 = 1

q4 = ϑ1
1p1 + ϑ1

2p2 + ϑ1
3p3 + ϑ1

4p
′
1, ϑ1

1 + ϑ1
2 + ϑ1

3 + ϑ1
4 = 1

q′4 = ϑ2
1p1 + ϑ2

2p2 + ϑ2
3p3 + ϑ2

4p
′
1, ϑ2

1 + ϑ2
2 + ϑ2

3 + ϑ2
4 = 1

(47)

then we can derive from (45) and (46) that

ai0111 = θi1a
1
1110 + θi2a

i
0210 + θi3a

i
0120 + θi4a

2
1110 (48)

ci0111 = ϑi1a
1
1110 + ϑi2a

i
0210 + ϑi3a

i
0120 + ϑi4a

2
1110 (49)

If the edge [p2p3] is nonnegative (or non-positive) convex, ai1110(or ci1110) are free and equation
(49) (or (48)) is removed, since we do not need the function g′1 and g′2(or g1 and g2). The free
parameters ai1110(or ci1110) may be determined by approximating a quadratic(see §6 or [87]).

33

b. Both faces are convex.
(b1). Both faces are nonnegative (or non-positive) convex.
Following the discussion of (a), the scheme for determining the control points are as before,

except for the following:

1. Only half the control points are needed. That is, we need aiλ, biλ for functions fi and gi if F
and F ′ are nonnegative convex, or ciλ, diλ for functions f ′i and g′i if F and F ′ are non-positive
convex.

2. ai1110 (or ci1110) can be determined freely. One way to choose ai1110 (or ci1110) is to make the
cubic approximate a quadratic (see §6). In particular, ai1110 = 0 (or ci1110 = 0) if the face is
zero convex.

3. We now need only (48) for unknowns a1
0111 and a2

0111 if the edge [p2p3] is nonnegative convex,
or (49) for unknowns c1

0111 and c2
0111 if the edge [p2p3] is non-positive convex.

(b2). One positive convex face and one negative convex face.
In this case, the common edge must be zero convex. Suppose F is positive convex and F ′ is

negative convex. All the control points are determined as before except for the following:

1. We need to only construct fi, gi and f ′2, that is, c1
λ, diλ are not needed. The functions gi and

f2 have no contribution to the surface, and are used for smooth transition from f1 to f ′2.

2. a1
1110 ≥ 0 and c2

1110 ≤ 0 can be determined freely(see §6).

3. we need only have (44) for i = 2 and (48) for unknowns a1
0111, a2

0111 and c2
0111.

(b3). Both faces are zero convex.
This case in fact is included in case (b1). The surface is defined directly as the planar faces of

the surface triangulation. No function needs to be constructed.
c. One convex face and one non-convex face.

Suppose [p1p2p3] is convex, [p′1p2p3] is non-convex. Following are the exceptions:

1. The function f ′1 and g′i and their control points c1
λ, diλ are not needed if F is nonnegative

convex. The function f1 and gi and their control points a1
λ, biλ are not needed if F is non-

positive convex.

2. a1
1110 ≥ 0 (or c1

1110 ≤ 0) and a2
1110 (c2

1110) can be determined freely as in case (b). In particular,
a1

1110 = 0 (or c1
1110 = 0) if [p1p2p3] is zero convex.

3. For the treatment of equations (44)–(46), we need only have (44) for i = 2 and (48) for
unknowns a1

0111, a2
0111 and c2

0111 if the edge [p2p3] is nonnegative convex, or solve (44) for
i = 2 and (46) for unknowns c1

0111, c2
0111 and a2

0111 if the edge [p2p3] is non-positive convex(see
Theorem 5.1 (ii) for the solvability of the system).

d. Coplanarity of adjacent faces
In the discussions above, we have assumed that p1, p

′
1, p2, p3 are affine independent. If p1, p

′
1, p2, p3

are coplanar, then the coefficient matrices of the linear systems (45) and (46) are singular. However,
the system (44)–(46) are still solvable(see Theorem 5.1) taking ai0111 or ci0111 as free parameters.
The other unknowns are given directly by these equations. Since the parameters ai1110, i = 1, 2
become now dependent, they are overly determined and a solution may be not possible. In this
case we split the involved tetrahedron into sub-tetrahedra by subdividing the triangles [p1p2p3] and
[p′1p2p3] into three subtriangles at their center points w and w′ (a Clough-Tocher split). A solution
is now possible where the coefficients are specified as before by regarding w as p1 and w′ as p′1.

34

0-th layer 1st layer 2nd layer

Figure 22: Control points of 0th, 1st and 2nd layers

We then need to determine the remaining coefficients over the sub-tetrahedra U1 = [p2p3p4w],
U2 = [p1p3p4w], and U3 = [p1p2p4w] such that the C1 condition is satisfied. In fact, since w ∈
[p1p2p3], the coefficients on the same layer are C1 related. For the 0-th layer (see Figure 22), the
control points labeled • are thus already determined. The control points ◦ are determined by a
coplanar condition with surrounding •. Finally, the point � is determined from the surrounding
three points ◦ by the coplanar condition.

For the 1st layer (see Figure 22), the control points labeled ◦ and � are similarly determined
as the 0-th layer. For the 2nd layer (see Figure 22), the control points ◦ are arbitrarily chosen and
� is determined by the coplanar condition. Finally, the 3rd layer coefficient is free.

2.7.2 The Solvability of the Related System

Concerning the solvability of the system (44)–(46) and its sub-system, we have the following result.

Theorem 5.1 Given two affine independent point sets (p2, p3, p
′
4, p4) and (p2, p3, q

′
4, q4) as in Figure

21. (i) The system (44)–(46) has four independent equations. If (p1, p
′
1, p2, p3) is affine independent,

then (45) and (46) are four independent equations for the unknowns ai0111 and ci0111 for i = 1, 2.
(ii) Let {r1, · · · , r6} = {p1, p

′
1, p4, p

′
4, q
′
4, q4}, {x1, · · · , x6} = {a1

1110, a
2
1110, a

1
0111a

2
0111, c

1
0111, c

2
0111}.

For any 1 ≤ i < j ≤ 6, if ri, rj , p2, p3 are affine independent, then

xk = φk1xi + φk2xj + φk3a
1
0210 + φk4a

1
0120, k 6= i, j (50)

where φkl are defined by rk = φk1ri + φk2rj + φk3p2 + φk4p3, φk1 + φk2 + φk3 + φk4 = 1.

2.8 Construction of Single Sheeted A-Patches

Having built C1 cubics with some free control points, we now illustrate how to determine these
free control points such that the zero-contours are three-sided or four-sided A-patches (smooth and
single sheeted).

We assume (without loss of generality) that all the normals point to the same side of the surface
triangulation T . That is the side on which q4 and q′4 lie(see Figure 21). Under this assumption, it
follows from Definition 4.1 and equation (35) that, the control points on the edge, say ai0210, a

i
0120

on edge [p2p3](see Figure 21), are non-negative if the edge is non-negative convex, and non-positive
if the edge is non-positive convex. Now we can divide all the control points into 7 groups called
layers. The 0-th layer are the control points that are ”on” the faces of T . The 1st layer is next
to the 0-th layer but opposite to the normal direction, followed by the 2nd and 3rd layers. Next
to the 0-th layer and on the same side as the normal, is the −1st layer, then the −2nd and −3rd
layers. Now we show that, we can make all the control points on the 2nd and 3rd layers negative
and the control points on the −2nd and −3rd layers positive.

35

For the face-tetrahedra, it is always possible to make the 2nd and 3rd layers control points
negative, because these control points are free under the C0 condition. For the control points on
the edge-tetrahedra, it follows from (37) that the 2nd and 3rd layers control points can be negative
only if the 2nd layer control points on the neighbor face-tetrahedra are small enough. This is
achieved since βi4 in (37) is positive(see the proof of Proposition 5.3 for details). Similarly, the
control points on the −2nd and −3rd layers can be chosen to be positive. Furthermore, all these
control points can be chosen as large as one needs in absolute value in order to get single sheeted
patches.

Since the control points around the vertices of T are determined by the normals, the smooth
vertices condition is obviously satisfied. If the surface contains the edge [p2p3](see Figure 21), then
since ai1110(or ai0111) is freely chosen, the smooth edges condition is easily satisfied(see the proof of
Proposition 5.3). Referring to Figure 5.1, we prove in the following that the patches constructed
over V1 and W1 are single sheeted. The other patches are similar.

Proposition 5.2. If the face [p1p2p3] is non-negative convex, then the control points can be deter-
mined so that the surface over V1 is a three-sided 4-patch.

Proposition 5.3. If the edge [p2p3] is non-negative convex, then the control points can be deter-
mined such that the surface over W1 is a four-sided 14-23-patch.

Subdivision. For any face of T = [p1, p2, p3], if it is non-convex and if the three inner products of
the face normal and its three adjacent face normals have different signs, then subdivide the double
face tetrahedra into 6 subtetrahedra by adding a vertex at the center w of the face(a Clough-Tocher
split). The coefficients are specified as before by regarding w as p1(see Figure 21).
Proposition 5.4. If the above subdivision procedure above is performed, then the control points
can be chosen so that the surface over V1 is a three-sided 4-patch, and the surface over W1 is a
four-sided 14-23-patch.

These propositions guarantee that the surface constructed are single sheeted.

2.9 Shape Control

From the discussion of §5, there are several parameters that can influence the shape of the con-
structed C1 surface. These parameters include (a) the length of the normal if its orientation is
fixed, (b) ai1110, and (c) ai0102 < 0, ai1002 < 0 ai0012 < 0, ai0003 < 0 and bi2001 < 0 for i = 1, 2.

(a). Interactive Shape Control
The influence of the length of a normal at a vertex is as follows: if the normal becomes longer

then the surface becomes flatter at this point. Parameter a1110 lifts the surface upwards to the
top vertex of the tetrahedron, while others push the surface downwards toward the bottom of the
tetrahedron. In order to get a desirable surface, one may specify some additional data points in
the tetrahedron considered, then approximate these points in the least square sense.

(b). Default Shape Control
Here we only consider the effect of the free parameters, that is, suppose the normal is fixed. The

aim of the default choice of these parameters is to avoid producing bumpy surfaces. The commonly
used method is to keep the surface patch close to a quadric patch([11, 87]).

By least squares approximation of the coefficients of a quadric ([87]), one can derive that

a1110 =
1
4

(a1200 + a2100 + a2010 + a1020 + a0210 + a0120)

Using the same idea, the other parameters can also be determined. For example, aλ for λ4 > 1
can be determined by the degree elevation formula

aλ =
1
3

4∑
i=1

λixλ−ei , |λ| = 3, λ4 > 1 (51)

36

Figure 23: Interactive shape control.

Figure 24: Interactive shape control.

where xλ−ei is the solution of the following equations in the least squares sense

aλ =
1
3

4∑
i=1

λixλ−ei , |λ| = 3, λ4 = 0, 1

In the same way, b2001 can be determined. Therefore, under the C1 conditions, we can define
two sets of control points {asλ} and {aqλ} over V1, where {asλ} is yielded from the single sheeted
consideration(see Proposition 5.2–5.6), and {aqλ} comes from approximating a simple(quadratic)
surface. Note that the surface defined by {asλ} above may not be desirable in shape, while the
surface defined by {aqλ} above may not be single sheeted. In our implementation we take a finite
sequence 0 = t0 < t1 < · · · < tm = 1 and consider {a(i)

λ } = {(1 − ti)aqλ + tia
s
λ}, i = 0, 1, · · · ,m

selecting the single sheeted surface defined by {a(i)
λ } for smallest index i. Experiments show that

this approach works well and a desirable surface is obtained with ti < 0.5. Examples are shown in
Figures 13, 14, and 15 and in the figures below.

2.10 Curvilinear Patch Construction

2.10.1 Constructions of Wire Frames

For each edge of the triangulation, we shall construct a space curve and a normal function(for G1

smoothness) such that the curve interpolates the end points of the edge and has the given normal,
and the normal function interpolates the given normals and is orthogonal to the tangent of the
curve. The normals at these vertices are defined by the original surface normals. However, at the

37

Figure 25: Interactive shape control.

Figure 26: Interactive shape control.

Figure 27: Interactive shape control.

Figure 28: Interactive shape control.

38

Figure 29: Interactive shape control.

Figure 30: Interactive shape control.

Figure 31: Interactive shape control.

39

singular points of the surface, the normals are not defined. Hence the space curve and the normal
function will not have normal conditions there. In the following, the construction of the wire frame
on an edge is considered in different cases according to having two normals, one normal and no
normal:
Problem 1. Given an edge [p0, p1] and two normals n0 n1 (i) find a space curve C(t) =
[X(t), Y (t), Z(t)]T such that

C(0) = p0, c(1) = p1 (52)
nT0 C

′(0) = 0, nT1 C
′(1) = 0 (53)

and (ii) find a normal function n(t) on C(t) such that

n(0) = n0, n(1) = n1 (54)
nT (t)C ′(t) ≡ 0, t ∈ [0, 1]. (55)

This is the general case that happens when we handle the smooth part of the surface.
Problem 2. Given an edge [p0, p1] and one normal n0 or n1, (i) find a space curve C(t) =
[X(t), Y (t), Z(t)]T such that (52) holds and

nT0 C
′(0) = 0, or nT1 C

′(1) = 0 (56)

and (ii) find a normal function n(t) on C(t) such that

n(0) = n0, or n(1) = n1 (57)

and (55) holds.
This problem rises when an edge has a smooth end point and a singular end point.

Problem 3. Given an edge [p0, p1], (i) find a space curve C(t) = [X(t), Y (t), Z(t)]T such that
(52) holds and (ii) find a normal function n(t) on C(t) such that (55) holds.

This problem rises when an edge has two singular end-points.

Conic Space Curve With Minimum Energy Solution of Problem 1(i). Let C(t) =
At2 + Bt+ C, with A, B, C ∈ IR3. Then by (52), we have C = p0, A = p1 − p0 − B. From (53),
it follows that

[n0, n1]TB =
[

0
2nT1 (p1 − p0)

]
(58)

A. If n0, n1 are linearly dependent, we must have

nT1 (p1 − p0) = 0, (59)

otherwise, equation (58) has no solution. If (59) is true, we take A = 0, B = p1 − p0, then
equations (52)–(53) are satisfied.

B. If n0, n1 are linearly independent, then equation (58) has many solutions. Let n2 =
n0 × n1/||n0 × n1||, where × denotes cross product and || · || denotes the Euclidean norm.
Then B can be expressed as B = αn2 + [n0, n1]β, β ∈ IR2. From equation (58), we have

[n0, n1]T [n0, n1]β =
[

0
2nT1 (p1 − p0)

]
(60)

40

That is, β is determined uniquely by (60) and α is arbitrary. For simplicity, denote

B = n3 + αn2 with n3 = [n0, n1]β
A = p1 − p0 −B = n4 − αn2

Now we take α, such that the energy of the curve C(t) is minimal:
∫ 1

0 ||C
′(t)||2dt = min. Since

C ′(t) = 2At+B,∫ 1
0 ||C

′(t)||2dt = 4
3A

TA+ 2ATB +BTB
= 1

3n
T
2 n2α

2 − 2
3n

T
4 n2α+ 4

3n
T
4 n4 + 2nT4 n3 + nT3 n3

From d
dα

∫ 1
0 ||C

′(t)||2dt = 0, we get the α that minimize the energy: α = nT4 n2 = (p1 − p0)Tn2.
Therefore

B = [n0, n1]β + n2(p1 − p0)Tn2

Lemma 5.1. If n0, n1 are linearly independent, the space curve interpolation problem 1(i) by conic
has unique minimum energy solution.

Solution of Problem 2(i). Suppose we are given a normal n0 at p0, we shall construct C(t) =
At2 +Bt+ C such that the curve is in the plane span(n0, p1 − p0) spanned by n0 and p1 − p0.

If nT0 (p1 − p0) 6= 0, then as before, C = p0, A = p1 − p0 − B and nT0 B = 0. Furthermore, B is
in the plane span(n0, p1 − p0). These requirements lead to

B = αn2, with n2 = n0(p1 − p0)Tn0 − (p1 − p0)nT0 n0

where α is parameter that is determined by minimizing the energy of the curve that leads to
α = (p1 − p0)Tn2/n

T
2 n2. If nT0 (p1 − p0) = 0, we take A = 0, B = p1 − p0, C = p0.

Similarly, if we are given a normal n1 at p1, then if nT1 (p1 − p0) 6= 0, we have

B = 2(p1 − p0) + αn2, C = p0, A = p1 − p0 −B

with
α = (p0 − p1)Tn2/n

T
2 n2, n2 = n1(p0 − p1)Tn1 − (p0 − p1)nT1 n1

Again, if nT1 (p1 − p0) = 0, we take A = 0, B = p1 − p0, C = p0.
Therefore, problem 2(i) always have conic solution.

Solution of Problem 3(i). Now we simply take C(t) be a linear curve. That is A = 0, B =
p1 − p0, C = p0, Therefore, problem 3(i) always have linear solution.

Normal Function on Conic Space Curve Solution of Problem 1(ii). Let

n(t) = (Dt+ E)/(1 + wt),

be the normal function, where D, E ∈ IR3, w ∈ IR. Then by (54) we have

E = n0, D = n1 − n0 + wn1

Since the numerator of nT (t)C ′(t) is a polynomial of degree 2 in t and nT (t)C ′(t) = 0 when
t = 0 and t = 1, (55) holds if there is another point in [0,1] such that (55) holds. Take t = 1

2 then by

nT (1
2)C ′(1

2) = 0, we have 1 + w = −n
T
0 C
′(1)

nT1 C
′(0)

. Since C ′(0) = B, C ′(1) = 2A+B = 2(p1 − p0)−B,

it follows from (58) that

1 + w = −n
T
0 (p1 − p0)
nT1 (p1 − p0)

41

n
0

n
0

n
1

n
1

p
0

p
0

p
1

p
1

Good Case Bad Case

Figure 32: The normal pattern.

The good w should make 1 + w > 0, i.e., n(t) has no pole in [0,1]. This requires that nT0 (p1 − p0)
and nT1 (p1 − p0) have opposite signs(see Fig. 2.1).

Lemma 5.2. If nT0 (p1 − p0)/nT1 (p1 − p0) < 0, there exist unique linear rational normal function
n(t) on C(t) such that (54) and (55) are satisfied.

Solution of Problem 2(ii). Now we are given only one normal, say, n0 at p0. We specify a normal
n1 at p1 by taking n1 to be the normal of C(t) at p1 such that n1 in the plane span(n0, p1−p0) and
point to the same side of the edge [p0, p1] as n0. This normal is uniquely defined and the condition
in Lemma 2 is satisfied if nT0 (p1−p0) 6= 0. Hence the results above can be used. If nT0 (p1−p0) = 0,
the constant normal function n(t) = n0 satisfies the required condition.

Solution of Problem 3(ii). This case happen when the edge is on a singular curve. Now we can
not expect that the constructed surface is smooth. Here the normal function will be constructed
sereral times according to which triangle the edge belongs to. For a specified triangle that contains
the edge, we take the normals at the end points of the edge to be the other edges curves normals
at the corresponding points. Then the normal function is defined to be the linear function that
has the two normals at the end points. Since an edge on singular curve of the original surface will
be shared by several triangles, the normal function will be defined as many times as the triangles.
However, the space curve on this edge is defined uniquely. Therefore, the surface constructed here
is continuous but not smooth.

Cubic Space Curve With Minimum Energy Since conic space curve does not always exist
for problem 1, we may use cubic space curves instead. Let C(t) = At3+Bt2+Ct+D. We determine
A, B, C, D ∈ IR3 such that

C(0) = p0, C(1) = p1, C(1/2) = p2, (61)
nT0 C

′(0) = 0, nT1 C
′(1) = 0 (62)

From (61)
D = p0, A = p1 − p0 −B − C, B = 8(p2 − p0)− (p1 − p0)− 3C

So we need to determine C. It follows from (62) that

[n0, n1]TC =
[

0
4nT1 (2p2 − p1 − p0)

]
(63)

A. If n0, n1 are linearly dependent, we must choose p2 such that

nT1 p2 =
1
2
nT1 (p1 + p0) (64)

42

Let n3, n4 satisfy nT0 n3 = nT0 n4 = nT3 n4 = 0 and ||n3|| = ||n4|| = 1. Then the solution of (63) can
be expressed as C = αn3 + βn4. It is not difficult to calculate that when α = (4p2 − p1 − 3p0)Tn3,
β = (4p2−p1−3p0)Tn4, the energy

∫ 1
0 ||C

′(t)||2dt of the curve C(t) achieves minimal. We can take

n4 = (2p2 − p1 − p0)/||2p2 − p1 − p0||, n3 = n1 × n4

Then
α = (p1 − p0)Tn3, β = 2||2p2 − p1 − p0||+ (p1 − p0)Tn4

Theorem 5.3. If n0, n1 are linearly dependent, then if p2 satisfies (64) and

(p2 − p0)Tn1 6= 0, det[p2 − p1, p2 − p0, n1] 6= 0

then the matrix [A,B,C] is nonsingular.
Proof. Since nT1 n3 = nT0 n4 = nT3 n4 = 0, we have α = (p1 − p0)Tn3 6= 0. Otherwise we are lead

to (p2 − p0)Tn3 = 0 and then [p2 − p1, p2 − p0, n1]Tn3 = 0. This contradicts the nonsingularity of
[p2 − p1, p2 − p0, n1] and n3 6= 0. Hence [A,B,C] ∼= [p2 − p1, p2 − p0, C] ∼= [n4, p2 − p0, n3]. Since
n4, p2− p0 and n1 are linearly independent by the assumption of the theorem, n3 can be expressed
as n3 = an4 + b(p2−p0) + cn1. Then by timing n3 on this equality we know that b 6= 0 and then by
timing n1 on the same equality we get c 6= 0. Therefore the matrix [n4, p2 − p0, n3] is nonsingular.

B. If n0, n1 are linearly independent, then equation (63) has many solutions. Let n2 =
n0 × n1, ||n2|| = 1. Then C can be expressed as C = αn2 + [n0, n1]β, β ∈ IR2. where

β is determined uniquely by [n0, n1]T [n0, n1]β =
[

0
4nT1 (2p2 − p1 − p0)

]
, and α, which make the

energy of the curve C(t) to be minimal, is α = (4p2 − p1 − 3p0)Tn2.

Normal Function on Cubic Space Curve Let the normal function n(t) be in the form n(t) =
Et2 + Ft+G that satisfies

n(0) = n0, n(1) = n1, nT (t)C ′(t) ≡ 0, t ∈ [0, 1]. (65)

Since nT (t)C ′(t) is a polynomial of degree 4 and it vanishes at t = 0 and t = 1, we need to choose
three points, say t = 1/4, 1/2, 3/4, such that (65) holds. Since G = n0, E = n1−n0−F , we have,
for unknow vector F , the following equations

C ′(1/4)T (1/16(n1 − n0 − F) + 1/4F + n0) = 0
C ′(1/2)T (1/4(n1 − n0 − F) + 1/2F + n0) = 0
C ′(3/4)T (9/16(n1 − n0 − F) + 3/4F + n0) = 0

The coefficient matrix of this equation is equivalent to the matrix [A,B,C]. Hence the equation
has unique solution iff the matrix [A,B,C] is invertible. If the the matrix is singular, one can solve
the equation by the least square approximation.

2.10.2 Parametric Surface Patches Interpolation

Suppose we are given a triangular wire frame Ci(t), i = 0, 1, 2 and furthermore normal functions
ni(t), i = 0, 1, 2, such that p1 = C0(0) = C2(1), p2 = C0(1) = C1(0), p3 = C1(1) = C2(0), and
CTi (t)ni(t) = 0. We want to construct a parametric patch X(u, v) = [x(u, v) y(u, v) z(u, v)]. that
covers the given wire frame (for G0 continuity) and further has the given normal (for G1 continuity)
on the wire frame, where u, v, w are barycentric coordinate systems with w = 1− u− v.

43

2.10.3 G0 Interpolation

Covering conic wire frame
Since the degree of the space curve is 2, we choose one more point on each edge of the triangle

in addition to the vertices. Let pi+4 = Ci(1
2), i = 0, 1, 2. Then we have six points (pi, i = 1, . . . , 6).

Now find a polynomial P2 of degree 2 such that

P2(Vi) = pi, i = 1, 2, 3
P2(V1+V2

2) = p4

P2(V2+V3
2) = p5

P2(V3+V1
2) = p6

(66)

The coefficient matrix of (66)

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 1

4
1
2

1
4

1
4 0 1

2 0 0 1
4

1
4

1
2 0 1

4 0 0

 is nonsingular, hence equation (66) has an

unique solution.

Covering cubic wire frame
Since the degree of the space curve now is 3, we need to choose two more points on each edge of

the triangle in addition to the vertices. Let pi+4 = Ci(1
3), pi+7 = Ci(2

3), i = 0, 1, 2. Then we have
nine points (pi, i = 1, . . . , 9). Now find a polynomial P3 of degree 3 such that

P3(Vi) = pi, i = 1, 2, 3
P3(V1+2V2

3) = p4, P3(2V1+V2
3) = p7

P3(V2+2V3
3) = p5, P3(2V2+V3

3) = p8

P3(V3+2V1
3) = p6, P3(2V3+V1

3) = p9

Since P3 has ten coefficients, one more equation P3(V) = p is needed, where V = (u, v, w) is any
given point inside the triangle and p ∈ IR3 that can be used to control the shape of the patch.

It is easy to check that the resulted system of linear equations has nonsingular coefficient matrix
for any V inside the triangle.

G1 Interpolation We now want to construct the surface patch such that it has the given normal
on the wire frame. The composite surface constructed in this way is therefore tangent plane
continuous (G1).

Covering conic wire frame
The patch is defined in the following form

P (u, v, w) = P2(u, v, w) + uvwP1(u, v, w)

where P2 is a BB-form polynomial of degree 2 that covers the conic wire frame. P1 is a rational
function in the form of

P1(u, v, w) =
uvPw + uwPv + vwPu

uv + uw + vw
(67)

and Pu, Pv and Pw are polynomial of degree 0 to be determined such that G1 continuity is guaran-
teed.

Since variable t in Ci(t) and ni(t) can be changed into (1 − t), we may assume, without loss
of generality, that t is increased from 0 to 1 when point goes from (0,1,0) to (0,0,1), from (0,0,1)

44

w

v

u

(1,0,0)

(0,1,0)

(0,0,1)

C
2

(t) = C
2

(v)

n
2

(t) = n
2
(v)

C
1

(t) = C
1

(u)

n
1

(t) = n
1

(u)

C
0

(t) = C
0

(w)

n
0

(t) = n
0

(w)

Figure 33: The split triangular wireframe.

to (1,0,0) and from (1,0,0) to (0,1,0) (see Figure 33). Hence variable of C0 and n0 is w, C1 and
n1 is u, C2 and n2 is v. Now we determine P1 such that tangent plane determined by the span of
(∂P∂u ,

∂P
∂v) are orthogonal to normal functions ni(t) on Ci(t)

A. when u = 0
∂P

∂u
=
∂P2

∂u
− ∂P2

∂w
+ vwP1 (68)

∂P

∂v
=
∂P2

∂v
− ∂P2

∂w
=

d

dw
(P2(0, 1− w,w) = −C ′0(w) (69)

B. when v = 0

∂P

∂u
=
∂P2

∂u
− ∂P2

∂w
=

d

du
P2(u, 0, 1− u) = C ′1(u) (70)

∂P

∂v
=
∂P2

∂v
− ∂P2

∂w
+ uwP1 (71)

C. when w = 0
∂P

∂u
=
∂P2

∂u
− ∂P2

∂w
− uvP1 (72)

∂P

∂v
=
∂P2

∂v
− ∂P2

∂w
− uvP1 (73)

and further
∂P

∂v
− ∂P

∂u
=
∂P2

∂v
− ∂P2

∂u
=

d

dv
(P2(1− v, v, 0)) = C ′2(v) (74)

By the definition of ni(t), we have C ′i(t)
Tni(t) = 0, so we need to have by (68), (71) and (72)(

∂P2

∂u
− ∂P2

∂w
+ (1− w)wPu

)T
n0(w) = 0 u = 0 (75)(

∂P2

∂v
− ∂P2

∂w
+ u(1− u)Pv

)T
n1(u) = 0 v = 0 (76)(

∂P2

∂u
− ∂P2

∂w
− (1− v)vPw

)T
n2(v) = 0 w = 0 (77)

45

Consider firstly the left side of Equation (75). Since

(i) for u = w = 0, v = 1, it follows from (69) and (74) that

∂P2
∂u −

∂P2
∂w =

(
∂P2
∂v −

∂P2
∂w

)
−
(
∂P2
∂v −

∂P2
∂u

)
= −C ′0(0)− C ′2(1)

(ii) for u = v = 0, w = 1 it follows from (70) that ∂P2
∂u −

∂P2
∂w = C ′1(0), (75) holds for w = 0 and

w = 1. Similarly, we can show that (76) and (77) hold for end points of the unit interval.

Therefore, (75)–(77) is equivalent to
Pu(t)Tn0(t) = a
Pv(t)Tn1(t) = b
Pw(t)Tn2(t) = c

(78)

where a, b, and c are constants. The left side of (78) are polynomials of degree 1. At point
u = v = w = 1

3 , we give a vector p of P1 that controls the shape of the patch. Then we have the
following equation.

nT0 (0)
nT0 (1)

nT1 (0)
nT1 (1)

nT2 (0)
nT2 (1)

I I I

Pu

Pv

Pw

 =

a
a
b
b
c
c

3p

In order to study the singularity of the coefficient matrix, we assume nT0 (1) = nT1 (0), nT1 (1) = nT2 (0),
nT1 (1) = nT0 (0). Then by some elimination we know that the coefficient matrix is nonsingular if the
matrix [n0, n1, n2] is nonsingular. Therefore we have

Lemma 6.1. If [n0, n1, n2] is nonsingular, the G1 interpolation problem with one control point has
an unique solution.

Note. One way to choose the control value p at the middle point is to take p = 0.
The condition that the matrix [n0, n1, n2] is nonsingular in Lemma 4.1 can be relaxed as that the

vectors n0, n1 and n2 are pairwise independent. In this case, equation (78) can be solved separately
with one degree of freedom left that can be used to control the shape at point u = v = w = 1

3 in
the least square sense.

Covering cubic wire frame
The patch now is defined in the following form

P (u, v, w) = P3(u, v, w) + uvwP1(u, v, w)

where P3 is a BB-form polynomial of degree 3 that covers the cubic wire frame. P1 is a rational
function in the same form of (67).

Parallel to the case of covering conic wire frame, we are lead to a system(see (78)) of equations
P Tu n0(t) = a(t)
P Tv n1(t) = b(t)
P Tw n2(t) = c(t)

where the normal functions ni(t) and a(t), b(t), and c(t) are polynomials of degree 2. In fact, this
system can be solved separately for Pu, Pv and Pw. Each equation has unique solutions iff the
coefficient vectors of the corresponding normal function are linearly independent. In practice, we
can solve these equations by least square approximations.

46

2.11 C1 Modeling with Hybrid Multiple-Sided A-patches

We consider the problem of constructing a smooth interpolatory surface from a surface discretiza-
tion L by piecewise implicit surface patches. The discretization L of the surface consists of tri-
angles, quadrilaterals and pentagons. The constructed surface passes through the vertices of the
discretization and has the given normals at the vertices. This solution uses piecewise rational
functions defined on a hull that consists of tetrahedra and pyramids

Several approaches to using implicit surface representation in modeling geometric objects have
been proposed in papers (see for examples, ([12], [18], [87], [122], [154], [213]). Most of the schemes
use various simplicial hulls over surface triangulation and polynomial functions (see [13], [18], [87],
[122], [124]). They in general consist of the following three steps: a. Generate a normal for each
vertex of L which will also be the normal of the constructed smooth surface at the vertex. b.
Build a surrounding simplicial hull

∑
(consisting of a series of tetrahedra) of the triangulation.

c. Construct a piecewise trivariate polynomial F within that simplicial hull, and use the zero
contour of F to represent the surface. Dahmen [85] first proposed an approach for constructing a
simplicial hull of L. In this approach, for each face [pipjpk] of L, two points uijk and vijk off each
side of the face are chosen and two tetrahedra [pipjpkuijk] and [pipjpkuijk] (called face tetrahedra)
are constructed. For each edge of L, two tetrahedra (called edge tetrahedra) are formed that
blend the neighboring face tetrahedra. The collection of these tetrahedra contains the tangent
plane near the vertices and have no self-intersection. Since such simplicial hulls are nontrivial to
construct for arbitrary triangulation, several improvements have been made in later publications
to overcome the difficulties (see [18], [87], [122], [124]). For the construction of the surface within∑

, Dahmen [85] used six quadric patches for each face tetrahedron and four quadric patches for
each edge tetrahedron. Guo [122] uses a Clough-Tocher split to subdivide each face tetrahedron
of the simplicial hull, hence utilizing six cubic patches per face of L. The edge tetrahedra are
subdivided into two. Dahmen and Thamm-Schaar [87] do not split the face tetrahedra, but the
edge tetrahedra is split. All of these papers provided heuristics to overcome the multiple-sheeted
and singularity problem of the implicit patches. Since the multi-sheeted property may cause the
constructed surface to be disconnected, Bajaj et al [18] constructed A-patches that were guaranteed
to be nonsingular, connected and single sheeted within each tetrahedron. Xu et al [238] use rational
functions in constructing F so that the edge patches and convex face patches do not need to be
split.

All the works mentioned above construct smooth implicit surface patches for the given surface
triangulation. The more general parametric spline fitting problem of constructing a mesh of finite
elements that interpolate or approximate multivariate data is discussed in [22]. One approach to
creating multi–sided patches has been by introducing base points into rational parametric functions.
Base points are parameter values for which the homogeneous coordinates (x,y,z,w) are mapped to
(0,0,0,0) by the rational parameterization. Gregory’s patch is defined using a special collection of
rational basis functions that evaluate to 0/0 at vertices of the parametric domain and thus introduce
base points in the resulting parameterization. Warren uses base points to create parameterizations
of four-, five-, and six–sided surface patches using rational Bézier surfaces defined over triangular
domains. Setting a triangle of weights to zero at one corner of the domain triangle produces
a four–sided patch that is the image of the domain triangle. [155, 156] present generalizations
of biquadratic and bicubic B-spline surfaces that are capable representing surfaces of arbitrary
topology by placing restrictions on the connectivity of the control mesh, relaxing C1 continuity to
G1 (geometric) continuity, and allowing n-sided finite elements. This generalized view considers
the spline surface to be a collection of possibly rational polynomial maps from independent n-sided
polygonal domains, whose union possesses continuity of some number of geometric invariants, such
as tangent planes. This more general view allows patches to be sewn together to describe free form
surfaces in more complex ways.

We shall construct 3,4,5 sided A-patches from rational functions. That is F is a piecewise

47

rational function defined on a hull that consists of tetrahedra and pyramids. The construction
method of F on edge tetrahedra is the same as our earlier scheme [238]. However, the method
of face patch construction is new. Although the modeling function F is rational in form, it is
evaluated as easy as cubic (see section 4 and 5). Furthermore, the surface constructed has plane
recovery property. That is, if the normals at the vertices of a face are perpendicular to the face,
then the surface coincides with the face. Having this feature is important since many geometric
objects have planar portion. Even further, the surface constructed could recover quadratics.

2.11.1 Bases

Let p1 and p2 be two different points in R3. We use [p1p2] to denote the line segment that has
end-points p1 and p2. Let p1, · · · , pk be k (k > 3) different points in R3. Then we use 〈p1 · · · pk〉 to
denote the polygon consisting of [p1p2], · · · , [pk−1pk], [pkp1]. Further, we use the following notations

[p1p2p3] = {p = α1p1 + α2p2 + α3p3 : αi ∈ [0, 1], α1 + α2 + α3 = 1}
[p1p2p3p4] = {p = α1p1 + α2p2 + α3p3 + α4p4 : αi ∈ [0, 1], α1 + α2 + α3 + α4 = 1}
(p1p2p3p4) = {p = t[sp1 + (1− s)p2] + (1− t)[sp3 + (1− s)p4] : (s, t) ∈ [0, 1]2}
[p0p1 · · · p4] = {p = up0 + (1− u)q : u ∈ [0, 1], q ∈ (p1p2p3p4)}

That is, [p1p2p3] is a triangle, (p1p2p3p4) is ruled surface, [p1p2p3p4] is a tetrahedron and [p0p1p2p3p4]
is a pyramid.

1. BB Form on Tetrahedra. The trivariate polynomials defined in a tetrahedron are expressed
in Bernstein-Bézier (BB) form. Let q1, q2, q3, q4 ∈ R3 be affine independent. Then any p ∈ R3 could
be written as

p = (x, y, z)T =
4∑
i=1

αiqi,

4∑
i=1

αi = 1 (79)

α = (α1, α2, α3, α4)T is the barycentric coordinate of p. Any polynomial FT (p) of degree n then
can be expressed as BB form over [q1q2q3q4] as

FT (p) =
∑

i+j+k+l=n

aijkl B
n
ijkl(α) (80)

where Bn
ijkl(α) = n!

!j!k!l! α
i
1α

j
2α

k
3α

l
4 is the Bernstein polynomial. Lemma 2.1 in the following gives

conditions of C1 join of two BB form polynomials defined on two adjacent tetrahedra.

Lemma 2.22. ([108]) Let FT (p) =
∑

i+j+k+l=n aijkl B
n
ijkl(α) and GT (p) =

∑
i+j+k+l=n bijkl

Bn
ijkl(α) be two polynomials defined on two tetrahedra [q1q2q3q4] and [q′1q2q3q4], respectively. Then

(i) FT and GT are C0 at the face [q2q3q4] iff a0jkl = b0jkl for any j + k + l = n
(ii) FT and GT are C1 at the face [q2q3q4] iff they are C0 and

b1,j,k,l = β1a1,j,k,l + β2a0,j+1,k,l + β3a0,j,k+1,l + β4a0,j,k,l+1, j + k + l = n− 1 (81)

where β = (β1, β2, β3, β4)T is defined by the relation q′1 = β1q1 + β2q2 + β3q3 + β4q4, |β| = 1.

Degree Elevation ([108]). A polynomial
∑

i+j+k+l=n−1 aijkl B
n−1
ijkl (α) of degree n − 1 could be

written as a polynomial
∑

i+j+k+l=n bijkl B
n
ijkl(α) of degree n with

bijkl =
i

n
ai−1,jkl +

j

n
ai,j−1,kl +

k

n
aij,k−1,l +

l

n
aijk,l−1 (82)

48

2. BB Form on Pyramid. The BB form polynomial of degree n on a pyramid [p0p1p2p3p4] is
defined by

FP (x, y, z) := f(u, s, t) :=
n∑
i=0

n−i∑
j=0

n−i∑
k=0

bijkB
n
i (u)Bn−i

j (s)Bn−i
k (t) (83)

where (x, y, z) ∈ [p0p1p2p3p4] and (u, s, t) ∈ [0, 1]3 are related by

(x, y, z)T = up0 + (1− u){t[sp1 + (1− s)p2] + (1− t)[sp3 + (1− s)p4]}. (84)

Since transform (84) is not linear, a polynomial in (u, s, t) may not be written as a polynomial in
(x, y, z). However, a polynomial in (x, y, z) of total degree n could always be written as the same
degree polynomial in (u, s, t). Since transform (84) is not invertible at the point p0, where (1, s, t)
map to p0 for any (s, t), the polynomial FP may not be smooth at the point p0 even though FP is
any time differentiable in the local system (u, s, t). Fortunately, we do not use the smoothness of
FP at p0. The following theorem gives the conditions of Ck join between two polynomials that are
defined on an adjacent tetrahedron and pyramid , respectively.

Theorem 2.23. Let FT (x, y, z) and FP (x, y, z) be defined as (80) and (83) on [q1q2q3q4] and
[p0p1p2p3p4], respectively, with q2 = p2, q3 = p4 and q4 = p0. Then FT and FP are CK join on the
interface [q2q3q4] \ {q4} if and only if

bijk =
∑

i1 + i2 + j1 + j2 + j3 + k1 + k2 + k3 + l1 + l2 = n− i
i1 + i2 + j1 + j2 + k1 + k2 + l1 + l2 = j

i1 + j1 + k1 + l1 + j3 = k

Ckj3,k−j3C
i2+j2+k2+l2+k3

k3,i2+j2+k2+l2

Cn−ij3+k3,n−i−j3−k3

∗ai1+i2,j1+j2+j3,k1+k2+k3,l1+l2+iB
k−j3
i1,j1,k1,l1

(a)Bj−k+j3
i2,j2,k2,l2

(b) (85)

for j = 0, · · · ,K, i = 0, · · · , n − j, and k = 0, · · · , n − i, where a = (a1, a2, a3, a4)T and b =
(b1, b2, b3, b4)T are defined by

p1 =
4∑
i=1

aiqi,

4∑
i=1

ai = 1, p3 =
4∑
i=1

biqi,

4∑
i=1

bi = 1 (86)

Taking K = 1 in Theorem 2.23, we have the following corollary.

Corollary 2.24. FT and FP that are defined in Theorem 2.23 are C1 at [q2q3q4] \ {q4} iff

bi,0,k = a0,k,n−i−k,i, i = 0, · · · , n, k = 0, · · · , n− i

bi,1,k =
k

n− i

4∑
l=1

alael+(0,k−1,n−i−k,i) +
n− i− k
n− i

4∑
l=1

blael+(0,k,n−i−k−1,i), (87)

i = 0, · · · , n− 1, k = 0, · · · , n− i

where el ∈ R4 is the unit vector in the l-th direction, l = 1, · · · , 4.

Degree Elevation. A polynomial
n−1∑
i=0

n−i−1∑
j=0

n−i−1∑
k=0

aijk B
n−1
i (u)Bn−i−1

j (s)Bn−i−1
k (t) of degree n−1

could be written as a polynomial
n∑
i=0

n−i∑
j=0

n−i∑
k=0

bijk B
n
i (u)Bn−i

j (s)Bn−i
k (t) of degree n with

bijk =
i

n
ai−1,jk +

jk

n(n− i)
ai,j−1,k−1 +

(n− i− k)j
n(n− i)

ai,j−1,k

+
(n− i− j)k
n(n− i)

aij,k−1 +
(n− i− j)(n− i− k)

n(n− i)
aijk (88)

49

3. C1 of Cubics around an Edge. Let q1, q2, · · · , qk be the given points around a line segment
[p2p3] such that qi−1 and qi+1 lie on different sides of the plane [qip2p3] and all the tetrahedra
[qiqi+1p2p3] enclose the edge [p2p3] as interior Hence the five points qi−1, qi, qi+1, p2, p3 are related
by either

qi = αi1qi−1 + αi2qi+1 + αi3p2 + αi4p3,

4∑
j=0

αij = 1 (89)

if qi−1, qi+1, p2, p3 are affine independent, or

0 = αi1qi−1 + αi2qi+1 + αi3p2 + αi4p3,

4∑
j=0

αij = 0 (90)

if qi−1, qi+1, p2, p3 are affine dependent, where αi1 6= 0 and αi2 6= 0. Let Fi be the cubic polynomial in
BB-form on the tetrahedron [qiqi+1p2p3] that satisfy C0 condition. Let xi be the Bézier coefficients
on the center of [qip2p3]. Then the C1 condition at the interface [qip2p3] is either

xi = αi1xi−1 + αi2xi+1 + αi3b2 + αi4b3 (91)

if qi−1, qi+1, p2, p3 are affine independent, or

0 = αi1xi−1 + αi2xi+1 + αi3b2 + αi4b3 (92)

otherwise, where b2 and b3 are the Bézier coefficients on the edge [p2p3]. Then we have

Theorem 2.25. If the tetrahedra around the edge [p2p3] enclose the edge, then (i) there are k − 2
independent equations among the k C1 conditions (91)–(92) with k unknowns around the edge; (ii)
any two adjacent equations of them can be deleted; (iii) any two unknowns xm, xn can be chosen
as free parameters if qm, qn, p2, p3 are affine independent.

For the open case we can treat it as closed case with the first and last equations being deleted.
Hence we have by Theorem 2.25 that

Corollary 2.26. If the tetrahedra around the edge [p2p3] do not enclose the edge, then (i) the k−2
C1 conditions (91)–(92) with k unknowns around the edge is independent; (ii) any two unknowns
xm, xn can be chosen as free parameters if qm, qn, p2, p3 are affine independent.

Theorem 2.27. Let ∆ = ∪ki=1[qiqi+1p2p3]. Let S1
3(∆) be the collection of functions that are C1 on

∆ and cubics on each tetrahedron of ∆. Then

dimS1
3(∆) = 4k + 10

if [qip2p3], i = 1, · · · , k, lie on at least three different planes, and

dimS1
3(∆) = 4k + 12

if [qip2p3], i = 1, · · · , k, lie on two different planes.

Note that the index of qi+1 is out off the range 1, · · · , k when i = k. We assume that it is
modulo by k. This convention is used throughout the sectionwithout indication.

4. Miscellaneous. If a trivariate function F could be expressed as Bernstein polynomial form on
a line segment [p1p2]. That is, F |[p1p2](p) =

∑n
i=0 biB

n
i (t) with p = (1− t)p1 + tp2. Then

b0 = F (p1), b1 = b0 +
1
n

(p2 − p1)T∇F (p1) (93)

50

2.11.2 Finite Element Hull

Suppose we are given a surface discretization L consisting of triangles, quadrilaterals and pentagons
with attached normal on each vertex. We assume that the surface is double sided and all the normals
on the vertices point to one side of the discretization. We call this side as positive. The other side
is negative. Since we do not assume the vertices of any quadrilateral or pentagon are coplanar, we
do not call the quadrilateral or pentagon as face, but polygon.

Let [pipj] be an edge of L, if (pj − pi)Tnj (pi − pj)Tni ≥ 0 and at least one of (pj − pi)Tnj
and (pi − pj)Tni is positive, then we say the edge [pipj] is positive convex (see [18]). If both the
numbers are zero then we say it is zero convex. The negative convex edge is similarly defined. If
(pj − pi)Tnj (pi − pj)Tni < 0, then we say the edge is non-convex. Let F be a polygon of L. If all
its edges are nonnegative (positive or zero) convex and at least one of them is positive convex, then
we say the polygon is positive convex. If all its edges are zero convex then we label the polygon as
zero convex. The negative convex polygon is similarly defined. All the other cases are labeled as
non-convex.

Let L = Lnon−zero ∪ Lzero, where Lnon−zero and Lzero are the collections of non-zero convex
polygons and zero convex polygons of L, respectively.

Now we construct a finite-element-hull, denoted as H, that consists of tetrahedra and pyramids
on Lnon−zero such that each polygon of Lnon−zero is contained in H and tangent plane at each
vertex of Lzero is contained in H.

a. Build Tetrahedra for Convex Triangle. Let 〈p1p2p3〉 be a convex triangular polygon of
Lnon−zero. Let c = (p1 + p2 + p3)/3, n be the normal of face [p1p2p3] that points to the positive
side of L. Then choose a top vertex u if the polygon is positive convex or a bottom vertex v if the
polygon is negative convex as follows: u = c + tn, or v = c − tn. Then positive face tetrahedron
[up1p2p3] or negative face tetrahedron [vp1p2p3] are formed where t > 0 is a properly chosen number
such that the tangent planes at the vertices are contained in the tetrahedra constructed.

b. Build Pyramids for Convex Quadrilaterals. Let 〈p1p2p3p4〉 be a convex quadrilateral of
Lnon−zero. Let c = (p1 + p2 + p3 + p4)/4, n be the normal of the ruled surface (p1p2p3p4) at c that
points to the positive side of L. Then choose a top vertex u if the polygon is positive convex or
a bottom vertex v if the polygon is negative convex as follows: u = c + tn, or v = c − tn. Then
positive face pyramid [up1p2p3p4] or negative face pyramid [vp1p2p3p4] are formed where t > 0 is a
properly chosen number such that the tangent planes at the vertices are contained in the pyramids
constructed.

c. Build Tetrahedra for Non-convex Polygons. Let 〈p1p2 · · · pk〉 (3 ≤ k ≤ 5) be a non-convex
polygon of Lnon−zero. Let c = (p1 + · · ·+ pk)/k. Define a normal n as the average of the normals of
the triangle faces [pipi+1c], i = 1, · · · , k. Then both top vertex u and bottom vertex v are chosen
as u = c + tn, or v = c − tn, and k tetrahedra [uvpipi+1], i = 1, · · · , k, are formed. Here t > 0 is
defined so that the tangent planes at the vertices are contained in the tetrahedra constructed.

d. Build Tetrahedra for Edges. Let [p1p2] be an edge of L where Fl and Fr are the two
adjacent polygons in Lnon−zero. If the top vertices ul and ur exist for Fl and Fr , respectively,
then the positive edge tetrahedron is [ulurp1p2]. Similarly, the negative edge tetrahedron [vlvrp1p2]
is constructed if the bottom vertices vl and vr exist for Fl and Fr , respectively.

2.11.3 C1 Modeling of Surface by Rational A-patches

In this section, we shall construct a piecewise C1 rational function F over H whose zero contour
{p : F (p) = 0} possesses a separate subset S such that S ∪Lzero (i) passes through the vertices of
L, (ii) has the given normal at each vertex, and (iii) is a smooth surface. We further require that
the function F has quadratic recovery property.

51

Modeling Functions First we give the forms of the modeling functions over the finite elements.
The parameters in these functions will be specified later in this section.
1. Function on tetrahedron for a convex triangular polygon. Let 〈p1p2p3〉 ∈ Lnon−zero be
any one convex triangular polygon. If the positive face tetrahedron [up1p2p3] exists, we define for
the indices of the coefficients)

F |[up1p2p3] =
∑

i+j+k+l=3

tijklB
3
ijkl(α)

+
t
(3)
0111α2α3 + t

(2)
0111α2α4 + t

(1)
0111α3α4

α2α3 + α2α4 + α3α4
B3

0111(α) (94)

F |[vp1p2p3] is similarly defined if the negative face tetrahedron [vp1p2p3] exists. In the following
we only give the expressions of the functions on positive elements. The functions on the negative
elements are in the same forms. To distinguish the difference, we place a tilde on the corresponding
coefficients.
2. Function on pyramid for convex quadrilateral. Let 〈p1p2p3p4〉 be a convex quadrilateral
of L and [up1p2p3p4] be the pyramid. Then define for the indices of the coefficients)

F |[up1p2p3p4] =
3∑
i=0

3−i∑
j=0

3−i∑
k=0

pijkB
3
i (u)B3−i

j (s)B3−i
k (t)

+
[(
p

(l)
022w

(l)
lb + p

(b)
022w

(b)
lb

)
B3

2(s) +
(
p

(r)
012w

(r)
rb + p

(b)
012w

(b)
rb

)
B3

1(s)
]
B3

0(u)B3
2(t)

+
[(
p

(l)
021w

(l)
lt + p

(t)
021w

(t)
lt

)
B3

2(s) +
(
p

(r)
011w

(r)
rt + p

(t)
011w

(t)
rt

)
B3

1(s)
]
B3

0(u)B3
1(t)

+
(
p

(l)
111wl + p

(r)
111wr + p

(t)
111wt + p

(b)
111wb

)
B3

1(u)B2
1(s)B2

1(t) (95)

where

w
(l)
lb =

vl
vl + vb

, w
(b)
lb =

vb
vl + vb

, w
(r)
rb =

vr
vr + vb

, w
(b)
rb =

vb
vr + vb

,

w
(l)
lt =

vl
vl + vt

, w
(t)
lt =

vt
vl + vt

, w
(r)
rt =

vr
vr + vt

, w
(t)
rt =

vt
vr + vt

,

wl =
vl

vl + vr + vt + vb
, wr =

vr
vl + vr + vt + vb

,

wt =
vt

vl + vr + vt + vb
, wb =

vb
vl + vr + vt + vb

,

with

vl(s, t) = s2t2(1− t)2, vr(s, t) = (1− s)2t2(1− t)2

vt(s, t) = s2(1− s)2(1− t)2, vb(s, t) = s2(1− s)2t2

3. Function on tetrahedra for non-convex 3,4-sided polygon and 5-sided polygon.
Let 〈p1 · · · pK〉 be a non-convex polygon, 3 ≤ K ≤ 5. Then K tetrahedra [uvpipi+1] have been
constructed. On each tetrahedron, a cubic is used.

F |[uvpmpm+1] =
∑

i+j+k+l=3

t
(m)
ijklB

3
ijkl(α), m = 1, · · · ,K. (96)

4. Function on edge tetrahedron. Let [p1p2] be a non-zero-convex edge of L and [ulurp1p2] be
the positive edge tetrahedron. Then define for the indices of the coefficients)

F |[ulurp1p2] =
∑

i+j+k+l=3

eijklB
3
ijkl(α)

+
e

(l)
1101α1 + e

(r)
1101α2

α1 + α2
B3

1101(α) +
e

(l)
1110α1 + e

(r)
1110α2

α1 + α2
B3

1110(α) (97)

52

Construction of Rational A-patches Now we shall determine the parameters of F step by
step

Total Algorithm. Specifying the weights
Step 1. In order to have the surface constructed contains the vertices of L, we take the number 1
weights to be zero.
Step 2. The number 2 weights are determined by formula (93) from the normals.
Step 3. The number 3 weights in triangle interfaces are defined by interpolating the perpendicular
directional derivative. For example, the number 3 weight on the triangle interface [p1p2u] is defined

by interpolating the directional derivative 1
2

[
(u−pj)T (p1−p2)
‖p1−p2‖2 (u − p1) + (u−p1)T (p2−p1)

‖p1−p2‖2 (u− p2)
]T

(n1 +n2) at the point 1
2(p1 + p2) where the direction is in the face [p1p2u] and perpendicular to the

edge [p1p2]. We can derive that

t1110 =
1
2

[t1200 + t1020 + α(u, p1, p2)t0210 + (1− α(u, p1, p2))t0120]

where α(u, p1, p2) is given by

α(u, p1, p2) =
[2(u− p2) + (u− p1)]T (p1 − p2)

‖p1 − p2‖2

The three rational coefficients t(1)
0111, t(2)

0111 and t(3)
0111 are defined as above by interpolating directional

perpendicular derivatives at the mid-point of the edge [p2p3], [p1p3] and [p1p2], respectively. Set
t0111 = 1

3

(
t
(1)
0111 + t

(2)
0111 + t

(3)
0111

)
and then reset the values of t(1)

0111, t(2)
0111 and t

(3)
0111 by reducing the

value t0111.
The number 3 weights, which are the coefficients of rational terms, on the quadrilaterals are

determined by C1 condition (81) or (87). Then set the corresponding polynomial coefficients as

p012 =
1
2

(
p

(b)
012 + p

(r)
012

)
, p011 =

1
2

(
p

(t)
011 + p

(r)
011

)
,

p022 =
1
2

(
p

(l)
022 + p

(b)
022

)
, p021 =

1
2

(
p

(l)
021 + p

(t)
021

)
.

Then reset the rational coefficients by reducing the value of corresponding polynomial coefficients.
Step 4. The remaining weights on the finite elements are specified by the following sub-algorithms.

Sub-Algorithm 1. Compute the weights on convex face tetrahedra
The number 4 and 5 weights are free We assign the function value F (u) and gradient ∇F (u) as

parameters. Then p3000 = F (u) and, by (93),

t2000+ei+1 = F (u) +
1
3

(pi − u)T∇F (u), i = 1, 2, 3.

The use of degrees of freedom.
Parameters F (u) and ∇F (u) could be used to control the shape interactively. The default

choice is we make the polynomial part of F defined by (94) approximate a quadratic. It follows
from (82), we have a linear system with 14 unknowns and 20 equations. Since the coefficient matrix
of the system is not full rank, we add a set of equations by making F approximate a linear function.
Solving this system in the least square sense, we get the parameters.

Sub-Algorithm 2. Compute the weights on convex pyramid
The four number 4 weights and one number 5 weight are free We assign the function value F (u)

and gradient ∇F (u) as parameters. Then p300 = F (u) and, by (93),

p211 = F (u) +
1
3

(p1 − u)T∇F (u), p201 = F (u) +
1
3

(p2 − u)T∇F (u),

p210 = F (u) +
1
3

(p3 − u)T∇F (u), p200 = F (u) +
1
3

(p4 − u)T∇F (u).

53

Note that defining the number 4 and 5 weights in this way reduces the degrees of freedom from five
to four. The gain of this degree reduction is that the function defined by (95) is guarantee to be
C1 at u.

Now we consider the computation of coefficients p(l)
111, p

(r)
111, p

(t)
111 and p(b)

111 of rational terms. These
coefficients could be computed separately. Suppose the pyramid considered is [ulp1p2p3p4] and ur

is the top vertex of the element adjacent to the interface [ulp2p4]. Then p(l)
111 is computed as follows.

Let
p1 = α1ul + α2ur + α3p2 + α4p4, p3 = β1ul + β2ur + β3p2 + β4p4.

Then by Corollary 2.24, we have

p112 = α1e2010 + α2e1110 + α3e1020 + α4e1011 = α1p201 + α2e1110 + α3p102 + α4p101,

p110 = β1e2001 + β2e1101 + β3e1011 + β4e1002 = β1p200 + β2e1101 + β3p101 + β4p100,

and

p
(r)
111 =

1
2

(α1e2001 + α2e1101 + α3e1011 + α4e1002 + β1e2010 + β2e1110 + β3e1020 + β4e1011)

=
1
2

[(
β1 −

α1β2

α2

)
p201 +

(
α1 −

α2β1

β2

)
p200 +

β2

α2
p112 +

α2

β2
p110

+
(
β3 −

α3β2

α2

)
p102 +

(
α3 −

α2β3

β2
+ β4 −

α4β2

α2

)
p101 +

(
α4 −

α2β4

β2

)
p100

]
.

Other coefficients of rational terms are similarly computed. Set p111 = 1
4(p(l)

111 + p
(r)
111 + p

(t)
111 + p

(b)
111)

and then reset the p(l)
111, p

(r)
111, p

(t)
111 and p

(b)
111 by reducing their values by p111.

The use of degrees of freedom.
Parameters F (u) and∇F (u) could be used to control the shape interactively. The default choice

is we make the polynomial part of F defined by (95) approximate a quadratic. Let
∑

i+j+k+l=n aijklB
n
ijkl(α)

be a polynomial of degree n over the tetrahedron [up1p2p3]. Then we could express it as a polyno-
mial

∑n
I=0

∑n−I
J=0

∑n−I
K=0B

n
I (u)Bn−I

J (s)Bn−I
K (t) of degree n over the pyramid [up1p2p3p4]. Similar

to the proof of Theorem 2.23, we can derive that

bIJK =
n∑
l=I

∑
i+j+k=n−l

aijklc
IJK
ijk (98)

with

cIJKijk =
min{i,K,J}∑

λ=max{0,K−j,J−k}

Cn−Iλ,K−λ,J−λ,n−I−J−K+λ

Cn−IK,n−I−KC
n−I
J,n−I−J

Bn−I−J−K+λ
i−λ,j−K+λ,k−J+λ,L−I(a1, a2, a3, a4),

where (a1, a2, a3, a4) is defined by p4 = a1u+ a2p1 + a3p2 + a4p4,
∑4

i=1 ai = 1. Hence, a quadratic
over [up1p2p3] could be expressed as a polynomial of degree 3 over [up1p2p3p4] using (98) first and
then (88). Approximating this quadratic by the polynomial part of F defined by (95) we lead to
a linear system with 14 unknowns (10 for the coefficients of the quadratic, 4 for F (u) and ∇F (u))
and 30 equations. Solving this system in the least square sense, we get the parameters.

Sub-Algorithm 3. Compute the weights on tetrahedra for non-convex polygon.
Consider a K−sided polygon 〈p1 · · · pK〉 for 3 ≤ K ≤ 5. The number 1,2,3 weights have been

determined. The other weights labeled as • are defined by the C1 condition. Under the C0 condition

t
(s)
ij0k = t

(s+1)
ijk0 , i+ j + k = 3, s = 1, 2, · · · ,K, (99)

54

there are 3(K + 1) + 1 weights undefined. From Theorem 2.27 we know that the dimension of
S1

3(∆) is 4K + 10. Since the function under construction interpolates positions and gradients at
the vertices pi for i = 1, · · ·K, and interpolates two directional derivatives at the midpoints of the
edges [pipi+1], that is, it satisfies 6K interpolation conditions, the remaining degree of freedom is
10 − 2K. Now we take F (v) and ∇F (v) as free parameters and express other weights in terms of
these parameters and derive a system of 2K − 6 equations that the parameters F (v) and ∇F (v)
satisfy. That is, we express

t
(s)
ijkl = α

(s)
ijklF (v) + β

(s)
ijkl∇F (v) + γ

(s)
ijkl, α

(s)
ijkl, γ

(s)
ijkl ∈ R, β(s)

ijkl ∈ R3.

It is obvious that for the number 1,2,3 weights t(s)ijkl, α
(s)
ijkl = 0, β(s)

ijkl = 0 and γ(s)
ijkl = t

(s)
ijkl. It follows

from (93) that

t
(1)
1200 = F (v) +

1
3

(u− v)T∇F (v), t
(s)
0210 = F (v) +

1
3

(ps − v)T∇F (v), s = 1, · · · ,K.

That is, α(s)
0210 = 1, β(s)

0210 = 1
3(ps − v)T , γ(s)

0210 = 0 and α(1)
1200 = 1, β(1)

1200 = 1
3(u− v)T , γ(1)

1200 = 0. Let

u = α
(s)
1 ps + α

(s)
2 ps+1 + α

(s)
3 ps−1 + α

(s)
4 v, s = 1, · · · ,K.

Then
t
(s)
1110 = α

(s)
1 t

(s)
0120 + α

(s)
2 t

(s)
0111 + α

(s)
3 t

(s−1)
0111 + α

(s)
4 t

(s)
0210, s = 1, · · · ,K. (100)

Since t(s)0120, t(s)0111, and t
(s−1)
0111 are all number 2 and 3 weights, we have

t
(s)
1110 = α

(s)
1 γ

(s)
0120 + α

(s)
2 γ

(s)
0111 + α

(s)
3 γ

(s−1)
0111 + α

(s)
4 (

1
3

(ps − v)T∇F (v) + F (v))

Hence we have the same form expression for α(s)
1110, β

(s)
1110 and γ

(s)
1110. For example,

α
(s)
1110 = α

(s)
1 α

(s)
0120 + α

(s)
2 α

(s)
0111 + α

(s)
3 α

(s−1)
0111 + α

(s)
4 α

(s)
0210 = α

(s)
4 ,

β
(s)
1110 = α

(s)
1 β

(s)
0120 + α

(s)
2 β

(s)
0111 + α

(s)
3 β

(s−1)
0111 + α

(s)
4 β

(s)
0210 = 1

3α
(s)
4 (ps − v)T .

Furthermore, we have

t
(s)
2100 = α

(s)
1 t

(s)
1110 + α

(s)
2 t

(s+1)
1110 + α

(s)
3 t

(s−1)
1110 + α

(s)
4 t

(s)
1200, (101)

and
α

(s)
2100 = α

(s)
1 α

(s)
1110 + α

(s)
2 α

(s+1)
1110 + α

(s)
3 α

(s−1)
1110 + α

(s)
4 α

(s)
1200

= α
(s)
1 α

(s)
4 + α

(s)
2 α

(s+1)
4 + α

(s)
3 α

(s+1)
4 + α

(s)
4 ,

β
(s)
2100 = α

(s)
1 β

(s)
1110 + α

(s)
2 β

(s+1)
1110 + α

(s)
3 β

(s−1)
1110 + α

(s)
4 β

(s)
1200

= 1
3 [α(s)

1 α
(s)
4 (ps − v)T + α

(s)
2 α

(s+1)
4 (ps+1 − v)T

+ α
(s)
3 α

(s+1)
4 (ps−1 − v)T + α

(s)
4 (u− v)T].

In the case of a planar polygon, α(s)
4 = α

(s+1)
4 for all s and we get

α
(s)
2100 = α

(s)
4 (α(s)

1 + α
(s)
2 + α

(s)
3 + 1)

= α
(s)
4 (2− α(s)

4)
β

(s)
2100 = 1

3α
(s)
4 [α(s)

1 (ps − v)T + α
(s)
2 (ps+1 − v)T + α

(s)
3 (ps−1 − v)T + (u− v)T]

= 1
3α

(s)
4 [−vT (α(s)

1 + α
(s)
2 + α

(s)
3 + 1) + α

(s)
1 pTs + α

(s)
2 pTs+1 + α

(s)
3 pTs−1 + uT]

= 1
3α

(s)
4 [−vT (2− α(s)

4) + uT − α(s)
4 vT + uT]

= 2
3α

(s)
4 (u− v)T .

55

It follows from Theorem 2.25 that (101) has K − 2 independent equations and they define the
same weight t(1)

2100 = t
(2)
2100 = · · · = t

(K)
2100. Therefore, we have the following equations for F (v) and

∇F (v)
α

(s)
2100F (v) + β

(s)
2100∇F (v) + γ

(s)
2100 = α

(s+1)
2100 F (v) + β

(s+1)
2100 ∇F (v) + γ

(s+1)
2100 , (102)

for s = 1, · · ·K − 3, Similarly, we have

t
(s)
2010 = α

(s)
1 t

(s)
1020 + α

(s)
2 t

(s)
1011 + α

(s)
3 t

(s+2)
1011 + α

(s)
4 t

(s)
1110, s = 1, · · · ,K, (103)

t
(s)
3000 = α

(s)
1 t

(s)
2010 + α

(s)
2 t

(s+1)
2010 + α

(s)
3 t

(s+2)
2010 + α

(s)
4 t

(s)
2100, s = 1, · · · ,K, (104)

and F (v) and ∇F (v) satisfy the following equations

α
(s)
3000F (v) + β

(s)
3000∇F (v) + γ

(s)
3000 = α

(s+1)
3000 F (v) + β

(s+1)
3000 ∇F (v) + γ

(s+1)
3000 , (105)

for s = 1, · · ·K − 3. Hence all the weights are defined and all α(s)
ijkl, β

(s)
ijkl and γ(s)

ijkl can be computed
from (100)–(105).
The use of freedoms. Interactive shape control by giving F (v) and ∇F (v) under the restrictions
(102) and (105). The default choice is to make the K cubics approximate quadratics. By using the
degree elevation formula, we need to solve the following equations

i

3
t
(s)
i−1,jkl +

j

3
t
(s)
i,j−1,kl +

k

3
t
(s)
ij,k−1,l +

l

3
t
(s)
ijk,l−1 − α

(s)
ijklF (v)− β(s)

ijkl∇F (v) = γ
(s)
ijkl, (106)

for i+ j + k + l = 3, s = 1, · · · ,K, in the least squares sense for the unknowns t(s)ijkl, F (v),∇F (v)
under the C0 condition (99) for the K cubics and C0 condition

t
(m)
ijk0 = t

(m+1)
ij0k , i+ j + k = 2, m = 1, 2, 3

and the constraints (102) and (105). System (106) has (4K+ 3) unknowns t(s)ijkl for i+ j+k+ l = 2
and 4 unknowns F (v),∇F (v), and has 10K + 4 equations.

Sub-Algorithm 4. Compute the weights on edge tetrahedra
Suppose the edge tetrahedron considered is [ulurp1p2] The weights e1110 and e1101 are set to

zero. The number 6 coefficients e(l)
1110, e

(r)
1110, e

(l)
1101 and e

(r)
1101 are determined by the C1 condition. If

the right neighbor, that is adjacent to [urp1p2], of the edge tetrahedron is tetrahedron [urp1p2p3],
and if we express ul = α1ur + α2p1 + α3p2 + α4p3 with

∑4
i=1 αi = 1, we have

e
(r)
1110 = α1f2100 + α2f1200 + α3f1110 + α4f1101,

e
(r)
1101 = α1f2001 + α2f1101 + α3f1011 + α4f1002.

If the right neighbor of [ulurp1p2] is pyramid [urp1p2p3p4], then let

ul = α1ur + α2p1 + α3p2 + α4p3, ul = β1ur + β2p1 + β3p2 + β4p4

with
∑4

i=1 αi =
∑4

i=1 βi = 1. Then we have

e
(r)
1110 = α1p211 + α2p122 + α3p112 + α4p121,

e
(r)
1101 = β1p201 + β2p112 + β3p102 + β4p101.

The weights e(l)
1110 and e

(l)
1101 are similarly computed.

Theorem 4.1. For the given discretization L of a surface with a built finite-element hull H on it,
the surface defined by the union of all edge A-patches, face A-patches and zero convex faces of L

56

interpolates the vertices of the discretization and has the normals at the vertices, and it is smooth
and topologically equivalent to L.

The scheme proposed above makes the constructed surface have the plane recovery property.
Even further, the scheme can recover quadratic. That is if the normal at the vertices of a polygon
are extracted from a quadratic surface Q(p) = 0 that passes through the vertices of the polygon,
and furthermore if the free weights are defined by approximating a quadratic, then F (p) = Q(p).
Similarly, if the normals at the vertices of an edge and the vertices of the two adjacent polygons
are extracted from a quadratic surface Q(p) = 0 that passes through these vertices, and if the free
weights on the neighbor polygon elements are defined by approximating a quadratic surface, then
F (p) = Q(p) on the edge tetrahedron.

The proof of the quadratic recovery property is based on the following facts: (a). F interpolates
function values and first order partial derivatives of Q at the vertices, and F interpolates directional
derivatives of Q in any directions that perpendicular to edges at the mid-points of the edges.
(b). The free weights are defined by the degree elevation formula. (c). The rational function is
degenerate to zero. The detailed discussion needs to distinguish the cases when the polygon is
convex or non-convex. We omit the detail here.

2.11.4 Evaluate the Surfaces

Since the patches for edges and convex triangles are defined in the same way as in [238], we can
evaluate these patches using the scheme in [238]. In the following, we ignore these cases.
A. Evaluate the Triangular Face A-patch

For each triangular nonconvex polygon in Lno−zero, we shall produce a piecewise triangular
approximation for the surface patch F = 0. Let 〈p1p2p3〉 ∈ Lno−zero be one triangular polygon and u
and v be top and bottom vertices. Let N be a given positive number, which represents the resolution
of the piecewise approximation. Then the piecewise triangular approximation is defined by the naive
connection of the points sxyz(x+ y + z = N, x, y, z ≥ 0). Here sxyz is the intersection point of the
surface F = 0 with the polygonal line [uqxyz] ∪ [qxyzv], where qxyz =

x

N
p1 +

y

N
p2 +

z

N
p3 and the

intersection point is computed by solving the cubic polynomial equation F ((1− t)qxyz + tu) = 0
if F (qxyz) ≤ 0 or solving a similar equation F ((1− t)qxyz + tv) = 0 if F (qxyz) > 0, where the
required root is the minimal one.

Since qxyz is in one of the tetrahedra [uvpipi+1] with i = 1, · · · , 3, qxyz could be expressed in
the following form:

q = β
(i)
1 u+ β

(i)
2 v + β

(i)
3 pi + β

(i)
4 pi+1 (107)

Then we can derive, from (96), that

F ((1− t)q + tu) =
3∑
s=0

 3∑
λ1=s

C
(i)
λ1s

B3
s (t) (108)

with C
(i)
λ1s

=
∑

λ2+λ3+λ4=3−λ1
t
(i)
λ1λ2λ3λ4

B3−s
λ1−s,λ2λ3λ4

(β(i)
1 , β

(i)
2 , β

(i)
3 , β

(i)
4). Similarly, we have

F ((1− t)q + tv) =
3∑
s=0

 3∑
λ2=s

C̃
(i)
λ2s

B3
s (t) (109)

with C̃
(i)
λ2s

=
∑

λ1+λ3+λ4=3−λ2
t
(i)
λ1λ2λ3λ4

B3−s
λ1λ2−s,λ3λ4

(β(i)
1 , β

(i)
2 , β

(i)
3 , β

(i)
4).

B. Evaluate the Quadrilateral Face A-patch
For each quadrilateral polygon in Lno−zero, we shall produce a piecewise quadrilateral approxi-

mation for the surface patch. Let N be two given positive numbers, which represent the resolution

57

of the piecewise approximation and it should have the same value as above, let 〈p1p2p3p4〉 be a
quadrilateral of Lno−zero and u and v(if exist) be the top and bottom vertices of 〈p1p2p3p4〉. Then
the piecewise quadrilateral approximation is defined by connecting the points pxy(x = 0, · · · , N ; y =
0, · · · , N). Here pxy is the intersection point of the polygonal line [uqxy] ∪ [qxyv] and the surface
F = 0, where

qxy =
y

N

[
x

N
p1 +

N − x
N

p2

]
+
N − y
N

[
x

N
p3 +

N − x
N

p4

]
(110)

and the intersection point is computed by solving the cubic equation F ((1 − t)qxy +tu) = 0 if
F (qxy) ≤ 0 or solving a similar equation F ((1− t)qxy + tv) = 0 if F (qxy) > 0. Again, we use the
minimal root.

If the polygon is convex, (95) gives explicit expression for F ((1− t)qxy + tu).
If the polygon is non-convex, qxy is in one of the tetrahedra [uvpipi+1] with i = 1, · · · , 4. Using

(110), qxy could be expressed as (107), and (108) and (109) could be used again.

C. Evaluate the Pentagon Face A-patch
Let 〈p1 · · · , p5〉 be a 5-sided polygon and u and v be the top and bottom vertices. Then

The pentagon face A-patch is evaluated by evaluating 5 patches defined by F |[uvpipi+1] (p) = 0
for i = 1, · · · 5. Then the piecewise triangular approximation of F[uvpipi+1](p) = 0 is defined by

connecting the points s(i)
xyz(x + y + z = N, x, y, z ≥ 0). Here s(i)

xyz is the intersection point of the
polygonal line [uq(i)

xyz] ∪ [q(i)
xyzv] and the surface F = 0, where

q(i)
xyz =

x

N
pi +

y

N
pi+1 +

z

N
c, c =

1
5

(p1 + · · ·+ p5).

The intersection point can be computed by solving the cubic polynomial equation F ((1− t)q(i)
xyz +

tu) = 0 if F (q(i)
xyz) ≤ 0 or solving a similar equation F ((1 − t)q(i)

xyz + tv) = 0 if F (q(i)
xyz) > 0, where

the required root is the minimal one. Express q(i)
xyz as (107), and (108) and (109) could be used to

define the cubic equations.

2.12 Adaptive Model Reconstruction by Triangular Prism A-Patches

Various approaches of using implicit surface representation–the zero contour of trivariate function–
in modeling geometric objects or reconstructing the image to scattered data have been described
in some papers(see for examples, [18], [87], [122],[154] and [213]). However, since the implicit
surface could have multiple sheets, could have singularities and is not easy to evaluate, effective
and easy used schemes are still under investigation. Starting from a triangulation(this is often the
preprocessing stage of surface construction) of a unknown surface, we construct an implicit surface
that interpolates the vertices of the triangulation. The constructed surfaces are G0 at the the edges
that are labeled as sharp, and G1 smooth(tangent plane continuous) elsewhere, and respects the
topology of the triangulation. We assume the surface triangulation is double sided so that we could
label one side as positive and other as negative.

A class of successful approaches of using implicit surface representation in interpolating a surface
triangulation T with normals consists of the following two steps: a. Build a surrounding simplicial
hull

∑
(consisting of a series of tetrahedra) of the triangulation. b. Construct a piecewise trivariate

polynomial F on that simplicial hull, and use the zero contour of F to represent the surface. Dahmen
[85] propose firstly an approach for constructing such a simplicial hull of T . In this approach, for
each face, two tetrahedra are constructed. For each edge of T , two tetrahedra are formed that
blending the neighboring face tetrahedra. For the construction of the surface over

∑
, Dahmen [85]

use six quadric patches for each face tetrahedron and four quadric patches for each edge tetrahedron.
Guo[122] used a Clough-Tocher split and subdivided each face tetrahedron of the simplicial hull,
hence utilizing six cubic patches per face of T and four cubic patches per edge. Dahmen and

58

Figure 34: Grouping the triangles by the sharp edges(think lines) and assigning a normal for each
group.

Thamm-Schaar [87] do not split the face tetrahedra, but the edge tetrahedra is split. All of these
papers provided heuristics to overcome the multiple-sheeted and singularity problem of the implicit
patches. In Bajaj Chen and Xu[18], their A-patches are guaranteed to be nonsingular and single
sheeted within each tetrahedron. They use two surface patches for each face and four patches for
each edge.

Instead of using tetrahedra, we use prisms based on the idea of fat surface introduced by
Barnhill, Opitz and Pottmann in [50]. The pipeline of the construction is as follows:

1. Compute the face normals and oriented them such that they point to the positive side of the
surface triangulation.

2. For each edge, compute dihedral angle θ = π − θ1 for the two incident faces. If θ > α, then
this edge is labeled as sharp edge. Here θ1 is the angle between the two faces’ normals and α
is a threshold values for control the sharp feature.

3. Estimate normals at each vertex of the triangulation.

4. Decimate the mesh if it is considered to be too dense.

5. For each triangle of T , construct an irregular triangular prism such that its three edges pass
through the vertices of the triangle and contain the given normal, respectively.

6. Define a trivariate function F on the union of the prisms, such that its zero contour in each
prism passes through the corresponding triangle vertices and has the given normals.

7. Display the surface patches F = 0.

Hence, each triangle of the triangulation corresponds to one triangular surface patch. Since
there is no surface patch corresponding to edge and there is no splitting of the triangle, the number
of surface patches are significantly reduced comparing with the earlier implicit approaches. Another
attractive feature of the method is that evaluating one point of the surface is almost equivalent to
solving a linear equation. Therefore, the surface could be easily and quickly displayed.

Step 1 and 2 are strait forward. For the normal estimation at a vertex, we need to distinguish
the cases of sharp vertex or non-sharp vertex. If there exist sharp edges incident to the vertex, then
we say the vertex is sharp, otherwise, it is non-sharp. For non-sharp vertices, we have implemented
three schemes to compute the normals. The first one is weighted averaging the normals of the faces
that are adjacent to the vertex. The weight we chosen are the area of the triangles. The second
scheme we use is the limit normal of Loop’s subdivision surface. The third method is the least
square fitting the vertices around by a quadratic function, and use the normal of the quadratic at
the vertex as the approximation. All these methods works well, but the results has little difference.

59

If the surface is fair, all them are very similar. If the surface is bumpy, the third method tend to
keep the detail, while the second tend filter out some noisy.

For the sharp vertex, the triangles around the vertex are divided into some groups by the
sharp edges(see Figure 34). For each group, we assign a single normal for the vertex. This normal
is computed by the weighted averaging approach mention above. In the construction of surface
patch for one triangle, there is only one normal used for one vertex of the triangle. This normal is
vertex normal if the vertex non-sharp, otherwise the normal is group’s normal to which the triangle
belongs. When we mention vertex normal of a triangle in the following, we mean this normal. In
the following we do not address the normal estimation problem.

Instead of using geometric error based decimation scheme of a triangulation, we have developed
a normal variation based decimation scheme in order to capture the detail structures. This scheme
will be reported elsewhere. Hence we omit it here. We mention the step here because it is in our
implementation of the scheme and most of the examples given in the last section are produced from
the decimated mesh.

2.12.1 Construction of the Triangular Surface Patches

Suppose we are given a space surface triangulation T of the point set V = {vl}Nl=1. For each triangle,
say [vivjvk], we have three normals N (i)

ijk, N
(j)
ijk , N

(k)
ijk for the vertices vi, vj , vk, respectively. Our aim

is to construct a triangular surface patch for the triangle such that the surface patch passes through
the three vertices of the triangle and has the given normal at the vertices and further, the composite
surface is G1 smooth except at the sharp edges where it is G0. The construction involves two steps:
Construct prism hull(step 5). Construction a trivariate function on the hull(step 6).

Construct Prism Hull For the given triangulation T , the prism hull, denoted as D, is a collec-
tion of prisms, that could be regarded as expansion of T in both the positive and negative directions
of T . To describe how each of the triangles expand, we need to specify a direction at each vertex
along which the triangles are extrude. At the non-sharp vertex, this direction is specified as the
normal at the vertex. At a sharp vertex, say vi, there are several normals as described before. We
choose the extrude direction, denoted as Ni, as the average of all the face normals. Then the prism
hull is build as follows.

Let [vivjvk] be a triangle of T . Then define a prism Dijk as

Dijk := {p : p ∈ ∆ijk(λ), λ ∈ Iijk}

where ∆ijk(λ) = {p ∈ IR3 : p = pijk(b1, b2, b3, λ), bi ≥ 0} is a triangle for fixed λ with

pijk(b1, b2, b3, λ) = b1vi(λ) + b2vj(λ) + b3vk(λ), b1 + b2 + b3 = 1 (111)

and vl(λ) = vl+λnl, nl = Nl/‖Nl‖, l = i, j, k; and Iijk is a maximal open interval such that 0 ∈ Iijk
and for any λ ∈ Iijk, the points vi(λ), vj(λ) and vk(λ) are not collinear and the three normals Ni,
Nj and Nk point to the same side of the plane Pijk(λ) = {p : p = pijk(b1, b2, b3, λ), bl ∈ IR}. We
call Dijk as irregular triangular prism since the edges vl(λ), λ ∈ Iijk, l = i, j, k, are not parallel,
and we call (b1, b2, b3, λ) as Dijk coordinate of p if p = b1vi(λ) + b2vj(λ) + b3vk(λ).

Construction of the boundary curves, functions and gradients Let Ni be the normal of
vertex vi and N

(i)
ijk be the normals that is attached to the vertex vi of the triangle [vivjvk]. Then

we make the assumption:
Assumption. For each vertex vi, NT

i N
(i)
ijk > 0 for any triangle [vivjvk] ∈ T .

In order to define a at least C0 function over D =
∑

i,j,kDijk, we adjust the length of normal
Nijk, so that

NT
i N

(i)
ijk = ‖Ni‖2 (112)

60

Let [vivj] be an edge of the triangulation and [vivjvk] and [vivjvl] be the adjacent triangles of the
edge. Then we define

N
(i)
ij =

1
2

(
N

(i)
ijk +N

(i)
ijl

)
, N

(j)
ij =

1
2

(
N

(j)
ijk +N

(j)
ijl

)
In the following, we use the notations:

Fi = F |Vi , ∇Fi = ∇F |Vi , vi ∈ V
Fij = F |Hij , ∇Fij = ∇F |Hij , [vivj] ∈ ∂T
Fijk = F |Dijk , ∇Fijk = ∇F |Dijk , [vivjvk] ∈ T

where Vi = {vi(λ) : λ ∈ (−∞,∞)} ∩ D, Hij = {hij(t, λ) : hij(t, λ) = (1 − t)vi(λ) + tvj(λ), t ∈
[0, 1], λ ∈ (−∞,∞)}∩D and ∂T denotes all the edges of the triangulation T . For the construction
of Fijk, there is no restriction on the interval Iijk. However, Iijk should be as large as possible,
such that the surface Fijk = 0 is contained in Dijk. The problem of determining the largest Iijk is
considered in section 5. In this section, we mainly construct the function Fijk. This will be done
by firstly constructing function values and gradients on the edges and faces of Dijk and then using
a transfinite triangle interpolation to extend the function to the interior of Dijk.

On the edges Vl, l = i, j, k, of Dijk, the function value is defined by

F (vl(λ)) = ‖Nl‖λ = nTl N
(l)
ijkλ, l = i, j, k, nl = Nl/‖Nl‖ (113)

On the boundary face Hlm of Dijk, the function value is defined by cubic Hermite interpolation
along the line segment [vl(λ)vm(λ)] = {hlm(t, λ) : t ∈ [0, 1]}. That is, interpolates the function
values F (vl(λ)), F (vm(λ)) and the derivatives

[vm(λ)− vl(λ)]TN (l)
lm, [vm(λ)− vl(λ)]TN (m)

lm (114)

at the end points vl(λ) and vm(λ), respectively, plus an additional free quartic term. This leads to

F (hlm(t, λ)) = φlm(t) + ψlm(t)λ, t ∈ [0, 1], λ ∈ Iijk (115)

with

φlm(t) = (vm − vl)TN
(l)
lmt(1− t)

2 + (vl − vm)TN (m)
lm t2(1− t) + θlmt

2(1− t)2 (116)

ψlm(t) = nTl N
(l)
lm(1− t)3 + (nm + 2nl)TN

(l)
lm t(1− t)2 +

+ (nl + 2nm)TN (m)
lm t2(1− t) + nTmN

(m)
lm t3 (117)

where θlm is a free parameter that is used to control the shape of the boundary curve:

Clm(t, θlm) := vl + t(vm − vl) + λ(t)[nl + t(nm − nl)] (118)

which will be the boundary of our constructed surface patch in Dijk, where

λ(t) = −φlm(t)
ψlm(t)

= λ1(t)θlm + λ0(t)

satisfies the equation F (hlm(t, λ)) = 0. For any θlm, the curve Clm(t, θlm) passes through the
vertices vl and vm and perpendicular to the normal nl and nm at the vertices.

When θlm increase(or decrease), the boundary curve Clm(t, θlm) goes away from the line segment
[vlvm] in the normal(or opposite normal) direction. The default choice of this parameter could be
to take θlm = 0 or to make some energy to be minimal. For example,∫ 1

0
‖C ′′lm(t, θlm)‖dt = min (119)

61

or ∫ 1

0
k(t, θlm)dt = min (120)

where k(t, θlm) is the curvature of Clm(t, θlm), or

max
t∈[0,1]

k(t, θlm) = min (121)

To avoid produce bumpy surface, we prefer to use (121).
In order to define the gradients on the boundary faces Hlm, we take three different directions

in IR3 as follows:

d1 = vm(λ)− vl(λ), d2 = (1− t)nl + tnm, d3 = d1 × d2 (122)

It is easy to see that

Dd1F (hlm(t, λ)) =
∂F (hlm(t, λ))

∂t
= φ′lm(t) + ψ′lm(t)λ (123)

Dd2F (hlm(t, λ)) =
∂F (hlm(t, λ))

∂λ
= ψlm(t) (124)

We artificially define

Dd3F (hlm(t, λ)) = (1− t)N (l)
ijk + tN

(m)
ijk

From the equations

dTi ∇Flm = DdiFlm, i = 1, 2, 3

we have

∇Flm =
{

[d1, d2, d3]T
}−1

[Dd1Flm, Dd2Flm, Dd3Flm]T

Since

[d1, d2, d3]T [d1 + αd2, d2 + βd1, d3] =

 ‖d1‖2 + αdT1 d2 0 0
0 ‖d2‖2 + βdT1 d2 0
0 0 ‖d3‖2

where α = −dT1 d2/‖d2‖2, β = −dT1 d2/‖d1‖2, and ‖d1‖2‖d2‖2 − (dT1 d2)2 = ‖d3‖2, we have

{
[d1, d2, d3]T

}−1
=

1
‖d1‖2‖d2‖2 − (dT1 d2)2

[
d1‖d2‖2 − d2(dT1 d2), d2‖d1‖2 − d1(dT1 d2), d3

]
Hence

∇Flm =
[d1‖d2‖2 − d2(dT1 d2)]Dd1Flm + [d2‖d1‖2 − d1(dT1 d2)]Dd2Flm + d3Dd3Flm

‖d1‖2‖d2‖2 − (dT1 d2)2
(125)

which could be written as

∇F (hlm(t, λ)) =
P5(t) +Q5(t)λ+R5(t)λ2

p2(t) + q1(t)λ+ r0(t)λ2

where P5, Q5, R5 are polynomials of degree 5 and p2, q1, r0 are polynomials of degree 2, 1, 0, re-
spectively.

62

Construction of the function in the interior Having the function values and gradients on
the boundary of Dijk, we can now apply any transfinite triangular interpolant over the triangle
∆ijk(λ) to construct the function Fijk. We use the side-vertex scheme defined by Theorem 3.1 in
[170] with some variations. The implementations show that the direct application of the scheme
(3.9) in [170] leads to bad shaped surface. Hence we alter the equation (3.6) in [170] by introducing
additional term. The following is the modified scheme for a typical triangle [v1v2v3]:

F (p123(b1, b2, b3, λ)) =

3∑
i=1

3∏
j=1,j 6=i

b2j Di(b1, b2, b3, λ)

3∑
i=1

3∏
j=1,j 6=i

b2j

+ E(b1, b2, b3, λ) (126)

where Di(b1, b2, b3, λ) are defined by interpolating function values and derivative at vi(λ) and
bj

1−bi vj(λ) + bk
1−bi vk(λ):

Di(b1, b2, b3, λ) = (1 + 2bi)(1− bi)2F (hjk(Si, λ))− bi(1− bi)[bjeTk (λ) + bke
T
j (λ)]∇F (hjk(Si, λ))

+ b2i (3− 2bi)NT
i niλ+ b2i [bje

T
k (λ) + bke

T
j (λ)]Ni + b2i (1− bi)(bjθij + bkθki)

(127)
where (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, ek(λ) = vj(λ)−vi(λ), ej(λ) = vk(λ)−vi(λ), Si = bk

bj+bk
.

E(b1, b2, b3, λ) = b21b
2
2b

2
3

 ∑
l1+l2+l3=l

(cl1l2l3 + λwl1l2l3)Bl
l1l2l3(b1, b2, b3)

is free. That is, E(b1, b2, b3, λ) has no influence on the function value and the first order partials of
F at the boundary of Dijk since it has the factor b21b

2
2b

2
3. This term can be used to fit data in the

volume Dijk to get a better approximation. If there are no data available, E(b1, b2, b3, λ) could be
taken as zero. The function Bl

l1l2l3
(b1, b2, b3) in E(b1, b2, b3, λ) is the well-known Bernstein-Bézier

polynomial on a triangle.

Theorem. The function F defined by F |Dijk = Fijk is C1 over
∑

ijkDijk everywhere except at the
sharp edges where it is C0 and it interpolates the function values NTnlλ at vl(λ), l = 1, · · · , N . At
non-sharp vertex vl(λ), it interpolates also the gradient Nl.

2.12.2 Optimized the Shape of the Surface Patch

In the construction of the function F , the term E(b1, b2, b3, λ) is free that could be used to control
the shape of the surface. We choose this term so that the maximal value of the Gaussian curvature
of the surface is minimal. Since the influence of E(b1, b2, b3, λ) is local, that is, this term in one
triangle does not influent the shape of the surface patches defined on the other triangles. The
optimization could be computed triangle by triangle. To reduce the computation cost, we minimize
the Gaussian curvature on finite number of points, and the second derivatives are computed by
divided difference of the first order derivatives.

2.12.3 Evaluation of the Surface Patch and Error Computation

Evaluation of the Surface Patch It is easy to see that the function Fijk is C1 within Dijk.
Hence we need only to consider the continuity of F on the face Hlm. First we show that the function
is C0.

On the edge Vl the function value is uniquely defined by (113), hence the function is continuous
there. On the face Hlm, the function values defined by (115) use the values on the edge and

63

derivatives defined by (114). These values are edge dependent. That is, For the two triangles that
share the edge, the function values for the two function at the common face Hlm are the same.
Hence F is continuous.

Now we show the function is C1 on the non-sharp edges. Let [vivjvk] be any triangle of T .
Then for each (b1, b2, b3), bi ≥ 0,

∑
bi = 1, determine λmin = λmin(b1, b2, b3) such that

λmin = min{λ : F (pijk(b1, b2, b3, λ)) = 0} (128)

Then the surface point is defined by p = pijk(b1, b2, b3, λmin). Since F is C1 over
∑
Dijk, the

constructed surface is G1 smooth(tangent plane continuous). The main task here is to compute
λmin for each (b1, b2, b3) with bi ≥ 0. It follows from (127) that Di(b1, b2, b3, λ) is a rational function
of λ in the form

F0 + F1λ+
N0 +N1λ+N2λ

2

D0 +D1λ+D2λ2

Hence φ(λ) := F (pijk(b1, b2, b3, λ)) is a rational function in λ. The minimal zero of φ(λ) is the
required λmin.

Although φ(λ) = 0 is a nonlinear equation, the computation shows that φ(λ) is nearly a linear
function. Hence, starting from λ = 0, find an interval with opposite signs of φ(λ) by searching,
then using linear interpolation, an approximate minimal zero of φ(λ) is obtained by one or two
time iterations.

Let F̃ijk(b1, b2, λ) = F (pijk(b1, b2, 1− b1 − b2, λ)). Then the surface normal is computed by the
following equation

∇Fijk =
{

[v1(λ)− v3(λ), v2(λ)− v3(λ), b1ni + b2nj + b3nk]T
}−1

[
∂F̃ijk
∂b1

,
∂F̃ijk
∂b2

,
∂F̃ijk
∂λ

]T
(129)

It should be noted that the 3× 3 matrix in (129) is nonsingular if the points v1(λ), v2(λ) and v3(λ)
are not collinear and the vector b1ni + b2nj + b3nk is not parallel to the plane Pijk(λ).

Error Computation After the decimation step of our algorithm(step 4). The points that are
not the vertices of the decimated mesh are grouped into the volume Dijk for the triangle [vivjvk].
The surface patch for this triangle provide an approximation to these points. Now we consider the
computation of the approximation error. Let p(l)

ijk, l = 1, 2, · · · ,mijk be the initial input points
that in the volume Dijk. The error bound is computed by the following steps:

a. For each point p(l)
ijk, compute the volume coordinate (b(l)1 , b

(l)
2 , b

(l)
3 , λ(l)).

b. For (b(l)1 , b
(l)
2 , b

(l)
3) compute λmin(b(l)1 , b

(l)
2 , b

(l)
3) as the (128)

Then error of the point p(l)
ijk to the surface is bounded by |λ(l) − λmin(b(l)1 , b

(l)
2 , b

(l)
3)|, since

‖p(l)
ijk − pijk(b

(l)
1 , b

(l)
2 , b

(l)
3 , λmin(b(l)1 , b

(l)
2 , b

(l)
3)‖ ≤ b(l)1 ‖vi(λ

(l))− vi(λmin(b(l)1 , b
(l)
2 , b

(l)
3)‖

+b(l)2 ‖vj(λ
(l))− vj(λmin(b(l)1 , b

(l)
2 , b

(l)
3)‖+ b

(l)
3 ‖vk(λ

(l))− vk(λmin(b(l)1 , b
(l)
2 , b

(l)
3)‖

≤ |λ(l))− λmin(b(l)1 , b
(l)
2 , b

(l)
3)|(b(l)1 ‖n1‖+ b

(l)
2 ‖n2‖+ b

(l)
3 ‖n3‖

= |λ(l) − λmin(b(l)1 , b
(l)
2 , b

(l)
3)|

2.12.4 The Condition of the Triangulation

In this section, we will give conditions on the triangulation T under which the function F and its
gradient ∇F are well defined.

64

Definition(see definition 3.1 of [50]). A triangle ∆ijk(λ) is called non-degenerate, if its vertices
are not collinear, the normal vectors ni, nj , nk are not parallel to its plane Pijk(λ) and point to the
same side of this plane.

Theorem(see Theorem 4 of [50]). Let [vivjvk] be a non-degenerate triangle of T with respect to
the normal ni, nj , nk. Consider the real numbers λ1, · · · , λs(s ≤ 6) that solve one of the following
three quadratic equations:

det(nl, vj(λ)− vi(λ), vk(λ)− vi(λ)) = 0, l = i, j, k

and define a := max(−∞, {λi : λi < 0}), b := min(∞, {λi : λi > 0}). Then Iijk = (a, b).

Theorem 4.2. Let [vivjvk] be a non-degenerate triangle of T . Then both the function Fijk and its
gradient ∇Fijk are well defined on Dijk.
Proof. Let λ ∈ Iijk. Since ni, nj , nk are not parallel to the plane Pijk(λ) and point to the same
side of the plane

det(nl, vj(λ)− vi(λ), vk(λ)− vi(λ)) 6= 0, l = i, j, k

and have the same sign. Hence for any bi ≥ 0, bj ≥ 0, bk ≥ 0, bi + bj + bk = 1

∑
l=i,j,k

bl det (nl, vj(λ)− vi(λ), vk(λ)− vi(λ)) = det

 ∑
l=i,j,k

blnl, vj(λ)− vi(λ), vk(λ)− vi(λ)

 6= 0

That is, the vector
∑

l=i,j,k blnl is not in parallel to the plane Pijk(λ). Hence the 3 × 3 matrix in

(129) is nonsingular. This implies that the gradient ∇Fijk is well defined if ∂F̃ijk
∂b1

,
∂F̃ijk
∂b2

,
∂F̃ijk
∂λ are

well defined. This is true if ∇Flm, (l,m) ∈ {(i, j), (j, k), (k, i)} are well defined. Hence we need to
verify that the denominator of ∇Flm is positive.

Since the vector
∑

l=i,j,k blnl is of course not parallel to the boundary of the triangle ∆ijk(λ).
Hence, the non-zero vectors d1 and d2 defined in (116) and (117) are not parallel. Therefore, the
denominator of ∇Flm, which is ‖d1‖2‖d2‖2 − (dT1 d2)2, is positive. ♦

2.12.5 Approximation by Parametric Rational Bezier

In many applications of surface modeling, to have both the implicit and parametric representations
is important. In this section, we are intend to provide rational Bezier form represention for the
A-patch defined in the prism.

Triangular Rational Bezier From the construction of the surface patches in section 4, we
know that the surface patch in each volume could be expressed in the parametric form with ∆ =
{(b1, b2, b3) : bi ≥ 0; b1 + b2 + b3 = 1} be the parametric domain. However, this parametric form
has no close form representaion and in general, no Bezier representaion for the patch exists. Hence,
we appear to rational Bezier form approximation instead of exact conversion. With the increase of
the degree of rational Bezier, the error of the approximation will decrease. Let d be the degree of
the rational Bezier patch, the approximant is obtained as follows:

1. Generate a degree d−1 functional Bezier form approximation λ̃(b1, b2, b3) of λ(b1, b2, b3). This
is a classical polynomial aprroximation problem on a triangle. To obtain global C0 approximation,
we generate this approximant in steps: a. Compute Bezier coefficients of λ̃(b1, b2, b3) on the three
boundaries by interpolating λ(b1, b2, b3). bf b. The inner coefficients are defined by the least square
fitting: ∫ ∫

∆
‖λ̃(b1, b2, b3)− λ(b1, b2, b3) dS‖ = min

65

q

q

q

q

r

r

r

r

p

p

p

p

q

4

3

0

1

2

1

2

3

0

1

2

3

0

Figure 35: Related Bézier coefficients by G1 continuity for d = 4.

The integration above is computed on regularly subdivided triangles and on each sub-triangle, a
6-points numerical quadrature rule(see [54], page 35) is employed.

2. Generate a G0 degree d parametric form Bezier representation by

P
(0)
ijk (b1, b2, b3) = b1vi(λ̃(b1, b2, b3)) + b2vj(λ̃(b1, b2, b3)) + b3vk(λ̃(b1, b2, b3))

The collection of P (0)
ijk define a continous(not smooth) parametric surface.

3. Generate aG1 degree n parametric form Bezier coefficients. Let P (0)
ijk (b1, b2, b3) =

∑
l+m+n=d b(0)

lmnB
d
lmn(b1, b2, b3)

Then we adjust the coefficients b(0)
lmn form ≤ 1, or n ≤ 1 or l ≤ 1 so that theG1 continuous condition

i

d
[[α1pi−1 + (1− α1)ri−1]− [[β1qi−1 + (1− β1)qi]] +

(1− i

d
)[[α0 − pi + (1− α0)ri]− [[β0qi + (1− β0)qi+1]] = 0, i = 0, 1, · · · , d (130)

given by Farin in [108](see page 334-339), is satisfied. Using Farin’s notation qi represent the Bezier
coefficients on the boundary (see Figure 35), ri and pi represent the Bezier coefficients near the
boundary coefficients on two adjacent triangles.

The condition (130) is applied as follows: For fix q0, q1, p0 and r0, soving α0 and β0 from the
equation (130) for i = 0. Similarly, α1 and β1 is sovled from (130) for i = d and fixed q3, q4, p3

and r3. After α0, α1, β0 and βi are defined, the other equations (i = 1, · · · , d − 1) are used to
solve other coefficients. For our problem, q0 and q4 are known, that are the vertices. To have the
equation (130) for i = 0 have unique solution we need to adjuast the coeeficients q1, p0 and r0, so
that the four points q0, q1, p0 and r0 are coplaner. We adjust these coeeficients so that they lie on
the boundaries of the prisms considered. For example, q1 is adjusted as

q1 + t((d− 1)n0 + n4)/d

where n0 and n4 are the given normals at q0 and q4, respectively. For d ≥ 4, the system (126) for
i = 1, · · · , d − 1 is under-determined. It has d − 1 equations and 3d − 7 unknowns. We solve this
system by approximating the corresponding coefficients of P (0)

ijk that are defined in the last step.
This solving stratige leads to a restricted least square problem{

MX −B = 0,
‖X − C‖2 = min

66

Figure 36: Adaptive feature of the reconstruction: The flat parts use less patches than the curved
parts

67

whereX is a vectors consists of unknowns. B is the left-handed side. C consists of the corresponding
known coefficients of P (0)

ijk . We solve this problem by singular-valued decomposition of the matrix
M . The details are omitted.

4. Produce rational Bezier represention

P
(1)
ijk (b1, b2, b3) =

∑
l+m+n=d+2 blmnBd

lmn(b1, b2, b3)∑
l+m+n=d+2wlmnB

d
lmn(b1, b2, b3)

, blmn ∈ R3, wlmn ∈ R (131)

It is should be noted that, solving (126) for each edge, the coefficients at the corner, that is p1, r1,
p2 and r2 (they are called twist term) are doubly determined, we take their average as the required
value. However, such defined twist term will not lead to G1 surface. To satisfy the G1 condition
(126), a rational term

(b1b3b
(1)
d−2,1,1 + b1b2b

(2)
d−2,1,1)Bd

d−2,1,1 + (b1b2b
(2)
1,d−2,1 + b2b3b

(0)
1,d−2,1)Bd

1,d−2,1 + (b2b3b
(0)
1,1,d−2 + b1b3b

(1)
1,1,d−2)Bd

1,1,d−2

b2b3 + b1b3 + b1b2

is added to the Bezier part, where b(1)
d−2,1,1 is defined by G1 condition on the edge 1 and minus

the corresponding average value, similarly for others. The degree d Bezier plus the rational term
could be written in the rational form (131). It should be note that the vertices of the triangle
are base point of the surface. To eleminate these base points, we pertube the denorminator into
b2b3 + b1b3 + b1b2 + ε(b21 + b22 + b23) and the numerator

(b1b3b
(1)
d−2,1,1 + b1b2b

(2)
d−2,1,1 +

ε

2
b21(b(1)

d−2,1,1 + b(2)
d−2,1,1) +

ε

2
b22b

(2)
d−2,1,1 + +

ε

2
b23b

(1)
d−2,1,1)Bd

d−2,1,1

+(b1b2b
(2)
1,d−2,1 + b2b3b

(0)
1,d−2,1 +

ε

2
b21b

(2)
1,d−2,1 +

ε

2
b22(b(2)

1,d−2,1 + b(0)
1,d−2,1) +

ε

2
b23b

(0)
1,d−2,1)Bd

1,d−2,1

+(b2b3b
(0)
1,1,d−2 + b1b3b

(1)
1,1,d−2 +

ε

2
b21b

(1)
1,1,d−2 +

ε

2
b22b

(0)
1,1,d−2 +

ε

2
b23(b(0)

1,1,d−2 + b(1)
1,1,d−2))Bd

1,1,d−2

where ε > 0 is a small number which chosen so that the function value is not affected by this ε for
fixed word-length computation. Hence, the pertubation has no infflunce on the patch in practice.

Tensor Rational Bezier Since many CAGD system support tensor product form spline function
but not the triangular form Bezier, it would be convienient to convert the rational Bezier into tensor
form. For instance, in IGES specification, there is no triangular Bezier form. This conversion is
achieved by introducing a nonlinear transfom to convert the triangle, say [p1p2p3] into the unit
square [0, 1]× [0, 1]. Let

b1 = (1− t)(1− s)
b2 = (1− t)s
b3 = t

68

Figure 37: Left: Two convex faces. Right: Convex face and non-convex face

Then substitute (b1, b2, b3) into Bezier form we could a tensor product form as follows.

F (b1, b2, b3) =
∑

i+j+k=n

βijk
n!

i!j!k!
bi1b

j
2b
k
3

=
n∑
k=0

∑
i+j=n−k

βijk
n!

i!j!k!
bi1b

j
2b
k
3

=
n∑
k=0

Bn
k (t)

∑
i+j=n−k

βijkB
n−k
j (s)

=
n∑
k=0

Bn
k (t)

n−k∑
j=0

βn−k−j,jkB
n−k
j (s)

=
n∑
k=0

Bn
k (t)

n∑
j=0

β̃kjB
n
j (s)

where
∑n

j=0 β̃kjB
n
j (s) is derived from

∑n−k
j=0 βn−k−j,jkB

n−k
j (s) by degree elevation.

Examples In the study of using implicit surface patches for modeling a surface triangulation,
we have been constantly seeking for the approaches of using one triangular patch for each face of

69

Figure 38: Left: Two non-convex faces. Right: Zero-convex face and non-convex face

the triangulation. The technique presented in has ours wish fulfilled. Comparing with the earlier
scheme of A-patch in [85, 87, 122, 18], the present scheme use much less number of patches. For
example, from Euler formula v + f − e = 2 for a triangulation of a closed surface with genus zero,
we have f = 2v − 4, e = 3v − 6, where v, e and f represent the the numbers of vertices, edges
and faces, respectively. Since the early approaches uses two or four pieces of surface patch for each
edge, and one or two pieces of patch for each face. Hence the sum of the patch number is at least
8v−16 and as large as 2(8v−16). Therefore, the ratio of patch numbers is in the range [4 : 1, 8 : 1].

Furthermore, the proposed approach has the following features:
1. It is adaptive.
2. Could model sharp feature.
3. Error is easy to compute.
The implementation of the test show another attractive feature of the approach. That is, the

evaluation of the surface is quit easy. It is approximately to solve a linear equation for evaluating
one surface point. More importantly, the constructed surface patches have nice shape.

Figure 5.1-5.4 show the different join configuration of two patches. In Figure 5.1, the given
two faces [p1p2p3] and [p1p2p4] are convex(see [18] for the definition of the convexity of an edge or
face), where p1 = (−2, 0, 0), p2 = (2, 0, 0), p3 = (0, 4,−1) and p4 = (0,−4,−1). The corresponding
normals are chosen as n1 = (−1, 0, 1), n2 = (1, 0, 1), n3 = (0, 1, 1) and n4 = (0,−1, 1). In Figure
5.2, the vertices are the same as in Figure 5.1. The normal n3 n4 are replaced by (0, 1, 1.5) and
(0, 1, 1.5). Hence face [p1p2p3] is convex and face [p1p2p4] is non-convex. In Figure 5.3, the vertices
are the same as before, but the normals are chosen as n1 = n2 = (1, 0, 1), n3 = (0,−1, 1.5), and
n4 = (0, 1, 1.5). Hence the two faces are non-convex and the common edge [p1p2] is also non-convex.
Figure 5.4 shows a triangular patch join a plane smoothly, where p1 = (−2, 0, 0), p2 = (2, 0, 0),
p3 = (0, 4,−1) and p4 = (0,−4, 0). The normals are chosen as n1 = n2 = n4 = (0, 0, 1) and
n3 = (0,−1, 1.5). Hence, the face [p1p2p3] is non-convex and the face [p1p2p4] is zero convex. As
an application of the scheme in surface reconstruction, Figure 5.6 and 5.8 show the composite G1

smooth surfaces constructed from the triangulation shown in Figure 5.5 and 5.7, respectively.

3 Filling Holes and Blending

3.1 G1 Spline Surface Construction By Geometric Partial Differential Equations

A surface satisfying a geometric partial differential equation (GPDE) is referred to as a GPDE
surface. GPDE surfaces are favorable in the areas of computer graphics and computer aided
geometric design since they often possess certain optimal properties. For instance, the GPDE

70

surface which is a steady state solution of mean curvature flow has minimal surface area and the
Willmore surface which is a steady state solution of Willmore flow has minimal total squared mean
curvature. However, the construction of GPDE surfaces is not a trivial task, because GPDEs are
highly nonlinear in general. In recent years, the constructions of discrete GPDE surfaces (typically
using triangular meshes) have been studied intensively using divided difference-like discretization
techniques or even finite element methods. It is worth noting that there are only very few published
results on construction techniques for continuous GPDE surfaces, using Bernstein-Bézier surface,
B-spline surfaces and NURBS surfaces.

As a subset of NURBS surfaces and an extension of Bernstein-Bézier surfaces, the class of B-
spline surfaces has become the most popular for shape design and geometric modeling. B-spline
surfaces are widely used in the fields of computer graphics, animation and computer added design
(CAD) and computer added manufacturing (CAM). The aim of this work is to establish an efficient,
reliable and mathematically correct method for constructing GPDE B-spline surfaces with specified
G1 boundary conditions, using mixed finite element methods.

Divided difference-like techniques are generally more efficient and easier to implement. However,
they lack rigorous convergence analysis. In contrast, the finite element methods, while computa-
tionally more intensive, have sound and well established mathematical theory. More importantly,
finite element method can handle G1 boundary condition much more naturally than the divided
difference-like method. In divided difference-like method, the length of the tangent vectors on the
surface boundaries have to be taken into account, while in the finite element method presented the
lengths of the tangent vectors have no effect on the constructed surfaces, and hence is our solution
method of choice.

3.1.1 Preliminaries and Notations

This section introduce the necessary background material and notations, including definitions and
relations amongst a few geometric differential operators, curvatures and spline functions.

Differential Geometry of Parametric Surface Let S := {x(u1, u2) ∈ R3 : (u1, u2) ∈ D ⊂ R2}
be a parametric surface. For simplicity, we assume it is sufficiently smooth and orientable. Let
gαβ = 〈xuα ,xuβ 〉 and bαβ = 〈n,xuαuβ 〉 be the coefficients of the first and the second fundamental
forms of S with

xuα =
∂x
∂uα

, xuαuβ =
∂2x

∂uα∂uβ
, α, β = 1, 2,

n = (xu × xv)/‖xu × xv‖, (u, v) := (u1, u2),

where 〈·, ·〉, ‖ ·‖, ·× · stand for inner product, Euclidean norm and cross product in R3 respectively.
Let

[gαβ] = [gαβ]−1, [bαβ] = [bαβ]−1, g = det[gαβ], b = det[bαβ].

Curvatures. To introduce the notions of mean curvature and Gaussian curvature, we use the
concept of Weingarten map or shape operator (see [95]). The shape operator of surface S is a
self-adjoint linear map on the tangent space TxS := span{xu,xv} defined by

W : TxS → TxS,

such that

W(xu) = −nu, W(xv) = −nv. (132)

71

We can easily represent this linear map by a 2× 2 matrix S = [bαβ][gαβ]. In particular,

[nu, nv] = −[xu, xv]ST (133)

is valid. The eigenvalues k1 and k2 of S are principal curvatures of S and their arithmetic average
and product are the mean curvature H and the Gaussian curvature K, respectively. That is

H =
k1 + k2

2
=

tr(S)
2

, K = k1k2 = det(S).

Let H = Hn and K = Kn, they are referred to as mean curvature vector and Gaussian curvature
vector, respectively. Now we introduce a few geometric differential operators.

Tangential gradient opertor. Suppose f ∈ C1(S) then the tangential gradient operator ∇
acting on f is defined as

∇f = [xu, xv][gαβ][fu, fv]T ∈ R3. (134)

For a vector-valued function f = [f1, · · · , fk]T ∈ C1(S)k, we define its gradient by

∇f = [∇f1, · · · ,∇fk] ∈ R3×k.

It is easy to see that

∇x = [xu, xv][gαβ][xu, xv]T , (135)
∇n = −[xu, xv][gαβ]S[xu, xv]T , (136)

and both ∇x and ∇n are symmetric 3× 3 matrices.
The second tangential operator. Let f ∈ C1(S). Then the second tangential operator ♦ acting
on f is defined as

♦f = [xu,xv][hαβ][fu, fv]T ∈ R3. (137)

where

[hαβ] =
1
g

[
b22 −b12

−b12 b11

]
. (138)

The third tangential operator. Let f ∈ C1(S). Then the third tangential operator � acting
on f is defined as

�f = [xu,xv][gαβ]S[fu, fv]T ∈ R3.

The three tangential operators introduced above are in the tangent space TxS, they are linearly
dependent. In fact, we have the following Lemma.

Lemma 3.1. For any function f ∈ C1(S), we have

2H∇f = �f + ♦f. (139)

Proof. From the definitions of the three tangential operators we know that if the equality

2H[gαβ] = [gαβ]S + [hαβ]. (140)

holds, then (139) is obviously valid. From a direct calculation, (140) could be easily derived.
Divergence operator. Suppose v is a smooth vector field on surface S, then the divergence
operator divs acting on v is defined as

divs(v) =
1
√
g

[
∂

∂u
,
∂

∂v

] [√
g [gαβ] [xu,xv]Tv

]
. (141)

72

Laplace-Beltrami operator. Let f ∈ C2(S). Then the Laplace-Beltrami operator (LBO) ∆
acting on f is defined as (see [95], p. 83)

∆f = divs(∇f).

Obviously, ∆ is a second order differential operator. It is well known that LBO relates to the mean
curvature vector via the equation: ∆x = 2H.

Lemma 3.2 (Riemannian Divergence Theorem, see [66], p. 142). Let S be an orientable surface,
Ω a subregion of S with a piecewise smooth boundary ∂Ω. Let nc ∈ TxS (x ∈ ∂Ω) be the outward
unit normal along the boundary ∂Ω. Then for any given C1 vector field v on S, we have∫

Ω
divs(v)dA =

∫
∂Ω
〈v,nc〉ds.

Theorem 3.3 (Green’s formula for LBO). Let S be an orientaable surface, Ω a subregion of S
with a piecewise smooth boundary ∂Ω. Let nc ∈ TxS (x ∈ ∂Ω) be the outward unit normal along
the boundary ∂Ω. Then for a given C1 smooth vector field v on S, we have∫

Ω
[〈v,∇f〉+ f div(v)]dA =

∫
∂Ω
f〈v,nc〉ds. (142)

Proof. Taking v as fv in the Riemannian divergence theorem, we immediately obtain (142).

Spline surface There are several equivalent approaches to define spline functions, including
divided difference of truncated power function (see [82, 210]), the blossoming method (see [194])
and Cox-Door’s recursive formulas (see [81, 91]). We adopt the approach of recursive formulas as
these are the easiest to program.
Definition. Given a positive integer m, nonnegative integer k and a knot sequence

u0 ≤ · · · ≤ ui ≤ ui+1 ≤ ui+2 ≤ · · · ≤ um+2k.

U = {u0, · · · , um+2k} is referred to as knot vector. Then B-splines basis functions are defined as
follows

Ni,0(u) =

{
1, for u ∈ [ui, ui+1),

0, otherwise,
i = 0, 1, · · · ,m+ 2k − 1,

Ni,k(u) =
u− ui

ui+k − ui
Ni,k−1(u) +

ui+k+1 − u
ui+k+1 − ui+1

Ni+1,k−1(u), i = 0, 1, · · · ,m+ k − 1,

Assume
0
0

= 0

(143)

where i is the index of Ni,k(u), k is the degree.
Spline surface. For given positive integers m, n and a nonnegative integer k, and knot vectors

U = {u0, · · · , um+2k}, V = {v0, · · · , vn+2k},

the degree k four-sided spline surface is defined as

x(u, v) =
m+k−1∑
i=0

n+k−1∑
j=0

pijNi,k(u)Nj,k(v), (u, v) ∈ Ω := [0, 1]2,

where pij ∈ R3 are called control points of surface x(u, v). If i = 0 or m, j = 0 or n, pij is called
boundary control points. Other control points are called inner control points. In order to have the
spline surface be at least C2 smooth, we take k ≥ 3.

73

3.1.2 Construction GPDE Spline Surfaces

This section is devoted to the details of the construction of B-spline GPDE surfaces, including the
formulation of GPDEs, and their variational forms.

GPDEs and their Variational Forms To construct G1 smooth GPDE B-spline surface patch,
we use three fourth order equations, namely surface diffusion flow (SDF), Willmore flow (WF) and
quasi-surface flow (QSDF).

Surface Diffusion Flow
∂x
∂t

= −2∆Hn. (144)

This flow is introduced by Mullins in 1957 (see [168]), to describe the interface motion law of
growing crystal.

Willmore flow
∂x
∂t

= −
[
∆H + 2H(H2 −K)

]
n. (145)

Quasi-surface diffusion flow
∂x
∂t

= −∆2x. (146)

This flow was introduced in [239], and is used in surface design. It is known that tangent flow on a
surface does not alter the surface shape (see [105]). Hence if we remove the tangential flow portion
of (146), we obtain a geometric flow

∂x
∂t

= −2(∆H − 4H3 + 2HK)n.

If S is a closed surface and A stands for its area, then by Green’s formula we obtain (see [77, 203]
for the change rates of the surface area and the enclosed volume of the evolved surface)

d
dt
A(t) = −2

∫
S(t)

[
‖∇H‖2 + 2H2(2H2 −K)

]
dA ≤ 0.

Hence, Quasi-surface diffusion flow is area diminishing. The shrinkage stops when H ≡ 0.
Next we present variational form formulations for the GPDE (144)–(146). The detailed deriva-

tions are given in the appendix.
The mixed variational form of (144) is: Find (x,y) ∈ H2(S)3 ×H1(S)3 such that

∫
S

∂x
∂t
φ dA+ 2

∫
S

[
φ� y − n(∇φ)T∇y

]
n dA = 0, ∀φ ∈ H1

0 (S),∫
S

yψ dA+
1
2

∫
S

(∇x)T∇ψ dA− 1
2

∫
∂S

ncψ ds = 0, ∀ψ ∈ H1(S),

S(0) = S0, ∂S(t) = Γ, nc(x) = n(Γ)
c (x), ∀x ∈ Γ,

(147)

where n(Γ)
c is the given co-normal on the boundary curve Γ. Similarly, the mixed variational form

of Willmore flow (145) can be writen as: Find (x,y) ∈ H2(S)3 ×H1(S)3 such that

∫
S

∂x
∂t
φ dA+

∫
S

[
φ� y − n(∇φ)T∇y

]
n dA

+
∫
S

2n(H2 −K)φnTy dA= 0, ∀φ ∈ H1
0 (S),∫

S
yψ dA+

1
2

∫
S

(∇x)T∇ψ dA− 1
2

∫
∂S

ncψ ds = 0, ∀ψ ∈ H1(S),

S(0) = S0, ∂S(t) = Γ, nc(x) = n(Γ)
c (x), ∀x ∈ Γ.

(148)

74

Finally, the mixed variational form of the quasi-surface diffusion flow is: Find (x,y) ∈ H2(S)3 ×
H1(S)3 such that

∫
S

∂x
∂t
φ dA− 2

∫
S

(∇y)T∇φ dA = 0, ∀φ ∈ H1
0 (S),∫

S
yψ dA+

1
2

∫
S

(∇x)T∇ψ dA− 1
2

∫
∂S

ncψ ds = 0, ∀ψ ∈ H1(S),

S(0) = S0, ∂S(t) = Γ, nc(x) = n(Γ)
c (x), ∀x ∈ Γ.

(149)

In section 3.1.2, systems (147)–(149) are numerically solved using mixed finite element methods.

Construction Steps of GPDE B-Spline Surfaces Problem Description. Given four
boundary curves and the cross tangents on the curves, we need to construct a four-sided B-spline
surface x(u, v) =

∑m+k−1
i=0

∑n+k−1
j=0 pijNi,k(u)Nj,k(v), (u, v) ∈ [0, 1]2 which interpolates the given

boundary curves with the given tangents, and satisfies a specific GPDE in (0, 1)2

The construction steps are outlined as follows. The details of each step are given in subsequent
subsections.

1. Construct initial inner control points: The initial inner control points can be arbitrarily
given. However, to have a fast convergence of the evolution process, good initial values are
necessary. We use the Coons interpolation technique [80] using the boundary control points
to construct inner control points (see section 3.1.2).

2. Evolve the control points: Use a specific GPDE to evolve the inner control points, till
steady state solution is achieved. The evolution includes the following steps (see section
3.1.2):

(a) Set a temporal step-size τ .

(b) Discretize the specific GPDE in the spatial direction using a mixed finite element method
(see section 3.1.2), to yield a system of nonlinear ordinary differential equations (ODEs).

(c) Discretize the system of ODEs in the temporal direction using a semi-implicit scheme
(see section 3.1.2), to yield a linear system.

(d) Solve the linear system using an iterative approach, to yield a new approximate solution
of the inner control points.

(e) Check the termination conditions, if they are satisfied, stop the evolution, otherwise go
back to step (b).

Construction of Initial Inner Control Points Good initial inner control points yield a more
efficient evolution process. We utilize the construction technique of Coons surface patch (see [80])
from the boundary curves, to calculate our initial inner control points. The construction results
are

p(0)
ij = p(u)

ij + p(v)
ij − p(uv)

ij , i = 1, · · · ,m+ k − 2, j = 1, · · · , n+ k − 2,

where (if k = 3),

p(u)
ij = (1− αi)p0j + αipm+k−1,j ,

p(v)
ij = (1− βj)pi0 + βjpi,n+k−1,

p(uv)
ij = (1− αi)(1− βj)p00 + αi(1− βj)pm+k−1,0

+ (1− αi)βjp0,n+k−1 + αiβjpm+k−1,n+k−1,

75

αi =

1

3m , i = 1,
i−1
m , i = 2, · · · ,m,

1− 1
3m , i = m+ 1,

βj =

1

3n , j = 1,
j−1
n , j = 2, · · · , n,

1− 1
3n , j = n+ 1.

Construction of Inner Control Points For ease of description, we reorder the basis functions
and control points into 1-dimensional arrays. First, we order the inner basis and control points as
follows:

φ(i−1)(n+k−2)+j−1(u, v) = Ni,k(u)Bj,k(v), i = 1, · · · ,m+ k − 2, j = 1, · · · , n+ k − 2,
x(i−1)(n+k−2)+j−1 = pij , i = 1, · · · ,m+ k − 2, j = 1, · · · , n+ k − 2.

Then we order the basis and control points on the boundary. Starting with the indices (0, 0), the
basis functions and control points at the surface boundary are arranged in clockwise order. Using
this ordering of the basis functions and control points, the spline surface patch is represented as

x(u, v) =
n0∑
j=0

xjφj(u, v) +
n1∑

j=n0+1

xjφj(u, v), (150)

where
n0 = (m+ k − 2)(n+ k − 2)− 1, n1 = (m+ k)(n+ k)− 1.

The mean curvature vector of the surface is represented approximately as

H(u, v) =
n1∑
j=0

hjφj(u, v), hj ∈ R3. (151)

The coefficients xj in the first term of (150) are unknowns, while the coefficients xj in the second
term are given. All the coefficients in (151) have to be calculated.

Spatial Discretizations Spatial Discretizations of SDF and WF. Substituting (150) and
(151) into (147) and (148), and taking the test functions φ as φi(i = 0, · · · , n0), ψ and φi(i =
0, · · · , n1), and finally noting that ∂xj(t)

∂t = 0 if j > n0, we obtain the following matrix representa-
tions of (147) and (148): {

M
(1)
n0

∂Xn0 (t)
∂t + L

(1)
n1 Hn1(t) = 0,

M
(2)
n1 Hn1(t) + L

(2)
n1 Xn1(t) = B,

(152)

where
Xj(t) = [xT

0 (t), · · · ,xT
j (t)]T ∈ R3(j+1),

Hn1(t) = [hT
0 (t), · · · ,hT

n1
(t)]T ∈ R3(n1+1),

B = [bT
0 , · · · ,bT

n1
]T ∈ R3(n1+1),

M
(1)
n0 = (mij)

n0,n0

ij=0 , M
(2)
n1 = (mij)

n1,n1

ij=0 ,

L
(1)
n1 =

(
l
(1)
ij

)n0,n1

ij=0
, L

(2)
K =

(
l
(2)
ij

)n1,K

ij=0
,

76

and

mij = I3

∫
S
φiφj dA, I3

∫
S
φiφj dA,

(153)

l
(1)
ij =2

∫
S

[
φi � φj − n(∇φi)T∇φj

]
nT dA for SDF,

l
(1)
ij =

∫
S

[
φi
[
� φj + 2n(H2 −K)φj

]
− n(∇φi)T∇φj

]
nTdA for WF,

l
(2)
ij =

1
2

I3

∫
S

[
(∇φi)T∇φj

]
dA,

bi =
1
2

∫
Γ

ncφi ds. (154)

Moving the terms related to the known vertices xn0+1, · · · , xn1 in equation(152) to the equations’s
right-hand side, we rewrite (152) as{

M
(1)
n0

∂Xn0 (t)
∂t + L

(1)
n1 Hn1(t) = 0,

M
(2)
n1 Hn1(t) + L

(2)
n0 Xn0(t) = B(2).

(155)

Note that, matrices M (1)
n0 and M

(2)
n1 are symmetric and positive definite. The integrals in defining

the matrix elements are computed using Gaussian quadrature formulas over rectangles. The knots
and weights of the Gaussian quadrature formulas can be found in [3, 240].

Spatial Discretizations of QSDF. Substituting (150) and (151) into (149), taking the test
functions φ as φi(i = 1, · · · , n0) and ψ as φi(i = 1, · · · , n1), and finally noting that ∂xj(t)

∂t = 0 if
j > n0, we obtain the following matrix form of (149):{

M
(3)
n0

∂Xn0 (t)
∂t + L

(3)
n1Hn1(t) = 0,

M
(4)
n1 Hn1(t) + L

(4)
n1 Xn1(t) = B,

(156)

where
Xj(t) = [x0(t), · · · ,xj(t)]T ∈ R(j+1)×3,

Hn1(t) = [h0(t), · · · ,hn1(t)]T ∈ R(n1+1)×3,

B = [b0, · · · ,bn1]T ∈ R(n1+1)×3

M
(3)
n0 = (mij)

n0,n0

ij=0 , M
(4)
n1 = (mij)

n1,n1

ij=0 ,

L
(3)
n1 =

(
l
(3)
ij

)n0,n1

ij=0
, L

(4)
K =

(
l
(4)
ij

)n1,K

ij=0
,

and

mij =
∫
S
φiφj dA,

l
(3)
ij =−2

∫
S

(∇φj)T∇φi dA,

l
(4)
ij =

1
2

∫
S

(∇φj)T∇φi dA,

bi =
1
2

∫
Γ

ncφi ds. (157)

77

Moving the known terms in (156) to the equation’s right-hand side, we obtain{
M

(3)
n0

∂Xn0 (t)
∂t + L

(3)
n1Hn1(t) = 0,

M
(4)
n1 Hn1(t) + L

(4)
n0 Xn0(t) = B(4).

(158)

Matrices M (3)
n0 M

(4)
n1 are symmetric and positive definite. It should be pointed out that the size of

the matrices in (155) are much larger than those in (158). But the right-handed side of (158) has
three columns.

Boundary Conditions In the boundary integrals (154) and (157), nc is the co-normal of the
surface, it is infeasible to compute these co-normals from the previous approximation, since they
do not satisfy the given boundary condition. The right way is to replace nc with n(Γ)

c . That is

bi =
1
2

∫
Γ

n(Γ)
c φi ds.

A good point to note is that the integral above does not involve the length of the tangent vector.

Temporal Direction Discretization We consider only the temporal direction discretization
of SDF and WF. The temporal direction discretization of QSDF is similar. Suppose we have
approximate solutions X(k)

n0 = Xn0(tk) and H
(k)
n1 = Hn1(tk) at t = tk. We obtain approximate

solutions X(k+1)
n0 and H(k+1)

n1 at t = tk+1 = tk+τ (k) using a semi-implicit Euler scheme. Specifically,
we use the following approximation

Xn0(tk+1)−Xn0(tk)
τ (k)

≈ ∂Xn0

∂t
.

The matrices M (1), M (2), L(1) and L(2) in (155) are computed using the surface data at t = tk.
This yields a linear system with X

(k+1)
n0 and H

(k+1)
n1 as unknowns:[

M
(1)
n0 τ (k)L

(1)
n1

L
(2)
n0 M

(2)
n1

][
P

(k+1)
n0

H
(k+1)
n1

]
=
[
τ (k)B(1)+M

(1)
n0 P

(k)
n0

B(2)

]

Though the matrices M (1) and M (2) are symmetric and positive definite, the total matrix is
neither symmetric nor positive definite. However the coefficient matrix of this system is highly
sparse, hence a stable iterative method for its solution is desirable. We use Saad’s iterative method,
namely GMRES (see [199]), to solve our sparse linear system. The numerical tests show that this
iterative method works very well.

3.1.3 Implementation and Experimental Results

This section presents some of our experimental results including our results on approximation
errors, our results of smoothness at the surface boundaries as well as illustrative examples of
surface modeling.

Numerical Test of the Convergence Our numerical examples demonstrate that our GPDE
solution is convergent. To illustrate this goal, we select some surface models which are the exact
solution of certain GPDEs.

Taking N = m + 2, m = n, we compute the approximation errors of the evolved surface and
the exact solution for N = 8. For τ = 0.001, Table 1 lists the maximal errors of the discretized
solutions and exact solution for i = 0, 1, · · · , 10, where i is the index of the forward steps in the

78

temporal direction. Additionally, we compute the maximal errors of the steady state solutions of
the used geometric PDE and the exact solution for N = 3, 4, · · · . The computation results are given
in Table 2. The initial surfaces are constructed by averaging the linear interpolations in the u and
v directions. We do not use the Coons interpolation as suggested in section 3.1.2 to determine the
initial surfaces simply because the initial surfaces constructed are too accurate for these geometric
models. To show the strength of our approach, we rather choose a poor initial surfaces.

Example 3.4. Let S be a sphere. Then ∆H = 0, H2−K = 0. Hence S is a steady state solution of
SDF and WF. We use six four-sided spline surface patches to approximate the sphere and compute
the maximal errors of our six GPDE surfaces and the exact sphere. The compution results are
listed in the second and third columns of Tables 1 and 2.

Example 3.5. Let S be a torus, which is formed by rotating a circle in the xy-plane with center
[0, R, 0]T and radius r around the y-axis:

x(u, v) = [r sin(u), (R+ r cos(u)) sin(v), (R+ r cos(u)) cos(v)]T.

If R/r =
√

2, then S is a steady state solution of WF. The fourth column of Tables 1 and 2 gives
the maximal approximation errors.

Example 3.6. Let S be a cylinder. Then its mean curvature is a nonzero constant and its Gaussian
curvature is zero. Hence, S is a steady state solution of the SDF. The fifth column of Tables 1 and
2 gives the maximal approximation errors.

Example 3.7. Let S be a minimal surface defined by the following equation

x(u, v) = [u, h(u) cos(v), h(u) sin(v)]T , (159)

where
h(u) = a cosh(u/a+ b), a = 1.5, b = 0.

Since the mean curvature of this surface is zero (but the Gaussian curvature is nonzero), S is a
steady solution of SDF, QSDF and WF. The sixth, seventh and eighth columns of Tables 1 and 2
give the maximal approximation errors.

Table 1: The maximal errors of evolved spline surface for N = 8
i Sphere-SD Sphere-WM Torus-WM Sylinder-SD Minimal-SD Minimal-WM Miniml-QSD
0 0.063509 0.063509 0.120674 0.103557 0.058233 0.058233 0.058233
1 0.052931 0.052803 0.101407 0.088043 0.010384 0.010475 0.007606
2 0.034853 0.034703 0.069213 0.062165 0.003105 0.003170 0.001538
3 0.021780 0.021653 0.045283 0.041831 0.001989 0.002068 0.001182
4 0.013532 0.013439 0.029703 0.027913 0.001647 0.001736 0.001179
5 0.008420 0.008357 0.019641 0.018657 0.001486 0.001585 0.001156
6 0.005250 0.005208 0.013076 0.012501 0.001388 0.001492 0.001130
7 0.003279 0.003252 0.008752 0.008390 0.001318 0.001425 0.001105
8 0.002051 0.002035 0.005884 0.005634 0.001266 0.001375 0.001080
9 0.001286 0.001276 0.003974 0.003781 0.001226 0.001336 0.001055

From the numerical results in Table 1 we can see that the maximal errors are monotonically
decreasing as i increases. This shows that the proposed method is effective and reliable. The results
in Table 2 further show that the approximation is very accurate.

79

Table 2: Maximal asymptotic errors of spline surface
N Sphere-SD Sphere-WM Torus-WM Sylinder-SD Minimal-SD Minimal-WM Minimal-QSD
3 2.836e-04 2.852e-04 3.732e-03 5.906e-03 1.667e-03 1.734e-03 1.639e-03
4 3.173e-05 3.173e-05 7.197e-04 1.281e-03 1.363e-03 1.461e-03 1.566e-03
5 9.925e-05 1.037e-04 5.110e-04 5.854e-04 1.001e-03 1.141e-03 9.161e-04
6 3.524e-05 3.590e-05 2.076e-04 2.382e-04 1.360e-03 1.404e-03 8.859e-04
7 5.992e-05 6.525e-05 4.993e-04 3.637e-04 1.200e-03 1.300e-03 1.017e-03
8 3.537e-05 3.446e-05 3.001e-04 3.630e-04 9.168e-04 1.006e-03 7.773e-04
9 4.983e-05 4.944e-05 3.417e-04 2.844e-04 1.110e-03 1.244e-03 1.033e-03
10 3.998e-05 3.991e-05 2.554e-04 2.590e-04 9.843e-04 1.033e-03 9.958e-04
11 7.603e-05 7.943e-05 2.147e-04 2.571e-04 1.133e-03 1.249e-03 8.425e-04
12 7.163e-05 7.213e-05 1.939e-04 2.438e-04 1.001e-03 1.094e-03 7.688e-04

Visualization of Smoothness of Test Examples To visually examine the constructed B-
spline surfaces satisfy the specified G1 boundary condition, we present a few example figures. In
Figs 39-42, the first figures show the boundary curves and the outer surfaces. The aim of showing
the outer surfaces is to present normal or tangent information. The second figures show the outer
surfaces and the constructed initial surfaces. As in section 3.1.3, the initial surfaces are constructed
by averaging the linear interpolations in the u and v directions. The third figures give the the outer
surfaces and the GPDE B-spline surfaces with N = 8.

The given boundary curves and and outward tangents are computed from the exact surfaces to
be approximated. In Fig 39, the exact surface to be approximated is a minimal surface defined by
(159), the constructed B-spline surface is on the domain {[x, y]T ∈ R2 : x ∈ [0, 1], y ∈ [0, 1]}.

Figure 39: The first figure shows the inut boundary curves and the out-side surfaces. The second figure shows the
outer surfaces and constructed initial surfaces. The third figure gives the the outer surfaces and GPDE spline surface
using QSDF.

In Fig 40, the given surface to be approximated is a cylinder defined by

(y − 1
2

)2 + z2 =
1
2
.

The constructed B-spline surface is corresponding to the domain {[x, y]T ∈ R2 : x ∈ [0, 1], y ∈
[0, 1]}.

Figure 40: The first figure shows the inut boundary curves and the out-side surfaces. The second figure shows the
outer surfaces and constructed initial surfaces. The third figure gives the the outer surfaces and GPDE spline surface
using QSDF.

In Fig 41, the given surface is defined by

x(u, v) =
[
u, v,

1.25 + cos(5.4v)
6 + 6(3u− 1)2

]T
.

80

The constructed B-spline surface is corresponding to the domain {[u, v]T ∈ R2 : u ∈ [0, 1], v ∈
[0, 1]}.

Figure 41: The first figure shows the inut boundary curves and the out-side surfaces. The second figure shows the
outer surfaces and constructed initial surfaces. The third figure gives the the outer surfaces and GPDE spline surface
using QSDF.

In Fig 42, the given surface to be approximated is

x(u, v) =
[
u, v, e−

81
16 [(u−0.5)2+(v−0.5)2]

]T
.

The constructed surface is corresponding to the domain {[u, v]T ∈ R2 : u ∈ [0, 1], v ∈ [0, 1]}.

Figure 42: The first figure shows the inut boundary curves and the out-side surfaces. The second figure shows the
outer surfaces and constructed initial surfaces. The third figure gives the the outer surfaces and GPDE spline surface
using QSDF.

The surface meshes in these figures are generated by sampling uniformly the corresponding
surfaces on the domain [−2h, 1 + 2h] × [−2h, 1 + 2h], where h is taken as 1

64 . When [x, y]T ∈
[0, 1]× [0, 1], we sample on the constructed surfaces. If [x, y]T /∈ [0, 1]× [0, 1], we sample the given
exact surfaces. The aim of such a sampling strategy is to show how smooth the outer surfaces join
with the inner surfaces at the boundaries.

The last figures in Figs 39–42 clearly show that the constructed surfaces join the outer surfaces
very smoothly. Hence G1 condition is well satisfied.

3.1.4 Derivation of Variational Forms

Now we derive the variational form formulation for the equations (144). Let H1(S) be the Sobolev
space on the surface S, H1

0 (S) a subspace of H1(S) consisting of the functions with compact
support. Using Green’s formulas, the systems (144) and (145) can be rewritten as weak forms. Let
y = H, and φ ∈ H1

0 (S) be a test function. Then we have∫
S

nφ∆ydA =−
∫
S

[∇(nφ)]T∇y dA+
∫
∂S

nφ(∇y)Tncds

=−
∫
S

[
φ∇n∇y + n(∇φ)T∇y

]
dA

(a)
=
∫
S

[
φ� x∇y − n(∇φ)T∇y

]
dA

=
∫
S

[
φ� y − n(∇φ)T∇y

]
dA, (160)

81

where the validity of (a) is owing to the equality

∇n +�x = 0.

Let
y = ny = H(x),

Then it is easy to derive that

∇y = (∇y)n, �y = (�y)n.

Substituting this into (160), we have∫
S

nφ∆ydA =
∫
S

[
φ� y − n(∇φ)T∇y

]
ndA.

On the other hand, for ψ ∈ H1(S), using Green’s formula, we have∫
S

Hψ dA =
1
2

∫
S

∆xψ dA

= −1
2

∫
S

(∇x)T∇ψ dA+
1
2

∫
∂S

(∇x)Tncψ ds

= −1
2

∫
S

(∇x)T∇ψ dA+
1
2

∫
∂S

ncψ ds.

Therefore, the mixed variational form of (144) is (147).
The derivation of the mixed variational form for (145) and (146) are similar. We omit the

details.

3.2 Discrete Surface Modeling Using PDEs

We use various nonlinear partial differential equations to efficiently solve several surface modelling
problems, including surface blending, N -sided hole filling and free-form surface fitting. The non-
linear equations used include two second order flows, two fourth order flows and two sixth order
flows. These nonlinear equations are discretized based on discrete differential geometry operators.
The proposed approach is simple, efficient and gives very desirable results, for a range of surface
models, possibly having sharp creases and corners.

(a) (b) (c) (d)

Figure 43: (a) shows a head mesh with a hole around the nose. (b) shows an initial filler construction of the
nose with a piece of minimal surface. (c) the filler surface, after 30 iteration, generated using fourth order
flow (k = 2 in (169)) with time step size 0.0002. (d) the filler surface, after 20 iteration, generated using
sixth order flow (k = 3 in (169)) with time step size 0.00002.

82

Introduction We use various partial differential equations (PDE) to solve several surface mod-
elling problems. The PDEs we use include the mean curvature flow, the averaged mean curvature
flow, two fourth order (surface diffusion flow and quasi surface diffusion flow) and even higher order
flows. All these equations are nonlinear and the geometry is intrinsic, i.e., the PDEs do not depend
upon any particular parameterization. The problems we solve include surface blending, N -sided
hole filling and free-form surface fitting with high order boundary continuity.

For the problems of surface blending and N -sided hole filling, we are given triangular surface
meshes of the surrounding area. Triangular surface patches need to be constructed to fill the
openings enclosed by the surrounding surface mesh and interpolate the hole boundary with some
specified order of continuity. For the free-form surface fitting problem, we are possibly given a
set of points, or a wire frame of curves that defines an outline of the desired shape, or even some
surface patches. We construct a surface which interpolates the points or curves or the boundaries
of the patches with specified order of continuity. The free-form surface fitting problem is the most
general, including the surface blending and N -sided hole filling problems, as its special cases.

Our twofold strategy for solving these problems is as follows: First we construct an initial
triangular surface mesh (“filler”) using any of a number of automatic or semi-automatic free-form
modelling techniques One may also interactively edit this “filler” to meet the weak assumptions
for an initial solution shape. This “filler” may be bumpy or noisy, and in general this “filler” does
not satisfy the smoothness boundary conditions, though it may roughly characterize the shape
of the surface to be constructed. Second we deform the initial mesh by solving a suitable flow
PDE. Unlike most of the previous free-form modelling techniques, our approach solves high-order
boundary continuity constraints without any prior estimation of normals or derivative jets along
the boundary. The solution of the PDE is time dependent. We consider two possibilities for the
time span of the evolution. One is a short time evolution, where we require the solution to respect
to the initial shape or geometry (see Fig. 49). The other is a long time evolution, where the
initial filler provides a topological structure, and what we look for is a stable solution state of the
flow (see Fig. 43 and Fig. 46). We focus our attention on these twofold solutions of PDEs with
boundary continuity constraints, rather than the construction of initial filler mesh. In section 3.2.4,
we present automatic approaches for constructing the initial filler mesh, and our preferred choice.

Main Results. We use second order flows (mean curvature flow and averaged mean curvature
flow) for G0 continuity, fourth order flows for G1 continuity and sixth order flows for G2 continuity
in each of several surface modelling problems. The proposed approach is simple and easy to
implement. It is general, solves several surface modelling problems in the same manner, and gives
very desirable results for a range of complicated free-form surface models, possibly having sharp
features and corners. Furthermore, it avoids the estimation of normals or tangents or curvatures
on the boundaries.

Partial Differential Equation Models LetM be a smooth surface and p ∈M be the surface
point. The general form of the geometric flows we consider is in the following form (see [227])

∂p

∂t
= V (p, t),

where V (p, t) ∈ R3 represents a velocity field. We shall focus our attention on using two classes
velocity fields, one is curvature driven velocity field in the normal direction, the other is the higher
order Laplace-Beltrami operators acting on surface point p.

Geometric Partial Differential Equations We now describe several geometric PDE models
we use.

Let M0 be a compact closed immersed orientable surface in R3. A curvature driven geometric
evolution consists of finding a family {M(t) : t ≥ 0} of smooth closed immersed orientable surfaces

83

in R3 which evolve according to the flow equation

∂p

∂t
= N(p)Vn(k1, k2, p), M(0) =M0. (161)

Here p(t) is a surface point on M(t), Vn(k1, k2, p) denotes the normal velocity of M(t), which
depends on the principal curvatures k1, k2 of M(t), N(p) stands for the unit normal of the surface
at p(t). We identify the surface point p and surface normal N(p) as 3×1 matrices (column vectors).
Hence, the arithmetic operations of these quantities are regarded matrix operations. The product
of a scalar a ∈ R and a matrix M is written as either aM or Ma.

Let A(t) denote the area ofM(t), V (t) denote the volume of the region enclosed byM(t). Then
it has been shown that (see [230], Theorem 4)

dA(t)
dt

=
∫
M(t)

VnHdσ,
dV (t)
dt

=
∫
M(t)

Vndσ, (162)

where H = 1
2(k1 + k2) is the mean curvature of M(t).

1. Mean Curvature Flow (see [98, 229])
Taking Vn = −H = −1

2(k1 + k2) in (161), we obtain the mean curvature flow PDE:

∂p

∂t
= −N(p)H(p), M(0) =M0. (163)

It follows from (162) that
dA(t)
dt

= −
∫
M(t)

H2dσ. (164)

(164) implies that the mean curvature flow is area reducing.

2. Averaged Mean Curvature Flow (see [107, 134, 203])
In (161), if we take Vn = h(t) − H(t), where h(t) =

∫
M(t)Hdσ/

∫
M(t) dσ, then we have the

averaged mean curvature flow PDE:

∂p

∂t
= N(p)[h(t)−H(p)], M(0) =M0. (165)

The existence proof of the global solutions to this flow can be found in Huiskens’ paper [134]. It
follows from (162) that

dA(t)
dt

=
∫
calM(t)

(hH −H2)dσ =
∫
M(t)

[hH −H2 − h(h−H)]dσ = −
∫
M(t)

(h−H)2dσ ≤ 0, (166)

since obviously
∫
M(t) h(h −H) = h(h

∫
M(t) dσ −

∫
M(t)Hdσ) = 0. On the other hand, the second

equation of (162) implies that

dV (t)
dt

= h(t)
∫
M(t)

dσ −
∫
M(t)

Hdσ = 0.

Hence the averaged mean curvature flow is volume preserving and area shrinking. The area shrink-
ing stops if H ≡ h.

3. Surface Diffusion Flow (see [205])
If we take Vn = ∆H, we get the so-called surface diffusion flow PDE:

∂p

∂t
= N(p)∆H(p), M(0) =M0, (167)

84

where ∆ := ∆M is Laplace-Beltrami operator which acts on functions defined on surface M(t).
The existence and uniqueness of solutions for this flow is given in [106]. From (162) and Green’s
formula we have

d

dt
A(t) =

∫
M(t)

∆HHdσ = −
∫
M(t)

|∇H|2dσ ≤ 0,

d

dt
V (t) =

∫
M(t)

div(∇H)dσ = −
∫
M(t)

∇H∇(1)dσ = 0,

where ∇ stands for the (tangential) gradient operator (see [96], pages 101-102) acting on differential
functions defined on the surfaceM. Hence, the surface diffusion flow is area shrinking, but volume
preserving. The area stops shrinking when the gradient of H is zero. That is, M is a surface with
constant mean curvature.

4. Higher order Geometric Flows

∂p

∂t
= (−1)k+1N(p)∆kH(p), M(0) =M0. (168)

Using Green formula, we have∫
M(t)

∆kHdσ =
∫
M(t)

∆(∆k−1H)dσ =
∫
M(t)

∇(∆k−1H)∇(1)dσ = 0.

Hence, the flow (168) is volume preserving if k ≥ 1 from the second equation of (162).

Remark 2.1. We should note that the area/volume preserving/shrinking properties for the flows
mentioned above are valid for closed surfaces. In our application of these flows, these properties may
not be true since the surfaces always have fixed boundaries. For a open surface with fix boundary,
the volume V (t) could be defined as the directional volume between M(0) and M(t). It is easy to
see that the volume preserving property for the averaged mean curvature flow is still valid. But
for the higher order flow (168) (k ≥ 1), this property is no longer valid, because a term related to
the boundary does not vanish when Green’s formula is used. For our modelling problems, volume
preservation is not a desirable property (see Fig. 43 and 46).

Remark 2.2. In [205], Schneider and Kobbelt use elliptic equation N(p)∆H(p) = 0, while we use
several time dependent parabolic type equations. In our approach, we have a progressive process
starting from an initial value, so that a family of solutions is obtained. Such an approach is very
desirable if the initial value is an approximation of the required solution.

Quasi Geometric Partial Differential Equations Now we generalize the heat equation on a
surface to the following higher order flows:

∂p

∂t
= (−1)k+1∆kp, M(0) =M0, k > 0. (169)

Since ∆p = −2H(x)N(p), it is easy to see that (169) is the mean curvature flow when k = 1 (up
to a factor 2). But since (∆kH)N 6= ∆k(HN) in general, (169) is different from the flow (168). To
distinguish the difference between (168) and (169), we call (169) as a quasi geometric PDE.

The experiments conducted show that flows (169) sometimes behave better than the geometric
flows mentioned above for our geometry modelling problems. However, the theoretical analysis on
the existence and stability of their solutions is currently unavailable.

85

Figure 44: Left: The definition of the angles αij and βij . Right: The definition of the area AM (pi).

Solution of the PDEs There are basically two classes of approaches for solving a PDE on
any domain. One approach is based on finite divided differences, the other is based on finite
elements . The approach we adopt is based on finite divided differences. Since we are dealing with
differential equations over 2-manifolds in R3, the classical finite divided differences will be replaced
by discretized differential geometric operators over surfaces. Section 3.2.1 deals with discretized
geometric differential operators. Next in Section 3.2.2 we detail how the boundary conditions are
respected. Discretizations of the PDEs in the spatial direction are described in section 3.2.3 and
3.2.4. Semi-implicit discretization in the time domain is considered in section 3.2.4. Other issues,
such as mesh regularization and initial mesh construction, are addressed in section 3.2.5.

Discretized Laplace-Beltrami Operator One of the fundamental problems in solving our
PDEs is the discretization of the Laplace-Beltrami operator. On a triangular surface mesh, sev-
eral discretized approximations of the operator have been proposed. We adopt the discretization
developed by Meyer et al in [162]. A comparative research about the various discretized Laplace-
Beltrami operators is conducted in [237]. It has been shown that the scheme of Meyer et al’s is
better for discretizing our PDEs. Let f be a smooth function on a surface, then ∆f is approximated
over a triangular mesh M by

∆f(pi)≈
1

AM (pi)

∑
j∈N1(i)

cotαij + cotβij
2

[f(pj)− f(pi)], (170)

where N1(i) is the index set of 1-ring of neighbor vertices of vertex pi, αij and βij are the triangle
angles shown in Fig 44 (Left). AM (pi) is the area for vertex pi as shown in Fig 44 (Right),
where qj is the circumcenter point for the triangle [pj−1pjpi] if the triangle is non-obtuse. If the
triangle is obtuse, qj is chosen to be the midpoint of the edge opposite to the obtuse angle. Since
∆p = −2H(p)N(p) (see [230], page 151), we have

(∆p)p=pi = −2H(pi)N(pi) ≈
1

AM (pi)

∑
j∈N1(i)

cotαij + cotβij
2

(pj − pi). (171)

This gives an approximation of the mean curvature normal (see [162]). The higher order Laplace-
Beltrami operators are discretized recursively as

∆kf(pi) = ∆(∆k−1f)(pi) =
1

AM (pi)

∑
j∈N1(i)

cotαij + cotβij
2

[∆k−1f(pj)−∆k−1f(pi)] (172)

with ∆0f(pi) = f(pi). Note that ∆kf(pi) involves function values on a k-ring of neighboring
vertices of pi.

86

Handling of Boundary Conditions 1). Natural Boundary Conditions for Blending
and Hole Filling

Figure 45: Left: The involved vertices of the“outer” mesh for a G0 boundary condition. The “outer” mesh
is just the boundary of the hole. Middle: The involved vertices of the “outer” mesh for a G1 boundary
condition. Right: The involved vertices of the “outer” mesh for a G2 boundary condition.

By the natural boundary conditions, we mean that no continuity conditions are specified at the
boundary points, but the continuity is implied by the “outer” mesh incident to the boundary of the
hole (see Fig 45). Such a treatment for boundary condition is suitable for both the blending problem
and the N -sided hole filling problem, since the “outer” mesh always exists in such problems.

Let gi be the order of continuity at a boundary point pi, g = max gi. Then we can use the order
2g flow ∂p

∂t = (−1)g+1∆gH(p)N(p) for constructing the triangular surface patch with Ggi continuity
at the boundary vertex pi. ∆gH is discretized recursively: ∆gH = ∆(∆g−1H). At a boundary
vertex pi, ∆kH(pi) is evaluated according to the following rule:

Evaluation Rule at Boundary. ∆kH(pi) is evaluated recursively by formulas 175 and 176 if
k ≤ gi, otherwise ∆kH(pi) is set to zero and the recursion stops.

Note that even for an inner vertex pj , the recursive definition may make ∆kH(pj) involve the
evaluation of a lower order Laplace-Beltrami operator on the boundary. In general, the recursive
evaluation of ∆kH(pi) at pi (for either pi being an inner or an outer vertex) involves k + 1-
ring neighbor vertices of pi. Some of them may be inner vertices, and the remaining are outer
vertices. The inner vertices are treated as unknowns in the discretized equations and the outers
are incorporated into the right-hand side.

2). Natural Boundary Conditions for Free-Form Surface Filling
In the free-form surface filling problem, we are given a wireframe of curves (edges) and we wish

to flesh the wireframe with surface patches that contain the curves as boundary with pre-specified
order of continuity. At each of the intersection points of the patches, an order of continuity is pre-
specified and the evaluation rule mentioned above is applied. For each inner point, a discretized
linear equation is generated using the operator discretization (176). These linear equations for
different patches are collected together and solved simultaneously. Note that one linear equation
may involve inner vertices of several patches. However, if the continuity order at each boundary
point is zero, any equation corresponding to an inner vertex does not involve inner vertices of other
patches.

Remark 3.1. Schneider and Kobbelt in [205] use Moreton and Sequin’s least square fitting of
the second fundamental form relative to a local parameterization to estimate the required data
on the boundary. These estimations of the boundary derivative data are based on incomplete
information. Hence, the estimated data maybe not reliable. Our approach is based on the identity

87

∆Mp = −2H(p)N(p). Hence, we do not need to estimate boundary derivative data, such as
normals, tangents or curvatures. Furthermore, the boundary conditions are treated in the same
way for equations with different orders.

Spatial Discretization of Quasi Geometric Flows Let us consider first the discretization of
(169) in the spatial direction for k = 1, 2, 3. Let P = [p1, · · · , pm]T ∈ Rm×3, ∆P = [∆p1, · · · ,∆pm]T ∈
Rm×3, where p1, · · · , pm are all the unknown vertices to be determined in each of our modelling
problems. Then (171) could be written in matrix form:

∆P = −(DW)P +B(1), (173)

where D = diag[1
2A(p1) , · · · ,

1
2A(pm)] is a diagonal matrix, W = {wij}mi,j=1 with

wij =

∑

k∈N1(i) cotαik + cotβik, i = j,

−(cotαij + cotβij), i 6= j, i ∈ N1(j), j ∈ N1(i),
0, otherwise.

Furthermore, W is a sparse, symmetric and positive definite matrix (see [205]). The constant term
B(1) ∈ Rm×3 is obtained from the boundary conditions. It follows from (173) that

∆2P = (DWDW)P +B(2), (174)

where B(2) ∈ Rm×3 is obtained from the boundary conditions. Again,WDW is a sparse, symmetric
and positive definite matrix. In general,

∆kP = (−1)k(DW)kP +B(k),

and the matrix for D−1(DW)k is also sparse, symmetric and positive definite.

Spatial Direction Discretization of Geometric Flows Let

ωij =

∑

k∈N1(i)
cotαik+cotβik

2AM (pi)
, i = j,

− cotαij+cotβij
2AM (pi)

, i 6= j, i ∈ N1(j), j ∈ N1(i),
0, otherwise,

and N(i) = N1(i) ∪ {i}. Then we have

N(pi)H(pi) ≈
1
2

∑
j∈N(i)

ωijpj . (175)

The higher order Laplace-Beltrami operators acting on H are discretized recursively as

∆kH(pi) = ∆(∆k−1H)(pi) ≈ −
∑
j∈N(i)

ωij∆k−1H(pj) (176)

with
∆0H(pi) = H(pi) ≈

1
2

∑
j∈N(i)

ωijN(pi)T pj . (177)

Note that ∆kH(pi) involves values of the mean curvature on a k-ring of neighboring vertices of pi.
Using (175)–(177) and the evaluation rule at the boundary, we can write N(pi)∆kH(pi) as the

following form:

N(pi)∆kH(pi) ≈ (−1)k
∑
j∈J0

ω
(k)
ij pj +B

(k)
i , ω

(k)
ij ∈ R3×3, B

(k)
i ∈ R3,

88

where J0 is the index set of the (unknown) vertices to be determined, B(k)
i comes from boundary

condition. To be more specific, let J denote the index set of the mesh M , Jk be the union of J0

and the index set of the boundary vertices where Ck condition is specified. Then

N(pi)H(pi) ≈
1
2

∑
j∈N(i)

ωijpj =
1
2

∑
j∈N(i)∩J0

ωijpj +
1
2

∑
j∈N(i)∩{J\J0}

ωijpj

=
∑
j∈J0

ω
(0)
ij pj +B

(0)
i , (178)

where ω(0)
ij = 1

2ωijI3 for j ∈ N(i)∩J0, ω(0)
ij = 0 otherwise, B(0)

i = 1
2

∑
j∈N(i)∩{J\J0} ωijpj . Similarly,

N(pi)∆H(pi) ≈ −N(pi)
∑
j∈N(i)

ωijH(pj) = −N(pi)
∑

j∈N(i)∩J1

ωijH(pj)

= −N(pi)
∑

j∈N(i)∩J1

ωijN(pj)TN(pj)H(pj)

≈ −
∑

j∈N(i)∩J1

ωijN(pi)N(pj)T

∑
k∈J0

m
(0)
jk pk +B

(0)
j

= −

∑
j∈J0

ω
(1)
ij pj +B

(1)
i , (179)

N(pi)∆2H(pi) ≈ −N(pi)
∑
j∈N(i)

ωij∆H(pj) = −N(pi)
∑

j∈N(i)∩J2

ωij∆H(pj)

≈ N(pi)
∑

j∈N(i)∩J2

ωij
∑

k∈N(j)∩J1

ωjkH(pk)

≈
∑

j∈N(i)∩J2

∑
k∈N(j)∩J1

ωijωjkN(pi)N(pk)T

∑
l∈J0

m
(0)
kl pl +B

(0)
k

=
∑
j∈J0

ω
(2)
ij pj +B

(2)
i . (180)

(178)–(180) are used to discretize the right-handed side of (168) for k = 0, 1, 2. The discretization
of N(pi)∆kH(pi) for k > 2 is recursively calculated using (176) and boundary conditions.

Time Discretization Given an approximate solution {p(n)
i }mi=1 of the order 2k PDE at tn for

all the inner vertices, we construct an approximate solution {p(n+1)
i }mi=1 for the next time step

tn+1 = tn + τ (n) by using a semi-implicit Euler scheme. That is, we replace the derivative ∂p
∂t with

[p(tn+1)− p(tn)]/τ (n), and the quantities wij in (173), ωij and N(pi) in (175)–(177), h(t) in (165)
are computed using the previous result at tn. Normals N(pi) are computed from Loop’s subdivision
surface (see [41] for detail). Such a treatment yields a linear system of equations with the inner
vertices as unknowns. Let P(n+1) = [(p(n+1)

1)T , · · · , (p(n+1)
m)T]T ∈ R3m. The linear system for the

geometric flows can be written as the matrix form

[I + τ (n)W(k)]P(n+1) = B(k), W(k) = {ω(k)
ij }, B(k) ∈ R3m. (181)

The matrix W(k) ∈ R3m×3m is highly sparse, hence an iterative method for solving such a linear
system is desirable. We use Saad’s iterative method [199], named GMRES, to solve the system.
The experiment shows that this iterative method works very well.

89

Let P (n+1) = [p(n+1)
1 , · · · , p(n+1)

m]T ∈ Rm×3. The linear system for the flows (169) can be written
as the matrix form

[I + τ (n)(DW)k+1]P (n+1) = B(k), or W (k)P (n+1) = D−1B(k) (182)

where B(k) ∈ Rm×3, W (k) = D−1 + τ (n)W(DW)k ∈ Rm×m is a highly sparse, symmetric and
positive definite matrix, and hence we use a conjugate gradient iterative method with diagonal
preconditioning to solve the system.

Note that for the same size problem, the size of coefficient matrix in (181) is three times larger
than that of coefficient matrix in (182). Furthermore, the matrix W (k) in (182) is symmetric and
positive definite. The matrix in (181) is not. We also note that the discretization of (169) does not
involve the computation of the surface normals.

Remark 3.2. It is well known that the condition of the linear system arising from the proposed
semi-implicit discretization behaves like O(1 + τ (n)h−2k), where h is the minimal edge length of
the mesh. Hence, if the mesh to be evolved is very irregular, the resulting system will be ill-
conditioned. In such a case, a small time step size is required to make an iterative solver converge.
Such a problem is relieved by the mesh regularization treatment (see section 3.6). On the other
hand, more advanced iterative method, such as multi-grid techniques based on a hierarchical mesh
representation (see [146]) or algebraic multi-grid techniques, could be used to accelerate the iteration
process. In the current implementation, these techniques are not incorporated.

Upper-bound of time step. It is known that several surface evolutions (e.g. the mean curva-
ture flow (see [98, 229]) and the surface diffusion flow (see [46])) may develop singularities. For
our geometric modelling problems, suppose we have a topologically correct initial surface mesh
construction and we look for solutions that have the same topology as the initial mesh. Hence,
we require that our solution is within the time period in that no singularity occurs. Therefore,
we shall determine the time step τ (n) so that tn should not go beyond the time moment when the
singularity occurs. Let L(p(n)

i ,M(tn)) be the spatial discretization of V (p, t) at vertex p(n)
i over the

mesh M(tn). Then from the approximate equality

‖p(n+1)
i − p(n)

i ‖ = τ (n)‖L(p(n)
i ,M(tn))‖

and the requirement

‖p(n+1)
i − p(n)

i ‖ ≤
1
2

min
j∈N1(i)

‖p(n)
j − p

(n)
i ‖ (183)

we determine an upper-bound for τ (n) as follows

τ (n) ≤ Bn :=
1
2

min
1≤i≤m

{
minj∈N1(i) ‖p

(n)
j − p

(n)
i ‖

‖L(p(n)
i ,M(tn))‖

}
.

Requirement (183) guarantees that no vertex-collision happens. When the singularity is nearly to
occur, the upper-bound Bn will approach to zero. Hence the evolution cannot move beyond the
singular point for time.

Remark 3.3. When the singularity is nearly to occur, the upper-bound Bn will approach to zero.
This will be a very low efficiency process. So a threshold value ε0 should be put on the minimal
Bn. If the determined Bn is smaller than the threshold value, we terminate the evolution process
(see (186)–(187)).

Other Important Issues 1. Mesh Regularization
The surface motion by the geometric PDEs described in section 3.2 may cause a very irregular

(nonuniform) distribution of the mesh vertices. Hence, introducing a regularization mechanism in

90

the evolution process is necessary. Since the tangential displacement does not influence the geometry
of the deformation, just its parameterization (see [105]), we also add a tangential displacement to
the motion. Hence, the general form of our geometric evolution problem could be written as

∂p

∂t
= V (p, t) + Vt(p)T (p), M(0) =M0, (184)

where T (p) is a tangent direction at the surface point p, Vt(p) is the tangential velocity. In the
process of numerical solution of equation (184), Vt(p)T (p) is chosen as

U0(p(n)
i)−

(
U0(p(n)

i), N(p(n)
i)
)
N(p(n)

i) (185)

where U0(p(n)
i) = 1

card(N1(i)

∑
j∈N1(i)(p

(n)
j − p

(n)
i), N is the surface normal computed from the limit

surface of Loop’s subdivision. This discretization of Vt(p)T (p) is very similar to the one given by
Ohtake et al. [178], which is U0(p(n)

i) −
(
U0(p(n)

i), N(p(n)
i)
)
U0(p(n)

i). The difference is that our

displacement is in the tangent plane. In (185), U0(p(n)
i) could be replaced by U0(p(n+1)

i) to use as
many of the new values as possible, and still yield a linear system. However, such a treatment
destroys the symmetric property of the coefficient matrix. The tangential motion (185) is also used
by Wood et al [233] and Ohtake et al [179].

2). Stopping Criteria
We need to determine the minimal iteration number n, so that the evolution procedure stops

at t = tn. The following two criteria are used

‖M(tn)−M(0)‖ ≥ ε1 or Bn < ε0 (186)
‖M(tn+1)−M(tn)‖ /τ (n) ≤ ε2 or Bn < ε0 (187)

where εi are given control constants, Bn is the determined upper-bound for τ (n). Criterion (186)
is for short time evolution, where we require M(nτ (n)) near M(0). Criterion (187) is for long time
evolution, where we are looking for a stable status of the solution. Condition Bn < ε0 is imposed
for avoiding dead-loop around the singular point of time.

3). Construction of Initial Surface Mesh
To provide an initial solution to the geometric evolution problem, we need to construct an initial

triangular surface mesh (“filler”) for each opening using any of a number of automatic or semi-
automatic free-form surface construction techniques. One can also interactively edit this “filler” to
meet the weak assumptions for an initial solution shape.

Since the opening to be filled could be topologically complicated, we solve the problem in
two steps. In the first step we fit each opening by an implicit algebraic surface or spline which
interpolates or approximates the boundary data. The approach we used is the one developed by
Bajaj et al [27, 29, 39]. In this approach, the data to be interpolated or approximated could be
points or curves (even with normals). For ours, the boundary data are always points. Of course,
this approach may not guarantee to produce topologically correct surfaces. If this happens, we
break the opening into several parts by inserting a few curves (polygons) and then repeat the
surface fitting for each part until we achieve a reasonable shape for the “filler”.

After the algebraic surface is obtained, a triangulation step is employed. Since this triangulation
should be consistent with the boundary polygon of the opening, we adopted the expansion technique
developed in [39]. Using this approach, we triangulate the surfaces starting from the boundary of
the opening.

Remark 3.4. Comparing with finite element approach, the finite difference approach described
above is easy to implement and it treats the equations with different orders in a uniform fashion.
In the finite element approach, one has to make efforts to derive a variational form for each of the

91

PDEs. For higher order flows, hybrid method is used in general, such an approach will introduce
much more unknowns, and therefore the resulted linear system is much larger. For example, in
order to use finite element method (linear element) for the surface diffusion flow, Bänsch et al [46]
split the PDE into a system of four equations.

Comparative Examples In this section, we give several examples to show how the PDEs are
used to solve different problems in a uniform fashion. We also compare the effects of flows (168)
and (169). All the figures produced by the fourth and sixth flows are generated using (169), except
for the figures of the second row of Fig. 46 and third row of Fig. 48. These figures are produced
using the flow (168). When we compare the effects of (168) and (169), we use the same number of
iterations but double time step size for (168) because the factor 2 in the relation ∆p = −2HN .

1). Comparison of the Flows

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 46: The first and second row show the results of (169) and (168), respectively. (a) (same as (g)) The input

semi-sphere (left part) with an initial planar triangulation of the disk opening. The mean curvature flow does not

change the disk (initial mesh). (b) The result of fourth order flow after 10 iteration with τ (n) = 0.1. (c) The result of

the sixth order flow after 10 iteration with τ (n) = 0.01. (d), (e) and (f) show three intermediate results of the sixth

order flow with τ (n) = 0.001, and 1, 6 and 10 iterations, respectively. (h) The result of the surface diffusion flow after

10 iteration with τ (n) = 0.2. (i) The result of the sixth order flow (168) after 10 iteration with τ (n) = 0.02. (j), (k)

and (l) show three intermediate results of the sixth order flow (168) with τ (n) = 0.002, and 1, 6 and 10 iterations,

respectively.

The first three figures of the first row of Fig. 46 show the long time evolution solutions of the
mean curvature flow, the fourth order flow, and the sixth order flow (169) for the input semi-sphere
with an initial construction of the opening, a triangulated disk. The mean curvature flow does
not change the disk. Figures (b) and (c) are the results after 10 iterations with τ (n) = 0.1 and
τ (n) = 0.001, respectively. Further iterations do not have a significant change on the shape of the
solution surface. The fourth and sixth order flows yield convex surfaces and the smoothness is
clearly observed. Also notice that the sixth order flow recovers the sphere accurately. The last
three figures show three intermediate results of the sixth order flow. The second and third figures
of the second row of Fig. 46 show the evolution solutions of the surface diffusion flow and sixth
order flows (168) for the input semi-sphere with an initial construction of the opening. Figure (h)
and (i) are produced using the same number of iterations as (b) and (c), respectively, and double
time step sizes. Again, the last three figures show three intermediate results of the sixth order flow.
Comparing with the figures of the first row, the geometric flows change the surface shape in a much
slower rate.

Remark 4.1. We have pointed that the geometric flows (168) have volume preserving properties

92

for a closed surface. However, for an open surface with fixed boundary, the volume preserving
properties are not guaranteed. Figures (h) and (i) show that the volume preserving property is not
valid.

(a) The input four circles (c) Left: AM ; Right ∆1 (e) Left:∆3; Right: ∆2 (g) Left: ∆3; Right: ∆2

(b) Initial Construction (d) MC plot of (c) (f) MC plot of (e) (h) MC plot of (g)

Figure 47: Comparison of different flows. ∆k represents 2k order flow (169) is used. AM denote the averaged mean

curvature flow. The time step sizes for the second, fourth and sixth order flows are chosen to be 0.1, 0.0025, and

0.0000625, respectively. Figures (c), (e), (g) are the faired interpolating surface meshes after 6 iterations, where the

continuities at the boundary curves are set to 0, 2 and 0, respectively. Figures (d), (f), (h) are the mean curvature

(MC) plots of figures (c), (e), (g), respectively.

Fig. 47 shows the combined use of different flows. The aim of this toy example is to illustrate the
difference of these flows, especially the continuity on the patch boundaries. Figure (a) shows four
circles to be interpolated. Two of the circles are in the xz-plane, the other two are in the yz-plane.
(b) shows an initial G0 surface mesh constructed using [27] with some additional noise added. (c),
(e) and (g) are the faired interpolating surfaces after 6 iterations using different combinations of the
flows. The time step sizes for the second, fourth and sixth order flows are chosen to be 0.1, 0.0025,
and 0.0000625, respectively. Since the higher order flows evolve faster than the lower order flows,
we use smaller time step sizes for higher order flows to obtain nearly the same surface evolution
speed. Each of the meshes consists of four surface patches. The left two patches are in the regions
R−+ := {(x, y, z) : x ≤ 0, y ≥ 0} and R−− := {(x, y, z) : x ≤ 0, y ≤ 0}, respectively, and generated
by one type of flow. The right two patches are in the regions R++ := {(x, y, z) : x ≥ 0, y ≥ 0} and
R+− := {(x, y, z) : x ≥ 0, y ≤ 0}, respectively, and generated by a different flow. Figures (d), (f)
and (h) are the mean curvature plots of figures (c), (e) and (g), respectively. The mean curvature
at each vertex is computed by (171).

The aim of figure (c) is to show the difference between the mean curvature flow and the averaged
mean curvature flow, where the left part is generated by the averaged mean curvature flow and the
right part is produced by the mean curvature flow. The mean curvature flow shrinks the surface
very fast while the averaged mean curvature flow does not. Further evolution using the mean
curvature flow will yield a pinch-off of the surface. Therefore, if we model a surface patch using
second order flows with G0 boundary condition, the averaged mean curvature flow is more desirable

93

than the mean curvature flow.
The patches in R−+ and R−− of figure (e) are produced by the sixth order flow (169) (with

k = 3), while the patches in R++ and R+− are produced by the fourth order flow (169). As a whole,
the surface looks smooth, our curvature plot reveals the smoothness difference at the intersection
curves, the sixth order flow gives a smoother result than the fourth order flow.

Figure (g) is produced as (e), but the continuity order at the four circles are set to zero. Hence
G0 continuity is achieved there.

2. Surface Blending

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 48: (a) shows three cylinders to be blended. (b) shows the initial construction. (c), (e) and (g) are
the faired blending meshes generated using the flow (169) with k = 1, 2, 3, respectively. These figures show
the results after 32, 32 and 60 iterations with time step sizes 0.01, 0.001, and 0.0001, respectively. (d), (f)
and (h) show the mean curvature plots correspondingly. (i) and (k) are the blending meshes generated using
the flow (168) with k = 1, 2, respectively. These figures show the results after 32 and 60 iterations with time
step sizes 0.002 and 0.0002, respectively. Figure (j) and (l) show the mean curvature plots of (i) and (k),
respectively

Given a collection surface mesh with boundaries, we construct a fair surface to blend the meshes
at the boundaries with specified geometric continuity. Fig 48 shows the case, where three cylinders
to be blended are given (figure (a)) with an initial G0 construction (figure (b)) using [27] with
some additional noise added. The blending surfaces (c), (e) and (g) are the faired blending meshes
generated using the flow (169) with k = 1, 2, 3, respectively. These figures show the results after
32, 32 and 60 iterations with time step sizes 0.01, 0.001, and 0.0001, respectively. Figure (d), (f)
and (h) show the mean curvature plots correspondingly. These figures clearly show the difference of
smoothness achieved at blending boundaries. The mean curvature flow gives G0 continuity results.

94

(a) (b) (c)

(d) (e) (f)

Figure 49: Interpolating curves and patches: (a) shows some input curves with G0 continuity requirement
and some bands of mesh with G1 continuity requirement. (b) shows an initial construction of the surface
mesh. (c) is the faired surfaces, after 12 iterations, generated using the the flow (169) with k = 2. The time
step size is chosen to be 0.001. (d), (e) and (f) are the zoom in results of (a), (b) and (c), respectively.

The fourth order flow produces smooth surfaces at boundaries. The sixth order flow produces even
smoother surfaces as expected.

Fig (i) and (k) are the faired blending meshes generated using the flow (168) with k = 1, 2,
respectively. These figures show the results after 32 and 60 iterations with time step sizes 0.002 and
0.0002, respectively. Figure (j) and (l) show the mean curvature plots of (i) and (k), respectively.
It should be noted that the flows (169) generate little fatter surface than the flows (168).

3. N-sided Hole Filling
Given a surface mesh with a hole, we construct a fair surface to fill the hole with specified

geometric continuity on the boundary. Fig 43 shows such an example, where a head mesh with a
hole in the nose subregion is given as input (figure (a)). An initial G0 reconstruction of the nose
is shown in (b) using [27] and then evolved with the mean curvature flow. The blending surfaces
(figures (c) and (d)) are generated using the flow (169) with k = 2 and 3, respectively. It should
be observed that the sixth order flow yields a better restoration surface. The head mesh with the
hole in the nose subregion is available from http://lsec.cc.ac.cn/˜xuguo/xuguo2.htm.

4. Free-Form Surface Construction
For the free-form surface fiffing problem, we are given some curves, or partial patches, or points

as input, and we wish to construct a fair surface mesh to interpolate this multi-dimensional data.
Fig. 49 shows the approach of free-form surface construction, where some input curves with G0

continuity requirement are given to preserve the sharp edges, and also given are some surface
bands with a G1 continuity requirement (see (a)). Figure (b) shows an initial construction of the
G0 surface mesh using the patch filling scheme [238] with added noise. (c) is the faired surfaces,
after 12 iterations, generated using the the flow (169) with k = 2. The time step size is chosen to
be 0.001. Figures (d), (e) and (f) are zoomed in views of (a), (b) and (c), respectively.

Fig. 50 shows the free-form fitting approach from an input triangular mesh, where (a) shows the
input surface triangular mesh with a G1 continuity requirement at the vertices (see (a)). Figure (b)

95

(a) (c) (e)

(b) (d) (f)

Figure 50: Interpolating points: (a) shows some input points and their triangulation. (b) shows an initial
construction of the surface mesh. (c) and (d) are the faired surfaces, after 2 iterations with τ (n) = 0.01,
using the mean curvature flow and the averaged mean curvature flow, respectively. (e) is faired surfaces,
after 2 iterations with τ (n) = 0.001, using the fourth order flow (169). (f) is the mean curvature plot of (e).

shows an initial construction of the surface mesh, where each input triangle is approximated with
16 sub-triangles. The newly introduced vertices are treated as unknowns and the input vertices
are fixed in the fairing process. Figures (c) and (d) are the faired meshes, after 2 iterations with
τ (n) = 0.01, generated using the mean curvature flow and the averaged mean curvature flow,
respectively. (e) is the faired mesh by fourth order flow, after 2 iterations with τ (n) = 0.001.
(f) is the mean curvature plot of (e). The area shrinking of the mean curvature flow makes the
input vertices to be interpolated become thorns (see (c)), while the area shrinking and the volume
preservation of the averaged mean curvature flow make some of input vertices become thorns and
some others become pits (see (d)). However, the fourth order flow does not suffer from this problem
(see (e)). The obtained surface interpolates the input points and exhibitsG1 smoothness everywhere
as well.

Conclusions We have presented a general scheme for using PDEs to solve several surface mod-
elling problems and with high order boundary continuity conditions. Our scheme has the following
features: It produces very fair and desirable solution surfaces. It is simple and easy to implement.
Specifically, it solves the free-form blending problem, the N -sided hole filling problem and free-
form surface fitting problem in a uniform fashion, and solves the high order boundary continuity
problem in an easy and natural way and avoids prior estimation of normals or derivative jets on
the boundaries. The implementation results show that our solution works well for a wide range of
surface models. Note that the C1 or higher order continuity interpolatory surface blending solution
produced by e.g. [27, 188] for complicated corners, or holes with many boundary curve segments,
are usually of very high algebraic degree and thereby prone to be with unsuitable for certain ap-
plications. The current solution of starting with G0 low degree blends, coupled with higher order
flow evolution, yields in general a much better alternative for very smooth surface solutions.

96

Both the geometric flows and quasi geometric flows yield smooth surfaces at the boundaries.
However, quasi geometric flows (169) have some attractive features, including ease of implementa-
tion, smaller and better behaved coefficient matrices and no requirement of derivatives (normal)
estimation.

4 Reconstruction of Point Clouds

4.1 Smooth Reconstruction from Scattered Data

The problem here is the reconstruction of surfaces and scalar fields defined over it (surface-on-
surface), from scattered trivariate data. The data points are assumed sampled from the surface
of a 3D object, and the sampling is assumed to be dense for unambiguous reconstruction. Laser
range scanners are able to produce a dense sampling, usually organized in a rectangular grid, of an
object surface. Some 3D scanners are also able to measure the RGB components of the object color
(i.e. three scalar fields) at each sampled point. When the object has a simple shape, this grid of
points can be a sufficient representation. However, multiple scans are needed for objects with more
complicated geometry, e.g. objects with holds, handles, pockets cannot be scanned in a single pass.
Other applications, for example recovering the shape of a bone from contour data extracted from a
CT scan, require reconstruction of a surface from data points organized in slices. The approach of
considering the input points as unorganized has the advantage of generating cross-derivatives by a
uniform treatment of all spatial directions.

Bajaj, Bernardini and Xu [15] reconstruct the sampled surface using A-patches. Their scheme
effectively utilizes an incremental Delaunay 3D triangulation for a more adaptive fit; the dual 3D
Voronoi diagram for efficient point location in signed distance computations and cubic implicit
surface patches. Furthermore, in the same time they also compute a C1 smooth approximation
of the sampled surface-on-surface. Bajaj, Bernardini and Xu [14] have also developed a similar
method based on tensor-product Bernstein-Bézier patches.

A different, three-step solution is given by Hoppe et al.[129, 128, 132]. In the first phase, a
triangular mesh that approximates the data points is created. In a second phase, the mesh is
optimized with respect to the number of triangles and the distance from the data points. A third
step constructs a smooth surface from the mesh.

The problem of modeling and visualizing just surface-on-surface arises in several physical anal-
ysis application areas: characterizing the rain fall on the earth, the pressure on the wing of an
airplane and the temperature on the surface of a human body. A number of methods have been
developed for dealing with this problem.

Currently known approaches for approximating surface-on-surface data however possess restric-
tions either on the domain surfaces or the surface-on-surface. The domain surfaces are usually
assumed to be spherical, convex or genus zero. The surface-on-surface are not always polyno-
mial [50, 172], or rather higher order polynomial [196], or a large number of pieces [5] compared
to the approach of [15]. The method of [5] is a C1 Clough-Tocher scheme that splits a tetrahedron
into 4 subtetrahedra, uses quintic polynomials and requires C2 data on the vertices of each sub-
tetrahedron. Another Clough-Tocher scheme [235] requires only C1 data at the vertices, for again
constructing a C1 function which is a cubic polynomial over each subtetrahedron, however splits
the original tetrahedron into 12 pieces. A C1 scheme [196] that does not split each tetrahedron
uses degree 9 polynomials and requires C4 data at the vertices. In extending the method of [196]
to a C2 scheme, requires degree 17 polynomials and C8 data at the vertices of each tetrahedron.
Compared to these approaches, the C1/C2 construction of [38] has no splitting and uses much lower
degree polynomials (cubic/quintic) requiring only C1/C2 data respectively, at the vertices of each
tetrahedron.

97

(b) (c)(a)

(d) (e) (f)

Figure 51: Jet engine model and associated pressure (scalar) field defined on the surface and their
respective reconstruction from scattered point data (a) Input point data from the surface of the jet
engine cowlings (b) reconstructed model with cubic A-patches defined within a 3D triangulation (c)
reconstructed model with bicubic A-patches over a box decomposition (d) isocontours of a pressure
field displayed on the jet engine surface (e) reconstructed model of the pressure field defined on the
jet engine surface, using bicubic A-patches (f) pressure field with iso-contours displayed surrounding
the jet engine.

4.2 Volumetric Data Fitting

A-patches can be naturally used in the reconstruction of surfaces and volumetric scalar fields.
Bajaj, Bernardini and Xu [15] reconstruct laser scanned data (point-clouds) using A-patches.

Their scheme utilizes an incremental Delaunay 3D triangulation for a more adaptive fit; the dual
3D Voronoi diagram for efficient point location signed distance computations and cubic implicit
surface patches. Furthermore, at the same time they also compute a C1 smooth approximation
of the sampled function-on-surface. Bajaj, Bernardini and Xu [14] have also developed a similar
method based on tensor-product Bernstein-Bézier patches.

Figure 52 shows several steps of the reconstruction process on one part of the engine. We used
the normal propagation method in this example to define an approximate signed distance function.
The 3780 data points for the outer cowl are preprocessed to associate local fitting planes and orient
the associated normals (Figure 52(a)). The approximation algorithm begins with a given grid (in
this case, a uniform subdivision into 5 × 5 × 5 equally-sized boxes) and then adaptively refines it
until the error bound conditions are met (the error in this example was set to 0.01 times the max
size of the object). The final subdivision is displayed in Figure 52(b). A C1-smooth piecewise
polynomial surface is obtained, as shown in Figure 52(c). The full reconstructed engine is finally
shown in Figure 52(d).

In many important cases, a physical phenomenon is measured by sampling the value of a scalar
or vector field at points on the surface of some object. For example, one might have sampled the

98

(a) (b) (c) (d)

Figure 52: Reconstruction of a jet engine from manifold data: (a) Input points for the outer cowl,
with the oriented normals. (b) Octree subdivision generated by the approximation algorithm. (c)
Piecewise polynomial approximation. (d) Reconstructed engine.

temperature on the surface of a jet-engine, or the acceleration of a fluid flow on the wing of an
airplane. Other cases of interest are electroencephalogram data on the surface of the scalp, or the
amount of precipitation on the earth. We will consider the problem of reconstructing both the
surface of an object and a (possibly multivariate) field on it from scattered, dense data (what we
mean by dense will be more clearly stated later). We will assume that both the surface and the field
are continuous and have continuous first-order derivatives. Since data measurements are subject
to error, we will not try to exactly interpolate the data but rather approximate it within a given
tolerance. We will define a way to measure the error-of-fit for both the surface and the data later.
The problem may be formally stated as follows:

Definition 4.1. Given a set of dense scattered points P = {pi}Ni=1 ⊂ R3 on an unknown manifold
M , and associated data values V = {vi}Ni=1, construct a smooth surface S : s(x, y, z) = 0, such that
S approximates P within a given error bound εS, and a smooth function F : f(x, y, z), such that F
approximates the data V associated with P within a given error bound εF .

The problem of reconstructing the approximation S to the unknown manifold M has attracted
the interest of many authors.

Most of the known methods use parametric or functional surface patches in either local inter-
polation or global interpolation. A few papers use implicit surface patches. We use a piecewise
implicitly defined tensor-product algebraic surface to approximate the unknown surface M .

The problem of interpolating data defined over a given manifold in R3 is commonly referred to
as modeling 3D scattered manifold data or the surface-on-surface problem

Our method is based on constructing an approximation of the signed-distance function δ(p,M)
defined in Section 6.2.2. A similar approach has been used in some of the papers cited above.
A novelty of the method proposed is in the adaptive approximation of δ with tensor-product
Bernstein-Bézier polynomial patches, with the required continuity conditions. Compared to the
methods mentioned above, our approach has the advantage of using an octree-like cubic mesh for
any scattered data. This makes it easy to use, and adaptively capable of handling irregular data.
Moreover, it handles the problems of reconstructing the surface and r scalar fields on it with a
uniform approach. Once a piecewise Bernstein-Bézier polynomials representation of the surface
and the scalar fields has been constructed, the data can be easily visualized and interacted with.
Polygonal shading or ray tracing can be used to display the reconstructed surfaces. Isocontouring,
or the normal projection method can be used to display the fields over the surface. The weights
(coefficients) of the various patches can be interactively and locally modified.

99

4.2.1 Outline of the algorithm

If M is a connected and orientable surface in R3, then it is possible to define (in all R3) a function
δ(p), called signed-distance, by

δ(p) := sign · dist(p,M)

where dist(p,M) denotes the Hausdorff distance from the point p to the surface M and the sign
is chosen so that δ(p) is positive when p is on one side of M , and negative when p lies on the other
side. Then δ(p) = 0 will recover the surface M .

When only discrete data on a surface is available, an approximate signed-distance can be defined
in some appropriate way (see e.g. [167, 130, 15]). Given the signed-distance function, one can
approximate it with a piecewise polynomial function s(x, y, z) (in a suitable domain containing P),
and then extract the zero-contour of s.

The algorithm proposed consists of the following phases:

1. Build an approximation of the signed-distance function. Preprocess the data so that,
for a given query point q, the (approximate) value of δ(q,M) cam be computed. Notice that
this requires a topologically consistent reconstruction of the surface orientation at each point.
This step can be seen as transforming the problem from a surface-data reconstruction to a
volume-data approximation.

2. Approximate the signed-distance by a piecewise polynomial function. Build, in an
adaptive fashion, a piecewise polynomial, C1-smooth approximation s(x, y, z) of δ(p,M). The
piecewise polynomial is built by least squares fitting of trivariate polynomials, in each cube
of an octree-like subdivision of a domain containing P , to the data points within the cube
and to additional samples of the signed-distance function δ defined in phase 1 above. If the
error-of-fit in a cube of the subdivision exceeds the given bounds, then the cube is subdivided
into eight sub-cubes and the process is repeated in each sub-cube. The reconstructed domain
is implicitly defined as s(x, y, z) = 0.

3. Approximate the scalar field defined over M . Concurrently to the approximation of
the signed-distance function, a piecewise polynomial approximation of the scalar field can be
computed in a similar fashion by least squares fitting of the scalar field data in each cube in
the octree.

In the following sections we will detail the algorithm outlined above.

4.2.2 From surface data to volume data: the signed-distance function

Using the signed-distance function to reconstruct a surface from scattered data points has been
considered by several authors.

Moore and Warren [167] use a tetrahedral decomposition of the space, and reconstruct the
surface by implicit barycentric Bernstein-Bézier patches. The signed-distance function used is
sampled at data points (where it is obviously zero) and at auxiliary points, chosen as the vertices
of a regular partitioning of each tetrahedron into sub-tetrahedra. If the sampling is dense enough,
then the sub-tetrahedra containing data points partition the tetrahedron into two components, so
that a sign can be associated with the distance at each vertex of the grid. This dense-sampling
assumption can be too restrictive in some practical cases.

Hoppe et al. [130] use a more global approach to correctly orient the approximated manifold.
First, for each data point pi, they compute a best fit plane, and the associated normal n̂i, based on k
neighboring points. Then they build the Riemannian Graph, RG(P) over P (two points pi, pj ∈ P
are connected by an edge in RG(P) iff either pi is in the k-neighborhood of pj or pj is in the
k-neighborhood of pi). Each edge (i, j) is assigned the weight 1−|n̂i · n̂j |, and a minimum spanning

100

tree is computed. They then orient the plane associated with the point with the largest z-value
so that its normal points toward the positive z-direction, and propagate this orientation to other
points traversing the minimum spanning tree. The traversing order implicit in the MST avoids, in
many examples illustrated in their paper, an incorrect orientation of parts of the manifold. Their
method continues with the construction of a regular subdivision of a parallelepiped containing the
data points into cubes. The value of δ is computed at all vertices of the subdivision as the signed
distance of the vertex from the oriented plane associated with the closest point in P . An algorithm
similar to marching cubes is then used to construct a piecewise-linear approximation of the zero
contour of δ. In two subsequent steps, described in [131, 127], the constructed mesh is optimized
(i.e., the number of triangles is reduced while the distance of the mesh from the data points is kept
small) and then a smooth surface is built on it. While this approach gives very convincing results,
and allows for smooth objects with sharp features to be correctly reconstructed, the computational
time required by the optimization and smoothing steps is significant.

Bajaj et al. [15] propose the use of α-shapes [100, 102] to build a piecewise-linear approximation
of the surface being reconstructed. The α-shape is a sub-complex of the Delaunay triangulation of
the set of points P . This approach has the advantage of being based on a well-founded mathematical
definition of the shape of a set of points. The piecewise-linear approximation is then used to compute
the value of the signed-distance function at any point. A piecewise polynomial approximation is
subsequently built on an adaptive Delaunay 3D triangulation of a domain containing P .

All the three schemes described above have advantages and disadvantages. In all three cases,
the method used to define an approximate signed-distance function can be used as the first step of
our algorithm. In our current implementation. we are using a propagation approach similar to that
of [130]:

Algorithm 4.2. 1. Local approximation. Let P be the given surface data, then for each
point p ∈ P , construct a local linear approximation lp(x, y, z) = ax + by + cz + d by least
squares fitting p and other k(≥ 2) nearest points of P . If the points used are collinear the
number of points used is increased.

2. Orienting normals. For each point p ∈ P , construct a normal np from the local approxima-
tion lp(x, y, z) = 0. That is, sign · ∇lp(p)/‖∇lp(p)‖. The direction (the sign in the formula)
of the normal must be chosen so that all the normals point toward the same side of the surface.

In the following we assume that the surface data P is ρ-dense, that is any sphere with radius
ρ and center in M contains at least one point in P . Our propagation algorithm starts with
assigning an orientation to the six points having minimum or maximum x, y or z coordinate
(the normal at the point with max z coordinate clearly must point upward, etc). Points whose
associated normal has been oriented, but such that neighboring points might not have been
oriented are called boundary points and are kept in a list. A point p is extracted from the
list and all points contained in a ball centered in p and of radius ρ′ (ρ′ is a parameter to be
chosen a priori, depending on the density ρ of the data set) are oriented (if they had not been
oriented before) accordingly to the orientation of p (i.e., in such a way that the the scalar
product of the two normals is positive).

3. signed-distance function evaluation. The distance |δ(p,M)| is computed by first finding
a point q ∈ P that has minimal distance to p. Then |δ(p,M)| is defined as the local minimal
distance from p to lq(x, y, z) = 0 around q. If the query point is outside the sphere S(q, r),
with center q and radius r, then use |δ(p,M)| = ‖p− q‖. The radius r can be taken to be the
maximal distance of the k points that defined lq from q. The sign of |δ(p,M)| is taken to be
the sign of the inner product of nq and p− q.

101

(a) (b) (c) (d)

Figure 53: Reconstruction of a surface and an associated scalar field from scattered data: (a) Input
points. (b) Orientation of normals and octree subdivision. (c) Piecewise polynomial approximation.
(d) Reconstructed scalar field.

4.2.3 Piecewise polynomial approximation of signed-distance

In this section, we describe how to use piecewise polynomials to approximate the signed-distance
function. Let D = [α1, α2] × [β1, β2] × [γ1, γ2] be a parallelepiped containing the data set P . The
outline of the algorithm is as follows:

Algorithm 4.3. 1 Initial Partition. Construct a partition of D. That is choose ai, bj , ck so
that

α1 = a0 < a1 < . . . < a`1 = α2

β1 = b0 < b1 < . . . < b`2 = β2

γ1 = c0 < c1 < . . . < c`3 = γ2

and partition D by D =
⋃
Dijk, with Dijk = [ai−1, ai] × [bj−1, bj] × [ck−1, ck] and i =

1, . . . , l1, j = 1, . . . , l2, k = 1, . . . , l3.

2 Local Fitting. For each element Dijk that is within the distance ρ from P (if the cube
is away from P by a distance bigger than ρ, we regard this cube as containing no surface),
construct the (either tri-quadratic or tri-cubic) function w = sijk(x, y, z) that fits the signed-
distance function δ(p) at ps = (xs, ys, zs) ∈ Dijk in the least squares sense. The points ps used
are the points in P ∩ Dijk and, additionally, the vertices of a regular grid on the cube Dijk

(the number of such points can be chosen depending on the number of data points available).
The auxiliary grid points in the least square fit help preventing the function sijk from having
multiple sheets.

3 Adaptive Step. Compute the algebraic distances of the computed patch from the data points.
If the max distance is bigger than the given tolerance ε, subdivide Dijk into eight equally-sized
sub-cubes and return to Step 2. However, do not subdivide cubes whose side length is less
than 2ρ.

At the end of the iterative, adaptive fitting implemented by the steps outlined above, we have
computed local polynomial approximations to the signed-distance function. Obviously, there is
no guarantee that adjacent pieces join continuosly. Therefore we need an averaging phase (called
free-form blending in [167]) in which values and derivatives at vertices of the octree subdivision
are obtained evaluating the polynomials associated with incident cubes and taking their average
(possibly weighted to take into account the number of data points used in the fitting and the
goodness-of-fit achieved in each cube).

Notice that the adaptive refinement of the subdivision can be represented as an octree data
structure. In the following we will refer to the level of a cube with the following meaning: cubes at

102

level 1 are those with the coarser subdivision. Cubes at level i+ 1 have been obtained subdividing
a cube at a level i into eight sub-cubes.

Algorithm 4.4. 4 Extract Values. For each vertex of level 1 cubes in the final partition,
compute function values and the required derivative values (C3 data, see Section 4.2.4) by
averaging the corresponding values of the neighboring cubes polynomials. Then compute a
new polynomial in each level 1 cube using the averaged data.

5 Recursive C1 Interpolation. Compute a new polynomial at each level 2 cube interpolating
the C3 data at its vertices. For vertices lying inside the face of an adjacent level 1 cube, first
evaluate the polynomial in the adjacent cube to compute the C3 data. Continue in a similar
fashion with level i cubes, for i > 2, until all patches have been computed.

At the end of the top-down construction of interpolants, we have obtained a C1 smooth, piece-
wise trivariate polynomial, whose zero-contour approximates the points P .

Step 3 guarantees that the scheme is adaptive. The final partition produced by the algorithm
is in general not uniform. Hence two adjacent cubes may have different sizes. Two adjacent cubes
that share a part of the common face join in one of the following two fashions:

1. The two faces coincide completely.

2. One contains the other as a proper subset.

If the second case happens, then in Step 5 the interpolant for the larger cube will be computed
first, and then this interpolant will be used to compute the C3 data at the remaining vertices of
the smaller cube. This guarantees the global C1 continuity of the constructed function. We shall
detail the construction method for the interpolants in the following sections.

In Step 2, we use algebraic polynomials to fit the data. Since the least squares approximation
is not an exact fit, one might question if an approximate fit to the signed-distance could possibly
lead to a multi-sheeted surface. For this, a theorem like Theorem 1 in [167] for a tetrahedron can
be established for our cubic scheme:

Theorem 4.5. Let Pijk = P ∩Dijk. For a sufficiently small ε, if there exists a plane π(x, y, z) = 0
such that all points of Pijk lie within a distance ε from the plane, then the zero contour of the local
fitting sijk(x, y, z) is smooth, single sheeted in Dijk and lies within some distance, depending only
on ε and the degree of sijk, from the plane π(x, y, z) = 0.

Another way of guaranteeing single-sheetedness is the following. In [186] is has been pointed
out that if all the weights increase or decrease monotonically along one of the coordinate directions,
then straight lines parallel to that direction intersect the surface patch at most once, i.e. the patch
is single-sheeted. We state another characterization in the following:

Lemma 4.6. If there exists an integer l (0 < l < m) such that

wijk ≤ 0, i = 0, 1, ..., l − 1; j = 0, 1, ..., n; k = 0, 1, ..., q (188)
wijk ≥ 0, i = l + 1, ...,m; j = 0, 1, ..., n; k = 0, 1, ..., q (189)

and there is at least one strict inequality in each set of inequalities, then straight lines parallel to
the x-direction intersect the surface patch exactly once. Similar conclusions hold for the y and
z-direction intersections.

Proof. The Lemma can be easily proved using the variation-diminishing property of Bernstein-
Bézier polynomials.

103

Since the averaging in Step 4 will make the final approximation differ from the local approx-
imation of Step 2, one should note that this change may destroy the smooth and single sheeted
properties of the local approximation. To avoid this from happening, the averaged values should
have a small difference from the local values. If the data is dense and the partition is fine enough,
this will be guaranteed.

4.2.4 C1 Interpolation of C3 data by (3, 3, 3)- and (2, 2, 2)-polynomials

By C3 data of a function f at a point p, we mean that we are given values at p for

f,
∂f

∂x
,

∂f

∂y
,

∂f

∂z
,

∂2 f

∂x ∂y
,

∂2 f

∂x ∂z
,

∂2 f

∂y ∂z
,

∂3 f

∂x ∂y ∂z
. (190)

This Section shows a way of constructing tri-cubic and tri-quadratic interpolants over a cube
with C3 data on its vertices so that the composite function is C1 continuous. The following Lemma
tells us how to compute the BB form coefficients around a vertex from the C3 data there.

Lemma 4.7. Let W (x, y, z) =
∑m

i=0

∑n
j=0

∑q
k=0 wijkB

m
i (u)Bn

j (v)Bq
k(w), m > 0, n > 0, q > 0,

be a BB form polynomial on the cube D = [a1, a2] × [b1, b2] × [c1, c2]. Then W interpolates the C3

data (190) at the vertex (a1, b1, c1) if and only if

w000 = f (191)

w100 = w000 +
a2 − a1

m

∂f

∂x
(192)

w010 = w000 +
b2 − b1
n

∂f

∂y
(193)

w001 = w000 +
c2 − c1

q

∂f

∂z
(194)

w110 = w010 + w100 − w000 +
(a2 − a1)(b2 − b1)

mn

∂2f

∂x∂y
(195)

w101 = w001 + w100 − w000 +
(a2 − a1)(c2 − c1)

mq

∂2f

∂x∂z
(196)

w011 = w001 + w010 − w000 +
(b2 − b1)(c2 − c1)

nq

∂2f

∂y∂z
(197)

w111 = w011 + w101 − w001 + w110 − w010 − w100 + w000 (198)

+
(a2 − a1)(b2 − b1)(c2 − c1)

mnq

∂3f

∂x∂y∂z

Similar conclusions hold for the other 7 vertices of the cube D.

Lemma 4.8. Let W1 and W2 be polynomials defined on equally sized cubes D1 and D2, adjacent
along the x-direction (see 84). Then if both W1 and W2 interpolate C3 data at the four common
vertices of D1, D2, four x-direction collinear conditions are satisfied at each of the common vertices.
Similar conclusions hold for y- or z-adjacent cubes.

Theorem 4.9. If W1 and W2 in Lemma above are tri-cubic, and if both W1 and W2 interpolate
C3 data at the common four vertices of two adjacent cubes D1 and D2, then W1 and W2 are C1

continuous on the common face of D1 and D2.

The last Theorem says that, if a volume consists of cubes, and if a BB polynomial on each cube
is constructed from C3 data at the vertex by formulae (191)—(198), then the composite function
is C1 continuous. The discussion above also shows that m = n = q = 3 is the minimal degree
for forming C1 piecewise functions, since there is no degree of freedom left. If a lower degree
polynomial is used or some degrees of freedom are required, one has to subdivide each cube into
smaller sub-cubes.

104

(a) (b)

Figure 54: (a) Six collinear conditions. (b) Subdivision of a cube D into eight sub-cubes.

Tri-quadratic interpolation. C1 interpolation of the C3 data can also be achieved by a tri-
quadratic piecewise polynomial. However, this requires splitting each cube in eight sub-cubes to
create additional degrees of freedom in the choice of coefficients.

The first Lemma in the following says that the six C1 conditions on a plane and around a vertex
are not independent.

Lemma 4.10. Let R = [a1, a3] × [b1, b3] be a rectangle in the plane (see Figure 54(a)), and
w1, . . . , w9 be values on the nine grid points. Then the six collinear conditions

wi+1 − wi
a2 − a1

=
wi+2 − wi+1

a3 − a2
, i = 1, 4, 7 (199)

wi+3 − wi
b2 − b1

=
wi+6 − wi+3

b3 − b2
, i = 1, 2, 3 (200)

are satisfied if any five of them are satisfied.

The next Lemma guarantees that by subdivision, the tri-quadratic interpolants over the eight
sub-cubes exist uniquely and the composite function is C1 continuous.

Lemma 4.11. Let D = [a1, a2] × [b1, b2] × [c1, c2] be a given cube. At each of its eight vertices
Pi1i2i3, we are given C3 data. If we subdivide D into eight sub-cubes Di1i2i3 (see Figure 54(b)),
then there exists uniquely one piecewise function W on D such that

a. Wi1i2i3 = W |Di1i2i3 is a (2,2,2)-polynomial, that interpolates the set of C3 data at Pi1i2i3.

b. W is C1 continuous on D.

c. If W ′ is defined in the same way over an adjacent cube D′, then W and W ′ are C1 continuous
on the common face of D and D′.

4.3 Hierarchical Multiresolution Reconstruction of Shell Surfaces

Many human manufactured and naturally occurring objects have shell-like structures, that is, the
object bodies consist of surfaces with thickness. We call such surfaces shell surfaces. The problem
of constructing smooth approximations to shell surface objects arises in creating geometric models
such as airfoils, tin cans, shell canisters, engineering castings, sea shells, the earth’s outer crust,
and the human skin, to name just a few.

105

In engineering, shell structures are often analyzed by finite element methods (see [54, 59, 76,
165, 221]). In these analyses, the shell is often assumed to be uniform in thickness for simplicity,
hence the output is often a triangulation that represents the mid-surface of the shell. More accurate
finite element analysis of shells uses volume elements, such as hexahedral (see [153]) or pentahedral
(see [221]).

In these cases, the output may be a matched triangulation pair. Reference [40] also presents
schemes for obtaining matched triangulation pairs for varied scattered and dense surface data
inputs. Our aim is to reconstruct smooth shells from matched triangulation pairs. However, we do
not assume that the shell is uniform in thickness; instead, we assume we are given two triangulations
that represent the boundaries of the shell. These triangulations can be obtained by offsetting the
mid-surface triangulation in the normal direction with varying thickness. In the model (such as
airfoil, arched roof and dam etc.) construction, we must often respect the geometric data and
therefore cannot assume the shell is uniform in thickness. Hence, our problem may be described as
follows.
Problem Description. As input we are given a matched triangulation pair T = {T (0), T (1)} with
attached normals at each vertex, which presents a linearization of the inner and outer boundary
surfaces of a shell domain; also, we are given an error control tolerance ε > 0. The goal is
to reconstruct hierarchical multiresolution smooth shell surfaces whose bounding surfaces provide
approximations of T (0) and T (1), respectively, with errors no larger than ε.

The hierarchical scheme is comprised of multiresolutions in two directions. The terminology
Hh-multiresolution we use is borrowed from hp-finite element analysis (see [221]), where their “h” el-
ements denote the mesh size and their “p” elements denote the degree of the shape functions on each
mesh element. Here the H-direction multiresolution is a level-of-detail (LOD) representation of the
pair of (irregular) triangular meshes, and the h-direction multiresolution is the regular subdivision
of each of the triangle pairs. In the geometric modeling problem, using high degree polynomials in
general leads to surfaces containing pronounced waves and also increases the computational costs.
Hence, we use triangular cubic spline functions on the regularly partitioned triangles.

We extend the reconstruction method of [40] to achieve (a) hierarchical Hh-multiresolution,
(b) ε-bounded approximations, and (c) the ability to capture sharp curve creases while being C1

smooth everywhere else. To achieve adaptive multiresolution representations in the H-direction, a
hierarchical presentation of the prism scaffold is constructed. For each extracted scaffold from the
hierarchy, a sequence of functions (h-direction) is constructed, using triangular splines on regularly
subdivided triangular prisms, such that the input data is approximated to within the allowable
error ε. To get an adaptive reconstruction, combinations of different levels in both the H- and
h-directions are allowed.

In Section 4.3.1 we introduce some notation used for describing our algorithm. We then outline
in Section 4.3.2 the complete algorithm steps for solving the proposed problem. These steps are
detailed in the sections that follow. Two heavy tasks in this algorithm, that are tackled in Sections
4.3.3 and 4.3.5, are the geometric construction of the hierarchical scaffold and the C1 function
construction over the scaffold. The hierarchical construction of the prism scaffold is the same in
nature as that of the hierarchical construction of a unique triangulation, but with some adjustments
to fit our shell triangulation problem. The C1 construction in Section 4.3.5 is basically a local
interpolation approach, that utilizes mainly the tools of one-dimensional Hermite interpolation,
one-dimensional B-splines, two-dimensional triangular B-splines, and transfinite interpolation.

4.3.1 Notation for Shell Surfaces

We assume T (0) and T (1) are orientable. For each vertex pair Vi = {V (0)
i , V

(1)
i } with attached

normal pair {N (0)
i , N

(1)
i }, we assume

[V (1)
i − V (0)

i]TN (s)
i > 0, s = 0, 1.

106

v
(0)
j

v

v

v

v
(1)

(1)

(0)

(0)

i

i

v
(1)

j

k

k

H ikv () i
Pijk

Figure 55: The volume prism cell Pijk, the face Hik(t, λ) and the edge vi(λ) defined by a triangle
pair [ViVjVk].

This ensures that points in the outer layer are roughly in the same direction from the corresponding
points in the inner layer as the normals. With this convention the normals to both the inner and
outer surfaces are outward-pointing normals, in contrast to the more common convention where
the normals to the inner surface are inward-pointing. For each triangle pair [ViVjVk], we further
assume

[V (0)
i V

(0)
j V

(0)
k] ∩ [V (1)

i V
(1)
j V

(1)
k] = ∅.

Our trivariate function F for constructing the shell is piecewise defined on a collection of prisms.
Let [ViVjVk] be a triangle pair. Then the prism, denoted by Pijk, for [ViVjVk] is a volume in R3

enclosed by the surfaces Hij , Hjk, and Hki (see Figure 55), where Hlm is a ruled surface defined by
Vl and Vm as follows:

Hlm = {p : p = b1vl(λ) + b2vm(λ), b1 + b2 = 1, λ ∈ R}

with vi(λ) = V
(0)
i + λNi, Ni = V

(1)
i − V (0)

i . We will wish to describe points within these prisms in
terms of the triangle vertex pairs, as a type of “shell barycentric coordinate.” To this end we can
explicitly represent the prism Pijk as the volume given by

Pijk(I) = {p : p = b1vi(λ) + b2vj(λ) + b3vk(λ), b1 + b2 + b3 = 1, bl ≥ 0, λ ∈ I},

where I is a specified interval. This interval contains [0, 1] and is usually larger, so that each prism
Pijk contains the triangle pair [V (0)

i V
(0)
j V

(0)
k] and usually extends past its faces, as illustrated in

Figure 55. We call (b1, b2, b3, λ) the Pijk–coordinate of p = pijk(b1, b2, b3, λ) = b1vi(λ) + b2vj(λ) +
b3vk(λ). For each λ ∈ I, Tijk(λ) := {p : p = b1vi(λ) + b2vj(λ) + b3vk(λ), b1 + b2 + b3 = 1, bl ≥ 0}
defines a triangle. To ensure that this triangle is non-degenerate, λ is confined to lie in a certain
interval Iijk. This interval is computed as follows.

Let p(l)
ijk(λ) = det[nl, vj(λ)− vi(λ), vk(λ) −vi(λ)], l = i, j, k. Assume

p
(l)
ijk(λ) > 0, ∀λ ∈ [0, 1], l = i, j, k . (201)

Consider the real numbers λ1, · · · , λs (s ≤ 6) that solve one of these three equations of degree 2:
p

(l)
ijk(λ) = 0, l = i, j, k, and define a = max(−∞, {λl : λl < 0}), b = min(+∞, {λl : λl > 1}), and

107

Iijk = (a, b). Then Iijk is the largest interval containing [0, 1] such that Pijk(Iijk) is non-degenerate.
To show this fact, note that a triangle Tijk(λ) is non-degenerate if and only if

nTl [vj(λ)− vi(λ)]× [vk(λ)− vi(λ)] = p
(l)
ijk(λ) > 0, (202)

l = i, j, k, where × denotes the cross product of two vectors. The assumption (201) implies that
[0, 1] ⊂ I. Since p(l)

ijk(0) > 0 and p
(l)
ijk(1) > 0, for l = i, j, k, then p

(l)
ijk(λ) > 0 for λ ∈ (a, b) and

l = i, j, k. Since p(l)
ijk(a) = 0 for l = i or l = j or l = k if a > −∞, a is the infimum of the interval

of λ that contains [0, 1] and makes (202) hold. Similarly, b is the supremum of such an interval.
Therefore Iijk is the largest interval such that Pijk(Iijk) is non-degenerate.

We call the union of all Pijk(Iijk) a prism scaffold. For the input triangulation pair, the
corresponding scaffold, denoted as S0, will be the finest level in our hierarchical representation
of the scaffold. Note that the triangulation (we always mean the matched triangulation pair) and
the scaffold correspond closely. The vertex Vi, edge [ViVj] and triangle [ViVjVk] of the triangulation
correspond to the edge vi(λ), face Hij and prism Pijk of the scaffold, respectively. Hence, any
operation conducted on the triangulation implies the same on the scaffold. For instance, removing
a vertex pair from the triangulation and then re-triangulating implies removing an edge from the
scaffold and then “re-meshing” the prism scaffold. These operations are performed in building the
hierarchical representation of the scaffold in Section 4.3.3.

Given a Pijk-coordinate for a point, it is straightforward to compute its coordinates in the xyz
system. However, the inverse is not trivial, since the transforms between them are nonlinear. For
a given p ∈ R3, we determine (b1, b2, b3, λ)T such that

p = b1vi(λ) + b2vj(λ) + b3vk(λ), b1 + b2 + b3 = 1 . (203)

It follows from (203) that we have

p− vk(λ) = [vi(λ)− vk(λ), vj(λ)− vk(λ)] [b1, b2]T .

Therefore,
det[p− vk(λ), vi(λ)− vk(λ), vj(λ)− vk(λ)] = 0 . (204)

The left-hand side of (204) is a polynomial of degree 3 in λ. Upon solving this equation for λ,
we choose the root such that the solution (b1, b2, b3) of (203) satisfies bi ≥ 0,

∑
bi = 1.

Whenever it is necessary to address the functions that are defined on the level t scaffold (H-
direction), the notation F (t) is used. The notation Fσ will be used to address the level σ function
in the h-direction.

4.3.2 Algorithm Outline

The hierarchical construction algorithm of the shell structures is comprised of two main phases:
the hierarchical construction of the scaffold and of the function over the scaffold. This section gives
the algorithm pipeline, with the details of the algorithm provided in the sections that follow.
Step 1. Construct a C1 function on the scaffold S0.

The finest level scaffold S0 is built on the input matched triangulation pair. On this scaffold,
a C1 function F (0) is constructed (see Section 4.3.6). This function is regarded as exact when
constructing other functions at other resolutions.
Step 2. Hierarchical representation of scaffold.

This step constructs a directed acyclic graph (DAG) for the levels of detail of the scaffold. This
DAG is built based on the algorithm in [89, 92], with changes to the vertex removal criterion and
hole re-triangulation method (see Section 4.3.3). Having such a DAG, we are able to travel from
a fine level to a coarse one or vice versa, and extract a required scaffold satisfying a given control
error by combining different levels.

108

Step 3. Adaptive scaffold extraction.
For the given control parameters, extract a required scaffold from the DAG that satisfies the

given condition (see Section 4.3.4).
Step 4. Face data construction.

For each face of the prisms in any level, a C2 function and C1 gradient on the face are con-
structed. All these data form a list. In the DAG structure, each prism should have three pointers
that point to the corresponding face data (see Section 4.3.8). Having this data, we are able to
construct C1 functions on any extracted scaffold.
Step 5. Construct trivariate splines in each prism.

For the given control error ε and the selected scaffold, construct a sequence of C1 trivariate
splines Fσ, σ = 1, 2, · · · ,Σ, so that

S(σ)
α = {p : Fσ(p) = α, α ∈ [−1, 1]} , σ = 1, 2, · · · ,Σ,

are smooth surfaces and S
(Σ)
−1 and S

(Σ)
1 are ε error-bounded approximations of the inner and outer

boundary surfaces of the input shell, respectively. In the process of this construction certain curve
creases are tagged and captured. This step is described in detail in Sections 4.3.9.
Step 6. Evaluate and display the shell surface.

4.3.3 Hierarchical Representation of Prism Scaffold

The hierarchical representation of the scaffold is a sequence S0, S1, · · · , Sk of scaffolds, from the
finest level to the coarsest. To construct the hierarchical representation of the scaffold, we perform
recursively a vertex removal procedure to form a sequence T0, T1, · · · , Tk of matched triangulation
pairs, where T0 = T . The policy of the vertex removal is adopted from [89, 92]. That is, if one
vertex is selected to be removed at level t, then its neighbor vertices at the same level may not be
removed. Hence any two vertices in the set of vertices that are going to be removed are disconnected
(see Figure 56). The next level of triangulation is obtained by re-triangulating holes that are left
when the vertices are removed.

The hierarchy is stored as a directed acyclic graph (DAG), whose nodes correspond to the
prisms of S0 up to Sk. The leaf nodes correspond to the prisms of S0. Between the levels t and
t + 1, there is an intermediate level that corresponds to the removed vertices of level t. There is
an arc from the star-shaped polygon that is formed when a vertex is removed, to every triangle in
level t around the vertex, and to every triangle in level t+ 1 formed by the re-triangulation of the
star-shaped polygon. A polygon at the intermediate level between levels t and t + 1 is called the
parent polygon of those prisms at level t that linked to it, and it is also called the child polygon of
those prisms at level t+ 1 that are linked to it. Unchanged triangles between two levels are linked
directly by arcs. These descriptions are illustrated by Figure 56.

Some data must be stored along with the DAG. First is the vertex pair list VertexList, which
is fixed and does not change during the construction of the DAG. Another list is FaceList, that of
the faces of the prism, which is incremental. The initial list is that of the faces of S0. Each entry of
FaceList contains the information of the C2 function and the C1 gradient on that face (see Section
4.3.8). When new prisms are produced, the new faces are added to this list. In the DAG, three
pointers that point to the three faces of each prism must be stored. Having this information allows
us to construct later C1 functions within each prism cell.

To achieve our goal of building the hierarchical representation of the scaffold, there are two
points that need to be addressed. One is the vertex removal criterion, and the other is the re-
triangulation.

109

Intermediate

level

Level t

Level t + 1

Child polygons of the level t + 1

Parent polygons of the level t

Figure 56: The vertices with circles at the top level are the ones that are removed at level t. The
star-shaped polygons, that are shown in the middle of the figure and obtained by removing the
selected vertices, are re-triangulated as shown at the bottom. Newly formed prisms at level t + 1
are linked to those at level t by arcs through the intermediate level. The unchanged prisms are
linked directly.

4.3.4 Adaptive Extraction of Shell Surface Support

It is obvious that simply taking a certain level of the scaffold from the hierarchy does not have the
adaptive nature. Therefore, it is necessary to combine different level scaffolds to form an adaptive
one. The extraction algorithm in [89, 92] can be altered to serve our purpose. From the construction
of the DAG we know that each prism in any level has a grade that measures the normal variation.
We shall use this grade to control the scaffold extraction for a given control value g ∈ [0, π/2) of the
normal variation. To describe the extraction algorithm precisely, we introduce some more notation.
Let P be a prism of level t. Then we denote by Gt(P) the collection of all prisms at level t that
are in the same child polygon as P , and by Gct(P) the collection of all prisms at level t− 1 that are
linked to child polygons of P . Let Subt(P) be the collection of all prisms in the levels t, t−1, · · · , 0,
that are linked directly or indirectly through intermediate nodes to the prisms in Gct(P). That
is, Subt(P) consists of the prisms in the sub-DAG starting with Gt(P). Then the algorithm for
extracting the scaffold can be described by the following C language style pseudo-code:

Qk = Sk; /* put all the prisms in Sk to Qk*/
for (t = k; t > 0; t−−) {

Qt−1 = NULL;
while (Qt 6= NULL) {
P = Qt[0];
if (Gt(P) 6⊂ Qt) {

accept all the prisms in Gt(P);
} else {

if (Grade(p) ≤ g for all p ∈ Subt(P)) {
accept all the prisms in Gt(P)
} else {
append to the end of Qt−1 all the prisms in Gct(P)
}

110

}
remove from Qt all the prisms that in Gt(P);
}

}
if (Q0 6= NULL) {

accept all the prisms in Q0;
} .

4.3.5 Construction of C1 Trivariate Functions on Hierarchy

The C1 functions on the hierarchy are constructed in three steps: (a) A C1 function F (0) on S0 is
constructed first (Section 4.3.6). This function serves us as an exact reference while constructing
the functions at other levels. (b) C1 data are computed for each face of each prism in each level
(Section 4.3.8). (c) C1 functions are constructed for each prism of any extracted scaffold that
interpolates the vertices of the scaffold and fit F (0) by splines (Section 4.3.9).

4.3.6 Function over the Finest Level S0

The function F (0), whose level surfaces F (0)(x, y, z) = −1 and F (0)(x, y, z) = 1 will approximate
the inner and outer surfaces, is constructed in two steps. First, function values and gradients (C1

data) are defined on each of the faces of all the prisms, and second, the function is defined within
the prisms, using the C1 data on the prism faces.

Now we define C1 data on the faces. Let Hlm(t, λ) be a face of the prism Pijk where (l,m) ∈
{(i, j), (j, k), (k, i)}. Then the function value on this face is defined by cubic Hermite interpolation
on the line segment [vl(λ) vm(λ)] = {p ∈ R3 : p = Hlm(t, λ), t ∈ [0, 1]} by interpolating the
directional derivatives Ds

[vm(λ)−vl(λ)]sF (vl(λ)) and Ds
[vm(λ)−vl(λ)]sF (vm(λ)) for s = 0, 1. Hence,

F (Hlm(t, λ)) can be written as

F (Hlm(t, λ)) = F (vl(λ))H3
0 (t) + F (vm(λ))H3

2 (t)
+ [vm(λ)− vl(λ)]T∇F (vl(λ))H3

1 (t) (205)
+ [vm(λ)− vl(λ)]T∇F (vm(λ))H3

3 (t) ,

where H3
0 (t) = 1− 3t2 + 2t3, H3

1 (t) = t− 2t2 + t3, H3
2 (t) = 3t2 − 2t3, H3

3 (t) = −t2 + t3 are Hermite
interpolation base functions, and

F (vi(λ)) = 2λ− 1, ∇F (vi(λ)) = (1− λ)N (0)
i + λN

(1)
i . (206)

Here we have normalized the normals N (0)
i and N (1)

i such that NT
i N

(0)
i = NT

i N
(1)
i = 2 (recall that

Ni = V
(1)
i − V (0)

i), in order to have DNiF = NT
i ∇F on the edge vi(λ). Let

d1(λ) = vm(λ)− vl(λ), (207)
d2(t) = (1− t)Nl + tNm, (208)

d3(t, λ) = d1 × d2. (209)

Then we define the gradient ∇F (Hlm(t, λ)) by the following conditions:
dT1∇F (Hlm(t, λ)) =

∂F (Hlm(t, λ))
∂t

,

dT2∇F (Hlm(t, λ)) =
∂F (Hlm(t, λ))

∂λ
,

dT3∇F (Hlm(t, λ)) = dT3∇F̆lm(t, λ),

(210)

111

where
∇F̆lm(t, λ) = (1− t)∇F (vl(λ)) + t∇F (vm(λ)) . (211)

From (210) we have
∇F (Hlm(t, λ))T = [P,Q,R][d1, d2, d3]−1 (212)

where [d1, d2, d3]−1 = [d1‖d2‖2 − d2(dT1 d2), d2‖d1‖2 − d1(dT1 d2), d3]T /‖d3‖2, and P , Q and R are
the right-hand sides of (210).

Next we define C1 functions within prisms. Let [V1V2V3] be a typical triangle pair. The C1

function F in the prism P123 is defined by the side-vertex scheme defined by Theorem 3.1 in [170]:

F (p123(b1, b2, b3, λ)) =
3∑
i=1

wiDi(b1, b2, b3, λ), (213)

where wi =
∏
j 6=i b

2
j/
∑3

k=1

∏
j 6=k b

2
j , and Di is defined by Hermite interpolation from the data on

the prism faces (see [40] for details). Explicitly,

Di(b1, b2, b3, λ) = F (pi(b1, b2, b3, λ))H3
0 (bi)

+ di(b1, b2, b3, λ)T∇F (pi(b1, b2, b3, λ))H3
1 (bi)

+ F (vi(λ))H3
2 (bi) + di(b1, b2, b3, λ)T∇F (vi(λ))H3

3 (bi),

where

pi(b1, b2, b3, λ) =
bi

1− bi
vj(λ) +

bk
1− bk

vk(λ),

di(b1, b2, b3, λ) = − bj
1− bi

ek(λ)− bk
1− bi

ej(λ),

and (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, ek(λ) = vj(λ)− vi(λ), ej(λ) = vk(λ)− vi(λ).

4.3.7 Minimal Prism with ε Offset

As mentioned above, the shell {p ∈ R3 : F (0)(p) ∈ [−1, 1]} constructed in this section is considered
to be exact, and the other shells constructed later will approximate this shell to within the error
ε. Therefore, this shell with its ε offset is required to be contained in all of the other scaffolds.
This requirement will be one of the conditions in building the hierarchical representation of the
scaffold. Since testing whether a triangular shell with ε offset is contained in another scaffold is
time-consuming, we determine a minimal prism that contains the triangular shell with ε offset. In
building the hierarchical representation, the shell containment requirement will be replaced by the
minimal prisms containment requirement. Let [ViVjVk] be a triangle pair. Let p(0) be the point
in R3 with Pijk-coordinate (b(0)

1 , b
(0)
2 , b

(0)
3 , λ(0)) and let p(1) be the intersection point of the surface

F (0) = 1 and the line b(0)
1 vi(λ) + b

(0)
2 vj(λ) + b

(0)
3 vk(λ), where they intersect at λ = λ(1). Then

‖p(0) − p(1)‖ = |λ(0) − λ(1)|‖b(0)
1 Ni + b

(0)
2 Nj + b

(0)
3 Nk‖ .

Then we require |λ(0) − λ(1)| ≥ ε/
√
M , where M := M(Ni, Nj , Nk) is the minimal value of the

degree two Bézier polynomial ‖b1Ni + b2Nj + b3Nk‖2 on the triangle {b1 + b2 + b3 = 1, bi ≥ 0}. Let
Iminijk = [a, b] be the minimal interval such that Pijk(Iminijk) contains the triangular shell. Then we
define the minimal prism as Pijk(Iεijk) with Iεijk = [a − ε/

√
M, b + ε/

√
M]. The interval [a, b] can

be computed by numerical methods (see Section 4.3.1).

112

4.3.8 Computation of Face Data

The function F in each prism is defined by transfinite interpolation of the data on the face of
the prism (see Section 4.3.6 or 4.3.9). To ensure that F is C1 in the prism, the function and the
gradient on the face need to be C2 and C1, respectively. Now we define the C2 function F (Hlm)
and C1 gradient ∇F (Hlm) on every face Hlm of each prism in every level. For the finest level, these
functions have been defined by (205) and (210). Now we consider the functions on other levels.
Though the face data on level t + 1 could be incrementally computed from the data of level t, we
compute data on level t + 1 from level zero to avoid error accumulation. The DAG constructed
enables us to trace back to S0 to locate the required data from level zero. Let

F (Hlm(t, λ)) = Glm(t, λ) + φσlm(t) + ψσlm(t)λ, (214)

where Glm(t, λ) takes the same form as F (Hlm) in (205), and

φσlm(t) =
2σ−2∑
i=2

φiN
σ
i3(t), ψσlm(t) =

2σ−2∑
i=2

ψiN
σ
i3(t) ,

where {Nσ
i3(t)}2σ+1

i=−1 are C2 cubic B-spline basis functions defined on the uniform knots ti =
i/2σ, i = 0, 1, · · · , 2σ. Here we shift Nσ

i3 so that ti is the center of the support suppNσ
i3 =

((i− 2)/2σ, (i+ 2)/2σ). Note that the function values and the first order derivatives of φσlm and
ψσlm are zero at the ends of the interval [0, 1].

Since Glm depends on vertex information only and it is easy to construct, we do not store the
data of Glm, but only φi and ψi. These parameters are determined by approximating the two
intersection curves of the finest level surfaces F (0) = ±1 with the face Hlm, in the least square
sense: ∫ 1

0
[F (Hlm(t, λs(t))) + (−1)s]2 dt = min, s = 0, 1, (215)

where λs(t), for fixed t, is defined by the intersection point of the line (1 − t)vl(λ) + tvm(λ) with
the surface F (0) + (−1)s = 0. The required pieces of the intersection are obtained from the DAG.
The minimization in (215) leads to a system of linear equations

2σ−2∑
i=2

∫ 1

0
(φi + ψiλs(t))Nσ

i3(t)Nσ
j3(t) dt = cj

with cj = −
∫ 1

0 [Glm(t, λs(t)) + (−1)s]Nσ
j3(t) dt and j = 2, · · · , 2σ−2, s = 0, 1. The integrations in

the system are computed by Gauss-Legendre quadrature rule on each of the sub-intervals [i/2σ, (i+
1)/2σ] and then summed up. This order 2(2σ−2) equation can be solved by solving two order 2σ−2
linear systems. The intersection point λs(t) is computed by Newton iteration, and the integer σ is
chosen on trial bases. Starting from σ = 1, we solve the equation and compute the least square
error. If the error is larger than the given ε, then increase σ by one, until the error is within the
tolerance.

Next, we define the gradient ∇F (Hlm(t, λ)) by the conditions (210), but F̆lm(t, λ) is modified
by adding a spline function:

∇F̆lm(t, λ) = (1− t)∇F (vl(λ)) + t∇F (vm(λ)) + φ̆σlm(t) + ψ̆σlm(t)λ (216)

with φ̆σlm(t) =
∑2σ−2

i=2 φ̆iN
σ
i3(t), ψ̆σlm(t) =

∑2σ−2
i=2 ψ̆iN

σ
i3(t), where φ̆i, ψ̆i ∈ R3 are determined by∫ 1

0
‖∇F̆lm(t, λs(t))−∇F (0)(Hlm(t, λs(t)))‖2dt = min (217)

for s = 0, 1, and λs(t) is defined as before. (217) can be solved together with (215) since they share
the same coefficient matrix.

113

0

0

0

000

0

0000

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0 0 0

0

0

0

00

0

0

0

0

0

0

0

0

0

0 0

1

1 1

1

111

1 1

1

1

1

3

0 0

00

0 0

0

0 0

2 2

22

22

0

0

0

0 0 0

0

0 0 0 0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

000

0

0

0

0 0

0

0

0

0

0

0

0

0

0

00

1

11

1

1 1 1

11

1

1

1

3

00

0 0

00

0

00

22

2 2

2 2

Figure 57: Bézier coefficients for two C1 cubic spline basis functions. Each is defined on the union
of 13 sub-triangles, which forms the support of the function.

p p

p

J

p p

p

J 2
1

2 2
1 1

3 3

1,1,4

2,1,3 1,2,3

3,1,2 2,2,2 1,3,2

4,1,1 3,2,1 2,3,1 1,4,1

1,1,3

2,1,2 1,2,2

3,1,1 2,2,1 1,3,1

Figure 58: For the regular partition of a triangle with resolution 2σ, the index set Jσ of the
sub-triangles is divided into Jσ1 and Jσ2 . This figure shows them for σ = 2.

4.3.9 Construction of C1 Spline Approximations

In this section, we construct a piecewise C1 function F = Fσ (σ ≥ 0 fixed) over the collection of
the volumes, such that it (Hermite) interpolates the C1 data and fits F (0). To achieve ε approxi-
mation and multiresolution representation in the h-direction, spline functions defined on triangles
are utilized in the construction of F . On a triangular domain with a regular partition, C1 cubic
splines defined in BB form were given by Sabin, 1976 (see [200]). Figure 57 gives the BB–form
coefficients of a typical base function defined on 13 sub-triangles. Note that these splines in general
are not linearly independent (see Bőhm, Farin and Kahmann [58]). However, the collection we use
is indeed linearly independent. For a regular partition of a triangle T , we shall associate a base
function to each sub-triangle of the partition. To give proper indices for these bases, we label the
sub-triangles as Tijk for (i, j, k) ∈ Jσ = Jσ1 ∪ Jσ2 , where Jσ1 and Jσ2 are defined as follows:

Jσ1 = {(i, j, k) : i, j, k ∈ {1, 2, 3, ..., 2σ}; i+ j + k = 2σ + 2},
Jσ2 = {(i, j, k) : i, j, k ∈ {1, 2, 3, ..., 2σ − 1}; i+ j + k = 2σ + 1},

where 2σ is the resolution of the partition. Figure 58 gives J1 and J2 for σ = 2. Now we denote
the base function defined by Figure 57 with center triangle Tijk as Nσ

ijk.

4.3.10 F on Prisms

Let [V1V2V3] be a typical triangle pair. Define

Fσ(p123(b1, b2, b3, λ)) =
3∑
i=1

wiDi(b1, b2, b3, λ) + Tσ(b1, b2, b3, λ), (218)

114

where the first term of left-hand side is in the same form as (213), and the second term is a spline
function:

Tσ(b1, b2, b3, λ) =
∑

(i,j,k)∈Jσ3

(aijk + wijkλ)Nσ
ijk(b1, b2, b3)

with Jσ3 = {(i, j, k) ∈ Jσ : i > 1, j > 1, k > 1}. This is called a correction term, which is used to fit
the finest level shell surface in the least square sense:∫∫

∆
[Fσ(b1, b2, b3, λs(b1, b2, b3))− (−1)s]2dS = min (219)

for s = 0, 1, where λs(b1, b2, b3) for each (b1, b2, b3) is defined by the intersection point of the
line b1v1(λ) + b2v2(λ) + b3v3(λ) with the surface F (0) + (−1)s = 0. The required pieces of the
intersection are obtained from the DAG. The domain ∆ in the integration is the unit triangle
defined by {(b1, b2, b3) : b1 + b2 + b3 = 1, bi ≥ 0}. The minimization in (219) leads to a system of
linear equations.

4.3.11 Hierarchical Representation of Correction Term

In the construction of F = Fσ, we have associated it with an integer σ. This integer indicates
the level of the hierarchical multiresolution representation of F in the h-direction. However, the
construction and expression of F in Section 4.3.9.1 is not incremental, as the construction of Fσ+1

does not utilize the information of Fσ. In this subsection, we revise some parts of the construction
in Section 4.3.9.1, so that F is progressively constructed. Now we want to have the following form
expression:

Tσ = Tσ−1 +
∑

(i,j,k)∈Jσ3 \2∗J
σ−1
3

(aσijk + wσijkλ)Nσ
ijk,

where T1 = 0. Let

W τ = span{N τ
ijk : i ∈ Jτ3 \ 2 ∗ Jτ−1

3 }, Sτ = W 2 ⊕W 3 ⊕ · · · ⊕W τ .

Then Sτ is a C1 cubic spline function space on a triangle partitioned regularly with resolution
2τ . Once Tσ−1 has been defined, the coefficients aσijk and wσijk are computed by fitting F (0) in the
volume. Since the elements in Sτ have zero function value and zero first order partial derivative
values on the boundary of the triangle, we can use different σ for different prisms to get an adaptive
construction without destroying the continuity of the composite function. For the prism Pijk, let
εσijk be the fitting error. Then for any given fitting error tolerance ε, we can choose a minimal σ so
that εσijk ≤ ε. This σ is prism dependent.
Basic Result The composite function F , defined on any extracted scaffold and for any varying
and prism-dependent σ ≥ 0, is C1.

5 Reconstruction of Cross-Sectional Polygons and Splines

Measurement based cross-sectional data sets arise from medical imaging (Computed Tomography –
CT, Magnetic Resonance Imaging – MRI, Laser Surface Imaging – LSI). Synthetic cross-sectional
data sets are generated by computer based simulations – meteorological and thermodynamic simu-
lations, finite element analyses, computational fluid dynamics, etc. Examples of our approach are
shown in Figures 59 and 60 which were made in our SHASTRA scientific design environment.

Generating contours in image data, reconstructing digitized signals, and designing scalable fonts
are only some of the several applications of spline curve fitting techniques. We generalize past fitting
schemes with conic splines [190] and even rational parametric splines [83, 176, 211]. We exhibit
efficient techniques to deal with cubic algebraic splines (A-splines) achieving fits with small number

115

Figure 59: Spline models of a human femur from CT cross-sections.

116

Figure 60: Spline models of a Human Head from MRI cross-sections.

117

of pieces yet higher order of smoothness/continuity or greater local flexibility for fixed continuity,
than prior schemes. The cubic A-splines are continuous chains of cubic implicitly defined algebraic
curve segments, fi(x, y) = 0, with fi(x, y) a bivariate real polynomial, and with achievable local
continuity as high as C3 at the junction points between curve segments.

The primary drawback for the widespread use of splines consisting of implicit algebraic curves
is that a single implicitly defined curve may have several real components (ovals) and can possess
several real singularities. In [37] we show how to isolate a non-singular and single sheeted segment
of implicit algebraic curves and furthermore how to stitch these segments together to form splines.

We focus on the case of cubic A-splines. We provide efficient algorithms for their use in fitting
contour image data, ordered digital signal data, as well as randomly sampled scattered data sets.
Note that rational parametric cubic splines can only achieve local C2 continuity [93], compared to
the local C3 continuity of cubic A-splines. The class of rational parametric cubic curves is a strict
subset of the class of cubic algebraic curves [225] and also has fewer degrees of freedom (8 versus
9 of the cubic algebraic curve). Note, of course that for fixed continuity (Ck, k = 0, 1, 2, or3), the
extra local degrees of freedom which the cubic A-spline segment posseses, allows for greater local
flexibility and approximation of the input data.

Related Prior Work:
Since 1960’s, considerable work on polynomial spline interpolation and approximation has been

done(see [93] for a bibliography). In general, spline interpolation has been viewed as a global fit-
ting problem to scattered data[83, 176, 190, 211]. Local interpolation by polynomials and rational
functions is an old technique that traces back to Hermite and Cauchy[63]. However, local inter-
polation by the zero sets of piecewise polynomials (implicit algebraic curve segments) is relatively
new[37, 184, 185, 212]. The papers [184, 185] construct a family of C1 (actually tangent continuous)
and C2 (actually curvature continuous) cubic algebraic splines. They however use a reduced form
of the cubic which guarantees that each segment of the spline is convex and furthermore allows one
to achieve C2 continuity only if the input data is convex. Furthermore, their family of curvature
continuous curves [184] can achieve C2 continuity only if the given data is convex. Their results
are a special case of the present paper, as our cubic A-splines are based on the general implicit
cubic, and as we show, can always be made to achieve C3-continuity for arbitrary data, and even
C4-continuity for certain special input data[37].

5.1 Algorithms Using Cubic A-splines

Our data fitting algorithms with C2 and C3 cubic A-splines are as follows.

Algorithm 1.

1. Extract a contour (ordered set of points) from the given input data. See subsection 5.2.

2. Compute breakpoints along the contour. These breakpoints points are the junction points for
the cubic curves which make up the cubic A-spline. See subsection 5.3.

3. Compute derivatives at the junction points using local divided differences along the contour.
For C2 and C3 continuity one needs upto second and third order derivatives, respectively, at
these junction points. See subsection 5.4.

4. Construct cubic A-spline fits which interpolate the junction points along with the derivatives,
and is least-squares approximate from all the given data between junction points. See subsec-
tion 5.5.

118

Figure 61: Extracting an iso-contour (left) from a dense MRI slice (right)

5.2 Extracting an Iso-Contour from a Grey-scale Image

For iso-contour extraction from dense image data we use the following algorithm. The dense image
data is in the form of a two dimensional array of two byte integers, one array for each planar slice
through the object. The value in each cell (pixel) of the array is related to the density of the
scanned object at that point in space. Each array may contain any number of iso-contours. To
locate the iso-contours :

1. scan for a cell on an initial edge

2. starting at this cell hug the exterior of the cross section working from cell to cell and creating
a list of two dimensional points until the beginning is reached or a dead end is found

3. if a dead end is found, backtrack

4. if the path closes and the algorithm does not backtrack to the beginning point then smooth
and compress the list of points if necessary.

In our implementation of this algorithm the following heuristic rule was used: if the density
value in a cell c is within range and if the density values of all the cells surrounding c are within
range, then the cell c is acceptable. The point list is smoothed and compressed by growing segments
that are within a prescribed constant value of the original polyline.

An example contour extraction is shown in the left part of Figure 61 from the input MRI
(Magnetic Resonance Imaging)image slice on the right.

Of course, more sophisticated iso-contour extraction algorithms may also be used, see for e.g.
[114]

For arbitrarily scattered data we use the alpha shape generation algorithm of [101] to extract
an appropriate contour of the given scattered data points. Examples of this algorithm are shown
in Figure 60 for an initially unordered set of point data sampled from a human head profile.

5.3 Computation of Junction Points

The next step is to compute the junction points around the contour. We use a curvature adaptive
scheme for the placement of the cubic curve segments that is given in [10]. The points on a unit
circle are in one-to-one correspondence with the normal directions, (or alternatively the slopes)
of the line segments which make up the polygonal contour. Consider any regular k polygonal
subdivision of a circle and number the k discrete normal directions n of the polygon boundary with
integers from 1 to k. See also Figure 63.

119

Figure 62: Extracting a contour from scattered data points

120

Figure 63: Regular subdivision of the space of normals on a planar contour

Now number each line segment of the contour boundary with the integer i if it has the largest
dot product of its normal with the ith normal of the regular polygon. Under this mapping the k
discrete normal directions on the circle partitions the polygonal contour on a data slice into groups
where the members of a group consist of a connected sequence of line segments having the same
assigned number. The endpoints of groups are the contour (junction) points whose two incident line
segments have distinct assigned numbers. The line segments of each group are then replaced by a
single cubic which C2 or C3-interpolates the group endpoints and the locally computed derivatives
and simultaneously least-squares approximates the contour line segments that originally formed
the group and lies within the junction points. See Figure 64 where junction points are computed
for different polygonal subdivisions k of the unit circle.

The C2 and C3 interpolation of the pair of endpoints and locally computed derivatives, by cubic
A-splines are explained in the next subsections. If the least-squares approximation yields a poor
error bound then additional cubics can be used to achieve a better bound. This operation is of
course local to the the group and can be achieved by selectively refining the regular polygon edge
corresponding to that group, replacing that edge by two or more edges inscribed in the circular arc
subtended by that edge. The newly created normal directions are now mapped to the polygonal
contour splitting the group into sub-groups. Each sub-group can now be replaced by a cubic,
improving the approximation.

5.4 Generating Derivatives at Junction Points

There are various forms of divided-difference methods that extract geometric information around a
junction point, from a given list of points [93]. Consider a sequence of points · · · , pi−2, pi−1, pi, pi+1, pi+2, · · ·
around the junction point pi and an imaginary power series C(t) from which, we assume, the digi-
tized points near pi arise, and whose parameter value is t = 0 for pi. Then, the tangent vector of
C(t) at t = 0 can be approximated by the approximation:

C
′
(0) ≈ σi

dist(pi, pi+1)
(pi+1 − pi) +

1− σi
dist(pi−1, pi)

(pi − pi−1)

where σi = dist(pi−1,pi)
dist(pi,pi+1)+dist(pi−1,pi)

and dist(∗, ∗) is the distance between two points.
Repeatedly applying this approximation formula, yields compact formulas [28] for higher order

divided-differences:

∆jpi =

pi if j = 0
1
j (σi

dist(pi,pi+1)(pi+1 − pi)
+ 1−σi

dist(pi−1,pi)
(pi − pi−1)) if j > 0

121

Figure 64: Junction Points and Cubic A-spline Fits

122

00 10 20 30

01 2111

02 12

03

free positive control point

free control point

negative control point

zero control point

dependent negative control point

Figure 65: Bernstein Bezier Coefficients of a C2 Cubic Algebraic Curve

p

p

p

p

p
p

p p

p

p

4

3

0

1

2
4

3 0

1

2

(a) (b)

Figure 66: A C0 polygon and a C1 polygon

Using this divide-difference operator, a truncated power series is represented as Ci(t) = ∆0pi +
∆1pit + ∆2pit

2 + · · · + ∆kpit
k. The higher order derivatives at the junction points are then ap-

proximated by C
′
(0), C

′′
(0), C

′′′
(0), etc. From these derivatives, we can easily compute the local

derivatives X (k)
(pi,pi+1) and X (k)

(pi,pi−1) defined in §2.

5.5 Exact and Least-Squares Fitting with C2 and C3 cubic A-splines

Consider a C1 cubic algebraic curve segment defined over a triangle p0p1p2

F (α0, α1) = −α3
1 + b10α0(1− α0 − α1)2 + b20α

2
0(1− α0 − α1)

+b02α
2
1(1− α0 − α1) + b12α0α

2
1 + b11α0α1(1− α0 − α1)

(220)

with
b10 > 0, b20 > 0, b02 ≤ 0, b12 ≤ 0 (221)

By differentiating F (α0, α1) = 0 about α1 we have the following formulas for α(k)
0i = α

(k)
0i (0):

α
(1)
00 = 0 α

(1)
02 = −1

α
(2)
00

2!
= −b02

b10
,

α
(2)
02

2!
=
b12

b20
, (222)

α
(3)
00

3!
=
b10 − b10b02 + b11b02

b210

,
α

(3)
02

3!
=
−b20 + b20b12 − b11b12

b220

(223)

From these formulas and the sign requirement (221), we can derive the following algorithm for
constructing C2 continuous A-spline curve(see [37] for detail):

Algorithm 2. Let { ̂qiviqi+1}mi=0 form a C1 polygonal contour of the junction points (see Figure
66).

123

1. Specify the second derivative values such that X (2)
(qi,vi)

= 0 if qi is of a Case(a)-join, or

X (2)
(qi,vi)

∆(qi, vi, qi+1) ≥ 0 if qi is of a Case(b)-join for i = 1, 2, . . . ,m, and X (2)
(q0,v0)∆(q0, v0, q0+1) ≥

0, X (2)
(qm+1,vm) ∆(qm, vm, qm+1) ≤ 0.

2. Compute b02 and b12 by (222) for each triangle. Determine the three remaining degrees of
freedom b10 > 0, b20 > 0 and b11 by least-squares approximation of the given data within the
triangle, or via a default choice if there are not enough data points within the triangle.

For achieving C3 continuity, we specify the second and third local derivatives at the junction
points. These derivatives need to satisfy some of the following conditions in order to have the
coefficients of the BB-form have the required signs(see (221)

X (3)
(p0,p1)∆(p0, p1, p2) > 0 (224)(

α
(3)
00

6
− α

(2)
00

2

)
b10 = 1− b11

α
(2)
00

2
,

(
α

(3)
02

6
− α

(2)
02

2

)
b20 = −1− b11

α
(2)
02

2
(225)

On the triangle p0p1p2 and at point p0 we have the inequalities.

±

 1− ‖p1−p0‖3b11D2

∆(p0,p1,p2) > 0
‖p1−p0‖4D3

∆(p0,p1,p2) + 2
(

D2
∆(p0,p1,p2)

)2
‖p1 − p0‖4〈p1 − p0, p2 − p0〉 − ‖p1−p0‖3D2

∆(p0,p1,p2) > 0
(226)

where Dk =
X (k)

(p0,p1)

k! , and at p2

±

 −1− ‖p1−p2‖3b11D2

∆(p0,p1,p2) > 0
‖p1−p2‖4D3

∆(p0,p1,p2) + 2
(

D2
∆(p0,p1,p2)

)2
‖p1 − p2‖4〈p1 − p2, p2 − p0〉 − ‖p1−p2‖3D2

∆(p0,p1,p2) > 0
(227)

where Dk =
X (k)

(p2,p1)

k! . For p̂4p3p0 at p0, we have

±

 −1 + ‖p3−p0‖3b11D2

∆(p4,p3,p0) > 0
‖p3−p0‖4D3

∆(p4,p3,p0) + 2
(

D2
∆(p4,p3,p0)

)2
‖p3 − p0‖4〈p3 − p0, p0 − p4〉+ ‖p3−p0‖3D2

∆(p4,p3,p0) > 0
(228)

Algorithm 3. Let { ̂qiviqi+1}mi=0 form a C1 polygon of the junction points and assume 〈vi−qi, qi+1−
qi〉 > 0, 〈vi−1 − qi, qi−1 − qi〉 > 0 if 1 ≤ i ≤ m.

1. At each junction point qi (i = 0, 1, . . . ,m+ 1), specify the second and third order derivatives
as follows(regard qi, vi, qi+1 as p0, p1, p2 for i ≥ 0 and qi−1, vi−1, qi as p4, p3, p0 for i ≤ m+1):

(a) X (2)
(qi,vi)

= 0, X (3)
(qi,vi)

satisfy (224) if qi is of a Case(a)-join and 1 ≤ i ≤ m.

(b) X (2)
(qi,vi)

∆(qi, vi, qi+1) > 0, X (2)
(qi,vi)

and X (3)
(qi,vi)

satisfy both +(226) and −(228) if qi is of
a Case(b)-join and 1 ≤ i ≤ m.

(c) For i = 0 and i = m+ 1, X (2)
(q0,v0)∆(q0, v0, q0+1) ≥ 0, X (2)

(qm+1,vm)∆(qm, vm, qm+1) ≤ 0,

and X (3)
(q0,v0) and X (3)

(qm+1,vm) satisfy +(226) and −(227), respectively.

2. For each triangle, compute b10 and b20 using (225); compute b02 and b12 using (222). The
remaining single degree of freedom b11 ≤ 0 is chosen by least-squares approximation of the
given data points interior to the triangle or via a default choice if there are not enough data
points within the triangle.

124

Figure 67: Adaptive tetrahedral meshes extracted from UNC Head (CT, 129×129×129). Isovalues
(αin, αout) = (1000, 50) in (a)(b), and (1000, 120) in (c)(d); error tolerance εin = 0.0001, εout =
(a): 0.0001, (b): 2.856, (c): 2.627, (d): 9.999. in and out represent inner and outer isosurface
respectively. The number of elements and the extraction time are listed in Figure 70.

5.6 Surplus Degrees of Freedom

For the above C2 and C3 data fitting algorithms, after satisfying the derivatives at the junction
points, there still exists three and one remaining degrees of freedom, respectively. These degrees
of freedom can be used to locally control the shape of the curve in each triangle. For example,
if b10 and b20 are given in Algorithm 2, then b11 can be chosen so that the curve in the triangle
can be as high as the top vertex (when b11 tends to ∞) or as low as the bottom edge (when b11

tends to −∞). In Algorithm 3, the curve can vary between the two limit curves(one corresponding
to b11 = 0, other corresponding to b11 = −∞). As we early mentioned in both Algorithm 2 and
Algorithm 3, we currently use these degrees of freedom to least-squares approximate points in
the triangle and based on the sign requirements (221). However, there exist the possibility that
there are not enough data points within a triangle to determine these coefficients. Default choices
of values for the undetermined coefficients are used in this case. One method used to determine
these default values of the coefficients is to locally approximate a quadratic or linear curve with
the triangle, which tends to avoid sharp changes in the geometry of the spline curve. The linear
or quadratic approximation is easily achieved by using degree elevation formulas (see [108]). The
second approach is to minimize the energy over the triangle on which the curve is defined. That is,

min =
∫ ∫

∆

((
∂f

∂x

)2

+
(
∂f

∂y

)2
)
dx dy

where f(x, y) = 0 is the curve in the triangle ∆ in xy-system.

6 Contour-Based Meshing

6.1 Adaptive and Quality 3D Meshing from Imaging Data

We present an algorithm to extract adaptive and quality 3D meshes directly from volumetric
imaging data - primarily Computed Tomography (CT) and Magnetic Resonance Imaging (MRI).
The extracted tetrahedral and hexahedral meshes are extensively used in finite element simulations.
Our comprehensive approach combines bilateral and anisotropic (feature specific) diffusion filtering,
with contour spectrum based, isosurface and interval volume selection. Next, a top-down octree
subdivision coupled with the dual contouring method is used to rapidly extract adaptive 3D finite
element meshes from volumetric imaging data. The main contributions are extending the dual
contouring method to crack free interval volume tetrahedralization and hexahedralization with
feature sensitive adaptation. Compared to other tetrahedral extraction methods from imaging data,
our method generates better quality adaptive 3D meshes without hanging nodes. Our method has
the properties of crack prevention and feature sensitivity.

125

6.1.1 Overview

The development of finite element simulations in medicine, molecular biology, engineering and
geosciences has increased the need for high quality finite element meshes. Although there has
been tremendous progresses in the area of surface reconstruction and 3D geometric modeling, it
still remains a challenging process to generate 3D geometric models directly from imaging data,
such as CT, MRI and signed distance function (SDF) data. The image data can be represented
as V = {F (i, j, k)|i, j, k are indices of x, y, z coordinates in a rectilinear grid}. V is the volume
containing function values F (i, j, k) at the indices i, j, k.

For accurate and efficient Finite Element Method (FEM) calculations, it is important to have
accurate and high quality models, minimize the number of elements and preserve features. We
present a comprehensive approach to extract tetrahedral and hexahedral meshes directly from
imaging data.

SF (c) = {(x, y, z) : F (x, y, z) = c} (229)
IF (α1, α2) = {(x, y, z) : α1 < F (x, y, z) < α2} (230)

Given volumetric imaging data and two isovalues α1, α2, the main steps to extract tetrahe-
dral/hexahedral meshes from the interval volume, IF , between the two isosurfaces (Equation (1))
are as follows:

1. Volumetric Denoising
2. Contour spectrum based interval volume selection.
3. Adaptive 3D meshing with feature sensitivity.
4. Quality improvement

As a preprocessing step, the bilateral prefiltering coupled with anisotropic diffusion method [36]
is applied to volumetric data. Accurate gradient estimation can also be obtained. The Contour
Spectrum [31] provides quantitative metrics of a volume to help us select two suitable isovalues for
the interval volume.

We extend the idea of dual contouring to interval volume tetrahedralization and hexahedral-
ization from volumetric Hermite data (position and normal information). Dual Contouring [136]
analyzes those edges that have endpoints which lie on different sides of the isosurface, called sign
change edge. Each edge is shared by four (uniform case) or three (adaptive case) cells, and one
minimizer is calculated for each of them by minimizing a predefined Quadratic Error Function
(QEF) [116].

QEF [x] =
∑
i

(ni · (x− pi))2 (231)

where pi, ni represent the position and unit normal vectors of the intersection point respectively.
For each sign change edge, a quad or a triangle is constructed by connecting the minimizers. These
quads and triangles provide an approximation of the isosurface.

Each sign change edge belongs to a boundary cell. In our tetrahedral mesh extracting process,
we give a systematic way to tetrahedralize the volume in the boundary cell. For uniform grids, it
is easy to deal with the interior cells. We only need to decompose each cell into five tetrahedra
in a certain way. For the adaptive case, it is more complicated. In order to avoid introducing
hanging nodes, which are strictly prohibited in finite element meshes, we design an algorithm
to tetrahedralize the interior cell depending on the resolution levels of all its neighbors. As a
byproduct, the uniform hexahedral mesh extraction algorithm is simpler. We analyze each interior
vertex (a grid point inside the interval volume) which is shared by eight cells.

In Dual Contouring, QEF is used for isosurface extraction and sharp features can be preserved.
But how to identify features such as sharp edges and facial features (like nose, eyes, mouth and ears)?

126

Improvement

Pre-Processing

Tetrahedral Meshing

(Noise Smoothing
Quality

(feature sensitivity)

Function
Signed Distance

Hexahedral Meshing

hexahedra

tetrahedra

Isosurface Selection)

CT, MRI

Figure 68: Overview for 3D mesh extraction

We adopt a different error function to identify those features sensitively. The edge contraction
method is used to improve the mesh quality.

In the last twenty years, the techniques of CT and MRI have developed rapidly. Computer
visualization, and engineering calculation (FEM) require certain kinds of mesh extracted from
these scanned volume data.

Multiresolution Isosurface Extraction The predominant algorithm for isosurface extraction
from volume data is Marching Cubes (MC) [160], which computes a local triangulation within each
cube to approximate the isosurface by using a case table of edge intersections. Furthermore, the
asymptotic decider was proposed to avoid ambiguities existing in MC [173] [157]. For efficient
isosurface extraction, [44] starts from seed cells and traces the rest of the isosurface components by
contour propagation.

When the adjacent cubes have different resolution levels, the cracking problem will happen.
To keep the face compatibility, the gravity center of the coarser triangle is inserted, and a fan of
triangles are used to approximate the isosurface [228]. A surface wave-front propagation technique
[231] is used to generate multiresolution meshes with good aspect ratio. By combining SurfaceNets
[118] and the extended Marching Cubes algorithm [141], octree based Dual Contouring [136] can
generate adaptive multiresolution isosurfaces with good aspect ratio and preserve sharp features.

Quality and Feature Preserving Isosurface MC can not detect sharp features of the extracted
isosurface, and severe alias artifacts appear. The enhanced distance field representation and the
extended MC algorithm [141] were introduced to extract feature sensitive isosurfaces from volume
data. The grid snapping method reduces the number of elements in an approximated isocontour and
also improves the aspect ratio of the elements [166]. [53] studied how to generate triangular meshes
with bounded aspect ratios from a planar point set. [164] proposed an algorithm to triangulate a
d-dimensional region with a bounded aspect ratio.

Quality Meshing MC is extended to extract tetrahedral meshes between two isosurfaces directly
from volume data [115]. A different and systematic algorithm, Marching Tetrahedra (MT), was
proposed for interval volume tetrahedralization [174]. A multiresolution 3D meshes [245] can be
generated by combining recursive subdivision and edge-bisection methods. Poor quality tetrahedra
called slivers are notoriously common in 3D Delaunay triangulations. Sliver exudation [71] is used
to eliminate those slivers. A deterministic algorithm [70] was presented for generating a weighted
Delaunay mesh with no poor quality tetrahedra including slivers. Shewchuk [216] provides some
valuable conclusions on quality measures for FEM.

Our comprehensive 3D meshing method is displayed in Figure 68. We first use the anisotropic
diffusion method coupled with bilateral prefiltering to remove noise from imaging data. Depending
on the application, suitable isosurfaces are selected for the interval volume by using the contour
spectrum and the contour tree. We then begin to extract 3D meshes from the interval volume,
and a feature sensitive error function is adopted to reduce the number of elements while preserving
features. Finally, the edge contraction method is used to improve the mesh quality.

Since noise influences the accuracy of the extracted meshes, it is important to remove it before
the mesh extracting process. We use the anisotropic diffusion method [36] to smooth noise. In

127

order to obtain more accurate computation of curvature and gradient for the anisotropic diffusion
tensor, the bilateral prefiltering combining the domain and range filtering together is chosen instead
of Gaussian filtering because it can preserve features such as edges and corners.

Mesh extraction from imaging data requires selecting suitable boundary isosurfaces. We use a
user interface called Contour Spectrum [31], to find isosurfaces of interest. The Contour Spectrum
computes quantitative properties such as surface area, volume, and gradient integral of contours,
and helps to choose suitable isosurfaces by showing the related spectrum in a 2D plane. A contour
tree [62] can be used to capture the topological information on each isosurface and help choose
isosurfaces with desirable topology.

6.1.2 3D Mesh Extraction

In this section, our goal is to tetrahedralize or hexahedralize the interval volume between two
isosurfaces by using an octree-based data structure. First, we discuss triangulation in 2D problems,
then we extend it to 3D tetrahedralization. A hexahedral mesh generation algorithm is presented
at the end of this section. Here are definitions used in the algorithm description.

Sign Change Edge A sign change edge is an edge whose one vertex lies inside the interval volume
(we call it the interior vertex of this sign change edge), while the other vertex lies outside.

Interior Edge in Boundary Cell In a boundary cell, those edges with both vertices lying inside
the interval volume are called interior edges.

Interior Cell Different from the boundary cell, all the eight vertices of an interior cell lie inside
the interval volume.

Interior Face in Boundary Cell In the boundary cell, those faces with all four vertices lying
inside the interval volume are called interior faces.

Hanging Node A hanging node is one that is attached to the corner of one triangle but does not
attach to the corners of the adjacent triangles. For example, a T-Vertex.

Uniform Tetrahedral Extraction For isosurface extraction, we only need to analyze boundary
cells – those cells that contain sign change edges. There are four neighbor cubes which share the
same sign change edge. Dual Contouring generates one minimal vertex for each neighbor cube by
minimizing the QEF, then connects them to generate a quad. By marching all sign change edges,
the isosurface is obtained. For tetrahedral mesh extraction, cells inside the interval volume should
also be set as leaves besides boundary cells.

6.1.3 Uniform 2D Triangulation

Figure 69(1) is a uniform triangulation example of the area interior to the isocontour in two di-
mensions. There are three different cases which need to be dealt with separately.

1. Sign change edge - find the QEF minimizers of two cells which share the edge. Then the two
minimizers and the interior vertex of the edge construct a triangle (blue).

2. Interior edge in boundary cell - find the QEF minimizer of the boundary cell. Then the
minimizer and this interior edge construct a triangle (yellow).

3. Interior cell - decompose each interior cell into two triangles (pink).

128

(h)

(d) (e) (f)

(2)

(1)

(3)

(c)

(g)

(b)

(a)

��������

��������

Figure 69: (1) - Uniform Triangulation, the red curve represents the isocontour. (2) - Sign Change
Edge Passed Across by Two Isosurfaces, Left (2D) : the cyan and blue curves represent the two
isocontours; Right (3D): the cyan and blue quads approximate the two isosurfaces. The red edges
are sign change edges. (3) - Case Table of Uniform Tetrahedralization - the red vertex means it
lies interior to the interval volume. In (1)(2)(3), green points represent minimizers.

129

6.1.4 Uniform 3D Tetrahedralization

Compared to 2D triangulation, three dimensional tetrahedral meshing is more complicated.

1. Sign change edge – decompose the quad into two triangles, then each triangle and the interior
vertex of this edge construct a tetrahedron. In Figure 69(3a), the red line represents the sign
change edge, and two blue tetrahedra are constructed.

2. Interior edge in boundary cell – find the QEF minimizers of the boundary cell and its boundary
neighbor cells, then two adjacent minimizers and the interior edge construct a tetrahedron. In
Figure 69(3b)(3c), the red cube edge represents the interior edge. (b) gives four minimizers
to construct four edges, each of which construct a tetrahedron with the interior edge, so
totally four tetrahedra are constructed. While (3c) assumes the cell below this boundary cell
is interior to the interval volume, so there is no minimizer for it. Therefore we obtain three
minimizers, and only two tetrahedra are constructed.

3. Interior face in boundary cell – find the QEF minimizer of the boundary cell, then the interior
face and the minimizer construct a pyramid, which can be decomposed into two tetrahedra
(Figure 69(3f)). Figure 69(3d)(3e)(3f) give a sequence how to generate tetrahedra when there
is only one interior face in the boundary cell. (3d) analyzes four sign change edges, (3e) deals
with four interior edges and (3f) fills the gap.

4. Interior cell – decompose the interior cube into five tetrahedra. There are two different decom-
position ways (Figure 69(3g)(3h)). For two adjacent cells, we choose a different decomposition
method to avoid the diagonal choosing conflict problem.

If two isosurfaces pass across the same sign change edge, we can split the cell into eight cubes
in the octree data structure, then analyze each small cubes separately. In another approach, we
need to analyze the sign change edge twice (Figure 69(2)) and fill gaps in the boundary cell. In 2D,
two minimizers are obtained for the inner isosurface, and similarly two minimizers are calculated
for the outer isosurface. They construct a quad, which can be decomposed into two triangles. For
3D, a hexahedron is built between the two surfaces for the sign change edge. The hexahedron can
be split into five tetrahedra. Two different isosurfaces can not intersect with each other since one
point can not have two isovalues. However, the two quads approximating the two isosurfaces may
intersect because of bad gradient vectors. This can be solved by splitting the cell into eight cubes.

Adaptive Tetrahedral Extraction Uniform tetrahedralization usually gives an over-sampled
mesh. Adaptive tetrahedral meshing is a good and effective way to reduce the number of elements
while preserving the accuracy requirement.

First, we split the volume data by using the octree data structure to obtain denser cells along
the boundary, and coarser cells inside the interval volume. The QEF value is calculated for each
octree cell, and a much more efficient octree is built by comparing the QEF value with a given
error tolerance ε and using the bottom-up algorithm. Leaves of the octree have different resolution
levels. The next step is to analyze each leaf.

Each leaf cell may have neighbors at different levels. An edge in a leaf cell may be divided
into several edges in its neighbor cells. Therefore it is important to decide which edge should be
analyzed. The Dual Contouring method provides a good rule to follow – we always choose the
minimal edges. Minimal edges are those edges of leaf cubes that do not properly contain an edge
of a neighboring leaf.

Similar to uniform tetrahedral mesh extraction, we need to analyze the sign change edge, the
interior edge and the interior face in the boundary cell, and the interior cell. When we analyze
boundary cells, only minimal edges and minimal faces are analyzed. Compared to the uniform case,
the only difference is in how to decompose the interior cell into tetrahedra without hanging nodes.

130

Data Set Type Resolution Number of Tetrahedra (Extraction Time (unit : ms))

(a) (b) (c) (d)
UNC Head (Skin) CT 129× 129× 129 935124 (17406) 545269 (10468) – –
UNC Head (Skull) CT 129× 129× 129 – – 579834 (10203) 166271 (3063)

Poly CT 257× 257× 257 276388 (5640) 63325 (1672) 14204 (672) –
Knee SDF 65× 65× 65 70768 (1360) 94586 (1782) 93330 (1750) 72366 (1406)

Figure 70: Data Sets and Test Results. The CT data sets are re-sampled to fit into the octree
representation (Figure 67, 75).

6.1.5 Adaptive 2D Triangulation

Figure 71(left) gives an example of how to triangulate the interior area of an isocontour. Similarly,
we need to analyze the following problems:

1. Sign change edge – if the edge is minimal, deal with it as in the uniform case (blue triangles).

2. Interior edge in boundary cell – if the edge is minimal, analyze it as in the uniform case
(yellow triangles).

3. Interior cell – Figure 71 (right) lists all the cases of how to decompose the interior cell into
triangles. In order to obtain triangles with good aspect ratio, we restrict the neighboring
level difference to be ≤ 2.

Compared to the uniform case, the triangulation of interior cells is more complicated (Figure 71).
All neighbors of an interior cell need to be checked because the neighbor cells are used to decide
if there are any middle points on the shared edge. Suppose the resolution level of this cell is κ,
we group into five cases according to the number of edges whose level is greater than κ. The ith

group means there are number i edges whose level is greater than κ, where i = 0, . . . , 4. For each
subdivided edge, it may be subdivided more than once, or the neighbor cell may have a higher level
than (κ+1). So we need to search all the middle points on this edge. A top-down or a bottom-up
algorithm can be used here to find the resolution level of its neighbors, and find out all the middle
points on the edge. If all the four edges have already been subdivided, then we can use the recursion
method to march each of the four smaller cells with the same algorithm. In this way, hanging nodes
are removed effectively.

6.1.6 Adaptive 3D Tetrahedralization

For 3D adaptive tetrahedralization, we use the same algorithm with the uniform case to analyze
the boundary cell.

1. Sign change edge – if the edge is minimal, deal with it as in the uniform case.

2. Interior edge in the boundary cell – if the edge is minimal, deal with it as in the uniform case.

3. Interior face in boundary cell – identify all middle points on the four edges, and decompose
the face into triangles as in the adaptive 2D case, then calculate the minimizer of this cell,
each triangle and this minimizer construct a tetrahedron.

4. Interior cell – decompose each face of the cube into triangles, just as how to deal with the
interior cell for the adaptive 2D triangulation (Figure 71), then insert a Steiner point at the
cell center. Each triangle and the Steiner point construct a tetrahedron.

By using the above algorithm, we extract tetrahedral meshes from volumetric imaging data
successfully. Figure 72 (right) gives one example.

131

Figure 71: Top: Adaptive Triangulation. The red curve represents the isocontour, green points
represent minimizers. Bottom: Case Table for Decomposing the Interior Cell into Triangles. Red
points and red lines mean its neighbors have level (κ+1); green points and green lines mean its
neighbors have a higher level than (κ+1).

132

Figure 72: Left - hexahedralization of the volume between the human head and a sphere boundary;
Right - an adaptive tetrahedral mesh.

Hexahedral Extraction Finite element calculations sometimes require hexahedral meshes in-
stead of tetrahedral meshes. Each hexahedron has eight points. In the tetrahedralization process
we deal with edges shared by at most four cells. This means that we can not get eight minimizers
for each edge. But, each vertex is shared by eight cells, and we can calculate a minimizer for each of
them. These eight minimizers can then be used to construct a hexahedron. Figure 72 (left) shows
an example used to solve electromagnetic scattering problems.

6.1.7 Error Metric

For efficiency and accuracy during calculations, finite element applications require the number of
elements to be as small as possible, while preserving necessary features. For a given precision
requirement, the uniform mesh is always over-sampled with unnecessary small elements. Adaptive
meshes are therefore preferable.

For the adaptive mesh, an error function and an error tolerance ε are required, which set the
criteria to identify where we should select higher level (denser mesh) and where lower level (coarser
mesh) should be chosen. In order to minimize the number of elements while preserving features, it
is important to have a feature sensitive error function.

The Dual Contouring algorithm can preserve sharp features by using the QEF error function.
Examples show that it is not sensitive to some features, for example, facial features, like the nose,
eyes, mouth and ears of the human head model in Figure 73. Here we choose the Euclidean distance
error (EDerror) function to identify features.

For level (i), the eight vertices’ function values are given, and a trilinear function is defined in
Equation (4), from which the function values of 12 edge middle points, 6 face middle points and
1 center point can be obtained. For level (i+1), the function values of all vertices are given. The
error function is defined in Equation (5).

f i(x, y, z) = f000(1− x)(1− y)(1− z) + f011(1− x)yz
+ f001(1− x)(1− y)z + f101x(1− y)z
+ f010(1− x)y(1− z) + f110xy(1− z) (232)
+ f100x(1− y)(1− z) + f111xyz

EDerror =
∑ |f i+1 − f i|

|∇f i|
(233)

133

Figure 73: Sharp edge features (left); Facial features: QEF (middle, 2952 triangles) and EDerror
(right, 2734 triangles). Better feature adaptation (eyes, nose, mouth and ears) is shown in the right
picture.

Figure 74: Quality Improvement - Left: no edge contraction, circles mark triangles with bad aspect
ratio; Right: poor quality triangles disappear after iterative edge contraction.

The two error functions are compared in Figure 73. It is obvious that the EDerror can also
preserve sharp edges, and is more sensitive to the areas where nose, eyes, mouth and ears are located
on the human head model. That is because EDerror is the Eucliean distance which measures error
in a better way [191] than QEF. Furthermore, QEF only measures function value at a minimizer
point for each cell, while EDerror compares function value at all vertices and edge/face middle
points.

6.1.8 Quality Improvement

The above 3D mesh extraction algorithm can tetrahedralize the interval volume, and the extracted
meshes have better quality than meshes from other methods such as MC and MT. However, it can
not guarantee that all the elements have good quality. For example, sliver triangles or tetrahedra
exist. In order to measure tetrahedra’s quality, three quality parameters are borrowed from the
ABAQUS document (a FEM software).

• Tetrahedral Quality Measure = volume of tetrahedron / volume of equilateral tetrahedron
with same circum-sphere radius (> 0.02)

134

Figure 75: Upper row: Knee (SDF) – error tolerances εin = εout = 0.0001; isovalues αout = -0.02838,
αin are listed below each picture. Bottom row: Heart Valve (Poly, CT) – isovalues (αin, αout) =
(1000, 75); error tolerances εin = 0.0001, εout are listed below each picture.

• Min/Max Angles – with minimum angle α > 10◦ and maximum angle β < 160◦.

• Right-hand-side principle

In the process of improving the mesh quality, edge contraction is a direct method to eliminate
sliver tetrahedra. For each tetrahedron, first calculate the three quality parameters. If the tetrahe-
dron’s orientation is Left-hand-side, swap any two vertices’ index number. If Tetrahedral Quality
Measure ≤ 0.02 or Min Angle ≤ 10◦ or Max Angle ≥ 160◦, contract the shortest edge. Be careful
not to merge vertices on surfaces to vertices inside the interval volume. Figure 6.2.6 shows an
example.

6.1.9 Results

We developed an interactive program for 3D mesh extraction and rendering from a volume. In
the program, the error tolerance and the isovalues can be changed interactively. The results were
computed on a PC equipped with a Pentium III 800 MHz processor and 1 GB main memory.

Figure 70, 75 provide information about data sets and test results. As a preprocessing, we
calculate min/max values for each octree cell to visit only cells contributing to mesh extraction and
to compute QEF values only in those cells at run time. Extraction time in the table includes octree
traversal, QEF computation and actual mesh extraction, given isovalues and error tolerance values
for inner and outer surfaces as run time parameters. If we fix isovalues, and change error tolerance
interactively, the computed QEF is reused and thus the whole extraction process is accelerated.

To extract 3D meshes from the surface data, we computed SDF from the surface and performed
mesh extraction (Figure 75 (knee)). The results from CT data are shown in Figure 67 and 75
(heart valve). The number of elements is controlled by changing error tolerance. In Figure 75
(upper row), the sequence of images are generated by changing the isovalue of the inner isosurface.
The topology of the inner isosurface can change arbitrarily.

We have presented an algorithm to extract adaptive and high quality 3D meshes directly from
volumetric imaging data. By extending the dual contouring method [136], our method can generate

135

3D meshes with good properties such as no hanging nodes, sharp feature preservation and good
aspect ratio. Using an error metric which is normalized by the function gradient, the resolution
of the extracted mesh is adapted to the features sensitively. The resulting meshes are useful for
efficient and accurate FEM calculations.

6.2 Adaptive and Quality Quadrilateral/Hexahedral Meshing from Volumetric
Imaging Data

We describe an algorithm to extract adaptive and quality quadrilateral/hexahedral meshes di-
rectly from volumetric imaging data. First, a bottom-up surface topology preserving octree-based
algorithm is applied to select a starting octree level. Then the dual contouring method is used to ex-
tract a preliminary uniform quad/hex mesh, which is decomposed into finer quads/hexes adaptively
without introducing any hanging nodes. The positions of all boundary vertices are recalculated to
approximate the boundary surface more accurately. Mesh adaptivity can be controlled by a feature
sensitive error function, the regions that users are interested in, or finite element calculation results.
Finally, the relaxation based technique is deployed to improve mesh quality. Several demonstration
examples are provided from a wide variety of application domains. Some extracted meshes have
been extensively used in finite element simulations.

6.2.1 Overview

Unstructured quadrilateral/hexahedral mesh generation attracts many researchers’ interest because
of its important applications in finite element simulations. However, it still remains a challenging
and open problem to generate adaptive and quality quad/hex meshes directly from volumetric
imaging data, such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and
Signed Distance Function (SDF) data.

The volumetric imaging data V is a sequence of sampled functional values on rectilinear
grids, and can be written as V = {F (i, j, k)|i, j, k are indices in x, y, z coordinates in a recti-
linear grid}. An isosurface or a level set corresponding to the isovalue α is defined as SF (α) =
{(x, y, z)|F (x, y, z) = α}, and an interval volume between two isosurfaces SF (α1), SF (α2) is defined
as IF (α1, α2) = {(x, y, z)|α1 ≤ F (x, y, z) ≤ α2}. We present an approach to extract adaptive and
quality quadrilateral meshes for the isosurface SF (α), and hexahedral meshes for an interval volume
IF (α1, α2) with isosurfaces as boundaries. In some finite element simulations, both interior and
exterior hexahedral meshes are required, for example, the interior mesh of the volume inside the
solvent accessibility surface of the biomolecule mouse acetylcholinesterase (mAChE) [217], and the
exterior mesh between the solvent accessibility surface and an outer sphere. Since the most impor-
tant part in the geometric structure of mAChE is the cavity, we need to generate finer mesh for it
(Figure 76). Our approach can also generate adaptive and quality interior and exterior hexahedral
meshes.

The main steps to extract adaptive and quality quadrilateral and hexahedral meshes from
volumetric data are as follows:

1. The selection of a starting octree level for uniform mesh generation with correct topology.

2. Crack-free and adaptive quad/hex meshing without any hanging nodes.

3. Quality improvement.

In order to generate uniform quadrilateral and hexahedral meshes with correct topology, we
select a suitable starting octree level using a bottom-up surface topology preserving octree-based
algorithm. An approach provided in [136] is used to check whether a fine isosurface is topologically
equivalent to a coarse one or not. Generally correct topology is guaranteed in the uniform mesh.

136

Figure 76: Adaptive quadrilateral and hexahedral meshes of a biomolecule mAChE. (a) - the
quadrilateral mesh of the molecular surface; (b) - the wireframe of the adaptive quadrilateral mesh
of the molecular surface; (c) - the adaptive hexahedral mesh of the interior volume; (d) - the adaptive
hexahedral mesh of the exterior volume between the molecular surface and an outer sphere. Finer
meshes are generated in the region of the cavity, while coarser meshes are kept in other areas. The
cavity is shown in the red boxes.

The dual contouring method [136] proposes an algorithm to extract a uniform quadrilateral
mesh for an isosurface by analyzing each sign change edge, whose two ending points lie in different
sides of the isosurface. In the octree-based data structure, each sign change edge is shared by four
octree leaves, and one minimizer point is obtained for each leaf cell by minimizing a predefined
quadratic error function (QEF) [116]. The four minimizer points construct a quad, and the union
of all the generated quads provides an approximation to this isosurface.

Starting from a uniform quadrilateral mesh, we use templates to refine each quad adaptively.
The position of each vertex is recalculated by moving it toward the isosurface along its normal
direction, which is represented by trilinear interpolation functions within octree leaf cells. The dual
contouring isosurface extraction method has been extended to uniform hexahedral mesh generation
[242] [241]. Predefined three dimensional templates are used to generate adaptive hexahedral
meshes.

The mesh adaptivity can be controlled according to various requirements by a feature sensitive
error function [242] [241], areas that users are interested in, or results from finite element calcu-
lations. Users can also design an error function to control the mesh adaptivity according to their
specific requirements.

Generally, the extracted quadrilateral and hexahedral meshes can not be used for finite element
calculations directly since some elements have poor quality. We choose corresponding metrics to
measure the quality of quadrilateral and hexahedral meshes respectively, then the relaxation based
technique is deployed to improve mesh quality. Some of the generated meshes have been used in
finite element simulations.

Previous Work As a structured method, quad/hex mapped meshing [79] generates the most
desirable meshes if opposite edges/faces of the domain to be meshed have equal numbers of divisions
or the same surface mesh. However, it is always difficult to decompose an arbitrary geometric
configuration into mapped meshable regions. In the CUBIT project [202] at Sandia National Labs,
a lot of research has been done to automatically recognize features and decompose geometry into
mapped meshable areas or volumes.

As reviewed in [183] [224], there are indirect and direct methods for unstructured quad/hex
mesh generation. The indirect method is to generate triangular/tetrahedral meshes first, then

137

convert them into quads/hexes. The direct method is to generate quads/hexes directly without
first going through triangular/tetrahedral meshing.

Unstructured Quad Mesh Generation: The indirect method is to convert triangles into
quads by dividing a triangle into three quads, or combining adjacent pairs of triangles to quads
[149].

There are three main categories for unstructured direct quad mesh generation, quad meshing
by decomposition, advancing front quad meshing and isosurface extraction. The decomposition
technique is to divide the domain into simpler regions which can be resolved by templates [8]
[222]. The second category is to utilize a moving front method for direct placement of nodes and
elements. Starting with an initial placement nodes on the boundary, Zhu et al. [246] formed
individual elements by projecting edges towards the interior. As a part of CUBIT [202], the
paving algorithm places elements starting from the boundary and works in [56]. Different from
the decomposition and the advancing front techniques, the dual contouring method [136] extracts
uniform quadrilateral meshes from volumetric imaging data to approximate isosurfaces which can
be an arbitrary geometry.

Unstructured Hex Mesh Generation: Eppstein [104] started from a tetrahedral mesh to
decompose each tetrahedron into four hexahedra. Although this method avoids many difficulties,
it rapidly increases the number of elements and tends to introduce bad shape elements.

There are five distinct methods for unstructured direct all-hex mesh generation: grid-based,
medial surface, plastering, whisker weaving and isosurface extraction. The grid-based approach
generates a fitted 3D grid of hex elements on the interior of the volume, and hex elements are
added at the boundaries to fill gaps [206] [208] [209]. The grid-based method is robust, but tends
to generate poor quality elements at the boundaries. Medial surface methods are to decompose
the volume to map meshable regions, and fill the volume with hex elements using templates [192]
[193]. Plastering places elements on boundaries first and advances towards the center of the volume
[60] [55]. Whisker weaving first constructs the spatial twist continuum (STC) or dual of the hex
mesh, then the hex elements can be fitted into the volume using the STC as a guide [223]. Medial
surface methods, plastering and whisker weaving have successfully generated hex meshes for some
geometry, but have not been proven to be robust and reliable for an arbitrary geometric domain.
Zhang et al. [242] [241] extended the dual contouring isosurface extraction method [136] to uniform
hexahedral mesh generation. This method is robust and reliable for an arbitrary geometry, but
adaptive meshes are preferable and mesh quality needs to be improved.

Quality Improvement: As the simplest and most straight forward method, Laplacian smooth-
ing relocates the vertex position at the average of the nodes connecting to it [109]. There are a
variety of other smoothing techniques based on a weighted average of the surrounding nodes and
elements. The averaging method may invert or degrade the local quality, but it is simple to imple-
ment and in wide use. Instead of relocating vertices based on a heuristic algorithm, people utilized
an optimization technique to improve the mesh quality. The optimization algorithm measures the
quality of the surrounding elements to a node and attempts to optimize it. The algorithm is similar
to a minimax technique used to solve circuit design problems [65]. The optimization-based smooth-
ing yields better results but it is more expensive than Laplacian smoothing. Therefore, some people
[61] [112] [113] recommended a combined Laplacian/optimization-based approach.

Staten et al. [219] [138] proposed algorithms to improve node valence for quadrilateral meshes.
One special case of cleanup in hexahedral meshes for the whisker weaving algorithm is presented
in [163]. Schneiders [207] proposed algorithms and a series of templates for quad/hex element
decomposition. A subdivision algorithm was proposed for the refinement of hexahedral meshes
[35].

138

(d)(c)(b)(a)

Figure 77: The templates to decompose a quad or a triangle into quads. Red points are newly
inserted at the middle of edges or the element center. (a) - a quad before splitting; (b) - a triangle
before splitting; (c) - a quad is split into four quads; (d) - a triangle is split into three quads.

6.2.2 Starting Octree Level Selection

There are three main steps in our adaptive and quality quadrilateral and hexahedral mesh extraction
from volumetric data. First, we need to choose a suitable starting octree level to generate the
uniform mesh with correct topology. Then pre-defined templates are used to refine the uniform
mesh adaptively. The positions of all boundary vertices are recalculated, and the mesh adaptivity
can be controlled by an error function designed in multiple ways. Finally, the relaxation based
technique is used to improve mesh quality.

The bottom-up surface topology preserving octree-based algorithm is used to select a starting
octree level. Suppose the volume data has the dimension of (2n + 1)3, so the deepest octree level
is n. For an isosurface, we first compare the surface topology at Level n and Level (n− 1). If the
surface topology is equivalent, then we continue comparing the surface topology at Level (n − 1)
and Level (n − 2) until we find the surface topology at two neighboring levels, e.g. Level i and
Level (i− 1) (i = n, . . . , 1), is different from each other. Then we will select i as the starting octree
level.

We assign a sign to each grid point in the volumetric data. If the function value at a grid point
is greater than the isovalue, then the sign is 1, otherwise it is 0. An approach is described in [136]
to check whether a fine isocontour is topologically equivalent to a coarse one or not. The fine and
coarse isocontour is topologically equivalent with each other if and only if the sign of the middle
vertex of a coarse edge/face/cube is the same as the sign of at least one vertex of the edge/face/cube
which contains the middle vertex. Generally we guarantee the correct topology for the boundary
surfaces by choosing a suitable starting octree level, and correct topology will be preserved in the
process of adaptive mesh refinement.

6.2.3 Quad Isosurface Extraction

Finite element calculations sometimes require quadrilateral meshes instead of triangular meshes.
It is more challenging to generate quadrilateral meshes since not every polygon can be decomposed
into quads directly. The uniform quadrilateral mesh extraction algorithm is simpler [136], but
adaptive meshes are more preferable than uniform ones. There are two main problems in adaptive
quadrilateral mesh extraction.

1. How to decompose a quad into finer quads.

2. How to calculate the positions of vertices.

Mesh Decomposition Indirect Method: In the dual contouring isosurface extraction method
[136], an error function is defined to control where we should generate fine meshes, and where we
should keep coarse ones. In the adaptive octree data structure, either a sign change edge is shared

139

3 42a10 2b

Method 3

Method 4

3 42a10 2b

Method 1

1 2a 3

Method 2

40 2b

Figure 78: Three different methods to define templates for adaptive quadrilateral isosurface extrac-
tion. In Method 1, the quad needs to be refined; In Method 2 and 3, octree leaf cells generating
red minimizer points need to be refined.

by three cells resulting in a triangle, or it is shared by four cells and a quad is generated. Therefore,
the isosurface is represented by a union of quads and triangles. In order to obtain a all-quad mesh,
the indirect method splits each quad into four quads and each triangle into three quads by inserting
points at the middle of edges and at the center of the element as shown in Figure 77. The idea of
the indirect method is simple and easy to implement, but the number of elements increases (2 ∼
3) times all over the original mesh.

Direct Method: At the selected starting octree level, the dual contouring isosurface extraction
method [136] generates uniform quadrilateral meshes by analyzing each sign change edge which is
shared by four leaf cells. Adaptive quadrilateral meshes can be obtained from the uniform mesh
by using some templates. There are multiple ways to define templates for adaptive quadrilateral
mesh construction, therefore criteria needs to be set to evaluate them in order to generate meshes
with good quality. Here we define some requirements for templates:

1. All resulting elements are quads.

2. No hanging nodes exist.

3. The resulting mesh approximates the object surface accurately.

4. The resulting elements have good aspect ratio.

5. The resulting mesh introduces small number of new elements and vertices.

Figure 78 shows three methods to define templates for adaptive quadrilateral mesh generation
starting from a uniform mesh with correct topology. In the uniform case, each sign change edge
is shared by four cells and four minimizer points are obtained to construct a quad. In Method 1,

140

if the maximum error function value (for example, the feature sensitive error function defined in
[242] [241]) of the four cells is greater than a threshold ε, then the four octree cells containing the
sign change edge should be subdivided, and the quad generated from this edge should be refined.
This method does not consider its neighboring information, each quad is refined independently. If
a quad needs to be refined, then the resulting mesh has 5 elements and 4 newly inserted vertices.
In Method 2 [209] and 3, various decomposition methods are chosen according to the cell which
generates a quad node and also needs to be refined. Method 2 and 3 are only different in Case (2b),
Method 2 generates less elements and extra vertices, but the quad quality is worse than Method 3.

We can use the above five template requirements to compare the three methods in Figure 78.
It is obvious that all the three methods only generate quad elements, and no hanging nodes are
introduced. Compared with Method 1, Methods 2 and 3 insert extra nodes on the quad edges as
well as inside the quad, so they can approximate the surface more accurately. Comparing the worst
aspect ratio of the resulting quad elements in Method 2 and 3, we can see that Method 3 generates
quads with better quality. The number of elements and the number of newly inserted vertices for
each template are listed in Figure 79. Method 3 is preferable by balancing the five criteria.

Method Number of 0 1 2a 2b 3 4
2 elements 1 3 7 4 8 9

vertices 0 3 8 4 10 12
3 elements 1 3 7 7 8 9

vertices 0 3 8 8 10 12

Figure 79: The number of elements and the number of newly inserted vertices for templates in
Methods 2 and 3 shown in Figure 78.

Vertex Position Calculation In the process of mesh refinement, new vertices are inserted
according to the pre-defined templates. The next step is to update the positions of existing vertices
and calculate the positions of newly inserted vertices.

In Figure 80, we assume that the leaf cell can be divided into four subcells in the finest resolution
level, therefore the real isosurface (the red curve) is represented by a union of three trilinear
interpolation functions within the subcells. For each existing minimizer point, first we find the
octree leaf cell containing it in the current resolution level, then move it toward the isosurface
within this leaf cell along its normal direction. The intersection point is more accurate to represent
this boundary vertex than the minimizer point. If the calculated intersection point lies outside this
cell unfortunately because of bad normal vectors, we will still keep the old position and normal
vectors for it.

(b) (c)(a)

Figure 80: The calculation of vertex positions. The red curve is the real isocontour. The green
circle point represents an existing minimizer point of this leaf cell, and blue circle points are two
newly inserted vertices. The arrows are their normal vectors, and the green and blue box points
are the resulting vertices.

141

Figure 81: Adaptive quad meshes generated from two direct methods. A feature sensitive error
function [242] [241] is chosen for mesh adaptivity, the isovalue α = 0, the error tolerance ε = 0.4.
Method 1 generates a bad nose, and Method 3 generates a better result.

For those newly inserted vertices, we first calculate their position and normal vectors by the
linear interpolation of the four vertices of the original quad. Then we will move them toward the
isosurfaces in the same way as we update the positions of existing vertices.

Figure 81 shows adaptive quadrilateral meshes of the human head generated from two direct
methods, Method 1 and Method 3 shown in Figure 78. It is obvious that the original uniform mesh
is refined adaptively, and the new vertex positions are closer to the isosurface. Method 1 generates
a bad nose, and Method 3 approximates the isosurface more accurately than Method 1 because
it introduces extra vertices on the refined edges of each original quad. The mesh adaptivity is
controlled by a feature sensitive error function [242] [241], which is sensitive to facial features such
as the nose, the eyes, the mouth and the ears.

6.2.4 Hexahedral Mesh Extraction

The dual contouring method [136] has been extended to uniform hexahedral mesh generation by
analyzing each interior vertex (a grid point inside the interval volume) shared by eight different
cells, which are either boundary cells or interior cells [242] [241]. One minimizer is calculated for
each boundary cell, and the cell center is set as the minimizer for each interior cell. Those eight
minimizers construct a hexahedron. In this section, we will focus on adaptive hexahedral mesh
generation.

142

(d)(c)(a) (e)(b)

Figure 82: Top row - an example of adaptive quad mesh generation in 2D. Each green point
represents a minimizer point of a cell to be refined, and the red curve represents the real isocontour.
Bottom row - the decomposition templates of Method 3 shown in Figure 78.

143

Figure 83: Adaptive hexahedral mesh decomposition (Method 1). Left - a 2D example; Middle - a
small hexahedron is inserted; Right - the top face of the original hexahedron needs to be refined.

2D Mesh Decomposition In 2D, the uniform quadrilateral mesh can be constructed by ana-
lyzing each interior grid point, which is shared by four cells. One minimizer point is calculated for
each cell, therefore four minimizer points are obtained and they construct a quad. All the templates
defined in Figure 78 can be used here for adaptive 2D mesh generation. Figure 82 shows an example
of adaptive quadrilateral mesh extraction using Method 3. When we analyze each cell to calculate
the minimizer point, we compare the feature sensitive error function of this cell with a threshold
ε. If the error function value of a cell is greater than ε, then this cell needs to be subdivided. An
interior grid point is shared by four cells, therefore there are a total of 24 = 16 configurations. Due
to the symmetry, there are five basic templates for the quad refinement. A uniform quadrilateral
mesh can be refined adaptively by using those templates.

3D Mesh Decomposition Indirect Method: Adaptive and quality tetrahedral meshes have
been generated from volumetric imaging data [242] [241], therefore we can obtain hexahedral meshes
by decomposing each tetrahedron into four hexahedra.

Direct Method: Not all the direct methods for adaptive 2D mesh generation shown in Figure
78 can be extended to 3D. There are two main methods for adaptive hexahedral mesh generation,
one is extended from the first 2D direct method and the other one is derived from part of the third
2D direct method.

Extended from the first 2D direct method in Figure 78, Method 1 refines each hexahedron
independently as shown in Figure 83. It first splits each hexahedron into seven ones by inserting
one small hex in its center, and each face of the original hex is contained in a hex independently. If
one face needs to be refined, then the hex containing it will be refined as shown in the right picture
of Figure 83. If there are i (i = 1, . . . , 6) faces that need to be refined for a hexahedron, then the
resulting mesh has (6− i+ 1 + 6i = 5i+ 7) elements and 8(i+ 1) newly inserted vertices.

Method 2 is derived from part of the third 2D direct method shown in Figure 78. In the
process of refinement, this method considers whether the error function value of each cell is greater
than a threshold ε or not. One hexahedron has a total of eight vertices, so there are (28 =
256) configurations. Due to the symmetry, there are 22 necessary templates [226], but not all
the templates can be decomposed into hexahedra. Figure 84 shows five templates for adaptive
hexahedral decomposition and the detailed view [209], which are much more complicated than
the templates of 2D quadrilateral decomposition. Figure 85 lists the number of elements and the
number of newly inserted vertices for each template.

144

0 1 2 4 8

Figure 84: Templates of adaptive hexahedral mesh decomposition (Method 2) according to the cells
to be refined from which red minimizer points are generated. The bottom row shows the detailed
decomposition format.

Method Number of 0 1 2 4 8
2 elements 1 4 11 22 27

vertices 0 7 19 39 56

Figure 85: The element number and the newly inserted vertex number of Method 2 within refined
hexahedra shown in Figure 84.

145

and all others

Figure 86: The Look-Up table for converting an arbitrary configuration to one of the five templates
in Figure 84. Each green node represents the cell from which the minimizer point is generated
needs to be refined. The sign of the cell generating a red node is 1, otherwise the sign is 0.

We set a sign for each leaf cell at the uniform starting octree level indicating if this cell needs to
be refined or not. For each leaf cell, the feature sensitive error function is calculated and compared
with a threshold ε. If the function value is greater than ε, then the sign is set to be 1, otherwise
it is 0. For each hexahedron extracted from the uniform level, we check if it belongs to one of the
templates shown in Figure 84. If not, we need to convert it by looking up the table shown in Figure
86. We keep updating the sign for each leaf cell until no sign changes, at this time all the generated
hexahedra in the uniform level are in the format of the five templates shown in Figure 84, then we
can construct an adaptive hexahedral mesh using the corresponding templates.

Each hexahedron is constructed by eight minimizer points, which are calculated from leaf cells
in the uniform octree level. The error function of the cell generating a minimizer point is either
greater than the threshold ε or ≤ ε, therefore there are a total of 28 = 256 configurations for a
hexahedron. Figure 86 shows the Look-Up table for converting an arbitrary configuration to the
five templates shown in Figure 84. The green node means the error function of the cell generating
this minimizer point is greater than the threshold ε. The red node means the sign of the cell

146

Figure 87: Sharp features are preserved. From left to right: an adaptive quad mesh of a mechanical
part; an adaptive hex mesh of a mechanical part; an adaptive quad mesh of a fandisk, an adaptive
hex mesh of a fandisk.

generating this node is set to be 1, otherwise the sign is 0.
In the process of adaptive hexahedral mesh generation, we need to insert extra vertices and

detect if they lie on the boundary or not. If a vertex lies on a boundary edge or a boundary face,
then it is a boundary vertex. Otherwise it lies interior to the interval volume. There is a special
case that we need to be careful, a vertex lying on an edge whose two ending points are on the
boundary, or lying on a face whose four points are on the boundary, may not be on the boundary.
For those extra vertices lying inside the interval volume, we choose the linear interpolation of the
eight vertices of the original hexahedron. For those existing and newly inserted vertices lying on
the boundary isosurface, we first compute their positions from the linear interpolation, then move
them toward the isosurface to obtain their new positions as we do for the adaptive quadrilateral
isosurface extraction.

Figure 88 compares adaptive hexahedral meshes of the human head generated from Method 1
and Method 2. It is obvious that Method 2 constructs a better nose than Method 1 because it
introduces extra vertices on edges of refined hexes resulting in a more accurate approximation, and
Method 2 tends to generate meshes with better quality than Method 1. The extracted surface mesh
from Method 2 is a little different from the result of the third method shown in Figure 81, since
only templates 0, 1, 2a and 4 of the third method in Figure 78 are adopted, while templates 2b
and 3 are not used. Since we still use QEF for computing minimizing vertices, we can also preserve
sharp edges and corners (Figure 87).

6.2.5 Mesh Adaptivity

In order to generate accurate meshes with the minimal number of elements and vertices, it is
important to choose a good error metric to decide where we should generate a finer mesh and
where a coarser mesh should be kept. There are three main ways to control the mesh adaptivity.
Users can also design an error function based on their specific requirements.

• The feature sensitive error function.

• Areas that users are interested in.

• Finite element calculation results.

The feature sensitive error function [242] [241] is defined as the difference of trilinear inter-
polation functions between coarse and fine octree levels normalized by the gradient magnitude.

147

Figure 88: Adaptive hexahedral meshes from Method 1 (left) and Method 2 (right) for the human
head. Top row shows the boundary isosurfaces, it is obvious that Method 1 generates bad nose as
Figure 81. Bottom row shows cross sections, the right part of elements are removed.

148

Type DataSet MeshSize Scaled Jacobian Condition Number Oddy Metric Inverted
(Vertex], Elem]) (best,aver.,worst) (best,aver.,worst) (best,aver.,worst) Elem]

quad Bubbleb (208, 206) (1.0, 0.92, 0.36) (1.0, 1.12, 2.77) (0.0, 0.61, 13.37) 0
Bubblea - (1.0, 0.94, 0.62) (1.0, 1.07, 1.60) (0.0, 0.34, 3.13) 0
Headb (714, 712) (1.0, 0.92, 0.06) (1.0, 1.13, 17.41) (0.0, 0.98, 604.24) 0
Heada - (1.0, 0.92, 0.37) (1.0, 1.10, 2.73) (0.0, 0.48, 12.93) 0

mAChEb (19998, 20013) (1.0, 0.90, 0.04) (1.0, 1.17, 27.63) (0.0, 1.29, 1524.67) 0
mAChEa - (1.0, 0.90, 0.16) (1.0, 1.15, 6.26) (0.0, 0.87, 76.28) 0

hex Headb (1210, 812) (1.0, 0.85, 1.9e-3) (1.0, 2.62, 519.74) (0.0, 12.88, 6.95e3) 1
Heada - (1.0, 0.85, 0.02) (1.0, 1.98, 46.34) (0.0, 5.03, 638.83) 0

mAChEb (81233, 70966) (1.0, 0.94, 5.2e-5) (1.0, 2.07, 1.92e4) (0.0, 18.35, 1.58e6) 5
mAChEa - (1.0, 0.94, 0.01) (1.0, 1.40, 74.73) (0.0, 2.37, 1379.81) 0

Figure 89: The comparison of the three quality criteria (the scaled Jacobian, the condition number
and Oddy metric) before/after the quality improvement for quadrilateral meshes of bubble, head
and mAChE. DATAb – before quality improvement; DATAa – after quality improvement.

Figure 90: The histogram of the condition number for quadrilateral meshes of mAChE and the
human head.

149

Figure 91: The histogram of the condition number for hexahedral meshes of mAChE and the human
head.

DataSet Type Dimension Number of Elements (Extraction Time (unit : ms))

(a) (b) (c) (d)
Bubble SDF 653 206 (172) 1478 (329) 1854 (344) –
Head SDF 653 1942 (594) 812 (375) 4049 (750) 17905 (3267)
Knee SDF 653 4058 (735) 1386 (453) 7111 (797) 36207 (1516)
Skull CT 1293 – – 20416 (9893) 10827 (9205)
Skin CT 1293 20999 (9955) 61244 (14565) – –

mAChE Given 2573 20013 (6080) – 70966 (11690) 38939 (7955)

Figure 92: Data Sets and Test Results. The CT data sets are re-sampled to fit into the octree
representation. Rendering results for each case are shown in Figure 96, 93, 94, 95 and 76. Skull
and Skin are extracted from the UNC Head model.

It is sensitive to areas of large geometric feature since it directly measures the surface difference
between coarse and fine levels, for example, the facial features (nose, eyes, mouth and ears) in the
head model as shown in Figure 88 and 93.

Sometimes, people are interested in some special areas based on their physical or biological
applications. For example, there is a cavity in the structure of the biomolecule called mouse
acetylcholinesterase (mAChE) [217]. A finer mesh is required around the cavity area while a coarse
mesh needs to be kept in other regions. In this situation, the error function should be defined by
regions. Figure 76 shows the adaptive quadrilateral and hexahedral meshes for the biomolecule
mAChE, and it is obvious that the mesh adaptivity is controlled by regions.

In finite element simulations, we first need to construct meshes to represent the analyzed ge-
ometric domain, then solve ordinary/partial differential equations over it using the finite element
method. For accurate and efficient finite element analysis, adaptive meshes are preferable. The
mesh adaptivity can be controlled directly by finite element solutions to balance the error of finite
element solutions over each element. Figure 96 shows quad meshes of a bubble model. The mesh
adaptivity is controlled by its deformation obtained from the finite element analysis.

150

Figure 93: Quadrilateral and hexahedral meshes of the human head. (a) - an adaptive quadrilateral
mesh; (b) - the uniform hexahedral mesh at a chosen starting level; (c) - an adaptive interior hexa-
hedral mesh controlled by the feature sensitive error function; (d) - an adaptive exterior hexahedral
mesh controlled by the feature sensitive error function.

Figure 94: Quadrilateral and hexahedral meshes of the knee. (a) - an adaptive quadrilateral mesh;
(b) - the uniform hexahedral mesh at a chosen starting level; (c) - an adaptive hex mesh controlled
by the feature sensitive error function; (d) - all the hexahedral elements in (b) are refined.

151

Figure 95: Quadrilateral and hexahedral meshes are extracted from a CT-scanned volumetric data
(UNC head). (a) - the quadrilateral mesh of the skin; (b) - the hexahedral mesh of the volume
inside the skin; (c) - the quadrilateral mesh of the skull isosurface; (d) - the hexahedral mesh of
the skull.

Figure 96: Quadrilateral meshes of a bubble model. (a) - the uniform mesh at a chosen starting
level; (b) - an adaptive mesh controlled by finite element solutions (deformation); (c) - a mesh
generated by refining all the elements in (a).

152

6.2.6 Quality Improvement

Quality improvement is a necessary step for finite element mesh generation. First we need to choose
corresponding quality metrics to measure the quality of quadrilateral and hexahedral meshes. Here
we select the scaled Jacobian, the condition number of the Jacobian matrix and Oddy metric [177]
as our metrics [139][140][142].

Assume x ∈ <3 is the position vector of a vertex in a quad or a hex, and xi ∈ <3 for i = 1, . . . ,m
are its neighboring vertices, where m = 2 for a quad and m = 3 for a hex. Edge vectors are defined
as ei = xi−x with i = 1, . . . ,m, and the Jacobian matrix is J = [e1, ..., em]. The determinant of the
Jacobian matrix is called Jacobian, or scaled Jacobian if edge vectors are normalized. An element
is said to be inverted if one of its Jacobians ≤ 0. We use the Frobenius norm as a matrix norm,
|J | = (tr(JTJ)1/2). The condition number of the Jacobian matrix is defined as κ(J) = |J ||J−1|,
where |J−1| = |J |

det(J) . Therefore, the three quality metrics for a vertex x in a quad or a hex are
defined as follows:

Jacobian(x) = det(J) (234)

κ(x) =
1
m
|J−1||J | (235)

Oddy(x) =
(|JTJ |2 − 1

m |J |
4)

det(J)
4
m

(236)

where m = 2 for quadrilateral meshes and m = 3 for hexahedral meshes.
In the process of mesh quality improvement, our goal is to remove inverted elements and improve

the worst condition number of the Jacobian matrix. First the averaging method is used to remove
inverted elements. We calculate the scaled Jacobian for a vertex in each element, and relocate
this vertex by the average of all its neighbors if the Jacobian is negative. Then we calculate the
condition number of the Jacobian matrix for a vertex in each quad or hex, and find the vertex with
the maximum value. We compute the new position for this vertex using the conjugated gradient
method with the condition number (Equation 235) as objective.

If the relocated vertex is an interior node, then we replace the location of this vertex with the
calculated new position. If this vertex lies on the boundary, then we calculate its new position and
move it toward the isosurface along its normal direction. We keep reducing the maximum condition
number for quad or hex meshes until we arrive a given threshold. In this way, we can improve the
worst condition number of the Jacobian matrix, as well as improving the other two metrics, the
scaled Jacobian and Oddy metric. However, it is possible to produce an invalid mesh containing
inverted elements. We choose a ‘smart’ smoothing method [112], which relocates the point only if
the mesh quality is improved.

Figure 89 shows the improvement of the worst values of the scaled Jacobian, the condition
number and Oddy metric. The histograms of the condition number (Figure 90 and 91) show the
overall quality of quad and hex meshes for the human head model and a biomolecule mAChE. By
Comparing the three quality metrics before and after quality improvement, we can see that the
worst parameters are improved significantly.

6.2.7 Results and Applications

We have developed an interactive program for adaptive and quality quadrilateral/hexahedral mesh
extraction and rendering from volumetric imaging data, and plugged it into our LBIE-Mesh soft-
ware (Level Set Boundary and Interior-Exterior Mesher), which can generate adaptive and quality
2D (triangular/quadrilateral) and 3D (tetrahedral/hexahedral) meshes from volume data. The al-
gorithm of tetrahedral mesh generation is described in [242] [241]. In this software, error tolerances
and isovalues can be changed interactively. Our results were computed on a PC equipped with a
Pentium III 800MHz processor and 1GB main memory.

153

Our algorithm has been used to generate quadrilateral and hexahedral meshes for some signed
distance function data such as the bubble (Figure 96), the human head (Figure 93) and the knee
model (Figure 94). We also extracted meshes for the skin and the skull from a CT scanned data
(the UNChead, Figure 95), and tested the algorithm on biomolecular data (mAChE, Figure 76).
Figure 92 shows the information for each dataset and results. The results consist of the number of
elements, the extraction time and images with respect to different isovalues and error tolerances.
Extraction time includes octree traversal, QEF computation and mesh extraction.

Figure 96 shows the extracted quadrilateral meshes for a bubble, which has been used in the
simulation of drop deformation using the finite element method. First, we generate a uniform
quad mesh for the original state of the bubble. Then we get finite element solutions such as the
deformation from finite element analysis, and use the error of the deformation over each element
to control the mesh adaptivity. Finally we can provide an adaptive and quality quad mesh to limit
the maximum error of finite element solutions within a threshold.

Some physically-based simulations need both interior and exterior hexahedral meshes. For
example, when people are analyzing the electromagnetic scattering over the human head, hex
meshes of the volume interior to the head surface and hex meshes exterior to the head surface but
inside an outer sphere are needed at the same time. Figure 93 shows the extracted interior and
exterior meshes for a head model. The facial features such as nose, eyes, mouth and ears are kept,
and fine meshes are generated in those regions. Figure 1 shows another example of interior and
exterior hexahedral meshes, the biomolecule mAChE. The mesh adaptivity is controlled by regions,
fine meshes are generated in the area of cavity.

Conclusions We have presented an algorithm to extract adaptive and quality quadrilateral and
hexahedral meshes directly from volumetric imaging data. First, a bottom-up surface topology
preserving octree-based algorithm is used to select a starting octree level, at which we extract
uniform meshes with correct topology using the dual contouring isosurface extraction method [136]
[242] [241]. Then we extended it to adaptive quadrilateral and hexahedral mesh generation using
some predefined templates without introducing any hanging nodes. The position of each boundary
vertex is recalculated to approximate the isosurface more accurately. The mesh adaptivity can be
controlled in three ways, the feature sensitive error function [242] [241], the areas that users are
interested in and finite element solutions. Users can also design their own error function to control
the mesh adaptivity according to their specific requirements. Finally, three various quality metrics
are selected to measure the mesh quality, and the relaxation based technique is used to improve
it. The resulting meshes are extensively used for efficient and accurate finite element calculations.
Some of them have been used successfully.

6.3 Efficient Delaunay Mesh Generation From Sampled Scalar Functions

Many modern research areas face the challenge of meshing level sets of sampled scalar functions.
While many algorithms focus on ensuring geometric qualities of the output mesh, recent attention
has been paid to building topologically accurate Delaunay conforming meshes of any level set from
such volumetric data.

We present an algorithm which constructs a surface mesh homeomorphic to the true level set
of the sampled scalar function. The presented algorithm also produces a tetrahedral volumetric
mesh of good quality, both interior and exterior to the level set. The meshing scheme presented
substantially improves over the existing algorithms in terms of efficiency. Finally, we show that
when the unknown sampled scalar function, for which the level set is to be meshed, is approximated
by a specific class of interpolant, the algorithm can be simplified by taking into account the nature
of the interpolation scheme so as to circumvent some of the critical computations which tend to
produce numerical instability.

154

6.3.1 Problem and Motivation

A wide variety of science and engineering applications rely on accurate level set triangulation. This
is especially true for multiscale models in biology, such as macromolecular structures extracted from
reconstructed single particle cryo-EM (Electron Microscopy), cell-processes and cell-organelles ex-
tracted from TEM (Tomographic Electron Microscopy), and even trabecular bone models extracted
from SR-CT (Synchrotron Radiation Micro-Computed Tomography) imaging. Computational anal-
ysis of these models for estimation of nano, micro, or mesoscopic structural properties depends on
the mesh representation of the contour components respecting their topological features.

(a)

(b) (c) (d)

(h)

(f)(e)

(g)

Figure 97: Various stages of our algorithm. (a) A rectilinear grid with sample values of an unknown
function at the grid points. Within cells, the function is approximated with a trilinear interpolant.
For the purpose of visualization only, we collect a set of points (green) on the surface and display
them. A narrow region of the surface is magnified below. (b) Another view of the data (right) and
the same view of the mesh generated by Marching Cubes [159]. Note that the mesh is disconnected
in the thin region. (c) The mesh generated by the restricted Delaunay triangulation of only edge
and grid points. Blue facets have a grid point as at least one of their vertices. This point set is
still not sufficient to produce a Delaunay-conforming mesh. (d) The mesh generated by addition of
sample points of Σ. The topology is now recovered (Property I). (e,f) Geometrical refinement for
progressively smaller value of ε. (g) Even in the magnified portion of the thin region, the triangles
approximate the geometry nicely (Property II). (h) All the points involved in construction of the
mesh including grid points (blue), edge points (green), and new points added by the algorithm (red).
Observe that in order to recover the topology and reduce the geometric error in the approximation,
many surface sample points are added to the point set.

Our goal is to find an algorithm to solve the following problem. The input to the algorithm is
a rectilinear sampling of a bounded domain of an unknown scalar function F . The rectilinear grid
need not be uniform; it may be adaptive as in the case of an octtree. The user then specifies a
local interpolant to generate a level set approximation for any isovalue v; we use Σ to denote this
level set of the interpolating function. Since the function F is unknown, we must assume that the
local interpolant produces a good approximation of the function F within each cell of the grid. Our
algorithm is general enough to use any local interpolant, however, in our experience, a trilinear
interpolant is the most natural choice.

Our goal is construct a mesh in an efficient manner such that the following properties hold:

I Topological Guarantee: M is homeomorphic to Σ.

II Geometrical Guarantee: The Hausdorff distance from M to Σ is within a user-specified

155

bound ε.

III Delaunay Conformity: M is a subcomplex of the Delaunay triangulation of the vertex set
of M .

IV Adaptivity: The user can decimate part of the volumetric data and still preserve properties
I, II, and III.

Once a surface M is generated that is Delaunay conforming, it is possible to improve the mesh
quality by applying any Delaunay refinement algorithm. We detail such an algorithm in Section
6.3.4. Figure 97 visually illustrates a toy data set (a), the failure of a typical isocontouring method,
in this case Marching Cubes, in reconstructing the level set (b), generation of the correct topology
by our algorithm (c-d), geometric refinement (e-g), and the final Delaunay-conforming surface
sample (h).

At this point, we emphasize the novelty of our approach. Although there exist algorithms which
can be applied to solve the problem as stated, such algorithms are devised in a more general setting
and thus do not exploit the natural structure of the volumetric data. Our approach has a number
of unique advantages over its predecessors. As part of the algorithm, we collect some of the grid
points around Σ and use them to build a Delaunay conforming mesh efficiently. Once the surface
mesh is created and forced to conform to the Delaunay triangulation of the point set, these grid
points can either be removed or used to construct an interior or exterior tetrahedral volume mesh.

Additionally, as a result of noise in the input data or a poor choice of the isovalue v, there may
exist topological anomalies in the surface Σ. In mesh processing literature, such anomalies have
been referred to as “topological noise” [232, 23]. The term “noise” indicates undesirable features of
small geometric size that prevent the mesh from being used for further processing. Methods have
been developed to remove such artifacts provided that the point sample of Σ is sufficiently dense
near the anomalies; our method guarantees this density. Therefore, the output mesh M can be
applied without any further refinement to any point processing algorithm that uses prior Delaunay-
based reconstruction of geometry to detect and selectively remove these topological features.

Finally, algorithms involving volumetric data and meshes often become computationally de-
manding due to the large size of data sets. The adaptivity of the algorithm (property IV) provides
one way to ease calculations by down-sampling less important regions of the volumetric data.

6.3.2 Prior Work

Mesh generation techniques have received significant attention in the past two decades. Two works
in particular, one by Chew [74] and one by Edelsbrunner and Shah [103], have spawned important
and relevant results in the field. We will address the prominent successors of each of these works
and compare the relative advantage of our approach.

Chew provided one of the first meshing algorithms for curved surfaces with provably good
geometry in [74], although the algorithm as stated in the paper could not guarantee topological
correctness. Boissonnat and Oudot showed how Chew’s algorithm can be applied to produce a
dense sample of Σ and subsequently mesh it. Oudot, Rineau and Yvinec recently improved that
method by including sliver exudation, that is, the process of removing tetrahedra with very small
dihedral angles from a mesh [182]. Alliez, Cohen-Steiner, Yvinec and Desbrun have also adapted the
method to produce nicely graded meshes, i.e. meshes where the tetrahedra vary in size gradually
based on their distance to the surface [6].

Separately, Edelsbrunner and Shah established a criterion called the closed ball property for
ensuring that a mesh is Delaunay conforming [103]. We explain the closed ball property in Section
6.3.3. Recent work by Cheng, Dey, Ramos, and Ray uses this property to provide a method

156

for constructing Delaunay conforming meshes that avoids the need to estimate local feature size
[69]. This is a significant development as approximating local feature size is computationally
expensive and not always numerically robust. Cheng, Dey and Ramos have extended this strategy
for piecewise smooth complexes [72]. Very recently, Dey and Levine [94] have given a two phase
algorithm to mesh isosurfaces from imaging data.

All of these approaches to mesh generation are useful, however, they all rely on an oracle to
know whether an arbitrary ray intersects the surface Σ. The implementation of such an oracle
becomes computationally prohibitive when applied to piecewise interpolated surfaces. For exam-
ple, a common data set size is 1003 vertices, meaning there exist 1003 functions in the piecewise
decomposition. Thus, a single ray may pass through over a hundred separate function domains,
making intersection calculations expensive. As we detail in Section 6.3.4, a major advantage of the
algorithm presented here is that we take advantage of the original rectilinear scaffolding from the
data to substantially reduce the computational overhead required.

Our work also improves upon existing methods for isosurface construction. Many well-known
techniques exist for isosurfacing including marching cubes [159], active snakes, dual contouring
[243], and higher order interpolation [43]. A variety of approaches have also been developed to
provide hierarchical isosurface extraction and interior meshing [234, 125, 133]. Shewchuk and
Labelle recently provided a straightforward isosurfacing and stuffing algorithm with good quality
tetrahedra [144]. Relatively few works, however, take into account the effect of a trilinear interpolant
within each grid cell [169, 73, 158]. Attali and Lachaud gave an algorithm for construction of
Delaunay conforming isosurfaces [7]. Their method, however, relies on a specific rule established
by Lauchaud in [145] that does not accommodate interpolation within grid cells. Further, none of
these techniques generalize easily to data that is sampled adaptively or to arbitrary interpolants.

6.3.3 Background

The Voronoi and Delaunay diagrams of a point set P , denoted VorP and DelP respectively, play
an important role in the computations involved. Due to page limitations, we do not go into the
detail of their construction and refer the reader to any standard computational geometry textbook,
e.g. [90].

Given a point set P chosen from the same space in which Σ is embedded, the restricted Delaunay
triangulation of P , denoted DelP |Σ, is defined to be the set of Delaunay objects of DelP whose
dual Voronoi objects have non-zero intersection with Σ. If P is chosen in a way that respects the
structure and local feature size of Σ, DelP |Σ will be a mesh with the desired properties.

Edelsbrunner and Shah gave a sufficient criterion called the closed ball property [103], sometimes
referred to as the topological ball property, for DelP |Σ to be homeomorphic to Σ. A Voronoi object
V of dimension k satisfies the closed ball property if V ∩ Σ = ∅ or V ∩ Σ is homeomorphic to a
closed ball of dimension k− 1. Accordingly, a point set P is said to satisfy the closed ball property
if every Voronoi object of VorP satisfies the closed ball property. Using the notion of transversality
as defined in [121], their criterion can now be stated precisely.

Theorem 6.1. [103] If Σ intersects each Voronoi object of VorP transversally and VorP satisfies
the closed ball property, then DelP |Σ is homeomorphic to Σ.

We will show in Section 6.3.4 that our algorithm produces a mesh satisfying the closed ball
property. This ensures that the mesh is Delaunay conforming (property III from Section 6.3.1)
and, by the theorem, that the mesh is homeomorphic to Σ (property I).

6.3.4 Algorithm

In this section, we describe the algorithm, analyze its efficiency and present some simplifying
results for a specific choice of local interpolant. Figure 98 shows an overview of the process in two

157

dimensions.

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����������
�����������
�����������
�����������

�������
�������
�������
�������

�������
�������
�������
�������	�	�	

	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�
�

(a)

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

(b)

(c)
(e)

(d)

Figure 98: A 2D example using bilinear interpolation of Σ demonstrating the importance of the
closed ball property. (a) Grid points (dark blue) and edge points (light blue) relevant to our
algorithm are shown. Note that in the 3D case we form a layer of grid points twice as thick. (b)
A portion of the Voronoi diagram is shown in red and a location where the closed ball property is
violated is circled. (c) Since the closed ball property is violated, the restricted Delaunay diagram
(black) has incorrect topology in the circled region. (d) Red points are inserted where the closed
ball property is violated and the restricted Delaunay graph is formed (black). (e) By including
those grid points interior to Σ, we efficiently produce an interior mesh that does not alter the
Delaunay conforming surface mesh.

Algorithm Description Our algorithm is motivated primarily by the work of Cheng et al. in [69]
who build a Delaunay conforming approximation of the level set of any general implicit function.
Since our problem is focused on locally interpolated functions, we take advantage of the natural
scaffolding of the input grid to substantially improve the computational efficiency of the algorithm.
Moreover, we also show that once the Delaunay conforming surface mesh is extracted, it is quite
straightforward to build a tetrahedral volumetric mesh of good quality. We call the algorithm
for extracting a surface mesh DelSurfMesh and the extension to build a Delaunay tetrahedral
interior or exterior mesh DelVolMesh.

In [69], the authors start with a small sample of points lying on the surface to be meshed. They
keep refining the mesh until its vertex set satisfies the closed ball property, thereby providing a
Delaunay conforming mesh homeomorphic to Σ. To ensure that a point set P satisfies the closed
ball property, it is necessary to check the intersection of Σ with each Voronoi edge, facet, and cell
of VorP . While checking intersections is a computationally expensive task for a general implicit
function, it is even more burdensome for the case of a piecewise locally interpolated function as
given in our problem. For example, to determine if a certain Voronoi edge intersects Σ more than
once, it is necessary to search all voxels containing any subset of Σ which are stabbed by the Voronoi
edge, as Voronoi edges may be incident upon many voxels. Matters become worse for Voronoi facets
or cells which may touch large regions of the domain.

It is in regards to this difficulty that our approach becomes significant. We exploit the “gridded”
nature of the input data set to put O(1) bounds on our intersection calculations. To start, we
construct an initial sampling by computing all the points where a grid edge intersects Σ. These
points serve as the initial sampling of Σ. However, if we compute the Voronoi diagram of these

158

E points alone, the Voronoi cells can intersect an arbitrary number of voxels, meaning we will
still have trouble verifying and enforcing the closed ball property. To circumvent this problem, we
compute a protective layer of grid points near Σ which we denote G. The selection of G traps
Voronoi cells of E points into a few voxels. As the algorithm progresses, it adds more points to the
existing samples and the nature of the insertion process ensures that the Voronoi cells of these new
points are also trapped in a constant number of voxels. We derive bounds on the size of Voronoi
cells of the initial samples and the new points for uniform and non-uniform rectilinear gridding
(Octtree) in Section 6.3.4.

We now give the pseudocode of the algorithm DelSurfMesh and describe the specifics of the
steps subsequently (Figure 99).

DelSurfMesh(Σ)
1 Compute the point set E sampling Σ.
2 Compute the protective layer G of grid points.
3 Compute the Voronoi and Delaunay diagrams of E ∪G.
4 Insert new sample points (N) repeatedly until Vor (E ∪G ∪N) satisfies

closed ball property.
5 Output the Restricted Delaunay triangulation Del (E ∪G ∪N)|Σ.

Figure 99: Pseudo-code of the DelSurfMesh algorithm.

We have already described how we choose the initial set of points on (E) and near (G) the
surface Σ. The next task is to ensure that the closed ball property holds for the set of points. For
a general interpolant within every grid cell, we employ the method given in [69]. For completeness,
we briefly describe how the closed ball property can be violated and what measures are to be taken.
This process is thus divided into three sub-steps CBP VE for Voronoi edges, CBP VF for Voronoi
facets, and CBP VC for Voronoi cells. As we show in Section 6.3.4, one can simplify this process
considerably further if the typical trilinear interpolant is used, thereby improving the robustness
and efficiency of the algorithm.

• CBP VE: A Voronoi edge V E violates the closed ball property if it intersects Σ in more than
one point. If this occurs, the intersection point which is farthest from the Delaunay triangle
dual to V E is inserted into the triangulation.

• CBP VF: A Voronoi facet V F violates the closed ball property if it intersects Σ in more than
one component or if the intersection includes a closed loop in the interior of V F . In either
case, the intersection point farthest from the Delaunay edge dual to V F is inserted into the
triangulation.

• CBP VC: A Voronoi cell V C violates the closed ball property if it intersects Σ in more than
one component, if the intersection includes an isolated component of Σ inside V C, or if the
intersection includes a surface of positive genus with one or more disks removed.

Note, the above properties are to be checked in the order given. Once a violation is detected,
a new point is inserted into the existing Delaunay triangulation, the triangulation is updated, and
the processes must begin again. Figure 100 shows different situations that can arise in this context.

Mesh Refinement Although the topology of M is now correct, it may be possible that the
geometry of M is not approximated sufficiently for an application purpose. Hence, we allow a user
input ε and refine M as follows. For each Voronoi edge V E that intersects Σ, we compute the
unique point p ∈ V E ∩Σ and the circumcenter c of the dual Delaunay face to V E. If the distance

159

Figure 100: Top row shows three samples scenarios where the closed ball property is violated for a
Voronoi Edge (left), Voronoi Facet (middle) and Voronoi Cell (right). The bottom row shows the
cases where the closed ball property is satisfied for Voronoi objects of the corresponding dimension
(in the top row).

between p and c is more than ε, we add p to the vertex set and regenerate the restricted Delaunay
mesh. Every Voronoi edge dual to a restricted Delaunay facet is a normal approximation to Σ
locally meaning the distance between p and c is an upper bound for the Hausdorff distance from Σ
to the restricted Delaunay mesh. Hence, this process will yield a mesh satisfying property II.

In our current implementation, we maintain the 3D Vor/Del diagram of the point set throughout
the process. Very recently, it was shown by Dey and Levine that this is not necessary [94]; one can
recover the geometry while manipulating only the 2D mesh data structure of the surface, as long
as there are enough points sampling a topologically correct approximation of Σ.

Tetrahedral Meshing of Interior/Exterior At this stage, we have an accurate mesh approx-
imation of the level set both topologically and geometrically. Since the mesh is already embedded
in a Delaunay mesh that includes some grid points, we already have a tetrahedral mesh of both
the interior and exterior of Σ. In order to improve the quality of the mesh elements, we use the
algorithm DelVolMesh defined as follows.

Without loss of generality, we describe how DelVolMesh is used to generate a tetrahedral
mesh of the interior of Σ. The input to DelVolMesh is Del (G ∪ E ∪ N), the volumetric mesh
generated from DelSurfMesh. Note that Del (G ∪ E ∪ N) has the output of DelSurf Mesh,
Del (G∪E ∪N)|Σ, as a subcomplex. We form a set G′ of all grid vertices of the original rectilinear
scaffolding which have function values less than the isovalue and do not belong to G. These points
are distributed through the interior of Σ evenly (or evenly relative to an adaptive gridding) and we
add them to the Delaunay mesh of the volume.

Here, our protective layer of grid points is crucially important. As we add the points of G′,
some triangles of the Delaunay mesh will necessarily change but the Delaunay triangles among
surface points (E and N vertices) will be unaffected. This is a direct consequence of the fact that
a point of G′ is, by construction of G, closer to points of G than to points of E ∪ N . Therefore,
Del (E ∪ N ∪ G ∪ G′) will still have M as the restricted Delaunay diagram. By throwing out the
points of G exterior to Σ, we are left with a tetrahedral mesh of the volume with good quality
tetrahedra and a Delaunay conforming surface mesh. The 2D analogue of DelVolMesh is shown
in Figure 98 (d) and (e).

160

Efficiency Since our algorithm uses the natural structure of the rectilinear input data to construct
Voronoi and Delaunay diagrams, we are able to provide two important results that reduce the
computational burden. We state and discuss the significance of each one.

Theorem 6.2. There is an O(1) bound on the number of voxels that a Voronoi cell of an E or
N point may intersect. In the case of uniform rectilinear gridding with voxels that are cubes, this
bound is four voxels.

Proof. We prove the following lemma for the simplest case in 2D which will be the crux of the
argument for the proof of the more general cases.

Lemma 6.3. For data given on an equally spaced 2D grid, the Voronoi cell of an E point is bounded
within two pixels.

Proof. Let e ∈ E lie on the edge ε be between grid points g1, g2 ∈ G and let V C(e) be the (2D)
Voronoi cell defined by e. There exist two lines perpendicular to ε, one passing through the midpoint
of g1 and e and one passing through the midpoint of g2 and e. By definition, V C(e) is necessarily
contained between these two lines which bounds V C(e) to a single column of pixels.

Now consider one of of the two pixels containing both g1 and g2. Denote its other vertices as
g3 and g4. Let s denote the side length of a pixel. Then both ||e− g3|| > s/2 and ||e− g4|| < s/2.
For any point f on the edge between g3 and g4, observe that ||f − g3|| ≤ s/2 or ||f − g4|| ≤ s/2.
Therefore, each point on the edge between g3 and g4 is closer to one of those grid points than it
is to e, and hence cannot belong to V C(e). This bounds V C(e) to the two pixels containing ε,
proving the lemma. A picture version of this proof appears in Figure 101a. �

Figure 101: (a) A picture proof of Lemma 6.3. The Voronoi cell of the edge point e must lie in
the shaded region bounded by the solid lines (green). By symmetry, this restricts the Voronoi cell
to a two pixel range. (b) A picture proof of Theorem 6.2 in the general 2D case. Here, each pixel
has dimensions s1 by s2 with ds1/s2e = 3. By symmetry, the Voronoi cell of e is restricted to a six
pixel range. (c) A Voronoi cell of an edge point in 3D, visibly contained within four voxels.

Continuing with the 2D case and the same notation, suppose that each pixel is a rectangle with
side lengths s1 and s2. Suppose ε has length s1. As in the proof of the lemma, we can immediately
restrict V C(e) to a column of pixels. Consider only the range of 2ds1/s2e pixels closest to ε. This
range contains the two squares of side length s1 with ε as one edge. Therefore, we may repeat the
analysis in the proof of the lemma using the corners of this range instead of the corners of the pixel.
Hence, V C(e) is bounded within 2ds1/s2e pixels. Figure 101b shows a simple example.

161

Now consider the 3D case where each voxel has dimensions s1, s2, and s3 and again assume
e ∈ E lies on the edge ε with side length s1. There are two planes perpendicular to ε which bounds
V C(e) to a flat grid of voxels. In either of the two rectilinear dimensions of this grid, we apply
the same analysis as above to conclude that V C(e) intersects at most 2(ds1/s2e+ ds1/s3e) voxels.
Note that this constant reduces to 4 when s1 = s2 = s3.

The proof for points of type N is similar. Finally, we note that as we add more E and N points
to the diagram, the Voronoi cells can only get smaller. Therefore, the presence of other E or N
points in the diagram is irrelevant to the bound. �

Theorem 6.2 has significant implications for solving the ray intersection problem discussed
in Section 6.3.2. A priori, Voronoi cells may touch an arbitrary number of voxels which cause
an explosion in computational time when checking if the closed ball property is satisfied. With
Theorem 6.2, the computational time can be bounded in advance.

Notably, the actual bound depends on the gridding scheme of the input, not the choice of
interpolant. Accordingly, the width of the protective layer of grid points collected during the
algorithm depends on the gridding scheme as well. For the case of adaptive gridding in an octtree
construction, the user must require the “level difference” between two adjacent cells to be no more
than some fixed number k. Given k, a loose bound on the number of voxels a Voronoi cell of an E
or N point may intersect is 4k2, as an edge is incident on at most k2 cells in each of the other two
orthogonal direction. This bound may be improved to 4 for E points and 3k + 1 for N points by
considering limiting cases and using the convexity of Voronoi cells.

We have inserted the G points in order to decrease computations required to check the closed
ball property, however we have increased the complexity of the Voronoi and Delaunay triangulations
themselves. By Theorem 6.4 below, the new edges and facets formed by the addition of these G
points do not add any significant burden to the closed ball property confirmation process. Further,
these facets and edges are used in the algorithm DelVolMesh described in Section 6.3.4.

Theorem 6.4. Let V F be a Voronoi facet formed between two grid points and V E a Voronoi edge
formed among three grid points at any point in the algorithm. Then V F ∩Σ = ∅ and V E ∩Σ = ∅.

Proof. It suffices to prove the theorem for E points, since the addition of N points only makes
existing Voronoi elements smaller. First we treat the 2D case. Consider a pixel with grid points
g1, g2, g3, g4 and two edge points p and q. (If the pixel has more (four) or fewer (zero) edge points,
the theorem is vacuous.) The edge points may occur on adjacent or opposite edges of the pixel, as
shown in Figures 102 a and b, respectively. We consider the adjacent case first and suppose that the
edges on which p and q lie intersect at g4. Let R denote the region bounded by the rectangle formed
with p and q as opposite corners (the shaded yellow regions of Figure 102). Note that Σ ⊂ R since
we have chosen a bilinear interpolant. Hence, it suffices to show that the Voronoi edges formed
between g1, g2 and between g1, g3 do not intersect R. If x is a point on the Voronoi edge between
g1, g2 then by definition ||x− g1|| = ||x− g2|| and ||x− z|| ≥ ||x− g2|| for all z ∈ G ∪E − {g1, g2}.
However, if x ∈ R then ||x − q|| < ||x − g2||, based on the labelling of Figure 102a. Hence, the
Voronoi edge between g1, g2 cannot intersect R. Similarly, the Voronoi edge between g1, g3 cannot
intersect R, proving this case. The case where p and q lie on opposite edges is similar.

The proof for the 3D case is analagous to the 2D case. It suffices to prove the claim for a
closed Voronoi facet between two grid points g1, g2 as this includes the relevant Voronoi edges.
Consider just one of the voxels into which this facet extends. In each of the rectinear directions
away from the g1, g2 edge, there exists a closest point of E. Taking these two E points and the
g1, g2 edge, we uniquely define a box. Using the definitions of the Voronoi diagram construction,
we can similarly show that Σ lies outside of the box and the Vornoi facet lies inside it, thereby
proving the theorem. �

162

Figure 102: Proof of Theorem 6.4 in the 2D case. We show that Σ lies entirely inside the shaded
yellow region, while the Voronoi edges formed between two grid points necessarily lie outside of it.

Simplifying Results Thus far, we have addressed how the inclusion of the grid points G reduces
computational overhead. We now examine how particular choices of the interpolant can further ease
the calculations. First we consider the process CBP VF. If V F ∩Σ 6= ∅, then the intersection is a
compact 1-manifold by the transversality assumption. All compact 1-manifolds are homeomorphic
to a finite collection of line segments and circles and we distinguish between the case of no circles
and at least one circle. If no circles exist, the closed ball property is violated if and only if more
than two edges of the facet intersect Σ which is easy to check.

If at least one circle occurs in the intersection of Σ and a Voronoi facet, calculations can
become more subtle. In the case of trilinear interpolation, these types of intersections do arise
in two fashions. First, there exist configurations of relative function values that produce a tunnel
topology inside a single voxel, for example, Case 13.5.2 as defined in [158]. In some cases, a Voronoi
facet will pass through the entire tunnel, causing an interior loop in its intersection with Σ. In this
case, we can detect the topology of the cell by the function values and add the “shoulder points”
as described in [158]. The shoulder points are positioned so that the Voronoi diagram breaks these
interior loops on Voronoi facets, thereby easing calculations. Alternatively, it may occur that the
interior loop of a Voronoi facet passes through multiple voxels, which still provides some difficulties.
We conjecture that this phenomenon happens only if the interpolated function is non smooth at a
voxel edge or vertex and are working to simplify this problem.

Now we turn to CBP VC. For this process, use of the trilinear interpolant provides much
stronger results to simplify calculations. First, if Σ intersects a Voronoi cell, the intersection
manifold must have a boundary component by the following Theorem.

Theorem 6.5. If each facet of a Voronoi cell V C has empty intersection with Σ and Σ is defined
by a trilinear interpolant, then V C ∩ Σ = ∅. That is, there cannot be a component of Σ entirely
inside a single Voronoi cell.

Proof. The trilinear interpolation method precludes the existence of isolated surface components
within a single voxel. Therefore, every component of Σ has a point of G in its interior and hence
is sampled by at least six points of E, corresponding to the six rectilinear directions. Thus, each
component of Σ intersects at least six Voronoi cells. A similar proof holds if the data is not given
on a rectilinear grid. �

Therefore, the process of checking the closed ball property for a Voronoi cell is reduced to
checking if the intersection along the facets of a cell is a single closed curve (or empty). A priori,
the possibility remains that the intersection surface is a manifold of positive genus with a disc
removed. Detection of such cases has been discussed in detail in [69]. However, if our algorithm
is applied in the common case of trilinear interpolation with voxels that are cubes, these difficult
cases can also be excluded, leading to a much simpler algorithm.

163

Theorem 6.6. Let V C be a Voronoi cell whose facets and edges satisfy the closed ball property
and let Σ be defined by a trilinear interpolant on a uniform grid with voxels that are cubes. Then
the closed ball property is satisfied for V C if and only if V C ∩Σ has a single boundary component.

Proof. It suffices to exclude the minimum case where V C ∩ Σ is homeomorphic to a torus with
a disc removed. To generate such a surface by trilinear interpolation on a grid of cubes requires
more than four voxels since the intersection of Σ with a voxel face cannot contain closed loops. By
Theorem 6.2, the surface therefore intersects more than one Voronoi cell. �

6.3.5 Implementation and Results

We have used CGAL [64] to build and maintain the Voronoi and Delaunay diagram of the point
set. We also needed to compute the intersection of a ray with the surface Σ inside certain voxels;
for this task, we have used another publicly available library called SYNAPS [195].

As described in the problem statement in Section 6.3.1, only the parameter ε is needed to run the
algorithm on a given data set. This input dictates the desired upper bound on the Hausdorff distance
between the surface approximation M and the interpolated surface Σ. Given this parameter, we
reduce the amount of computation needed by snapping some of the points of E in the following
manner. If there exist points g ∈ G and e0, e1, e2 ∈ E such that the ei are on grid edges incident
to g and d(g, ei) < ε for i = 0, 1, 2, we snap the three ei points onto the common point g. Since all
ei points are within ε distance of the grid point and Σ passes through each ei, the closet point of
Σ to g cannot be more than ε away, which is within the user specified limit of tolerance.

Figure 103: Performance of the meshing algorithm. The top row shows the geometry, surface mesh,
a closeup on the surface mesh and a cut-away of the volumetric tetrahedral mesh for 1CID. The
second and the third rows show the same for 1MAG and Bone, respectively.

Although we have reduced the complexity of the ray-surface intersection problem as describe in
Section 6.3.4, we still have to compute it for a constant number of voxels for every Voronoi edge.
This was accomplished by parameterizing the Voronoi edge segment between two Voronoi vertices
p0 and p1 with a real number t. Inside every candidate voxel, we then detect the intersection points
of the segment with the interpolating polynomial function using the Algebraic solver available in

164

the library SYNAPS. If an intersection point lies inside the corresponding voxel, we consider it as
a valid intersection.

The performance of the algorithm on biological entities at various scales is shown in Figure 103.
The 1CID data set was obtained via blurring the coordinates of the atoms available from the

Protein Data Bank (PDB) [52]. The resulting 3D scalar volume represents the electron density
of the protein molecule T Cell Surface Glycoprotein CD4 . The goal in this case is to extract a
well-sampled Delaunay conforming surface mesh so that one can analyze the secondary structure
using the unstable manifolds of the index 1 and index 2 saddle points of a suitable distance function
[24].

1MAG, shown in the second row of Figure 103, is the PDB entry of the ion channel Gramicidin
A, obtained from soil bacteria Bacillus brevis. The molecular surface has many tunnels as shown in
the left most sub-figure in the second row. However, only the tunnel in the middle is topologically
significant as it is important to preserve the property of the ion channel. Once the isosurface has
been extracted, it is therefore necessary to remove all the other tunnels and preserve the main
tunnel. The algorithm for such removal of topological features has been described in [23] which
relies on a Delaunay conforming isosurface in order to detect and remove unwanted topological
features.

Finally, Bone data is shown in the third row of Figure 103. This data set is provided by our
collaborator from the University of Rome. The goal here is to mesh the internal bone structure for
stress-strain analysis.

The size of the 1CID volume data set is 1283. It took 1 second to build the initial triangulation,
45 seconds to enforce the closed ball property, and 35 seconds to recover the geometry for ε =
0.00001. The size of the 1MAG dataset is 1283. It took 1.5 seconds to build the initial triangulation,
20 seconds to enforce the closed ball property, and 28 seconds to recover the geometry for ε =
0.00001. The size of the Bone dataset is 643. It took 5 seconds to build the initial triangulation,
65 seconds to enforce the closed ball property, and 89 seconds to recover the geometry for ε = 0.0001.
Note, the time taken to mesh does not depend on the size of the volume data set since we were
able to enforce that the ray-surface intersection calculation is of constant complexity. However, as
the level set passes through more voxels, the number of points (E ∪G) increases and that increases
the time complexity of the algorithm.

We have presented an improvement over traditional level set meshing approaches. In particular,
we claimed that the isosurfaces extracted via well-known approaches such as marching cubes or
dual contouring are not suitable as they not only fail to capture the topology in a provable manner
but also do not produce sufficient samples for the extracted approximation to be embedded in
the Delaunay triangulation of the sampled set of points. On the other hand, there are elegant
approaches for meshing general implicit surfaces, yet these algorithms suffer from the computational
overhead of computing the intersection of a ray and the level set. Typically, the level set of a
sampled scalar function is approximated via a number of piecewise interpolating functions and
therefore finding the intersection of a ray with the level set requires a large number of checks.
In light of this, we have presented an algorithm which not only overcomes the sampling issue
of traditional isosurfacing techniques but also adopts a well-known provable algorithm [69] for
generating a good sample of the isosurface efficiently. We have also shown that for the commonly
used trilinear interpolant, many of the difficult cases that arise in implementation of the algorithm
can be avoided, thereby improving numerical robustness.

Scope As noted earlier, the scope of this algorithm is immense. First, we have not assumed
any particular interpolation scheme in order to prove that we need to check only a few voxels
when detecting ray-surface intersection. Therefore, it is possible to extend the algorithm to any
higher order interpolant, for example cubic A-patches [19]. Second, adaptive sampling of the scalar
function poses no problem to this algorithm as explained previously. Finally, since we exploit

165

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
��������� 	�	�	�	�	

	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����
����
����
����
����
����
����
����
����
����
����

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

P3

P2

P4

P1 P1

P2

P4

P3

Figure 104: Data may be partitioned to run the algorithm in parallel. In this 2D example, the
voxels indicated by the Pi are to be processed. One can send data from each Pi voxel to a separate
processor,along with the collar of protective voxels around it indicated by the same color shading.
Two iterations are shown.

the local nature of the interpolated surface Σ, the algorithm can easily be parallelized which is
especially important for the large data sets often used in the multiscale biological models we have
discussed. Figure 104 indicates how a data set might be partitioned to speed up computational time
the analogous 2D case. The different colored pixels marked with Pi can be processed concurrently
on separate processors as the Voronoi cells of the E and N points in those pixels are guaranteed to
be inside the protective collar of surrounding pixels. We note that not all pixels can be processed
concurrently as the protective collars must be non-overlapping. However, by iterating the process,
the most difficult computations can be done in parallel.

Limitations One limitation of our algorithm is that it tends to generate more samples due to the
layer of G points that we use to restrict the search space. Therefore it is necessary to apply adaptive
sampling of the scalar function such that bigger voxels are automatically created in regions of less
detail and smaller voxels in regions of high detail. By the results of Section 6.3.4, the efficiency of
the algorithm remains the same.

Future Work The extracted mesh typically has a “gridding” artifact because of the influence of
the grid. Further, sometimes the uniformity of the grid causes it to be over-sampled. Therefore,
ideally, one would decimate the grid so that the G vertices lie close to the medial axis after the
isovalue is known. We plan to develop a scheme for such an optimal placement of the grid vertices.
Also, the efficiency of the core computation requires a scaffolding structure. Hence, once the
Delaunay conforming surface mesh is extracted, it is not clear how the surface can be decimated (if
needed) by throwing away some of the grid vertices, while still efficiently checking that the resulting
(decimated) point sample satisfies the closed ball property.

7 Modeling and Visualizing Functions on Surfaces

7.1 Modeling Scattered Surface Data On Curved Surfaces

We consider the following problem: Given a set of four dimensional points P = {(xi, yi, zi, Fi)}Mi=1

with (xi, yi, zi) on a given smooth surface D, called domain surface, construct an interpolation
function F , known as on-surface, such that F (xi, yi, zi) = Fi, i = 1, · · · ,M, and visualize the
on-surface, where the domain surface could be a set of expressions and no part of the surface is
plane.

The problem of constructing interpolants on physical objects arises in some application areas
such as characterizing the rain fall on the earth, the pressure on the wing of an airplane and the
temperature on a human body. The problem was first proposed as an open question by Barnhill

166

[47] in 1985. After that, a considerable number methods have been developed for dealing with it
(for surveys see [48], [111]). Most of them interpolate the scattered data over planar or spherical
domain surfaces. In [49] and [110], the domain surface are generalized to convex surface and
topological genus zero surface, respectively. Recently, Pottmann [189] presented a method which
does not possess similar restrictions on the domain surface but requires it to be of C2. In [50] this
restriction was left and the on-surface is constructed by transfinite interpolation. It seems that,
the currently know approaches possess restrictions either on domain surfaces or on-surfaces. The
domain surfaces are usually assumed to be spherical, convex or genus zero. The on-surface are not
always polynomial [50], [172] or rather higher order polynomial [196] or more pieces of surface patch
[5] compare with the present approach. The aim of this is to design an polynomial interpolation
scheme over a collection of tetrahedra without restrictions mentioned above.

Related to the interpolation over tetrahedra, a well known method is the Clough-Tocher scheme
[5] that split a tetrahedron into 4 subtetrahedra and a degree 5 polynomial is built from C2 data
over each subtetrahedron. The function in global is C1. Another Clough-Tocher scheme[236] that
need only C1 data for constructing C1 function split the tetrahedron into 12 and a cubic is used
over each subtetrahedra. A C1 scheme [196] that does not split the tetrahedron uses degree 9
polynomial and C4 data. Going to C2 scheme, a known result is to use degree 17 polynomial and
C8 data. Comparing with these approaches, our construction has no splitting and lower degrees.
The reason for achieving this is that a simplicial hull is a neighborhood of a surface. The solution
to our proposed problem involves the following steps:

a. Construct a triangular approximation T of the domain surface D.
b. Generate C1 or C2 data at the vertices of the triangulation T .
c. Bulid a simplicial hull

∑
over the triangulation T .

d. Modeling the on-surface over
∑

by interpolating the C1 or C2 data locally.
e. Visualizing the on-surface.
We will not address the first two steps. A algorithm for the construction of the triangulation

of the given surface is proposed in [75]. However, we require our triangulation to satisfy certain
conditions which will be discussed in Section 3. The C1 or C2 data at the vertices can be generated
by a technique described in [181]. We shall detail step c, d and e in §3, §4, and §5 respectively,
following the notation and preliminary section.

7.1.1 Notation and Preliminary Details

Bernstein-Bezier (BB) Form: Let p1, p2, p3, p4 ∈ R3 be affine independent. Then the tetra-
hedron with vertices p1, p2, p3, and p4 is the convex hull defined by [p1p2...p4] = {p ∈ R3 : p =∑4

i=1 αipi, αi ≥ 0,
∑j

i=1 αi = 1}. For any p =
∑4

i=1 αipi ∈ [p1p2...p4], α = (α1, α2, α3, α4)T is
the barycentric coordinate of p. Any polynomial f(p) of degree n can be expressed as Bernstein-
Bezier(BB) form over [p1p2...p4] as

f(p) =
∑
|λ|=n

bλ B
n
λ(α), λ ∈ Z4

+ (237)

whereBn
λ(α) = n!

λ1!λ2!λ3!λ4! α
λ1
1 αλ2

2 αλ3
3 αλ4

4 is Bernstein polynomial, |λ| =
∑4

i=1 λi with λ = (λ1, λ2, λ3, λ4)T =∑4
i=1 λiei , α = (α1, α2, α3, α4)T is barycentric coordinate of p, bλ = bλ1λ2λ3λ4(as a subscript, we

simply write λ as λ1λ2λ3λ4) are called control points, and Z4
+ stands for the set of all four dimen-

sional vectors with nonnegative integer components. The following basic facts about the BB form
will be used.

Lemma 2.1. Let f(p) = F (α) =
∑
|λ|=n bλB

n
λ(α) with α is the barycentric coordinates of p. Then

167

for any given p(1) and p(2), with α(1) and α(2) be their barycentric coordinates, we have

∇f(p)T (p(1) − p(2)) = n
∑
|λ|=n−1

b1λ(α(1) − α(2))Bn−1
λ (α)

(p(1) − p(2))T∇2f(p)(p(1) − p(2)) = n(n− 1)
∑
|λ|=n−2

b2λ(α(1) − α(2))Bn−2
λ (α)

where ∇f(p) = [∂f(p)
∂x

∂f(p)
∂y

∂f(p)
∂z]T , ∇2f(p) = [∇∂f(p)

∂x , ∇∂f(p)
∂y ∇∂f(p)

∂z] and brλ(α(1) − α(2))=∑
|j|=r bλ+j B

r
j (α

(1) − α(2))
See [108] for the two dimensional case of the above lemma. From this lemma we have

Corollary 2.2. Let f(p) =
∑
|λ|=n bλB

n
λ(α) be defined on the tetrahedron [p1p2p3p4], then

b(n−1)ei+ej = bnei +
1
n

(pj − pi)T∇f(pi), j = 1, 2, 3, 4; j 6= i (238)

b(n−2)ei+ej+ek = −bnei + b(n−1)ei+ej + b(n−1)ei+ek

+ 1
n(n−1)(pj − pi)T∇2f(pi)(pk − pi), j 6= i, k 6= i

(239)

The corollary tell us that the weights around a vertex can be computed from the given C2 data.

Lemma 2.3 ([108]). Let f(p) =
∑
|λ|=n aλB

n
λ(α) and g(p) =

∑
|λ|=n bλB

n
λ(α) be two polynomials

defined on two tetrahedra [p1p2p3p4] and [p′1p2p3p4], respectively. Then
(i) f and g are C0 continuous at the common face [p2p3p4] if and only if

aλ = bλ, for any λ = 0λ2λ3λ4, |λ| = n (240)

(ii) f and g are C1 continuous at the common face [p2p3p4] if and only if (240) holds and

b1λ2λ3λ4 = β1a1λ2λ3λ4 + β2a0λ2λ3λ4+0100 + β3a0λ2λ3λ4+0010 + β4a0λ2λ3λ4+0001 (241)

(iii) f and g are C2 continuous at the common face [p2p3p4] if and only if (240)-(241) holds and

b2λ2λ3λ4 = β2
1a2λ2λ3λ4 + 2β1β2a0λ2λ3λ4+1100 + 2β1β3a0λ2λ3λ4+1010 + 2β1β4a0λ2λ3λ4+1001

+ β2
2a0λ2λ3λ4+0200 + 2β2β3a0λ2λ3λ4+0110 + 2β2β4a0λ2λ3λ4+0101

+ β2
3a0λ2λ3λ4+0020 + 2β3β4a0λ2λ3λ4+0011 + β2

4a0λ2λ3λ4+0002

(242)

where β = (β1, β2, β3, β4)T are defined by the relation p′1 = β1p1 + β2p2 + β3p3 + β4p4, |β| = 1.
In Lemma 2.3, if we divide (241) and (242) by β2

4 , then the C1 and C2 conditions become

a0λ2λ3λ4+0001 = µ1a1λ2λ3λ4 + µ2b1λ2λ3λ4 + µ3a1λ2λ3λ4+0100 + µ4a1λ2λ3λ4+0010 (243)
µ1(µ1a2λ2λ3λ4 + µ3a0λ2λ3λ4+1100 + µ4a0λ2λ3λ4+1010 − a0λ2λ3λ4+1001)

= µ2(µ2b2λ2λ3λ4 + µ3b0λ2λ3λ4+1100 + µ4b0λ2λ3λ4+1010 − b0λ2λ3λ4+1001) (244)

respectively, where µ1 = −β1

β4
, µ2 = 1

β4
, µ3 = −β2

β4
, µ4 = −β3

β4
, that is p4 = µ1p1 +µ2p

′
1 +µ3p2 +µ4p3.

It is not difficult to show from Corollary 2.2 the following

Lemma 2.4. Let f(p) and g(p) be defined as Lemma 2.3. If the coefficients of f and g around the
vertices are determined by (238)–(239), then the C1 and C2 conditions (241)–(242) related only to
these coefficients are satisfied.

Degree Elevation. The polynomial f(p) defined in (237) can be written as one of degree n + 1
(see e.g. [108]). f(p) =

∑
|λ|=n+1 (Eb)λ Bn+1

λ (α), λ ∈ Z4
+ where (Eb)λ = 1

n+1

∑4
i=1 λibλ−ei . We

shall use these formulas in approximating a lower degree polynomial.

168

7.1.2 Simplicial Hull

Let [pipj] be an edge of T , if (pj − pi)Tni (pi − pj)Tnj ≥ 0 and at least one of (pj − pi)Tni and
(pi− pj)Tnj is positive, then we say the edge [pipj] is positive convex. If both the numbers are zero
then we say it is zero convex. A Negative convex edge is similarly defined. If (pj − pi)Tni (pi −
pj)Tnj < 0, then we say the edge is non-convex. Let [pipjpk] be a face of T . If its three edges
are nonnegative (positive or zero) convex and at least one of them is positive convex, then we say
the face [pipjpk] is positive convex. If all the three edges are zero convex then we label the face as
zero convex. A Negative convex face is similarly defined. All the other cases [pipjpk] are labeled as
non-convex.

A simplicial hull of T , denoted by
∑

, is a collection of non-degenerated tetrahedra which
satisfies:

(1). Each tetrahedron in
∑

has either a single edge of T (then it will be called edge tetrahedron)
or a single face of T (then it will be called face tetrahedron). (2). For each face of T there is only
one face tetrahedron in

∑
if the face is convex, or there are only two face tetrahedra in

∑
if the

face is non-convex. (3). Two face tetrahedra that share a common edge do not intersect at other
part. This condition is referred to as non-self-intersection of the the tetrahedra. (4). For each edge
there is only one pair common face sharing edge tetrahedra in

∑
on one side of T if the edge is

convex or only two pair common face sharing edge tetrahedra in
∑

each pair on the different side
if the edge is non-convex such that the pair blend the two adjacent face tetrahedra in the same
side, in case they exist. (5). For each vertex, the tangent plane defined by the normal is contained
in the neighboring tetrahedra in the neighborhood of the vertex. This condition is called tangent
plane containment.

Therefore, a simplicial hull of T is a neighborhood of T that contains the tangent planes at the
vertices and no self-intersection. It should be noted that, for the given T there may exist infinity
many simplicial hulls or there may no simplicial hull exists. In the following, we describe a scheme
for building a simplicial hull.
1. Build Face Tetrahedra. For each face F = [p1p2p3] of T , let L be a straight line that is
perpendicular to the face F and passing through the center of the inscribed circle. Then choose
points p4 and/or q4 off each side of the plane 〈p1p2p3〉 to be the farthermost intersection points
between L and the tangent planes at the vertices of the face. If F is a non-convex face, two face
tetrahedra [p1p2p3p4] and [p1p2p3q4] are formed. If F is positive convex, then p4 is chosen on the
side opposite to the direction of the normals, and a single face tetrahedron [p1p2p3p4] is formed. If
F is negative convex, then q4 is chosen on the same side as the normals and again the single face
tetrahedron [p1p2p3q4] is formed.
2. Build Edge Tetrahedra. Let [p2p3] be an edge of T and [p1p2p3] and [p′1p2p3] be the two
adjacent faces. Let [p1p2p3p4] and/or [p1p2p3q4], and [p′1p2p3p

′
4] and/or [p′1p2p3q

′
4] be the face

tetrahedra built for the faces [p1p2p3] and [p′1p2p3], respectively. Then if the edge [p2p3] is non-
convex, two pair tetrahedra need to be constructed. The first pair [p′′1p2p3p4] and [p′′1p2p3p

′
4] are

between [p′1p2p3p
′
4] and [p1p2p3p4]. The second pair [q′′1p2p3q4] and [q′′1p2p3q

′
4] are between [p′1p2p3q

′
4]

and [p1p2p3q4]. Here p′′1 ∈ (p4p
′
4) or is above (p4, p

′
4), say p′′1 = (1−t)

2 (p2 +p3) + t
2(p′4 +p4), t ≥ 1, so

that p′′1 is above [p2, p3]. Similarly, q′′1 ∈ (q4q
′
4) or is below (q4, q

′
4), say q′′1 = (1−t)

2 (p2 + p3) + t
2(q′4 +

q4), t ≥ 1, so that q′′1 is below [p2, p3]. If the edge [p2p3] is positive (or negative) convex, only the
first (or second) pair above are needed.

There is one pitfall in step 2 of the construction: If the point p4 and p′4(or q4 and q′4) have to be
chosen far away from the face centers due to the tangent containment condition, the face tetrahedra
may intersect each other. However, if the triangulation is locally even, then we can get rid of the
possible trouble. A triangulation of a smooth surface is said to be locally even if for every face,
say [p0p1p2], each angle defined by the normal at the vertex and the normal of the face [p0p1p2]

is less than tan−1(2s tan(1
2

min{α0,α1,α2})
‖ ‖pj−pi‖(pk−pi)+‖pk−pi‖(pj−pi) ‖), where s is the area of the face [p0p1p2], αi is

169

the dihedral angle of the edge of the face [p0p1p2] and 0 ≤ i, j, k ≤ 2 are distinct. This condition
guarantees that the face tetrahedron constructed has height(the distance between the top vertex
p4 or q4 to the face) at most r tan(1

2 min{α0, α1, α2}), where r is the radius of the inscribed circle.
Hence the dihedral angles at the bottom edges of the tetrahedron are less than 1

2 min{α0, α1, α2}.
Therefore, there is no intersection between two face tetrahedra. This fact is summarized as
Theorem 3.1. If the triangulation T is locally even, then we can build a simplicial hull without
self-intersection.

It should be noted that if a triangulation of the domain surface is not locally even, we can
always modify it to obtain the required triangulation by inserting points.

In the following we shall assume the triangulation is locally even and a simplicial hull is built.
We further assume that each edge of the triangulation is convex and any two adjacent faces are not
coplanar. Again, this can be achieved by inserting point in the triangulation.

7.1.3 C1/C2 Interpolation by Cubic/Quintic

Suppose we have established a simplicial hull
∑

for the given triangulation T . Now we construct
a C1/C2 function f over

∑
such that f has the given C1/C2 data at each vertex. Let V1 =

[p1p2p3p4], V2 = [p′1p2p3p
′
4], W1 = [p′′1p2p3p4], W2 = [p′′1p2p3p

′
4], V ′1 = [p1p2p3q4], V ′2 = [p′1p2p3q

′
4]

and the cubic/quintic polynomials fi over Vi, gi over Wi and f ′i over V ′i be expressed in Bernstein-
Bezier forms with coefficients aiλ, b

i
λ and ciλ, respectively. Now we shall determine these coefficients

step by step. Denote

p′′1 = β1
1p1 + β1

2p2 + β1
3p3 + β1

4p4, β1
1 + β1

2 + β1
3 + β1

4 = 1
p′′1 = β2

1p
′
1 + β2

2p2 + β2
3p3 + β2

4p
′
4, β2

1 + β2
2 + β2

3 + β2
4 = 1

p′′1 = µ1p4 + µ2p
′
4 + µ3p2 + µ4p3, µ1 + µ2 + µ3 + µ4 = 1

(245)

C1 Cubic Scheme (1). The number 0 weights are given by the function values at the vertices.
(2). The number 1 weights are determined by formula (238) from C1 data. (3). The number 2
weights, that is a(i)

1110, are free. (4). The number 3 weights are determined by C1 conditions (241)
and (243). (5). The number 4 weights are free. (6). The number 5 weights are determined by C1

conditions (241). (7). The number 6 weights are free. (8). The number 7 weights are determined
by C1 conditions (243).

The remaining weights with index λ1λ2λ3λ4 are determined by C1 condition (241) for λ4 ≤ 1
and freely chosen for λ4 > 1.

C2 Quintic Scheme (1). The number 0 weights are given by the function values at the vertices.
For examples, a(1)

5ei
= f(pi), i = 1, 2, 3. (2). The number 1 weights are determined by formula

(238). (3). The number 2 weights are determined by formula (239). (4). The number 3 weights,
that is a(i)

1220, a
(i)
2210 and a(i)

2120, are free. (5). The number 4 weights are determined by C1 conditions
(241), that is b(i)1220 = β

(i)
1 a

(i)
1220 +β

(i)
2 a

(i)
0320 +β

(i)
3 a

(i)
0230 +β

(i)
4 a

(i)
0221, i = 1, 2, b(i)1220 = µ1a

(1)
0221 +µ2a

(2)
0221 +

µ3a
(i)
0320 + µ4a

(i)
0230 It follows from these equations that

µ1a
(1)
0221 + µ2a

(2)
0221 − β

(i)
4 a

(i)
0221 = β

(i)
1 a

(i)
1220 + (β(i)

2 − µ3)a(i)
0320 + (β(i)

3 − µ4)a(i)
0230 (246)

for i = 1, 2. The coefficient matrixA of (246) for the unknowns a(i)
0221 isA =

[
µ1 − β(1)

4 µ2

µ1 µ2 − β(2)
4

]
This matrix is nonsingular if and only if p1, p

′
1, p2 and p3 are not coplanar(see the Appendix of [17]).

Hence (246) has unique solution under our assumptions. (6). The number 5 and 6 weights have
to be determined simultaneously. In determining these weights, we need to consider all the C1

and C2 conditions related to the tetrahedra surrounding to the vertex p2. Suppose there are k

170

triangles(hence k edges) around p2 and there are r times convexity change of the edges, then by C1

and C2 conditions, we have 6k+r equations That is, crossing each face, we have two equations, and
cross each triangle, we have one equation. The number of related unknowns is 6k + r also. That
is, k number 5 weights and 5k number 6 weights and one more unknown is related when one time
convexity change of the edges occur. Now we investigate these equations. It follows from (241) and
(242) that

b
(i)
1211 = β

(i)
1 a

(i)
1211 + β

(i)
2 a

(i)
0311 + β

(i)
3 a

(i)
0221 + β

(i)
4 a

(i)
0212 (247)

b
(i)
2210 = β

(i)
1 β

(i)
1 a

(i)
2210 + 2β(i)

1 β
(i)
2 a

(i)
1310 + 2β(i)

1 β
(i)
3 a

(i)
1220 + 2β(i)

1 β
(i)
4 a

(i)
1211

+ β
(i)
2 β

(i)
2 a

(i)
0410 + 2β(i)

2 β
(i)
3 a

(i)
0320 + 2β(i)

2 β
(i)
4 a

(i)
0311

+ β
(i)
3 β

(i)
3 a

(i)
0230 + 2β(i)

3 β
(i)
4 a

(i)
0221 + β

(i)
4 β

(i)
4 a

(i)
0212

(248)

for i = 1, 2. (248) can be written briefly as

b
(i)
2210 = 2β(i)

1 β
(i)
4 a

(i)
1211 + β

(i)
4 β

(i)
4 a

(i)
0212 + γ (249)

where γ is the known terms in (248). Since (see (243) and (244))

b
(1)
2210 = µ1b

(1)
1211 + µ2b

(2)
1211 + · · · (250)

µ2
1b

(1)
0212 − µ1b

(1)
1211 = µ2

2b
(2)
0212 − µ2b

(2)
1211 + · · · (251)

where · · · are known terms, then by substituting (247) into (250) and (251) and then eliminating
b
(i)
2210 from (249) and (250) we get three equations related to four unknowns which could be written

as: [
β

(1)
4 − µ1 −µ2

−µ1 β
(2)
4 − µ2

][
β

(1)
4 0
0 β

(2)
4

][
a

(1)
0212

a
(2)
0212

]

= −

[
2β(1)

4 − µ1 −µ2

−µ1 2β(2)
4 − µ2

][
β

(1)
1 0
0 β

(2)
1

][
a

(1)
1211

a
(2)
1211

]
+ · · · (252)

[
−µ1(β(1)

4 − µ1) µ2(β(2)
4 − µ2)

] [a
(1)
0212

a
(2)
0212

]
−
[
µ1β

(1)
1 ,−µ2β

(2)
1

] [a
(1)
1211

a
(2)
1211

]
= · · · (253)

Since the coefficient matrix of (252) is nonsingular, by solving [a(1)
0212 a

(2)
0212]T from (252) and then

substituting it into (253), we get one equation relating to the unknowns a(1)
1211, a

(2)
1211. Let the

equation be in the form
φa

(1)
1211 + ψa

(2)
1211 = ω (254)

Therefore, these unknowns form a closed chain around the vertex p2. But one should note that
the chain will go to other side of the triangles if the edges change their convexity(from positive
convex to negative convex or from negative convex to positive convex). For example, if the edge
[p2p3] is positive convex, while the edge [p1p2] is negative convex, then the chain is changed by
add one more equation related to the two unknowns a(1)

1211 and c
(1)
1211 from C1 condition c

(1)
1211 =

α1a
(1)
2210 + α2a

(1)
1310 + α3a

(1)
1220 + α4a

(1)
1211, where q4 = α1p1 + α2p2 + α3p3 + α4p4 Again, this equation

is in the same form as (254). The coefficient matrix of all these equations related to the vertex p2

is in the form of

A =

φ1 ψ1

φ2 ψ2

. . .
ψk+r φk+r

171

whose determinant is
∏k+r
i=1 φi−(−1)k+r

∏k+r
i=1 ψi. This matrix is nonsingular in general if the points

given are in the general position. Hence the system can be solved. In this specified case, a(1)
1202 and

a
(1)
2102 do not involve in any equation, since there is no neighbor tetrahedron. These two weights are

defined by C2 condition of crossing the face [p1p2p3].
(7). The number 7 weights are similarly determined as that of number 6. (8). The number 8

weight a(i)
1112 are free. (9). The number 9 weights are determined by C1 and C2 conditions. Both

the number of equations and the number of unknowns are 6k. That is for i = 1, 2

b
(i)
1202 = β

(i)
1 a

(i)
1202 + β

(i)
2 a

(i)
0302 + β

(i)
3 a

(i)
0212 + β

(i)
4 a

(i)
0203 (255)

b
(i)
2201 = β

(i)
1 β

(i)
1 a

(i)
2201 + 2β(i)

1 β
(i)
2 a

(i)
1301 + 2β(i)

1 β
(i)
3 a

(i)
1211 + 2β(i)

1 β
(i)
4 a

(i)
1202

+ β
(i)
2 β

(i)
2 a

(i)
0401 + 2β(i)

2 β
(i)
3 a

(i)
0311 + 2β(i)

2 β
(i)
4 a

(i)
0302

+ β
(i)
3 β

(i)
3 a

(i)
0221 + 2β(i)

3 β
(i)
4 a

(i)
0212 + β

(i)
4 β

(i)
4 a

(i)
0203

(256)

and
b
(1)
3200 = µ1b

(1)
2201 + µ2b

(2)
2201 + · · · (257)

µ2
1b

(1)
1202 − µ1b

(1)
2201 = µ2

2b
(2)
1202 − µ2b

(2)
2201 + · · · (258)

Substitute (255) and (256) into (258), we have

µ1β
(1)
4 (µ1 − β(1)

4)b(1)
0203 − µ2β

(2)
4 (µ2 − β(2)

4)b(2)
0203 = · · ·

This is a system that in the same form as (254). Then a system like (254) need to solve. However,
if the surrounding tetrahedra at the same side at p2 are not closed, the matrix A is in the form

of A =

 φ1 ψ1

.
φk ψk

 which can be changed to A =
[
A1 0
0 A2

]
if one unknown, say the

l-th is chosen to be a free parameter. Hence the system of equations is break into two sub-systems.
Each of them can be solved easily.

(10). For the number 10 weights, we have six equations parallel to the equations (256)–(258)
with all the index changed by the rule

The index of the number 10 weright = The index of the number 9 weright− e2 + e3 (259)

and seven independent weights. By chosing one of them, say b
(i)
3110, to be a free parameter, the

system can be solved. (11). The number 11 weights are determined in the same way as the that of
number 9. (12). The number 12 and 13 weights are free, the number 14 are determined by C1 and
C2 conditions. That is b(i)1103 are defined by (241). b(i)2102 are defined by (242). For b(i)3101, we have by
(243) and (244) µ1b

(1)
3101 + µ2b

(2)
3101 = b

(1)
4100 + γ, −µ1b

(1)
3101 + µ2b

(2)
3101 = µ2

2b
(2)
2102 − µ2

1b
(2)
2102 + δ, where γ

and δ are known terms. Hence b(1)
3101 = b

(1)
4100−µ2

2b
(2)
2102+µ2

1b
(2)
2102+γ−δ

2µ1
, b(2)

3101 = b
(1)
4100+µ2

2b
(2)
2102−µ2

1b
(2)
2102+γ+δ

2µ1

(13). The number 15 weights are similar to that of number 14, the index is changed by the rule
(259).

(14). The number 16 weights are free, the number 17’s are determined by C1 and C2 conditions.
(15). The remaining weights with index λ1λ2λ3λ4 are determined by C1 and C2 conditions (241)
and (242) of crossing the face for λ4 ≤ 2 and freely chosen for λ4 > 2

In summary, the construction step 1–14 is according to the C1 and C2 conditions across the
common tetrahedra faces that are over or below the original triangulation. The step 15 is ac-
cording to the C1 and C2 conditions across the common tetrahedra faces that are on the original
triangulation. Therefore, the composite function is global C2 continuous.

172

The Use of Free Weights In both of the C1 and C2 schemes described above, there are some
free weights under determined. These parameters can be used to control the shape of the on-surface
to get the required smoothness and desirable shaped surface. We now propose three approaches or
their combinations to use them. The first is to control interactively the shape by adjusting the free
weights. The second is to interpolate the on-surface data in the tetrahedron considered. However, if
the free weights considered have to be determined before others, then the first or the third approach
should be used for them. The third approach is to approximate a lower degree polynomial in the
least square sense. For example, by the degree elevation formula, the number 2 weights of the C1

scheme can be determined by

a
(i)
1110 =

1
4

(a(i)
1200 + a

(i)
2100 + a

(i)
2010 + a

(i)
1020 + a

(i)
0210 + a

(i)
0120)− 1

6
(a(i)

3000 + a
(i)
0300 + a

(i)
0030)

In the way, the number 4 weights of the C1 scheme are

a
(i)
0003 =

1
3

[2(q(i)
0101 + q

(i)
1001 + q

(i)
0011)− (a(i)

0300 + a
(i)
3000 + a

(i)
0030)]

a
(i)
0102 =

1
3

(2q(i)
0101 + a

(i)
0003), a

(i)
1002 =

1
3

(2q(i)
1001 + a

(i)
0003), a

(i)
0012 =

1
3

(2q(i)
0011 + a

(i)
0003)

where
q

(i)
0101 =

3
4

(a(i)
1101 − a

(i)
1011 + a

(i)
0111 + a

(i)
0201)− 1

4
(q(i)

1100 − q
(i)
1010 + q

(i)
0110 + a

(i)
0300)

q
(i)
1001 =

3
4

(a(i)
1101 + a

(i)
1011 − a

(i)
0111 + a

(i)
2001)− 1

4
(q(i)

1100 + q
(i)
1010 − q

(i)
0110 + a

(i)
3000)

q
(i)
0011 =

3
4

(−a(i)
1101 + a

(i)
1011 + a

(i)
0111 + a

(i)
0021)− 1

4
(−q(i)

1100 + q
(i)
1010 + q

(i)
0110 + a

(i)
0030)

q
(i)
1100 =

1
4

(3a(i)
1200 + 3a(i)

2100 − a
(i)
0300 − a

(i)
3000)

q
(i)
1010 =

1
4

(3a(i)
2010 + 3a(i)

1020 − a
(i)
0030 − a

(i)
3000)

q
(i)
0110 =

1
4

(3a(i)
0210 + 3a(i)

0120 − a
(i)
0300 − a

(i)
0030)

7.1.4 Visualization and Examples

We can visualize the graph of the interpolation function on the domain surface D either by drawing
the contours on the surface D or by drawing the graph of the interpolation function F .

Plots the contours We display the contours on the domain surface by showing different colors
in the region between two contours. In our approach, we achieve this by first generating triangle
approximation of the domain surface, and then generating the corresponding four dimensional
triangles on F , and finally intersecting these triangles with iso-value to get the line segments of
the contours. Let w be a given iso-value, [p1p2p3] be a triangle on D. WLG, we may assume
F (p1) ≤ F (p2) ≤ F (p3). Then if w < F (p1) or w > F (p3), the triangle does not intersect the
iso-value. If w ∈ [F (p1), F (p3)], say w ∈ [F (p1), F (p2)], let t1 = w−F (p1)

F (p2)−F (p1) , t2 = w−F (p1)
F (p3)−F (p1) ,

q1 = t1p1 + (1− t1)p2, q2 = t1p1 + (1− t2)p3, then [q1q2] is one segment of the contour F (p) = w.
The collection of all of these line segments form a piecewise approximations to the contours. By
increasing the resolution of the triangulation of the domain surface, we can get better approximation
of the contours. Figure 5.1 and 5.2 show this feature of an engine.

173

Plot the on-surface Since the contours may not clearly indicate the geometric shape of the
on-surface, one often plot the on-surface in one way or another. One approach is to use a radial
projection from the center of the domain. But if the domain surface is not convex or has no-zero
genus. This method have difficulties in plotting the surface. Another more natural way is to use the
normal projection, that is, project the point p on the domain surface D to a distance proportional
to F (p) in the normal direction of D at p:

G(p) = p+ L
∇f(p)(F (p)− Fmin)
‖∇f(p)‖(Fmax − Fmin)

where L is a positive scaler, Fmin and Fmax are minimum and maximum values of F on D. However
if L is not given properly, then the surface G may self-intersect in case of the domain surface is
not convex. To avoid this happen, we can take L < γ = minp∈D{Rmin(p)}, where Rmin(p) is the
minimal principal curvature radius at p of surface D. Since D is piecewise C1/C2 continuous surface
and it is C∞ within each tetrahedron, hence γ > 0. Therefore the main task is to compute γ. In
general, it is not easy to compute the exact value of γ, but an approximate γ can serve our purpose
as well. When we produce the triangulation of each surface patch on D, we can compute Rmin(p) for
vertices p. And then take γ = minp∈D{Rmin(p) : p is a vertex}. By implicit function theorem, we
could derive the formula for principal curvature radius. For an implicit surface f(x1, x2, x3) = 0,
define fi = ∂f

∂xi
, fij = ∂2f

∂xi∂xj
. Then the principal curvature radius are the absolute values of

the roots of the equation ax2 + bx + c = 0, where a =
∑3

i=1 f
2
i (fi+1,i+1fi+2,i+2 − f2

i+1,i+2) +
2
∑

i 6=j,k 6=i,k 6=j fifj(fikfjk − fijfkk), b = ‖∇f‖(
∑3

i=1 f
2
i (fi+1,i+1 + fi+2,i+2) − 2

∑
i 6=j fifjfij), c =

‖∇f‖4, where the indices should mod by 3.
Another approach to determine L is to take

L < δ = min
p∈Td

{
min
q

{
‖q − p‖2‖∇f(p)‖
2(q − p)T∇f(p)

: [p, q] ∈ Td and (q − p)T∇f(p) > 0
}}

where Td is final triangulation of D for display the surface D and F , p ∈ Td means p is a vertex and
[p, q] ∈ Td means [p, q] is an edge. It should be noted that if D is convex(i.e., (q − p)T∇f(p) ≤ 0)
or planar(i.e., (q − p)T∇f(p) = 0), δ is arbitrary.

7.2 Algebraic Spline Molecular Surfaces

The computation of electrostatic solvation energy (also known as polarization energy) for biomolecules
plays an important role in the molecular dynamics simulation [137], the analysis of stability in pro-
tein structure prediction [218], and the protein-ligand binding energy calculation [143]. The explicit
model of the solvent provides the most rigorous solvation energy calculation [175]. However, due
to the large amount of solvent molecules, most of the computation time is spent on the trajectories
of the solvent molecules, which severely increases the computation cost of this method [198]. An
alternative method is to represent the solvent implicitly as a dielectric continuum [204], then the
electrostatic potential is known by solving the Poisson-Boltzmann (PB) equations [45][161]. A more
efficient method is to approximate the PB electrostatic solvation energy by the generalized Born
(GB) model [220][51][151], which computes the electrostatic solvation energy ∆Gelec as

Gpol = −τ
2

∑
i,j

qiqj

[r2
ij +RiRj exp(− r2

ij

FRiRj
)]

1
2

, (260)

where τ = 1
εp
− 1

εw
, εp is the solute (low) dielectric constant, εw is the solvent (high) dielectric

constant, qi is the atomic charge of atom i, rij is the distance between atom i and j, F is an empirical
factor (could be 4 [220] or 8 [151]), and Ri is the effective Born radius of atom i. The effective

174

Born radius reflects how deep an atom is buried in the molecule and consequently determines the
importance to the polarization. The formulation of the effective Born radii is derived in [117]:

R−1
i =

1
4π

∫
Γ

(r− xi) · n(r)
|r− xi|4

dS, (261)

where Γ is the molecular surface of the solute, xi is the center of atom i, and n(r) is the unit normal
of the surface at r. The details of the derivation of (261) and a fast evaluation algorithm based
on the fast Fourier transform (FFT) for (261) is discussed in [34]. Since the numerical integrations
are done on the molecular surface Γ, an accurate and analytic representation of Γ is needed.

Figure 105: Three molecular surfaces are shown for two atoms in two dimension. The boundary of
the union of balls (pink) with the van der Waals radii is the VWS. The SAS (purple) is the union of
augmented van der Waals spheres with each radius enlarged by the radius of a solvent probe (light
blue). The SES (the blue curve) is boundary of all possible solvent probes that do not intersect
with the interior of the VWS.

Three well-known molecular surfaces are shown in Figure 105 in 2D. The van der Waals surface
(VWS) is the union of a set of spheres with atomic van der Waals radii. The solvent accessible
surface (SAS) is the union of augmented van der Waals spheres with each radius enlarged by the
solvent probe radius (normally taken as 1.4 rA) [148]. The solvent excluded surface (SES, also
called molecular surface or Connolly surface) is the boundary of the union of all possible solvent
probes that do not intersect with the interior of the VWS [78][197]. As described in [78], the SES
consists of the convex spherical patches which are parts of the VWS as well, the toroidal pathces and
the concave spherical patches, which are generated by the probes rolling along the intersections of
neighboring atoms. The VWS causes an overestimation of the electrostatic solvation energy, while
the SAS leads to an underestimation [151]. The SES is the most accurate when it is applied in the
energetic calculation and therefore it is most often used to model the molecular surface. However
the SES still has one significant drawback: it contains cusps when the rolling probe self-intersects,
which may cause singularity in the Born radii and the force calculations.

In the energetic computation, knowing the patch complexes of the molecular surface is not
enough. For convenience, an analytical representation of the molecular surface is needed and the
singularity should also be avoided. One way to generate such a model is to define an analytical
volumetric density function, for example, the summation of Gaussian functions [120], Fermi-Dirac
switching function [152], or piecewise polynomials [151], and approximate the SES by an iso-contour
of the density function. Techniques of fast extracting an iso-contour of smooth kernel functions
are developed in [16][33]. However the error of the generated isosurface could be large and result
in inaccurate energy computation. A NURBS representation for the SES is presented in [30].
Although it provides a parametric approximation to the SES, it does not solve the singularity
problem. Edelsbrunner [99] defines another paradigm of a smooth surface referred to as skin which
is based on the Voronoi, Delaunay, and Alpha complexes of a finite set of weighed points. The skin
model has good geometric properties such as it is free of singularity and it can be decomposed into
a collection of quadratic patches. Triangulation schemes based on the skin model are provided in
[67][68]. However when applied to the energetic computation, the skin triangulation which in fact is
a linear approximation to the SES has to be very dense to gain accuracy, which causes oversampling
on the surface and hence makes the computation very slow. Therefore it still remains a challenge
to generate a model for the molecular surface which is accurate, smooth, and computable.

The main contribution of this work is to provide a method to model the SES as piecewise
algebraic spline patches with certain continuity at the boundary of the patches. Each patch has dual

175

implicit and parametric representations. Hence high order implicit surfaces can be parameterized
onto a planer domain and therefore higher order quadrature rules of 2D such as the Gaussian
quadrature rules can be easily applied to the energetic computation. Moreover, because higher
order spline patches are used to approximate the SES, fewer number of triangles are needed to
obtain the same accuracy in the energetic computation as the linear model. The algebraic spline
patches are generated based on the prism scaffold built surrounding the original triangular mesh of
the SES and are defined implicitly by simple BB spline functions. Previous work on constructing
piecewise spline patches within a simplical hull over a triangular mesh includes generating quadric
patches [86], cubic patches [123][88], and nonsingular and single sheeted cubic patches [20] in a
tetrahedra scaffold. We also show that the so generated algebraic spline patches are error bounded
and free of singularity under certain conditions.

7.2.1 Algebraic spline model

Algorithm Sketch There are four main steps in our ASMS construction algorithm: (1) construct
an initial triangular mesh of the SES; (2) build a prism scaffold surrounding the triangulation; (3)
define a piecewise polynomial with certain continuity; (4) extract the 0-contour of the piecewise
polynomial. We are going the explain each step in detail in the following and discuss how to make
use the parametrization of the ASMS in the numerical integration.

Initial triangulation of the MS So far a lot of work has been done on the triangulation of the
SES or its approximation [68][4][147][244][32]. The ASMS generation could be applied to any of
these triangulations. In our current research we use the triangulation generated by a program in
the software TexMol [32][21] as the initial. Features of the molecular surface are well preserved in
this triangulation. We then decimate the mesh [42] to obtain a coarser one.

Implicit/parametric patches generation Given the triangulation mesh T , let [vivjvk] be one
of the triangles where vi, vj , vk are the vertices of the triangle. Suppose the unit normals of the
surface at the vertices are also known, denoted as nl, (l = 1, j, k). Let vl(λ) = vl + λnl. First
we define a prism (Figure 106) Dijk := {p : p = b1vi(λ) + b2vj(λ) + b3vk(λ), λ ∈ Iijk}, where
(b1, b2, b3) are the barycentric coordinates of points in [vivjvk], and Iijk is a maximal open interval
containing 0 and for any λ ∈ Iijk, vi(λ), vj(λ), vk(λ) are not collinear and ni, nj , nk point to the
same side of the plane Pijk(λ) := {p : p = b1vi(λ) + b2vj(λ) + b3vk(λ)}.

Figure 106: A prism Dijk constructed based on the triangle [vivjvk].

Next we define a function in the Benstein-Bezier (BB) basis over the prism Dijk:

F (b1, b2, b3, λ) =
∑

i+j+k=n

bijk(λ)Bn
ijk(b1, b2, b3), (262)

where Bn
ijk(b1, b2, b3) is the Bezier basis

Bn
ijk(b1, b2, b3) =

n!
i!j!k!

bi1b
j
2b
k
3.

We approximate the molecular surface by the zero contour of F , denoted as S. In order to
make S smooth, the degree of the Bezier basis n should be no less than 3. For simplicity, here we
consider the case of n = 3. The control coefficients bijk(λ) should be properly defined such that S

176

Figure 107: The control coefficients of the cubic Bezier basis of function F .

is continuous. In Figure 107 we show the relationship of the control coefficients and the points of
the triangle when n = 3. Next we are going to discuss these coefficients are defined.

Since S passes through the vertices vi, vj , vk, we define

b300 = b030 = b003 = λ. (263)

To obtain C1 continuity at the vertices, we require b210 − b300 = 1
3∇F (vi) · (vj(λ)− vi(λ)), where

∇F (vi) = ni. Therefore

b210 = λ+
1
3
ni · (vj(λ)− vi(λ)). (264)

b120, b201, b102, b021, b012 are defined similarly.
To obtain the C1 continuity at the midpoints of the edges of T , we define b111 by using the

side-vertex scheme [171]:
b111 = w1b

(1)
111 + w2b

(2)
111 + w3b

(3)
111, (265)

where

wi =
b2jb

2
k

b22b
2
3 + b21b

2
3 + b21b

2
2

, i = 1, 2, 3, i 6= j 6= k.

Next we are going to define b
(1)
111, b(2)

111 and b
(3)
111 such that the C1 continuity is obtained at the

midpoint of the edge vjvk, vivk and vivj . Consider the edge vivj for instant. Recall that any
point p = (x, y, z) in Dijk can be represented by

(x, y, z)T = b1vi(λ) + b2vj(λ) + b3vk(λ). (266)

Therefore differentiating both sides of (266) with respect to x, y and z, respectively, yields

I3 =

 ∂b1
∂x

∂b2
∂x

∂λ
∂x

∂b1
∂y

∂b2
∂y

∂λ
∂y

∂b1
∂z

∂b2
∂z

∂λ
∂z

 (vi(λ)− vk(λ))T

(vj(λ)− vk(λ))T

(b1ni + b2nj + b3nk)T

 , (267)

where I3 is a 3× 3 unit matrix. Denote

T :=

 (vi(λ)− vk(λ))T

(vj(λ)− vk(λ))T

(b1ni + b2nj + b3nk)T

 , (268)

and let A = vi(λ) − vk(λ), B = vj(λ) − vk(λ) and C = b1ni + b2nj + b3nk, then T = (A B C)T .
From (267) we have ∂b1

∂x
∂b2
∂x

∂λ
∂x

∂b1
∂y

∂b2
∂y

∂λ
∂y

∂b1
∂z

∂b2
∂z

∂λ
∂z

 = T−1 =
1

det(T)
(B × C, C ×A, A×B) . (269)

According to (262), at the midpoint of vivj , (b1, b2, b3) = (1
2 ,

1
2 , 0), we have ∂F

∂b1
∂F
∂b2
∂F
∂λ

 =

 (vi(λ)− vk(λ))T

(vj(λ)− vk(λ))T

(ni + nj)T /2

(ni + nj
4

)
+

 3
2(b210 − b111)
3
2(b120 − b111)

1
2

 .

177

By (265), at (b1, b2, b3) = (1
2 ,

1
2 , 0) we have b111 = b

(3)
111. Therefore the gradient at (1

2 ,
1
2 , 0) is

∇F = T−1(
∂F

∂b1
,
∂F

∂b2
,
∂F

∂λ
)T

=
ni + nj

4
+

1
2 det(T)

[3(b210 − b(3)
111)B × C + 3(b120 − b(3)

111)C ×A+A×B] (270)

Define vectors

d1(λ) = vj(λ)− vi(λ) = B −A,
d2(b1, b2, b3) = b1ni + b2nj + b3nk = C,

d3(b1, b2, b3, λ) = d1 × d2 = B × C + C ×A. (271)

Let

c = C(
1
2
,
1
2
, 0), (272)

d3(λ) = d3(
1
2
,
1
2
, 0, λ) = B × c + c×A. (273)

Let ∇F = ∇F (1
2 ,

1
2 , 0). In order to have C1 continuity at (1

2 ,
1
2 , 0), we should have ∇F ·d3(λ) = 0.

Therefore, by (270) and (273), we have

b
(3)
111 =

d3(λ)T (3b210B × c + 3b120c×A+A×B)
3||d3(λ)||2

. (274)

Similarly, we may define b(1)
111 and b

(2)
111.

Now the function F (b1, b2, b3, λ) is well defined. The next step is to extract the zero level set
S. Given the barycentric coordinates (b1, b2, b3) of a point in the triangle [vivjvk], we find the
corresponding λ by solving the equation F (b1, b2, b3, λ) = 0 for λ and this could be done by the
Newton’s method. Then we may get the corresponding point on S as

(x, y, z)T = b1vi(λ) + b2vj(λ) + b3vk(λ). (275)

Smoothness

Theorem 7.1. The ASMS S is C1 at the vertices of T and the midpoints of the edges of T .

Theorem 7.2. S is C1 everywhere if every edge vivj of T satisfies ni · (vi − vj) = nj · (vj − vi).

Theorem 7.3. S is C1 everywhere if the unit normals at the vertices of T are the same.

Proofs of the theorems are shown in the Appendix.

Parametrization and quadrature In this section, we would like to show how the ASMS is
applied to the computation of (261). Since we use the ASMS to represent the molecular surface,
now Γ = S. Let f = (r−xi)·n(r)

|r−xi|4 . We decompose the entire surface S into patches {Sj} with Sj
being the AMSM generated over triangle j, then we have∫

S
f(x) dS =

∑
j

∫
Sj

f(x) dS. (276)

178

For any point x = (x, y, z) on Sj , by the inverse map of (275), one can uniquely map x to a point
in triangle j and get its baricentric coordinates (b1, b2, b3) with b3 = 1− b1 − b2. Therefore, x, y, z
can be represented in terms of (b1, b2):

x = x(b1, b2,), y = y(b1, b2), z = z(b1, b2)

Replacing (x, y, z) with (b1, b1, b3) in (276) and letting

g(b1, b2) = f(x(b1, b2), y(b1, b2), z(b1, b2)),

we get ∫
Sj

f(x) dS =
∫
σj

g(b1, b2)
√
EG− F 2 db1db2, (277)

where

E = (
∂x

∂b1
)2 + (

∂y

∂b1
)2 + (

∂z

∂b1
)2,

F =
∂x

∂b1

∂x

∂b2
+
∂y

∂b1

∂y

∂b2
+
∂z

∂b1

∂z

∂b2
,

G = (
∂x

∂b2
)2 + (

∂y

∂b2
)2 + (

∂z

∂b2
)2.

We then apply the Gaussian quadrature to (277):∫
σi

g(b1, b2)
√
EG− F 2 db1db2 ≈

n∑
k=1

Wkg(bk1, b
k
2)
√
EG− F 2|bk1 ,bk2 , (278)

where (bk1, b
k
2, b

k
3) and Wk are the Gaussian integration nodes and weights on the triangles.

7.2.2 Error of the ASMS model

In order to show the error of S to the true surface S0, we do a test on some typical surfaces
(Table 3) S0 := {(x, y, z) : z = f(x, y), (x, y) ∈ [0, 1]2} which are considered as the true surfaces.
We generate a triangulation mesh over the true surface with the maximum edge length h being 0.1.
Based on the mesh, we construct the ASMS model S. The error of S to S0 is defined as max ||p−q||

||q|| ,
where p ∈ S, q ∈ S0, and p and q have the same (b1, b2, b3) volume coordinates but different λ
coordinates. We sample (p, q) on the surfaces and compute the maximum relative error. For the
point pair p(b1, b2, b3, λp) and q(b1, b2, b3, λq) defined above, we prove that their Euclidean distance
is bounded by the difference of their λ coordinates.

Lemma 7.4. The error of the approximation point p to the true point q is bounded by |λp − λq|.

Proof.

||p− q|| ≤ b1||vi(λp)− vi(λq)||+ b2||vj(λp)− vj(λq)||+ b3||vk(λp)− vk(λq)||
≤ |λp − λq|(b1||ni||+ b2||nj ||+ b3||nk||)
= |λp − λq|

179

Table 3: Relative error and Convergence

Function (x, y) ∈ [0, 1]2 max{ ||p−q||
||q|| } C

z = 0 0 0
z = x2 + y2 2.450030e-05 1.010636e-2
z = x3 + y3 1.063699e-04 2.610113e-2
z = e−

1
4

[(x−0.5)2+(y−0.5)2] 5.286856e-07 6.288604e-5
z = 1.25 + cos(5.4y)

6+6(3x−1)2 2.555683e-04 4.58608e-2
z = tanh(9y − 9x) 1.196519e-02 1.896754e-1
z =

√
1− x2 − y2 8.614969e-05 1.744051e-1 (h4)

z = [(2−
√

1− y2)2 − x2]1/2 1.418242e-05 1.748754e-02

Table 4: Error of ASMS to the SES

1GCQ 1ML0 1KKL
No. of ∆s εmax No. of ∆s εmax No. of ∆s εmax

16,312 0.266069 18,400 0.233949 19,968 0.260418
32,624 0.142149 36,864 0.142380 39,544 0.134689
65,456 0.082550 73,736 0.083895 79,096 0.085855

To study the rate of converges of S to S0, we gradually refine the initial mesh. Since the error
is bounded by |λp − λq|, we compute the ratio of the maximum difference of λp and λq to h, h2,
h3, and so forth. As h decreases, we check if the ratio converges or not, which allows us to know
the highest rate of convergence of S to S0. For most of the test functions in Table 3, we observe
that S converges to S0 as fast as O(h3). We also observe that for the case z =

√
1− x2 − y2, the

rate of convergence reaches O(h4). We show the limit of the ratio |λ−λ
′|

h3 as h ↓ 0, denoted as C, in
Table 3. Hence we draw the following claim:

Claim: Let h be the maximum side length of triangulation mesh T , p be the point on the ASMS,
q be the corresponding point on the true surface, then p converges to q at the rate of O(h3). i.e.
There exists a constant C such that ||p− q|| ≤ Ch3.

4600 Triangles 9216 Triangles 18434 Triangles

Figure 108: The top row is the triangulation of the SES of protein 1ML0 with different number of
triangles. The bottom row is the ASMS generated from the above corresponding triangulation.

We generated the ASMS for the real proteins based on different size of meshes (Figure 108) and
show the error of the ASMS to the SES of three proteins: 1GCQ (843 atoms), 1ML0 (1051 atoms),
and 1KKL (1276 atoms) in Table 4. Here the SES is modeled as a level set of the summation
of fast decaying Gaussian functions. The ASMS is generated from the triangulation of the SES
at different resolution. The number of triangles of the initial meshes are listed in Table 4. The
error εmax is defined as the one-way Hausdorff distance from the ASMS to the SES: εmax =

max
p∈ASMS

min
q∈SES

||p − q||. As we see in the table, the errors are small and decrease rapidly as the

initial triangulation becomes dense.

180

(a) (b) (c) (d)

Figure 109: Molecular models of a protein(1HIA). (a) is The atomic model. (b) is the initial dense
mesh of the SES (27480 triangles). (c) is the decimated mesh of the SES model (7770 triangles).
(d) is the ASMS (7770 patches) generated from (c).

(a) (b) (c)
(d) (e) (f)

Figure 110: The top row are the models of 1CGI and the bottom row are the models of 1PPE.
(a) and (d) are the atomic structures of the proteins. (b) and (e) are the decimated triangular
meshes of the proteins with 8712 triangles and 6004 triangles, respectively. (c) and (f) are the
ASMS models generated from (b) and (e), respectively.

7.2.3 Application to the biomolecular energetic computation

We apply the ASMS model to the GB electrostatic solvation energy computations of the example
proteins 1HIA (693 atoms), 1CGI (852 atoms), and 1PPE (436 atoms). The ASMS models S for
the proteins are generated based on the initial mesh with different number of triangles (Table 5).
We show the ASMS of the example molecules generated from the decimated triangulations in
Figure 109 and Figure 110. As a comparison, we compute the polarization energy Gpolfor both
the ASMS and the piecewise linear (PL) surfaces and show the energy results and the timing in
Table 5. For all the computations, a 4-point Gaussian quadrature rule over a triangle [97] is used
for the numerical integration in (278) when computing the Born radii. The running time contains
the time cost of computing the integration nodes over the surfaces, computing the Born radii, and
evaluating Gpol. If we consider the energy computed from the dense mesh as accurate, as we see
from the table, the Gpol computed from the coarse PL model has a large error, however for the
coarse ASMS model, it is very close to the dense mesh result but with less time. On the other
hand, to get a energy result of the same accuracy, fewer number of triangles are needed for the
ASMS model than the PL model. For example, for the protein 1CGI, the Gpol computed from the
ASMS with 3674 triangles is -1394.227 kcal/mol. However to get a similar result, 8712 triangles
are needed for the piecewise linear model. Therefore the ASMS model is much more efficient in the
energetic computation than trivial piecewise linear models.

Table 5: electrostatic solvation energy and timing

Protein No. of Gpol (kcal/mol) Timing (s)
ID Triangles PL AS PL AS

29108 -1371.741894 -1343.1496 39.64 40.31
1CGI 8712 -1399.194841 -1346.2230 12.94 12.64

3674 -1678.444735 -1394.2270 7.40 6.11
27480 -1361.226603 -1340.6384 30.23 31.18

1HIA 7770 -1389.017538 -1347.8067 9.43 9.93
3510 -1571.890827 -1388.4665 5.21 5.21
24244 -835.563905 -825.3252 17.27 18.26

1PPE 6004 -852.713039 -828.2158 5.09 5.39
2748 -933.956234 -845.5085 2.74 3.27

181

We have introduced a method to generate a model for the molecular surface. Like the other
molecular surface models, this ASMS model is smooth and close to the SES as long as the initial
triangulation is based on the SES. In addition, it has dual implicit and parametric representations.
The implicit representation enables us to flexibly vary the surface by selecting different level sets,
while the parametric representation allows us easily apply the ASMS to the numerical computations,
such as the numerical integrations involved in the finite element method or the boundary element
method. Moreover, unlike the other piecewise linear models, the ASMS surface is of higher degree,
therefore, to get the same accuracy, fewer number of triangles (roughly one-third of the PL model)
are needed for the ASMS when it is applied to the numerical integrations. For many large system
problems, for example the atomistic molecular dynamics simulations, efficient computation is the
most concerning issue, hence he ASMS is very suitable to be used in this kind of problems. We
should mention that, while not detailed, the algorithm of Section 7.2.1 can, by repeated evocation,
yield a hierarchical multiresolution spline model of the molecular surface. In the future research
we could extend this algebraic patch model to the electrostatic solvation forces calculation which is
crucial in the molecular dynamics simulations. Fast and accurate numerical integration is also one
of the main tasks of the force calculation and is more challenging because the integration domain
contains not only the surface but also a skin layer over each atom.

References

[1] S. Abhyankar and C. Bajaj. Automatic rational parameterization of curves and surfaces iv:
Algebraic space curves. ACM Transactions of Graphics, 8(4):324–333, 1989.

[2] S. Abhyankar and C. Bajaj. Computations with algebraic curves. In N. . Lecture Notes in
Computer Science, editor, Proc. of the Intl. Symposium on Symbolic and Algebraic Compu-
tation, pages 279–284. Springer-Verlag, 1989.

[3] M. Abramowitz and I. Stegun. Handbook of mathematical functions with formulas, graphs,
and mathematical tables. Dover publications, 1964.

[4] N. Akkiraju and H. Edelsbrunner. Triangulating the surface of a molecule. Discrete Applied
Mathematics, 71:5–22, 1996.

[5] P. Alfeld. A trivariate Clough-Tocher scheme for tetrahedral data. Computer Aided Geometric
Design, 1:169–181, 1984.

[6] P. Alliez, D. Cohen-Steiner, M. Yvinec, and M. Desbrun. Variational tetrahedral meshing.
In SIGGRAPH 2005, pages 617–625, 2005.

[7] D. Attali and J.-O. Lachaud. Delaunay conforming iso-surface, skeleton extraction and noise
removal. Comp. Geom.: Theory and Appl., 19:175–189, 2001.

[8] P. Baehmann, S. Wittchen, M. Shephard, K. Grice, and M. Yerry. Robust geometrically
based, automatic two-dimensional mesh generation. Int. J. Numer. Meth. Engng, 24:1043–
1078, 1987.

[9] C. Bajaj. Geometric modeling with algebraic surfaces. In D. Handscomb, editor, The Math-
ematics of Surfaces III, pages 3 –48. Oxford University Press, 1990.

[10] C. Bajaj. Electronic Skeletons: Modeling Skeletal Structures with Piecewise Algebraic Sur-
faces. In Curves and Surfaces in Computer Vision and Graphics II, pages 230–237, Boston,
MA, 1991.

182

[11] C. Bajaj. Surface fitting with implicit algebraic surface patches. In H. Hagen, editor, Topics
in Surface Modeling, pages 23 – 52. SIAM Publications, 1992.

[12] C. Bajaj. The Emergence of Algebraic Curves and Surfaces in Geometric Design. In R. Martin,
editor, Directions in Geometric Computing, pages 1–29. Information Geometers Press, 1993.

[13] C. Bajaj. Implicit surface patches. In J. Bloomenthal, editor, Introduction to Implicit Sur-
faces, pages 98 – 125. Morgan Kaufman Publishers, 1997.

[14] C. Bajaj, F. Bernardini, and G. Xu. Adaptive resconstruction of surfaces and surface-on-
surface from dense scattered trivariate data. Technical Report Computer Science Technical
Report, CS-95-028, Computer Sciences Department, Purdue University, 1994.

[15] C. Bajaj, F. Bernardini, and G. Xu. Automatic reconstruction of surfaces and scalar fields
from 3D scans. In R. Cook, editor, Annual Conference Series. Proceedings of SIGGRAPH
95, pages 109–118. ACM SIGGRAPH, Addison Wesley, August 6-11 1995.

[16] C. Bajaj, J. Castrillon-Candas, V. Siddavanahalli, and Z. Xu. Compressed representations of
macromolecular structures and properties. Structure, 13:463–471, 2005.

[17] C. Bajaj, J. Chen, and G. Xu. Interactive modeling with a-patches. Computer science
technical report, csd-tr-93-002, Purdue University, 1993.

[18] C. Bajaj, J. Chen, and G. Xu. Modeling with Cubic A-Patches. ACM Transactions on
Graphics, 14(2):103–133, 1995.

[19] C. Bajaj, J. Chen, and G. Xu. Modeling with cubic A-patches. ACM Transactions on
Graphics, 14(2):103–133, 1995.

[20] C. Bajaj, J. Chen, and G. Xu. Modeling with cubic A-patches. ACM Transactions on
Graphics, 14:103–133, 1995.

[21] C. Bajaj, P. Djeu, V. Siddavanahalli, and A. Thane. Texmol: Interactive visual exploration of
large flexible multi-component molecular complexes. Proc. of the Annual IEEE Visualization
Conference, pages 243–250, 2004.

[22] C. Bajaj and S. Evans. Splines and geometric modeling. Handbook of discrete and computa-
tional geometry, pages 833–850, 1997.

[23] C. Bajaj, A. Gillette, and S. Goswami. Topology based selection and curation of level sets.
In TopoInVis 2007, Accepted.

[24] C. Bajaj and S. Goswami. Automatic fold and structural motif elucidation from 3d em maps
of macromolecules. In ICVGIP 2006, pages 264–275, 2006.

[25] C. Bajaj, C. Hoffmann, R. Lynch, and J. Hopcroft. Tracing surface intersections. Computer
aided geometric design, 5(4):285–307, 1988.

[26] C. Bajaj and I. Ihm. Algebraic surface design with Hermite interpolation. ACM Transactions
on Graphics, 11(1):61–91, 1992.

[27] C. Bajaj and I. Ihm. Algebraic surface design with Hermite interpolation. ACM Transactions
on Graphics, 11(1):61–91, 1992.

[28] C. Bajaj and I. Ihm. Low degree approximation of surfaces of revolved objects. In Proceedings
of Graphics Interface’93, pages 33–41, Toronto, Canada, 1993.

183

[29] C. Bajaj, I. Ihm, and J. Warren. Higher-order interpolation and least-squares approximation
using implicit algebraic surfaces. ACM Transactions on Graphics (TOG), 12(4):347, 1993.

[30] C. Bajaj, H. Lee, R. Merkert, and V. Pascucci. Nurbs based b-rep models from macro-
molecules and their properties. In Proceedings of Fourth Symposium on Solid Modeling and
Applications, pages 217–228, 1997.

[31] C. Bajaj, V. Pascucci, and D. Schikore. The contour spectrum. In Proceeding of IEEE
Visualization 1997, pages 167–174, 1997.

[32] C. Bajaj and V. Siddavanahalli. An adaptive grid based method for computing molecular
surfaces and properties. ICES Technical Report TR-06-57, 2006.

[33] C. Bajaj and V. Siddavanahalli. Fast error-bounded surfaces and derivatives computation for
volumetric particle data. ICES Technical Report TR-06-06, 2006.

[34] C. Bajaj, V. Siddavanahalli, and W. Zhao. Fast algorithms for molecular interface triangu-
lations and solvation energy computations. ICES Report, 07-06, 2007.

[35] C. Bajaj, J. Warren, and G. Xu. A subdivision scheme for hexahedral meshes. The Visual
Computer, 18(5-6):343–356, 2002.

[36] C. Bajaj, Q. Wu, and G. Xu. Level set based volume anisotropic diffusion. In ICES Technical
Report 301, The Univ. of Texas at Austin, www.ticam.utexas.edu/ccv/papers/, 2003.

[37] C. Bajaj and G. Xu. A-Splines: Local Interpolation and Approximation using Ck-Continuous
Piecewise Real Algebraic Curves. Computer Science Technical Report, CAPO-92-44, Purdue
University, 1992.

[38] C. Bajaj and G. Xu. Modeling Scattered Function Data on Curved Surface. In J. Chen, N.
Thalmann, Z. Tang, and D. Thalmann, editor, Fundamentals of Computer Graphics, pages
19 – 29, Beijing, China, 1994.

[39] C. Bajaj and G. Xu. Piecewise rational approximations of real algebraic curves. J. Comput.
Math, 15(1):55–71, 1997.

[40] C. Bajaj and G. Xu. Smooth multiresolution reconstruction of free-form fat surfaces. TICAM
Report 99-08, Texas Institute for Computational and Applied Mathematics, The University
of Texas at Austin, March 1999.

[41] C. Bajaj and G. Xu. Anisotropic diffusion of surfaces and functions on surfaces. ACM
Transactions on Graphics (TOG), 22(1):4–32, 2003.

[42] C. Bajaj, G. Xu, R. Holt, and A. Netravali. Hierarchical multiresolution reconstruction of
shell surfaces. CAGD, 19:89–112, 2002.

[43] C. Bajaj, G. Xu, and Q. Zhang. Smooth surface constructions via a higher-order level-set
method. In Proc. of CAD/Graphics 2007, Accepted.

[44] C. L. Bajaj, V. Pascucci, and D. Schikore. Fast isocontouring for improved interactivity.
In Proceedings of the IEEE Symposium on Volume Visualization, ACM Press, pages 39–46,
1996.

[45] N. Baker, M. Holst, and F. Wang. Adaptive multilevel finite element solution of the Poisson-
Boltzmann equation II. Refinement at solvent-accessible surfaces in biomolecular systems. J.
Comput Chem., 21:1343–1352, 2000.

184

[46] E. Bansch, P. Morin, and R. Nochetto. Finite element methods for surface diffusion. Free
Boundary Problems: Theory and Applications, page 53, 2004.

[47] R. Barnhill. Surfaces in computer aided geometric design : A Survey with New Results.
Computer Aided Geometric Design, 2:1–17, 1985.

[48] R. Barnhill and T. Foley. Methods for constructing surfaces on surfaces. In G.Farin, editor,
Geometric Modeling: Methods and their Applications, pages 1–15. Springer, Berlin, 1991.

[49] R. Barnhill, B. Piper, and K. Rescorla. Interpolation to arbitrary data on a surface. In
G.Farin, editor, Geometric Modeling, pages 281–289. SIAM, Philadelphia, 1987.

[50] R. E. Barnhill, K. Opitz, and H. Pottmann. Fat surfaces: a trivariate approach to triangle-
based interpolation on surfaces. Computer Aided Geometric Design, 9:365–378, 1992.

[51] D. Bashford and D. A. Case. Generalized Born models of macromolecular solvation effects.
Annu. Rev. Phys. Chem., 51:129–152, 2000.

[52] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig, I. Shindyalov, and
P. Bourne. The Protein Data Bank. Nucleic Acids Research, pages 235–242, 2000.

[53] M. W. Bern, D. Eppstein, and J. R. Gilbert. Provably good mesh generation. In IEEE
Symposium on Foundations of Computer Science, pages 231–241, 1990.

[54] M. Bernadou and J. M. Boisserie. The Finite Element Method in Thin Shell Theory: Appli-
cation to Arch Dam Simulations. Birkhäuser, 1982.

[55] T. Blacker and R. Myers. Seams and wedges in plastering: a 3d hexahedral mesh generation
algorithm. Engineering With Computers, 2:83–93, 1993.

[56] T. Blacker and M. Stephenson. Paving: A new approach to automated quadrilateral mesh
generation. Int. J. Numer. Meth. Engng, 32:811–847, 1991.

[57] J. Bloomenthal. Polygonization of implicit surfaces. Computer Aided Geometric Design,
5(4):341–355, 1988.

[58] W. Böhm, G. Farin, and J. Kahmann. A survey of curve and surface methods in CAGD.
Computer Aided Geometric Design, 1:1–60, 1984.

[59] M. L. Bucalem and K. J. Bathe. Finite element analysis of shell structures. Archives Comput.
Methods Engrg., 4:3–61, 1997.

[60] S. Canann. Plastering and optismoothing: new approaches to automated, 3d hexahedral mesh
generation and mesh smoothing. Ph.D. Dissertation, Brigham Young University, Provo, UT,
1991.

[61] S. Canann, J. Tristano, and M. Staten. An approach to combined laplacian and optimization-
based smoothing for triangular, quadrilateral and quad-dominant meshes. In 7th International
Meshing Roundtable, pages 479–494, 1998.

[62] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. Computational
Geometry : Theory and Applications, 24(2):75–94, 2003.

[63] M. Cauchy. Cours d’analyse de l’Ecole Royale Polytechnique. premiére, L’Imprimerie Royale,
Paris, 1821.

[64] CGAL Consortium. CGAL: Computational Geometry Algorithms Library.

185

[65] C. Charalambous and A. Conn. An efficient method to solve the minimax problem directly.
SIAM Journal of Numerical Analysis, 15(1):162–187, 1978.

[66] I. Chavel. Riemannian geometry: a modern introduction. Cambridge Univ Pr, 2006.

[67] H. Cheng and X. Shi. Guaranteed quality triangulation of molecular skin surfaces. IEEE
Visualization, pages 481–488, 2004.

[68] H. Cheng and X. Shi. Quality mesh generation for molecular skin surfaces using restricted
union of balls. IEEE Visualization, pages 51–58, 2005.

[69] S.-W. Cheng, T. Dey, E. Ramos, and T. Ray. Sampling and meshing a surface with guaranteed
topology and geometry. SCG ’04: Proc. of the 20th Annual Symposium on Computational
Geometry, pages 280–289, 2004.

[70] S.-W. Cheng and T. K. Dey. Quality meshing with weighted delaunay refinement. In Proc.
13th ACM-SIAM Sympos. Discrete Algorithms (SODA 2002), pages 137–146, 2002.

[71] S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S. Teng. Sliver exudation.
Journal of ACM, 47:883–904, 2000.

[72] S.-W. Cheng, T. K. Dey, and E. A. Ramos. Delaunay refinement for piecewise smooth
complexes. In SODA, pages 1096–1105, 2007.

[73] E. Chernyaev. Marching cubes 33: Construction of topologically correct isosurfaces. Technical
Report. CERN CN/95-17, 1995.

[74] L. Chew. Guaranteed-quality mesh generation for curved surfaces. In Proc. SoCG ’93, pages
274–280, 1993.

[75] L. P. Chew. Guaranteed-Quality Mesh Generation for Curved Surface. In 9th Annual Com-
putational Geometry, pages 274–280, CA,USA, May 1993.

[76] F. Cirak, M. Ortiz, and P. Schroder. Subdivision surfaces: A new paradigm for thin-shell
finite-element analysis. Technical report, http://www.multires.caltech.edu/pubs/, 1999.

[77] U. Clarenz, U. Diewald, and M. Rumpf. Anisotropic Geometric Diffusion in Surface Process-
ing. In Proceedings of Viz2000, IEEE Visualization, pages 397–505, Salt Lake City, Utah,
2000.

[78] M. L. Connolly. Analytical molecular surface calculation. J. Appl. Cryst, 16:548–558, 1983.

[79] W. A. Cook and W. R. Oakes. Mapping methods for generating three-dimensional meshes.
Computers in Mechanical Engineering, pages 67–72, 1982.

[80] S. Coons. Surfaces for computer-aided design of space forms, 1967.

[81] M. Cox. The numerical evaluation of B-splines. J. Inst. Math. Appl, 10(134-149):47, 1972.

[82] H. Curry and I. Schoenberg. On spline distributions and their limits: the P olya distribution
functions, Abstract 380t. Bull. Amer. Math. Soc, 53:1114, 1947.

[83] H. Curry and I. Schoenberg. On pólya frequency functions iv: the fundamental spline func-
tions and their limits. J. d’Analyse Math., 17:71–107, 1966.

[84] W. Dahmen. Subdivision algorithm converge quadratically. J. of Comput. Appl. Math.,
16:145–158, 1986.

186

[85] W. Dahmen. Smooth piecewise quadratic surfaces. In T. Lyche and L. Schumaker, editors,
Mathematical Methods in Computer Aided Geometric Design, pages 181–193. Academic Press,
Boston, 1989.

[86] W. Dahmen. Smooth piecewise quadratic surfaces. In T. Lyche and L. Schumaker, editors,
Mathematical methods in computer aided geometric design, pages 181–193. Academic Press,
Boston, 1989.

[87] W. Dahmen and T.-M. Thamm-Schaar. Cubicoids: modeling and visualization. Computer
Aided Geometric Design, 10:93–108, 1993.

[88] W. Dahmen and T.-M. Thamm-Schaar. Cubicoids: modeling and visualization. Computer
Aided Geometric Design, 10:89–108, 1993.

[89] M. de Berg and K. T. G. Dobrindt. On levels of detail in terrains. Graphical Models and
Image Processing, 60:1–12, 1998.

[90] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag, Berlin, 1997.

[91] C. De Boor. On calculating with B-splines* 1. Journal of Approximation Theory, 6(1):50–62,
1972.

[92] L. De Floriani, P. Magillo, and E. Puppo. Data structures for simplicial multi-complexes. In
R. H. Güting, D. Papadias, and F. Lochovsky, editors, Proc. 6th International Symposium
on Spatial Databases, Hong Kong, July 1999.

[93] C. deBoor. A Practical Guide to Splines. Springer-Verlag, 1978.

[94] T. Dey and J. Levine. Delaunay meshing of isosurfaces. In Proc. Shape Modeling International
[to appear], 2007.

[95] M. Do Carmo. Riemannian geometry. Birkhauser, 1992.

[96] M. Do Carmo and M. Do Carmo. Differential geometry of curves and surfaces. Prentice-Hall
Englewood Cliffs, NJ, 1976.

[97] D. Dunavant. High degree efficient symmetrical Gaussian quadrature rules for the triangle.
International Journal of Numerical Methods in Engineering, 21:1129–1148, 1985.

[98] G. Dziuk. An algorithm for evolutionary surfaces. Numerische Mathematik, 58(1):603–611,
1990.

[99] H. Edelsbrunner. Deformable smooth surface design. Discrete Computational Geometry,
21:87–115, 1999.

[100] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. On the shape of a set of points in the plane.
IEEE Trans. Inform. Theory, pages 551–559, 1981.

[101] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. On the Shape of a Set of Points in the Plane.
IEEE Trans. on Information Theory, 29:4:551–559, 1983.

[102] H. Edelsbrunner and E. M
”ucke. Three-dimensional alpha shapes. In Proceedings of the 1992 workshop on Volume
visualization, page 82. ACM, 1992.

187

[103] H. Edelsbrunner and N. Shah. Triangulating topological spaces. Intl. Journal of Comput.
Geom. and Appl., 7:365–378, 1997.

[104] D. Eppstein. Linear complexity hexahedral mesh generation. In Symposium on Computational
Geometry, pages 58–67, 1996.

[105] C. Epstein and M. Gage. The curve shortening flow. Wave Motion: Theory, Modeling, and
Computation, 1987.

[106] J. Escher, U. Mayer, and G. Simonett. The surface diffusion flow for immersed hypersurfaces.
SIAM Journal on Mathematical Analysis, 29(6):1419–1433, 1998.

[107] J. Escher and G. Simonett. The volume preserving mean curvature flow near spheres. Pro-
ceedings of the American Mathematical Society, 126(9):2789–2796, 1998.

[108] G. Farin. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide,
Second Edition. Academic Press Inc., 1990.

[109] D. Field. Laplacian smoothing and delaunay triangulations. Communications in Applied
Numerical Methods, 4:709–712, 1988.

[110] T. Foley, D. Lane, G. Nielson, R. Franke, and H. Hagen. Interpolation of scattered data on
closed surfaces. Computer Aided Geometric Design, 7:303–312, 1990.

[111] R. Franke. Recent advances in the approximation of surfaces from scattered data. In
C.K.Chui, L.L.Schumarker, and F.I.Utreras, editors, Multivariate Approximation, pages 275–
335. Academic Press, New York, 1987.

[112] L. Freitag. On combining laplacian and optimization-based mesh smoothing techniqes. AMD-
Vol. 220 Trends in Unstructured Mesh Generation, pages 37–43, 1997.

[113] L. Freitag and C. Ollivier-Gooch. Tetrahedral mesh improvement using swapping and smooth-
ing. Int. J. Numer. Meth. Engng, 40:3979–4002, 1997.

[114] D. Fritsch. A medial description of greyscale image structure by gradient-limited diffusion.
In Visualization in Biomedical Computing, pages 105–117, 1992.

[115] I. Fujishiro, Y. Maeda, H. Sato, and Y. Takeshima. Volumetric data exploration using interval
volume. IEEE Transactions on Visualization and Computer Graphics, 2(2):144–155, 1996.

[116] M. Garland and P. Heckbert. Simplifying surfaces with color and texture using quadric error
metrics. In IEEE Visualization, pages 263–270, 1998.

[117] A. Ghosh, C. S. Rapp, and R. A. Friesner. Generalized Born model based on a surface integral
formulation. J. Phys. Chem. B, 102:10983–10990, 1998.

[118] S. F. Gibson. Using distance maps for accurate surface representation in sampled volumes.
In Proceedings of the 1998 IEEE symposium on Volume visualization, pages 23–30, 1998.

[119] G. Golub and C. Van Loan. Matrix Computation. The Johns Hopkins Univ. Press, Baltimore,
MD, 1983.

[120] J. A. Grant and B. T. Pickup. A gaussian description of molecular shape. J. Phys. Chem.,
99:3503–3510, 1995.

[121] V. Guillemin and A. Pollack. Differential Topology. Prentice-Hall Inc., Englewood Cliffs,
New Jersey, 1974.

188

[122] B. Guo. Modeling Arbitrary Smooth Objects with Algebraic Surfaces. PhD thesis, Computer
Science, Cornell University, 1991.

[123] B. Guo. Modeling arbitrary smooth objects with algebraic surfaces. PhD thesis, Cornell
University, 1991.

[124] B. Guo. Surface generation using implicit cubics. In N. Patrikalakis, editor, Scientific Visu-
alization of Physical Phenomena, pages 485–530. Springer-Verlag,Tokyo, 1991.

[125] I. Guskov, A. Khodakovsky, P. Schroder, and W. Sweldens. Hybrid meshes: multiresolution
using regular and irregular refinement. In SCG ’02: Proc. of the 18th Annual Symposium on
Computational Geometry, pages 264–272, 2002.

[126] P. Hanrahan. Ray tracing algebraic surfaces. ACM SIGGRAPH Computer Graphics,
17(3):83–90, 1983.

[127] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J. Schweitzer, and
W. Stuetzle. Piecewise smooth surface reconstruction. In Proceedings of the 21st annual
conference on Computer graphics and interactive techniques, pages 295–302. ACM, 1994.

[128] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J. Schweizer, and
W. Stuetzle. Piecewise smooth surface reconstruction. Computer Graphics, 28:295–302, 1994.

[129] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface reconstruction
from unorganized points. Computer Graphics, 26(2):71–78, 1992.

[130] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface reconstruc-
tion from unorganized points. COMPUTER GRAPHICS-NEW YORK-ASSOCIATION FOR
COMPUTING MACHINERY-, 26:71–71, 1992.

[131] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh optimization. In
Proceedings of the 20th annual conference on Computer graphics and interactive techniques,
page 26. ACM, 1993.

[132] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh optimzation.
Computer Graphics, 27:19–26, Aug 1-6 1993.

[133] K. Hormann, U. Labsik, M. Meister, and G. Greiner. Hierarchical extraction of iso-surfaces
with semi-regular meshes. In SMA ’02: Proc. of 7th ACM Symposium on Solid Modeling and
Applications, pages 53–58, 2002.

[134] G. Huisken. The volume preserving mean curvature flow. Journal f
”ur die reine und angewandte Mathematik (Crelles Journal), 1987(382):35–48, 1987.

[135] I. Ihm and B. Naylor. Piecewise Linear Approximations of Digitized Space Curves with
Applications. In N. Patrikalakis, editor, Scientific Visualization of Physical Phenomena,
pages 545–569. Springer-Verlag, Tokyo, 1991.

[136] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite data. In Proceedings
of SIGGRAPH, pages 339–346, 2002.

[137] M. Karplus and J. A. McCammon. Molecular dynamics simulations of biomolecules. Nature
Structural Biology, 9:646–652, 2002.

[138] P. Kinney. Cleanup: Improving quadrilateral finite element meshes. In 6th International
Meshing Roundtable, pages 437–447, 1997.

189

[139] P. Knupp. Achieving finite element mesh quality via optimization of the jacobian matrix
norm and associated quantities. part i - a framework for surface mesh optimization. Int. J.
Numer. Meth. Engng, 48:401–420, 2000.

[140] P. Knupp. Achieving finite element mesh quality via optimization of the jacobian matrix
norm and associated quantities. part ii - a framework for volume mesh optimization and the
condition number of the jacobian matrix. Int. J. Numer. Meth. Engng, 48:1165–1185, 2000.

[141] L. Kobbelt, M. Botsch, U. Schwanecke, and H. Seidel. Feature sensitive surface extraction
from volume data. In SIGGRAPH 2001, pages 57–66, 2001.

[142] C. Kober and M. Matthias. Hexahedral mesh generation for the simulation of the human
mandible. In 9th International Meshing Roundtable, pages 423–434, 2000.

[143] B. Kuhn and P. A. Kollman. A ligand that is predicted to bind better to avidin than biotin:
insights from computational fluorine scanning. J. Am. Chem. Soc, 122:3909–3916, 2000.

[144] F. Labelle and J. Shewchuk. Isosurface stuffing: Fast tetrahedral meshes with good dihedral
angles. In SIGGRAPH (to appear), 2007.

[145] J.-O. Lachaud. Topologically defined iso-surfaces. In DCGA ’96: Proc. 6th Intl. Workshop
on Discr. Geom. for Comp. Imagery, pages 245–256, 1996.

[146] J. Lang. Adaptive multilevel solution of nonlinear parabolic PDE systems: theory, algorithm,
and applications. Lecture Notes in Computational Science and Engineering, 16, 2000.

[147] P. Laug and H. Borouchaki. Molecular surface modeling and meshing. Engineering with
Computers, 18:199–210, 2002.

[148] B. Lee and F. M. Richards. The interpretation of protein structure: estimation of static
accessiblilty. J. Mol. Biol., 55:379–400, 1971.

[149] C. Lee and S. Lo. A new scheme for the generation of a graded quadrilateral mesh. Computers
and Structures, 52(5):847–857, 1994.

[150] E. Lee. The rational Bezier representation for conics, in geometric modeling: Algorithms and
new trends, 1987.

[151] M. S. Lee, M. Feig, F. R. S. Jr., and C. Brooks, III. New analytic approximation to the
standard molecular volume definition and its application to generalized Born calculations. J.
Comput Chem., 24:1348–1356, 2003.

[152] M. S. Lee, F. R. Salsbury, and C. Brooks, III. Novel generalized Born methods. J Chemical
Physics, 116(24):10606–10614, 2002.

[153] W. K. Liu, Y. Guo, S. Tang, and T. Belytschko. A multiple-quadrature eight-node hexahedral
finite element for large deformation elastoplastic analysis. Computer Methods in Applied
Mechanics and Engineering, 154:69–132, 1998.

[154] S. Lodha. Surface Approximation with Low Degree Patches with Multiple Representations.
PhD thesis, Computer Science, Rice University, 1992.

[155] C. Loop and T. DeRose. A multisided generalization of Bézier surfaces. ACM Transactions
on Graphics (TOG), 8(3):234, 1989.

[156] C. Loop and T. DeRose. Generalized B-spline surfaces of arbitrary topology. ACM SIG-
GRAPH Computer Graphics, 24(4):356, 1990.

190

[157] A. Lopes and K. Brodlie. Improving the robustness and accuracy of the marching cubes
algorithm for isosurfacing. In IEEE Transactions on Visualization and Computer Graphics,
pages 19–26, 2003.

[158] A. Lopes and K. Brodlie. Improving the robustness and accuracy of the marching cubes
algorithm for isosurfacing. In IEEE Transactions on Visualization and Computer Graphics,
volume 9, pages 16–29, 2003.

[159] W. Lorensen and H. Cline. Marching cubes: A high resolution 3d surface construction
algorithm. In ACM SIGGRAPH ’87, pages 163–169, 1987.

[160] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construction
algorithm. In Proceedings of SIGGRAPH 1987, pages 163–169, 1987.

[161] J. D. Madura, J. M. Briggs, R. C. Wade, M. E. Davis, B. A. Luty, A. Ilin, J. Antosiewicz,
M. K. Gilson, B. Bagheri, L. R. Scott, and J. A. McCammon. Electrostatics and diffusion of
molecules in solution: simulations with the university of houston brownian dynamics program.
Computer Physics Communications, 91:57–95, 1995.

[162] M. Meyer, M. Desbrun, P. Schr
”oder, and A. Barr. Discrete differential-geometry operators for triangulated 2-manifolds.
Visualization and mathematics, 3(7):34–57, 2002.

[163] S. Mitchell and T. Tautges. Pillowing doublets: Refining a mesh to ensure that faces share
at most one edge. In 4th International Meshing Roundtable, pages 231–240, 1995.

[164] S. A. Mitchell and S. A. Vavasis. Quality mesh generation in higher dimensions. SIAM
Journal on Computing, 29(4):1334–1370, 2000.

[165] H. Mollmann. Introduction to the Theory of Thin Shells. Chichester, New York, 1981.

[166] D. Moore. Compact isocontours from sampled data. Graphics Gems III, pages 23–28, 1992.

[167] D. Moore and J. Warren. Approximation of dense scattered data using algebraic surfaces.
In Proceedings of the Twenty-Fourth Annual Hawaii International Conference on System
Sciences, 1991, pages 681–690, 1991.

[168] W. Mullins. Theory of thermal grooving. Journal of Applied Physics, 28:333, 1957.

[169] B. K. Natarajan. On generating topologically consistent isosurfaces from uniform samples.
The Visual Computer, 11:52–62, 1994.

[170] G. Nielson. The side-vertex method for interpolation in triangles. Journal of Approximation
Theory, 25:318–336, 1979.

[171] G. Nielson. The side-vertex method for interpolation in triangles. J. Apprrox. Theory, 25:318–
336, 1979.

[172] G. Nielson, T. Foley, B. Hamann, and D. Lane. Visualizing and Modeling Scattered Multi-
variate Data. IEEE Computer Graphics And Applications, 11:47–55, 1991.

[173] G. M. Nielson and B. Hamann. The asymptotic decider: Resolving the ambiguity in marching
cubes. In Proceedings of Visualization ‘91, pages 83–90, 1991.

[174] G. M. Nielson and J. Sung. Interval volume tetrahedrization. In IEEE Visualization ’97,
pages 221–228, 1997.

191

[175] M. Nina, D. Beglov, and B. Roux. Atomic radii for continuum electrostatics calculations
based on molecular dynamics free energy simulations. J. Phys. Chem. B, 101:5239–5248,
1997.

[176] G. Nürnberger, L. Schumaker, M. Sommer, and H. Strauß. Generalized tchebycheffian splines.
SIAM J. Math. Anal., 15:790–804, 1984.

[177] A. Oddy, J. Goldak, M. McDill, and M. Bibby. A distortion metric for isoparametric finite
elements. Transactions of CSME, No. 38-CSME-32, Accession No. 2161, 1988.

[178] Y. Ohtake, A. Belyaev, and I. Bogaevski. Polyhedral surface smoothing with simultaneous
mesh regularization. In Geometric Modeling and Processing 2000. Theory and Applications.
Proceedings, pages 229–237, 2000.

[179] Y. Ohtake, A. Belyaev, and I. Bogaevski. Mesh regularization and adaptive smoothing.
Computer-Aided Design, 33(11):789–800, 2001.

[180] B. O’Neill. Elementary differential geometry. Academic Pr, 1997.

[181] K. Opitz and H. Pottmann. Computing Shortest Paths on Polyhedra: Applications in Geo-
metric Modeling and Scientfic Visualization. International Journal of Computational Geom-
etry and Applications, 1995.

[182] S. Oudot, L. Rineau, and M. Yvinec. Meshing volumes bounded by smooth surfaces. In Proc.
14th Intl. Meshing Roundtable, pages 203–219, 2005.

[183] S. Owen. A survey of unstructured mesh generation technology. In 7th International Meshing
Roundtable, pages 26–28, 1998.

[184] M. Paluszny and R. R. Patterson. A family of curvature continuous cubic algebraic splines.
In Curves and Surfaces in Computer Vision and Graphics III, SPIE, pages 48–57, 1992.

[185] M. Paluszny and R. R. Patterson. A family of tangent continuous algebraic splines. ACM
Transaction on Graphics, 12,3:209–232, 1993.

[186] N. Patrikalakis and G. Kriezis. Representation of piecewise continuous algebraic surfaces in
terms of B-splines. The visual computer, 5(6):360–370, 1989.

[187] J. Peters. Evaluation and approximate evaluation of the multivariate Bernstein-Bézier form
on a regularly partitioned simplex. ACM Transactions on Mathematical Software, 20(4):460–
480, 1994.

[188] J. Peters and M. Wittman. Smooth blending of basic surfaces using trivariate box spline.
IMA 96, The Mathematics of Surfaces, 1996.

[189] H. Pottmann. Interpolation on surfaces using minimum norm networks. Computer Aided
Geometric Design, 9:51–67, 1992.

[190] V. Pratt. Techniques for conic splines. sig85, 19(3):151–159, 1985.

[191] V. Pratt. Direct least-squares fitting of algebraic surfaces. In ACM SIGGRAPH 1987, pages
145–152, 1987.

[192] M. Price and C. Armstrong. Hexahedral mesh generation by medial surface subdivision: Part
i. Int. J. Numer. Meth. Engng, 38(19):3335–3359, 1995.

192

[193] M. Price and C. Armstrong. Hexahedral mesh generation by medial surface subdivision: Part
ii. Int. J. Numer. Meth. Engng, 40:111–136, 1997.

[194] L. Ramshaw. Blossoming: A connect-the-dots approach to splines. Digital Systems Research
Center, 1987.

[195] G. D. Reis, B. Mourrain, R. Rouillier, and P. Trebuchet. An environment for symbolic and
numeric computation. In Proc. Internat. Conf. on Mathematical Software, pages 239–249,
2002.

[196] K. Rescorla. C1 Trivariate Polynomial Interpolation. Computer Aided Geometric Design,
4:237–244, 1987.

[197] F. M. Richards. Areas, volumes, packing, and protein structure. Annu. Rev. Biophys. Bioeng.,
6:151–176, 1977.

[198] B. Roux and T. Simonson. Implicit solvent models. Biophysical Chemistry, 78:1–20, 1999.

[199] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial Mathematics,
2003.

[200] M. Sabin. The use of piecewise form of numerical representation of shape. PhD thesis,
Hungarian Academy of Science, Budapest, 1976.

[201] G. Salmon. A treatise on conic sections, 1879.

[202] Sandia. Cubit mesh generation tookkit. web site: http://sass1693.sandia.gov/cubit.

[203] G. Sapiro. Geometric Partial Differential Equations and Image Analysis. Cambridge, Uni-
versity Press, 2001.

[204] M. Schaefer and M. Karplus. A comprehensive analytical treatment of continuum electro-
statics. J. Phys. Chem., 100:1578–1599, 1996.

[205] R. Schneider and L. Kobbelt. Geometric fairing of irregular meshes for free-form surface
design. Computer aided geometric design, 18(4):359–379, 2001.

[206] R. Schneiders. A grid-based algorithm for the generation of hexahedral element meshes.
Engineering With Computers, 12:168–177, 1996.

[207] R. Schneiders. Refining quadrilateral and hexahedral element meshes. In 5th International
Conference on Grid Generation in Computational Field Simulations, pages 679–688, 1996.

[208] R. Schneiders. An algorithm for the generation of hexahedral element meshes based on an
octree technique. In 6th International Meshing Roundtable, pages 195–196, 1997.

[209] R. Schneiders, R. Schindler, and F. Weiler. Octree-based generation of hexahedral element
meshes. In 5th International Meshing Roundtable, pages 205–216, 1996.

[210] I. Schoenberg. Contributions to the problem of approximation of equidistant data by analytic
functions. IJ Schoenberg: selected papers, page 58, 1988.

[211] I. Schoenberg and A. Whitney. On pólya frequency functions iii. the positivity of translation
determinants with applications to the interpolation problem by spline curves. Trans. Amer.
Math. Soc., 74:246–259, 1953.

[212] T. Sederberg. Planar piecewise algebraic curves. Computer Aided Geometric Design,
1(3):241–255, 1984.

193

[213] T. Sederberg. Piecewise algebraic surface patches. Computer Aided Geometric Design, 2:53–
59, 1985.

[214] T. Sederberg, D. Anderson, and R. Goldman. Implicitization, inversion, and intersection of
planar rational cubic curves. Computer Vision, Graphics and Image Processing, 31:89–102,
1985.

[215] T. Sederberg and A. Zundel. Scan line display of algebraic surfaces. In Proceedings of the
16th annual conference on Computer graphics and interactive techniques, page 156. ACM,
1989.

[216] J. R. Shewchuk. What is a good linear element? interpolation, conditioning, and quality
measures. In Proceedings of International Meshing Roundtable, pages 115–126, 2002.

[217] Y. Song, Y. Zhang, T. Shen, C. L. Bajaj, J. A. McCammon, and N. A. Baker. Finite element
solution of the steady-state smoluchowski equation for rate constant calculations. Biophysical
Journal, 86(4):1–13, 2004.

[218] J. Srinivasan, T. E. Cheatham, P. Cieplak, P. A. Kollman, and D. A. Case. Continuum
solvent studies of the stability of dna, rna, and phosphoramidate-dna helices. J. Am. Chem.
Soc, 120:9401–9409, 1998.

[219] M. Staten and S. Canann. Post refinement element shape improvement for quadrilateral
meshes. AMD-Trends in Unstructured Mesh Generation, 220:9–16, 1997.

[220] W. C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson. Semianalytical treatment of
solvation for molecular mechanics and dynamics. J. Am. Chem. Soc, 112:6127–6129, 1990.

[221] B. Szabo and I. Babuska. Finite Element Analysis. Wiley, New York, 1991.

[222] J. Talbert and A. Parkinson. Development of an automatic, two dimensional finite element
mesh generator using quadrilateral elements and bezier curve boundary definitions. Int. J.
Numer. Meth. Engng, 29:1551–1567, 1991.

[223] T. Tautges, T. Blacker, and S. Mitchell. The whisker-weaving algorithm: a connectivity based
method for constructing all-hexahedral finite element meshes. Int. J. Numer. Meth. Engng,
39:3327–3349, 1996.

[224] S.-H. Teng and C. W. Wong. Unstructured mesh generation: Theory, practice, and perspec-
tives. International Journal of Computational Geometry and Applications, 10(3):227–266,
2000.

[225] R. Walker. Algebraic Curves. Springer Verlag, New York, 1978.

[226] F. Weiler, R. Schindler, and R. schneiders. Automatic goemtry-adaptive generation of quadri-
lateral and hexahedral element meshes for the fem. Numerical Grid Generation in Compu-
tational Field Simulations, pages 689–697, 1996.

[227] R. Westermann, C. Johnson, and T. Ertl. A level-set method for flow visualization. In
Proceedings of the conference on Visualization’00, page 154. IEEE Computer Society Press,
2000.

[228] R. Westermann, L. Kobbelt, and T. Ertl. Real-time exploration of regular volume data by
adaptive reconstruction of isosurfaces. The Visual Computer, 15(2):100–111, 1999.

[229] B. White. Evolution of curves and surfaces by mean curvature. In Proc. of the Inernational
Congress of Mathematicians, volume 1, pages 525–538, 2002.

194

[230] T. Willmore. Riemannian geometry. Oxford University Press, USA, 1996.

[231] Z. Wood, M. Desbrun, P. Schroder, and D. Breen. Semi-regular mesh extraction from volumes.
In Visualization 2000 Conference Proceedings, pages 275–282, 2000.

[232] Z. Wood, H. Hoppe, M. Desbrun, and P. Schroder. Removing excess topology from isosurfaces.
ACM Transactions on Graphics, 23(2):190–208, April 2004.

[233] Z. Wood, P. Schr
”oder, D. Breen, and M. Desbrun. Semi-regular mesh extraction from volumes. In Proceedings
of the conference on Visualization’00, pages 275–282. IEEE Computer Society Press, 2000.

[234] Z. Wood, P. Schroder, D. Breen, and M. Desbrun. Semi-regular mesh extraction from volumes.
In VIS ’00: Proc. of the Conference on Visualization 2000, pages 275–282. IEEE Computer
Society Press, 2000.

[235] A. Worsey and G. Farin. An n-dimensional Clough-Tocher element. Constructive Approxi-
mation, 3(2):99–110, 1987.

[236] A. Worsey and B. Piper. A trivariate Powell-Sabin interpolant. Computer Aided Geometric
Design, 5:177–186, 1988.

[237] G. Xu. Convergence of discrete Laplace-Beltrami operators over surfaces*. Computers &
Mathematics with Applications, 48(3-4):347–360, 2004.

[238] G. Xu, C. Bajaj, and H. Huang. C1 Modeling with A-patches from Rational Trivariate
Functions. Computer Aided Geometric Design, 18, 2001.

[239] G. Xu, Q. Pan, and C. Bajaj. Discrete surface modelling using partial differential equations.
Computer Aided Geometric Design, 23(2):125–145, 2006.

[240] G. Xu and Y. Shi. Progressive computation and numerical tables of generalized Gaussian
quadrature formulas. CHINESE JOURNAL OF NUMERICAL MATHEMATICS AND AP-
PLICATIONS, 28(2):10, 2006.

[241] Y. Zhang, C. Bajaj, and B.-S. Sohn. 3d finite element meshing from imaging data. Submitted
to the special issue of Computer Methods in Applied Mechanics and Engineering (CMAME)
on Unstructured Mesh Generation, www.ices.utexas.edu/∼jessica/meshing, 2003.

[242] Y. Zhang, C. Bajaj, and B.-S. Sohn. Adaptive and quality 3d meshing from imaging data.
In ACM Symposium on Solid Modeling and Applications, pages 286–291, 2003.

[243] Y. Zhang, C. Bajaj, and B.-S. Sohn. Adaptive and quality 3d meshing from imaging data.
In Proc. of 8th ACM Symposium on Solid Modeling and Applications, pages 286–291, June
2003.

[244] Y. Zhang, G. Xu, and C. Bajaj. Quality meshing of implicit solvation models of biomolecular
structures. Cagd, 23:510–530, 2006.

[245] Y. Zhou, B. Chen, and A. Kaufman. Multiresolution tetrahedral framework for visualizing
regular volume data. In IEEE Visualization, pages 135–142, 1997.

[246] J. Zhu, O. Zienkiewicz, E. Hinton, and J. Wu. A new approach to the development of
automatic quadrilateral mesh generation. Int. J. Numer. Meth. Engng, 32:849–866, 1991.

195

