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1 Curvature Computations

See section in Chapter 1 of same name.

2 Numerical and Symbolic Integration

Let
I[f ] =

∫
Ω
w(x)f(x) dx

where Ω ⊂ Rn. We are looking for a cubature formula which has the form

Q[f ] =
N∑
j=1

wjf(x(j)) (1)

where the points x(j) and the weights wj are independent of the function f and are chosen so that
Q[f ] gives a good approximation to I[f ] for some class of functions.

Because a well-behaved function can be approximated by a polynomial, thus the algebraic degree
of a cubature formula is a measure of the quality of the cubature.

We discuss how to construct a high order cubature formula on an A-path, i.e. Ω is a A-patch.

2.1 Cubature Formulae Notation

Definitions

• The vector space of all algebraic polynomials in n variables of degree at most d is denoted by
Pnd .

• A polynomial f ∈ Pn is called d-orthogonal polynomial if I[fg] = 0 whenever fg ∈ Pnd .

• A polynomial f ∈ Pn is called orthogonal(w.r.t. integral I), if I[fg] = 0 whenever deg(g) <
deg(f).

• A set of polynomials S is called fundamental of degree d if dimV n−1
d (= dimV n

d − dimV n
d−1)

linearly independent polynomials of the form xα1
1 . . . xαnn + Pα, Pα ∈ V n

d−1,
∑
αi = d, belong

to span(S).

• Zero set of an ideal U : NG(U) = {x ∈ Cn : f(x) = 0 for all f ∈ U}.
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• The Hilbert function H is defined as

H(k; U) :=
{

dimPnk − dim(U
⋂
Pnk ), k ∈ N,

0, −k ∈ N0.

• Let U be a polynomial ideal. The set {f1, . . . , fs} ⊂ U is an H-basis for U if for all f ∈ U there
exist polynomials g1, . . . , gs such that

f =
s∑
j=1

gjfj and deg(gjfj) ≤ deg(f), j = 1, . . . , s.

• An ideal U is a real ideal if all polynomials vanishing at NG(U) ∩ Rn belong to U.

• Basic orthogonal polynomials: polynomials of the form Pα(x1, . . . , xn) = xα1
1 . . . xαnn +P̃ , with∑n

i=1 αi = d and P̃ ∈ Pnd−1

• A linear functional I[·] is centrally symmetric if

I[xα] = 0 ∀α ∈ Nn
0 ,

n∑
j=1

αj odd.

• Let the set of monomials M = {xα : α ∈ Nn} be ordered by < such that, for any f, f1, f2 ∈
M, 1 ≤ f and f1 ≤ f2 imply ff1 ≤ ff2. Let f =

∑m
i=1 cifi with fi ∈ M and ci ∈ R0. Then

the headterm of f =Hterm(f) := fm, and the maximal part of f = M(f) := cmfm. For
f, g ∈ Pn \ {0} let

H(f, g) := lcm{Hterm(f),Hterm(g)}.

• Let F ⊂ Pn \{0} be a finite set. We write f → F g if f, g ∈ Pn and there exist h ∈ Pn, fi ∈ F
such that f = g + hfi, Hterm(g)<Hterm(f) or g = 0. The map → F is called a reduction
modulo F. By → +

F we donote the reflexive transitive closure of → F .

• A set F := {f1, . . . , fl} is a Groebner basis (G-basis) for the ideal U generated by F if

f ∈ U implies f → +
F 0.

2.2 Constructing Cubature Formulae

2.2.1 Interpolatory Cubature Formulae

Definition: If the weights of a cubature formula of degree d are uniquely determined by the points,
the cubature formula is called an interpolatory cubature formula.

A cubature formula that is exact for all elements of V n
d is determined by a system of nonlinear

equations
Q[fi] = I[fi], i = 1, . . . ,dimV n

d , (2)

where the fi form a basis for V n
d . If the N points x1,x2, . . . ,xN of a cubature formula are given,

then (2) is a system of dimV n
d linear equations in the N unknown weights. Hence an interpolatory

cubature formula has N ≤ dimV n
d and there exist N linearly independent polynomials U1, . . . , UN ∈

V n
d such that

det

 U1(x(1)) . . . UN (x(1))
...

...
...

U1(x(N)) . . . UN (x(N))

 6= 0.
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These polynomials generate a maximal, not uniquely determined, vector space of polynomials that
do not vanish at all given points.

One can always find t := dimV n
d −N polynomials p1, . . . , pt such that the polynomials

U1, . . . , UN , p1, . . . , pt

form a basis for V n
d . Then one can solve U1(x(1)) . . . UN (x(1))

...
...

...
U1(x(N)) . . . UN (x(N))


 ai1

...
aiN

 =

 pi(x(1))
...

pi(x(N))

 , i = 1, . . . , t,

and so obtain t = dimV n
d −N linearly independent polynomials

Ri = pi −
n∑
j=1

aijUj , i = 1, . . . , t

that vanish at the given N points of the cubature formula. We can replace the polynomials pi in
the basis of V n

d by the polynomials Ri.
With every cubature formula of degree d one can associate a basis of V n

d that consists of
dimV n

d −N polynomials Ri that vanish at all the points of the cubature formula and N polynomials
Ui that do not vanish at all points. A cubature formula is thus fully characterized by the polynomials
Ri. The polynomials Ui give rise to a linear system that determines the weights ω1, . . . , ωN :

Q[Ui] =
N∑
j=1

ωjUi(x(j)) = I[Ui], i = 1, · · · , N.

The polynomials Ui and Ri are not uniquely determined . The direct sum of the vector spaces
generated by these polynomials is

span{Ui} ⊕ span{Ri} = V n
d .

2.2.2 Ideal Theory

Theorem Let I be an integral over an n−dimensional region. Let {x(1), . . . ,x(N)} ⊂ Cn and
U := {f ∈ V n : f(x(i)) = 0, i = 1, . . . , N}. Then the following statements are equivalent.

• f ∈ U
⋂
V n
d implies I[f ] = 0.

• There exists a cubature formula Q[f ] :=
∑n

j=1 ωjf(x(j)) such that I[f ] = Q[f ], for all f ∈ V n
d ,

with at most H(d; U) (complex) weights different from zero.

Theorem If {f1, . . . , fs} is an H-basis of a polynomial ideal U and if the set of common zeros
of f1, . . . , fs is finite and nonempty, then the following statements are equivalent.

• There is a cubature formula of degree d for the integral I which has as points the common
zeros of f1, . . . , fs. (These zeros may be multiple, leading to the use of function derivatives in
the cubature formula.)

• fi is d−orthogonal for I, i = 1, 2, . . . , s.

Theorem Let {R1, . . . , Rt} ⊂ Pnd+1 be a set of linearly independent d-orthogonal polyno-
mials that is fundamental of degree d + 1. Let U = (R1, . . . , Rt), V = span{R1, . . . , Rt}. Let
N = dimPnd+1 − t and U be an arbitrary but fixed vector space such that V

⊕
U = Pnd+1. The

following statements are equivalent:
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(a) There exists an interpolatory cubature formula of degree d

Q[f ] =
N∑
j=1

wjf(x(j)) (3)

with x(j) ∈ Rn, {x(1), . . . ,x(N)} ⊂ NG(U), and wj > 0.

(b)

(i)U ∩ U = {0}
(ii)I[f2 − g] > 0 for all f ∈ U , and g ∈ U satisfying f2 − g ∈ Pnd

(c) U is a real ideal and |NG(U) ∩ Rn| = N . x(j) are elements of NG(U) ∩ Rn.

2.2.3 Bounds

Upper Bound
Tchakaloff’s Theorem: Let I be an integral over an n−dimensional region Ω with a weight

function that is nonnegative in Ω and for which the integrals of all monomials exist. then a cubature
formula of degree d with N ≤ dimV n

d points exists with all points inside Ω and all weights positive.
Lower Bound
Theorem If the cubature formula Q[f ] =

∑N
j=1 ωjf(x(j)), ωj ∈ R is exact for all polynomials

of V n
2k, then the number of points N ≥ dimV n

k |Ω.
Theorem Let R2k denote the vector space of even polynomials of Pn2k+1|Ω and R2k+1 denote

the vector space of odd polynomials of Pn2k+1|Ω, k ∈ N0. If the algebraic degree of the cubature
formula Q[f ] =

∑N
j=1 ωjf(y(j)), ωj ∈ R for a centrally symmetric integral is d = 2k + 1, then

N ≥ 2 dimRk − 1, if k even and 0 is a point,
N ≥ 2 dimRk, otherwise.

A cubature formula that attains this bound is centrally symmetric and has all weights positive.

2.2.4 The characterization of minimal formulae and the reproducing kernel

Choose the polynomials φ1(x), φ2(x), ... ∈ V n such that φi(x) is orthogonal to φj(x), for all j < i,
and I(φiφ̄i) = 1. This means that {φi(x)}∞i=1 is an orthogonal basis of V n. For a given k ∈ N we
set κ := dimV n

k and

K(x,y) :=
κ∑
i=1

φ̄i(x)φi(y).

where φ̄i(x) is the conjugate of φi(x). K(x,y) is reproducing kernel in the space V n
k : if f ∈ V n

k

then f coincides with its expansion in φi, so that for a ∈ Cn fixed,

f(a) = I[f(x)K(x,a)] =
κ∑
i=1

I[f(x)φ̄i(x)]φi(a).

Theorem A necessary and sufficient condition for the points x(j), j = 1, . . . , N = dimV n
k , to

be the points of a cubature formula that is exact for V n
2k is that

K(x(r),x(s)) = brδrs,

with br 6= 0 and δrs the Kronecker symbol.
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q 1 2 3 4 5

v1 0.3333333333 0.0 0.1333333333 0.8168475729 0.05961587
v2 0.5 0.1333333333 0.0915762135 0.47014206
v3 0.5 0.7333333333 0.0915762135 0.47014206
v4 0.3333333333 0.1081030181 0.79742699
v5 0.4459484909 0.10128651
v6 0.4459484909 0.10128651
v7 0.33333333

w1 0.3333333333 0.5 0.7333333333 0.0915762135 0.47014206
w2 0.0 0.1333333333 0.8168475729 0.05961587
w3 0.5 0.1333333333 0.0915762135 0.47014206
w4 0.3333333333 0.4459484909 0.10128651
w5 0.1081030181 0.79742699
w6 0.4459484909 0.10128651
w7 0.33333333

W1 1.0 0.3333333333 0.5208333333 0.1099517436 0.13239415
W2 0.3333333333 0.5208333333 0.1099517436 0.13239415
W3 0.3333333333 0.5208333333 0.1099517436 0.13239415
W4 -0.5625 0.2233815896 0.12593918
W5 0.2233815896 0.12593918
W6 0.2233815896 0.12593918
W7 0.225

Table 1: Integration rules over triangle. (1 − vi − wi, vi, wi) are barycentric coordinates of the nodes. Wi

are the weights. The first row represents the algebraic precision.

2.3 Gauss Formula on an A-patch

2.3.1 Gauss Points and Weights

When we do some numerical integral calculation on an A-patch, constructing a Gauss integral
formula is a good choice. While to construct the Gauss integral formula on an A-patch directly is
usually difficult.

From the discussion above we have established the bijection between an A-patch and an planar
triangle. The Gauss points in a triangle is already known.

We have experimented with a set of numerical integration schemes in the q-version over triangles.
These include one point, three points, four points, six points and seven points rules. Table 1
summarizes these rules with coordinates, weights and algebraic precision.

Our method is to project these Gauss points onto the A-patch and use them as well as corre-
sponded weights as the Gauss points on the A-patch.

2.3.2 Error Analysis

The function f(x, y, z) defined on the A-patch S can be expressed as

f(x, y, z) = f(x(β1, β2, t(β1, β2)), y(β1, β2, t(β1, β2)), z(β1, β2, t(β1, β2)))
, g(β1, β2, t(β1, β2)).

The integral on the A-patch S is∫ ∫
S f(x, y, z)ds

=
∫ 1

0

∫ 1−β1

0 g(β1, β2, t(β1, β2))

√
1 +

(
∂t
∂β1

)2
+
(
∂t
∂β2

)2
dβ2dβ1

Let 0 ≤ β1, β2 ≤ 1 and β1 + β2 ≤ 1, then β1P1 + β2P2 + (1 − β1 − β2)P3 is a point Q in the
triangle P1P2P3. The line connecting this point and P4 intersects the A-patch with a unique point
P . The point P on this line can be written as

P = (1− t)β1P1 + (1− t)β2P2 + (1− t)(1− β1 − β2)P3 + tP4 = α1P1 + α2P2 + α3P3 + α4P4 (4)
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Since this point is on the A-patch, substitute the equation above into

F (α1, α2, α3, α4) = 0

we get a equation about t, β1, β2

F ′(t, β1, β2) = 0. (5)

According to equation (4)

f(x, y, z)|S = f(P )|P∈S
= f(α1P1 + α2P2 + α3P3 + α4P4)
= f((1− t)β1P1 + (1− t)β2P2 + (1− t)(1− β1 − β2)P3 + tP4)

Here β1, β2, t satisfy equation (5) and F ′(β1, β2, t) is a polynomial about β1, β2, t. So

∂t

∂β1
= −(∂F ′)/(∂β1)

(∂F ′)/(∂t)

∂t

∂β2
= −(∂F ′)/(∂β2)

(∂F ′)/(∂t)

If f(x, y, z) is a polynomial of degree n, then the degree of g(β1, β2, t) should be 2n. If the
A-patch is of degree m, then (∂F ′)/(∂βi) and (∂F ′)/(∂t) are all of degree m − 1. So the degree

of g(β1, β2, t(β1, β2))

√
1 +

(
∂t
∂β1

)2
+
(
∂t
∂β2

)2
should be of degree 2n + m. That is to say, if we use

the Gauss points of the triangle constructing a cubature formula which is exact for polynomial of
degree 2n+m in the integral

∫ 1
0

∫ 1−β1

0 h(β1, β2)dβ2dβ1, it is actually exact for polynomial of degree
n in the integral

∫ ∫
S f(x, y, z)ds.

So we need to find a better way to calculate the integral on the A-patch.

2.4 T-method

This method was first suggested by Morrow and Patterson (1978)[21] and Schmid (1978)[47] for
two-dimensional regions. It was further developed by Schmid (1980)[48]; see also Schmid (1980)[49]
and Schmid (1995)[50].

Construct Ri: Consider the 2D case.

Ri = P k+1−i,i +
k∑
j=0

βijP
k−j,j +

k−1∑
j=0

γijP
k−1−j,j , i = 0, . . . , k + 1 (6)

where P a,b are the basic orthogonal polynomials.
When the integral is centrally symmetric, βij vanish. To determine γij , let

Ti = yRi − xRi+1, i = 0, . . . , k

Assume two conditions:

• Ti is a polynomial of degree k and orthogonal

• xTi, yTi, i = 0, . . . , k, are of degree k + 1 and xTi, yTi ∈ span{R0, . . . , Rk+1}.

The above two conditions lead to linear and quadratic equations in γij . The inequality in Theorem
6.8 leads to inequalities for γij .

Theorem Let

Ri = P k+1−i,i +
∑k−1

j=0 γijP
k−1−j,j , i = 0, . . . , k + 1

Ti = yRi − xRi+1, i = 0, . . . , k

7



If the polynomials Ti are (2k − 1)−orthogonal and if all polynomials xTi, yTi are elements of
span{R0, . . . , Rk+1}, then F := {R0, . . . , Rk+1, T0, . . . , Tk} is a G-basis.

Theorem Let F be as defined in Theorem 9.1. If the common zeros of the polynomials in
F are real and simple, then there exists a cubature formula of degree 2k − 1 with the elements of

NG(F ) as points. The number of points N ≤ k(k + 3)
2

.

Theorem If the ideal of all polynomials that vanish at the N points of a cubature formula of
degree 2k − 1 contains a fundamental set of degree k + 1, then

k(k + 1)
2

+
⌊
k

2

⌋
≤ N ≤ k(k + 1)

2
+
⌊
k

2

⌋
+ 1.

With the N points as the ones of the cubature formula we only need to determine the weights
ω1, . . . , ωN by equations

Q[Ui] =
N∑
j=1

ωjUi(x(j)) = I[Ui], i = 1, . . . , N.

where U1, . . . , UN is a basis of U , such that U ⊕ (span(F ) ∩ Pnd ) = Pnd .

Algorithm:

Step 1. Construct the basic orthogonal polynomials of degree k − 1, k, k + 1 respectively, which can
be derived by solving the equations I[P i,jxm] = 0, m ∈ Nn, 0 ≤|m |≤ i+ j.

Step 2. Let

Ri = P k+1−i,i +
k−1∑
j=0

γijP
k−1−j,j , i = 0, . . . , k + 1

Step 3. Let
Ti = yRi − xRi+1, i = 0, . . . , k

Step 4. Solve the equations
I[Tixm] = 0, m ∈ Nn, 0 ≤|m |≤ k − 1.

and
xTi, yTi ∈ span{R0, · · · ,Rk+1}

for γij .

Step 5. Substitute the γij into Ri and then find the common zeros ys of R0, · · · , Rk+1.

Step 6. Use the zeros ys as the cubature points and solve linear equations for the weights ωs.

2.5 S-method

The S-method was suggested by Cools and Haegemans (1987)[80] in an attempt to find a method
that is less dependent on the lower bound than the T-method.

Construct Ri, i = 1, . . . , k as (6). The polynomials Ri can be divided into two sets: A := {Ri :
i is even. } and B := {Ri : i is odd. }We demand that A ⊂ U or B ⊂ U. We assign C := A and
q := 0 if we want to investigate the case A ⊂ U. We assign C := B and q := 1 if we want to
investigate the case B ⊂ U.

Let
Si := y2Ri − x2Ri+2, i = q, q + 2, . . . , k − 1.

Assume two conditions:
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• Si be a polynomial of degree k + 1 and be orthogonal to all polynomials of degree k − 2.

• Si ∈ span(C).

The above two conditions lead to linear and quadratic equations in γij . The inequality in Theorem
6.8 leads to inequalities for γij .

In Cools and Haegemans (1988)[81], necessary and sufficient conditions are given for this
method.

Then we use the same method to construct the cubature formulae as T-method.

3 Generalized Born Electrostatics

Most of the protein molecules live in the aqueous solvent environment and the stabilities of the
molecules depend largely upon their configuration and the solvent type. Since the solvation energy
term models the interaction between a molecule and the solvent, the computation of the molecular
solvation energy (also known as molecule - solvent interaction energy) is a key issue in molecu-
lar dynamics (MD) simulations, as well as in determining the inter-molecular binding affinities in
vivo for drug screening. Molecular dynamics simulations where the solvent molecules are explic-
itly represented at atomic resolution, for example as in the popular package NAMD [76], provide
direct information about the important influence of solvation. Moreover, as the total number of
atoms of solvent molecules far outnumber the atoms of the solute, a larger fraction of the time
is spent on computing the trajectory of the solvent molecules, even though the primary focus of
the simulation is the configuration and energetics of the solute molecule. Implicit solvent mod-
els, attempt to considerably lower the cost of computation through a continuum representation
(mean-field approximation) of the solvent [85]. In the implicit model, the solvation free energy
Gsol which is the free energy change to transfer a molecule from vacuum to solvent, consists of
three components: the energy to form a cavity in the solvent which is also known as the hydropho-
bic interactions, the van der Waals interactions between the molecule and the solvent, and the
electrostatic potential energy between the molecule and the solvent (also known as polarization
energy), Gsol = Gcav +Gvdw +Gpol. Based on the Weeks-Chandler-Andersen (WCA) perturbation
theory [102, 23], the non-polar solvation energies are of the form Gcav +Gvdw = G(rep) +G(rep). In
[32],G(rep) is described as the weighted sum of the solvent-accessible surface area Ai of the atoms.
In [31], a volume term is added: G(rep) =

∑M
i=1 γiAi + pV , where p is the solvent pressure parame-

ter and V is the solvent-accessible volume. In [99], the attractive van der Waals dispersion energy
G(att) =

∑M
i=1G

(att)
i , where G(att)

i = ρ0

∫
u

(att)
i (xi,y)θ(y) dy, ρ0 is the bulk density, u(att)

i (xi,y) is
the van der Waals dispersive component of the interaction between atom i in the solute and the
volume of solvent at y, θ(y) is a density distribution function for the solvent. Hence the non-polar
solvation energies

Gcav +Gvdw =
M∑
i=1

γiAi + pV + ρ0

∫
u

(att)
i (xi,y)θ(y) dy. (7)

The electrostatic solvation energy is caused by the induced polarization in the solvent when the
molecule is dissolved in the solvent, therefore

Gpol =
1
2

∫
φreaction(r)ρ(r) dr, (8)

where φreaction = φsolvent − φgas-phase, φ(r) and ρ(r) are the electrostatic potential and the charge
density at r, respectively.

The Poisson-Boltzmann (PB) model was developed to compute the electrostatic solvation en-
ergy by solving the equation −∇(ε(x)∇φ(x)) = ρ(x) for the electrostatic potential φ. Numerical
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methods to solve the equation include the finite difference method [89, 63], finite element method
[54, 6], and boundary element method [68]. However the PB methods are prohibitive for large
molecules such as proteins due to the limited computational resources. As an alternative, (8) is
approximated by a generalized Born (GB) model which is in the form of discrete sum [94]

Gpol = −τ
2

∑
i,j

qiqj[
r2
ij +RiRj exp(− r2ij

4RiRj
)
] 1

2

, (9)

where τ = 1
εp
− 1

εw
, εp and εw are the solute (low) and solvent (high) dielectric constants, qi and

Ri are the charge and effective Born radius of atom i, respectively, and rij is the distance between
atoms i and j. The solvation force acting on atom α, which is part of the forces driving dynamics
is computed as

Fsol
α = −∂Gsol

∂xα
. (10)

Because the GB calculation is much faster than solving the PB equation, the GB model is widely
used in the MD simulations. Programs which implement the GB methods include CHARMM [72],
Amber [22], Tinker [82], and Impact which is now part of Schrodinger, Inc.’s FirstDiscovery program
suite. Even though the GB computation is much faster than the PB model, the computation of
the Born radius Ri is still slow. During the MD simulation, the Born radii need to be frequently
recomputed at different time steps. Because this part of computation is too time-consuming, there
are attempts to accelerate the MD simulation by computing the Born radii at a larger time step.
For example, in [97] in their test of a 3 ns GB simulation of a 10-base pair DNA duplex, they
change the time step of computing the Born radii and long-range electrostatic energy from 1 fs to
2 fs. This reduces the time of carrying out the simulation from 13.84 hours to 7.16 hours. From
this example we can see that the calculation of the Born radii takes a large percentage of total
computation time in the MD simulation. In the long dynamic runs, this decrease in the frequency
of evaluating the effective Born radii are not accurate enough to conserve energy which restricts
the MD simulation of the protein folding process to small time scale [91]. Hence it is demanding
to calculate the Born radii and the solvation energy accurately and efficiently.

In this paper we develop a method for fast computation of the GB solvation energy, along with
the energy derivatives for the solvation forces, based on a discrete and continuum model of the
molecules (Figure 1). An efficient method of sampling quadrature points on the nonlinear patch is
given. We also show that the error of the Born radius calculation is controlled by the size of the
triangulation mesh and the regularity of the periodic function used in the fast summation algorithm.
The time complexity of the forces computation is reduced from the original O(MN+M2) to nearly
linear time O(N +M + n3 log n+M logM), where M is the number of atoms of a molecule, N is
the number of integration points that we sample on the surface of the molecule when we compute
the Born radius for each atom, and n is a parameter introduced in the fast summation algorithm.
The fast summation method shows its advantage when it is applied to the Born radius calculations
for macromolecules, where there could be tens of thousands or millions of atoms, and N could
be even larger. In the fast summation method, one only need to choose a small n which is much
smaller than M and N to get a good approximation, which makes the new fast summation based
GB method more efficient.

The rest of the paper is organized as follows: in Section 3.1 we explain the geometric model
that our energy and force computation are based on; we discuss in detail the energy computation
in Section 3.2 and the force computation in Section 3.3; some implementation results are shown
in Section 3.4; some details such as the fast summation algorithm and the NFFT algorithm are
discussed in the appendix.
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Figure 1: Top left: the discrete van der Waals surface model (436 atoms); top middle: the trian-
gulation of the continuum Gaussian surface model with 6004 triangles; top right: the regularized
triangular mesh where the quality of the elements is improved (making each as close as possible to
an equilateral triangles); bottom left: the continuum ASMS model generated from the triangular
mesh up right; bottom right: the molecular surface rendered according to the interaction with the
solvent where red means strong and blue means weak interaction.

3.1 Geometric model

3.1.1 Gaussian surface

The electron density and shape are used in a similar sense in the literature with respect to the
modeling of molecular surfaces or interfaces between the molecule and its solvent. The electron

density of atom i at a point x is represented as a Gaussian function: f(x) = e
β(
|x−xi|

2

r2
i

−1)
where

xi, ri are the position of the center and radius of the atom k. If we consider the function value of
1, we see that it is satisfied at the surface of the sphere (x : |x − xi| = ri). Using this model, the
electron density at x due to a protein with M atoms is just a summation of Gaussians:

f(x) =
M∑
i=1

e
β(
|x−xi|

2

r2
i

−1)
(11)

where β is a parameter used to control the rate of decay of the Gaussian and known as the
blobbiness of the Gaussian. In [84] β = −2.3, isovalue = 1 is indicated as a good approximation
to the molecular surface.

3.1.2 Triangular mesh

The triangular mesh of the Gaussian surface is generated by using the dual contouring method
[59, 109]. In the dual contouring method a top-down octree is recursively constructed to enforce
that each cell has at most one isocontour patch. The edges whose endpoints lie on different side
of the isocontour are tagged as sign change edges. In each cube that contains a sign change edge,
we compute the intersection points (and their unit normals) of the isocontour and the edges of the
cube, denoted as pi and ni, and compute the minimizer point in this cube which minimizes the
quadratic error function (QEF) [37]:

QEF(x) =
∑
i

[ni · (x− pi)]2.
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Since each sign change edge is shared by either four cubes (uniform grid) or three cubes (adaptive
grid), connecting the minimizer points of these neighboring cubes forms a quad or a triangle that
approximates the isocontour. We divide the quads into triangles to generate the pure triangular
mesh.

3.1.3 Algebraic spline molecular surface (ASMS)

The triangular mesh is a linear approximation to the Gaussian surface. In our solvation energy
computation, we generate another higher order approximation called ASMS model (Figure 4(f))
based on the triangular mesh to improve accuracy and efficiency [111]. Starting from the triangular
mesh, we first construct a prism scaffold as follows. Let [vivjvk] be a triangle of the mesh where
vi, vj , vk are the vertices of the triangle and ni, nj , nk be their unit normals. Define vl(λ) =
vl + λnl. Then the prism is define as

Dijk := {p : p = b1vi(λ) + b2vj(λ) + b3vk(λ), λ ∈ Iijk},

where b1, b2, b3 ∈ [0, 1], b1 + b2 + b3 = 1, and Iijk is a maximal open interval such that (i) 0 ∈ Iijk,
(ii) for any λ ∈ Iijk, vi(λ), vj(λ) and vk(λ) are not collinear, and (iii) for any λ ∈ Iijk, ni, nj and
nk point to the same side of the plane Pijk(λ) := {p : p = b1vi(λ) + b2vj(λ) + b3vk(λ)} (Figure 2).

Figure 2: A prism Dijk constructed with a triangle [vivjvk] as a basis.

Next we define a function over the prism Dijk in the cubic Bernstein-Bezier (BB) basis:

F (b1, b2, b3, λ) =
∑

i+j+k=3

bijk(λ)B3
ijk(b1, b2, b3), (12)

where B3
ijk(b1, b2, b3) = 3!

i!j!k!b
i
1b
j
2b
k
3. The ASMS denoted as Γ is the zero contour of F . The scheme

for defining the coefficients bijk are defined is described in detail in [111]. In short they are defined
such that

• the vertices of the triangular mesh are points on Γ;

• Γ is C1 at the vertices of mesh;

• Γ is C1 at the midpoints of the mesh edges.

Later, given the barycentric coordinates of a point (b1, b2, b3) in triangle [vivjvk], we solve the
equation F (b1, b2, b3, λ) = 0 for λ by Newton’s method. In this way we can get the corresponding
point (x, y, z) on Γ:

(x, y, z)T = b1vi(λ) + b2vj(λ) + b3vk(λ). (13)

We have proved in [111] that the ASMS model is C1 everywhere if the normals of the mesh satisfy
certain symmetry conditions. The error between the ASMS and the Gaussian surface is bounded
and we have shown that the ASMS converges to the Gaussian surface at the rate of O(h3) where
h is the maximum edge length of the mesh.
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Figure 3: The control coefficients of the cubic Bernstein-Bezier basis of function F

(a) (b) (c)

(d) (e) (f)

Figure 4: (a) is the discrete van der Waals model of protein 1BGX with 19,647 atoms; (b) and (c)
are the zoom-in views of the the initial triangulation of the continuum surface with 85656 triangles;
(d) and (e) are the zoom-in views of the quality improved mesh; (f) is the a continuum ASMS
model generated based on the quality improved mesh.

3.2 Fast solvation energy computation

3.2.1 Method

Similarly to what is done for other GB models, we use (9) as the electrostatic solvation energy
function. Before we compute (9), we need to first compute the effective Born radius Ri for every
atom which reflects the depth a charge buried inside the molecule (Figure: 5). An atom buried deep
in a molecule has a larger Born radius, whereas an atom near the surface has a smaller radius. Hence
surfactant atoms have a stronger impact on the polarization. Given a discrete van der Waals (vdW)
atom model, as long as we know Ri for each atom, we can compute (9) by using the fast multipole
method (FMM) [44] with the time complexity O(M logM). However the Born radii computation
is not easy and is very time-consuming. There are various ways of computing the Born radius as
summarized in [33]. These methods can be divided into two categories: volume integration based
methods and surface integration based methods. In general, the surface integration methods are
more efficient than the volume integration methods due to the decreased dimension. So we adopt
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the surface integration method given in [38] to compute the Born radius:

R−1
i =

1
4π

∫
Γ

(r− xi) · n(r)
|r− xi|4

dS i = 1, . . . ,M, (14)

where Γ is the molecule-solvent interface, xi is the center of atom i, and n(r) is the unit normal on
the surface at r and we use ASMS as the model of Γ.

Figure 5: The effective Born radius reflects how deep a charge is buried inside the molecule. The
Born radius of an atom is small if the atom is close to the surface of the molecule, otherwise the
Born radius is large therefore has weaker interaction with the solvent.

(a) 1PPE (b) 1ANA (c) 1MAG

(d) 1CGI l

Figure 6: Gaussian integration points on the surface of protein (a) 1PPE, (b) 1ANA, (c) 1MAG,
and (d) 1CGI l. The surfaces are partitioned into 24244 triangular patches for (a), 28620 triangular
patches for (b), 30624 triangular patches for (c), and 29108 triangular patches for (d). There are
three Gaussian quadrature nodes per triangle. The nodes are then mapped onto the ASMS to form
the red point cloud.

Applying the Gaussian quadrature, We compute (14) numerically:

R−1
i =

1
4π

N∑
k=1

wk
(rk − xi) · n(rk)
|rk − xi|4

i = 1, . . . ,M, (15)
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where wk and rk are the Gaussian integration weights and nodes on Γ (Figure 6). rk are computed
by mapping the Gaussian nodes of a master triangle to the algebraic patch via the transformation
T . Let r0

k and w0
k be one of the Gaussian nodes and weights on the master triangle. Then the

corresponding node rk and weight wk are rk = T (r0
k) and wk = w0

k|J(T )| where |J(T )| is the
Jacobian determinant of T .

We formalize (15) in two steps. First we split it into two parts:

R−1
i =

1
4π

N∑
k=1

wkrk · n(rk)
|rk − xi|4

− 1
4π

N∑
k=1

wkxi · n(rk)
|rk − xi|4

. (16)

Then we split the second summation in (16) into three components:

N∑
k=1

wkxi · n(rk)
|rk − xi|4

= xi

N∑
k=1

wkn
k
x

|rk − xi|4
+ yi

N∑
k=1

wkn
k
y

|rk − xi|4
+ zi

N∑
k=1

wkn
k
z

|rk − xi|4
. (17)

The first summation in (16) and the three summations in (17) without the coefficients in front are
of the common form:

G(xi) =
N∑
k=1

ckg(xi − rk) i = 1, . . . ,M, (18)

with the kernel function g(x−rk) = 1
|x−rk|4

and the coefficient ck = wkrk ·n(rk), wknkx, wknky , wkn
k
z ,

respectively. (18) can be efficiently computed by using the fast summation algorithm introduced
in [78] with complexity O(M +N + n3 log n), where n is a parameter used in the fast summation
algorithm.

3.2.2 Fast summation

The fast summation algorithm is published in [78]. For convenience, we discuss this algorithm in
this section briefly. The fast summation algorithm is often applied to compute the summations of
the form

G(xi) =
N∑
k=1

ckg(xi − rk), i = 1, . . . ,M, (19)

where the kernel function g is a fast decaying function. Cutting off the tail of g, one can assume
that the support of g is bounded. In our Born radii computation, since the distance between xi
and rk is no less than the smallest radius of the atoms, there is no singularity in g. Without loss
of generality, we assume x − rk ∈ Π := [−1

2 ,
1
2 ]3. After duplicating g in the other intervals, g

can be extended to be a periodic function of period one in R3 and this periodic function can be
decomposed into the Fourier series:

g(x− rk) =
∑

ω∈I∞

gωe
2πiω·(x−rk), (20)

where I∞ := {(ω1, ω2, ω3) ∈ Z3} and gω =
∫

Π g(x)e−2πiω·x dx. We approximate (20) by a truncated
series:

g(x− rk) ≈
∑
ω∈In

gωe
2πi(x−rk)·ω, (21)

where In := {(ω1, ω2, ω3) ∈ Z3 : −n
2 ≤ ωi <

n
2 }. We compute the Fourier coefficients gω numerically

by

gω =
1
n3

∑
j∈In

g(
j
n

)e−2πiω·j/n, ω ∈ In. (22)
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by using the fast Fourier transform (FFT) algorithm with complexity O(n3 log n).
Plugging (21) into (19), we get

G(xi) ≈
N∑
k=1

ck

(∑
ω∈In

gωe
2πi(xi−rk).ω

)
=
∑
ω∈In

gω

(
N∑
k=1

cke
−2πiω·rk

)
e2πiω·xi

=
∑
ω∈In

gωaωe
2πiω·xi (23)

where

aω =
N∑
k=1

cke
−2πiω·rk . (24)

(23) is computed by using the NFFT algorithm with complexity O(n3 log n + M) and (24) is
computed by the NFFTT algorithm with complexity O(n3 log n+N). Hence the total complexity
of computing (19) is O(N +M +n3 log n), which is significantly faster than the the trivial O(MN)
summation method once the number of terms in the Fourier series n is much smaller than M and N .
We explain the NFFT algorithm and the NFFTT algorithm in Appendix 3.5 and 3.6, respectively.

3.2.3 Error analysis

The numerical analysis of the error introduced during the computation of (14) can be decomposed
as follows: (i) the sum of a quadrature error EQ; (ii) some “fast computation” error in the evaluation
of the quadrature itself. The latter error is then decomposed in three terms, which correspond to
different steps in the numerical procedure. They are the truncation error EFS when we truncate
the Fourier series (20) into finite terms, NFFTT errors Eω when we compute the coefficients (24),
and an NFFT error ENFFT when we finally evaluate (23) by the NFFT algorithm.

Let Ii and Ĩi denote the exact integration and the numerical output of (14) for atom i, respec-
tively. Then We have

Ii = Ĩi + ENFFT + ENFFTT + EFS + EQ.

Let ‖E‖∞ = max
i
|Ii − Ĩi|. We have

‖E‖∞ ≤ ‖EQ‖∞ + ‖EFS‖∞ + ‖ENFFT‖∞ + ‖ENFFTT‖∞. (25)

Next we will analyze each individual error ‖EQ‖∞, ‖EFS‖∞, ‖ENFFT‖∞, and ‖ENFFTT‖∞.

Quadrature error Let Γe be one of the algebraic patches on the molecular surface Γ. Suppose
Γe is built based on a triangle e := [vi,vj ,vk]. Any point (b1, b2, b3) ∈ e can be mapped to a point
r(b1, b2) ∈ Γe. The integration (14) over Γe is

Ie =
∫

Γe

(r− xi) · n(r)
|r− xi|4

dS

=
∫∫

Ω0

(r(b1, b2)− xi) · n(r(b1, b2))
|r(b1, b2)− xi|4

|J | db1db2 (26)

where Ω0 is the canonical triangle, (b1, b2, b3) is the barycentric coordinates of the points in Ω0 and
|J | is the Jacobian. Let f(b1, b2) denote the integrand in (26). As we discuss in Appendix 3.7,
f(b1, b2) ∈ C∞(Ω0). Suppose we use an s-th order quadrature rule on element e, then

Ie =
∫∫

Ω0

f(b1, b2) db1 db2 =
se∑
k=1

wkf(bk1, b
k
2) + E. (27)
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We expand f(b1, b2) in a Taylor series around a point (b′1, b
′
2, b
′
3) ∈ Ω0:

f(b1, b2) = Ps(b1, b2) +Rs(b1, b2), (28)

where Ps(b1, b2) is a polynomial of degree s:

Ps(b1, b2) = f(b′1, b
′
2) +

1
s!

[(b1 − b′1)
∂

∂b1
+ (b2 − b′2)

∂

∂b2
]sf(b′1, b

′
2) (29)

and the residue Rs is

Rs(b1, b2) =
1

(s+ 1)!
[(b1 − b′1)

∂

∂b1
+ (b2 − b′2)

∂

∂b2
]s+1f(b∗1, b

∗
2), (b∗1, b

∗
2) ∈ Ω0. (30)

Then the error E becomes

E =
∫∫

Ω0

Rs(b1, b2) db1 db2 −
se∑
k=1

wkRs(bk1, b
k
2).

Let Wk = max(|wk|), we get

|E| ≤
∫∫

Ω0

|Rn(b1, b2)|db1 db2 +Wk

3∑
k=1

|Rn(bk1, b
k
2)|.

Within Ω0, |b1 − b′1| ≤ 1 and |b2 − b′2| ≤ 1, hence

|Rs(b1, b2)| ≤ 1
(s+ 1)!

[| ∂
∂b1
|+ | ∂

∂b2
|]s+1f(b∗1, b

∗
2), (31)

where | ∂∂b |· denotes | ∂·∂b |. By the chain rule,

∂

∂b1
=

∂

∂x

∂x

∂b1
+

∂

∂y

∂y

∂b1
+

∂

∂z

∂z

∂b1
.

According to (13), we have ∂x
∂b1

= vx1−vx3 +λ(nx1−nx3). Let hmax be the maximum edge length of the
triangular mesh, λmax = max{|λ|}, and h = max(hmax, λmax). Then we have | ∂x∂b1 | ≤ 2h. Similarly,
we can get the same bound for the derivatives of x, y, z with respect to b1 and b2. Therefore

|Rs(b1, b2)| ≤ (2h)s+1

(s+ 1)!
[| ∂
∂x
|+ | ∂

∂y
|+ | ∂

∂z
|]s+1f̃(x∗, y∗, z∗) ≤ C (2h)s+1

(s+ 1)!
(32)

where (x∗, y∗, z∗) = b∗1vi(λ) + b∗2vj(λ) + b∗3vk(λ), f̃(x∗, y∗, z∗) = f(b∗1, b
∗
2), and the constant C =

max
(x,y,z)∈Γ

|Ds+1f̃(x, y, z)| <∞. Noticing that the area of Ω0 is 1/2, we can write

|E| ≤ (
1
2

+ seWk)
2s+1

(s+ 1)!
Chs+1. (33)

Even though a greater number of quadrature nodes correspond to the higher order of accuracy, the
increase in complexity is a limiting factor. Meanwhile, since the ASMS error is of the order h3,
there is no point in a very accurate approximation of (33) to too high an order. As a trade-off, we
use a two dimensional 3-point Gaussian quadrature over the triangle Ω0 which is of order 2 [30].
So s = 2 and se = 3. The nodes are (1

6 ,
1
6 ,

1
3) and its permutations. Wk = 1

3 for k = 1, 2, 3. Then

|E| ≤ 2Ch3. (34)

Suppose there are Ne patches on Γ, then |EQ| ≤ 2NeCh
3. So we have the same bound

‖EQ‖∞ ≤ 2NeCh
3. (35)
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Fast summation error According to the fast summation method described in Section 3.2.2, the
Fourier series is truncated into a finite series

EiFS :=
N∑
k=1

ck

 ∑
ω∈I∞\In

gωe
2πiω·(xi−rk)

 =
N∑
k=1

ckT
i
k

where T ik denotes the truncation error of the Fourier series. Hence

|EiFS| ≤ ‖c‖∞
N∑
k=1

|T ik| (36)

where ‖c‖∞ := max
k=1,...,N

|ck|,

|T ik| = |
∑

ω∈I∞\In

gωe
2πiω·(xi−rk)| ≤

∑
ω∈I∞\In

|gω| (37)

with
gω =

∫
Π
g(x)e−2πiω·x dx (38)

and g being the the kernel function in the fast summation. In the Born radii calculation, g(x) = 1
|x|4 .

As defined in Section 3.2.2, Π is bounded and excludes 0. Let ω = (ω1, ω2, ω3). Then we rewrite∑
ω∈I∞\In |gω| as ∑

ω∈I∞\In

|gω| =
∑

i,j,k=0,1

∞∑
ω1=n+1

∞∑
ω2=n+1

∞∑
ω3=n+1

|g(−1)iω1 (−1)jω2 (−1)kω3
|. (39)

By successive integration by parts for each dimension, we get

gω1ω2ω3 =
(
−i

2πω1

)m1
(
−i

2πω2

)m2
(
−i

2πω3

)m3
∫

Π
Dmg(x)e−2πiω·x dx,

where m = m1 +m2 +m3 and Dmg = ( ∂m1

∂xm1 + ∂m2

∂ym2 + ∂m3

∂zm3 )g. Therefore

|gω1ω2ω3 | ≤
1

(2π)mωm1
1 ωm2

2 ωm3
3

∫
Π
|Dmg(x)| dx.

Let µm =
∫

Π |D
mg(x)| dx. We obtain |gω1ω2ω3 | ≤

µm
(2π)mω

m1
1 ω

m2
2 ω

m3
3

. For the other terms in (39) we
have the same upper bound. If we assume m1,m2,m3 ≥ 2, then

|T ik| ≤
8µm

(2π)m

( ∞∑
ω1=n+1

1
ωm1

1

)( ∞∑
ω2=n+1

1
ωm2

2

)( ∞∑
ω3=n+1

1
ωm3

3

)

≤ 8µm
(2π)m

(∫ ∞
n

1
ωm1

1

dω1

)(∫ ∞
n

1
ωm2

2

dω2

)(∫ ∞
n

1
ωm3

3

dω3

)
=

8µm
(2π)m(m1 − 1)(m2 − 1)(m3 − 1)nm−3

.

For m1 = m2 = m3, we have

|T ik| ≤
8µ6

(2π)6n3
. (40)

Then for (37), we have

|EiFS| ≤ ‖c‖∞
8µ6N

(2π)6n3
. (41)

In fact, the right hand side of (41) is independent of i. Therefore we get

‖EFS‖∞ ≤ ‖c‖∞
8µ6N

(2π)6n3
. (42)
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NFFT error The error analysis of the NFFT algorithm is thoroughly discussed at the end of
Appendix 3.5. This error estimation is derived based on the analysis in [79]. In summary, the
NFFT error is split into the aliasing error E1

NFFT and the truncation error E2
NFFT [79]:

‖ENFFT‖∞ ≤ ‖E1
NFFT‖∞ + ‖E2

NFFT‖∞.

The error bounds of E1
NFFT and E2

NFFT are

‖E1
NFFT‖∞ ≤ ‖Ĝ‖1 max

ω∈In

∑
i∈Z3\{0}

|Cω+iσn(ξ)
Cω(ξ)

|, (43)

‖E2
NFFT‖∞ ≤

1
σ3n3

max
ω∈In

(C−1
ω (ξ))‖Ĝ‖1 max

i

∑
l∈Iσn

|ξ(xi −
l
σn

)− η(xi −
l
σn

)|, (44)

where ξ is a 1-periodic window function defined in Appendix 3.5, Cω(ξ) are the Fourier coefficients
of ξ, and η is a truncated version of ξ. In the fast summation method (23), ‖Ĝ‖1 =

∑
ω∈In |gωaω|,

where gω and aω are defined in Section 3.2.2. Combining (43) and (44), one obtains

‖ENFFT‖∞ ≤ C(ξ,m, σ)‖Ĝ‖1. (45)

In [78], the coefficient C(ξ,m, σ) is given for some special ξ. They are

• Gaussian, ξ(x) = (πb)−1/2e−‖σnx‖
2/b, where b := 2σ

2σ−1
m
π , the coefficient C(ξ,m, σ) = 4e−mπ(1−1/(2σ−1));

• cardinal central B-splines [12], ξ(x) = M2m(σnx), the coefficient C(ξ,m, σ) = 4( 1
2σ−1)2m;

• powers of sinc function, ξ(x) = n(2σ−1)
2m sinc2m

(
(2σ−2)nπx

2m

)
, the coefficient C(ξ,m, σ) = 1

m−1

(
2

σ2m + ( σ
2σ−1)2m

)
;

• Kaiser-Bessel function [57]

ξ(x) =
1
π


sinh(b

√
m2−(σn)2‖x‖2)√

m2−(σn)2‖x‖2
, ‖x‖ ≤ m

σn ,

sinh(b
√

(σn)2‖x‖2−m2)√
(σn)2‖x‖2−m2

, otherwise,

C(ξ,m, σ) = 5π2m3/2 4

√
1− 1

σe
−m2π

√
1−1/σ.

NFFTT error As we mentioned in Section 3.2.2, (24) is computed by the NFFTT algorithm and
then they are plugged in (23) for the following evaluation of the summation. So the NFFT error
ENFFTT is

ENFFTT =
∑
ω∈In

gωEωe
2πiω·xi , (46)

where Eω denotes the error of the NFFTT algorithm and gω is the same as is defined in (38). Then
we have

|ENFFTT | ≤
∑
ω∈In

|gωEω| ≤ max
ω∈In

|Eω|
∑
ω∈In

|gω| = ‖Eω‖∞ ‖g‖1 (47)

with ‖Eω‖∞ := max
ω∈In

|Eω| and ‖g‖1 :=
∑

ω∈In
|gω|.

As we discussed in Appendix 3.6, the NFFTT error Eω is decomposed into the aliasing error
(E1

ω) and the truncation error (E2
ω), Eω = E1

ω + E2
ω. So

‖Eω‖∞ ≤ ‖E1
ω‖∞ + ‖E2

ω‖∞,
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where ‖E1
ω‖∞ = max

ω∈In
|E1

ω| and ‖E2
ω‖∞ = max

ω∈In
|E2

ω|. Based on the error bounds derived in Appendix

3.6,

‖E1
ω‖∞ ≤ ‖c‖1 max

ω∈In

∑
i∈Z3\{0}

Cω+iσn(ξ)
Cω(ξ)

(48)

and
‖E2

ω‖∞ ≤
1

(σn)3
‖c‖1 max

ω∈In
(C−1

ω (ξ)) max
k

∑
l∈Iσn

|ξ( l
σn
− rk)− η(

l
σn
− rk)| (49)

where ‖c‖1 =
∑N

k=1 |ck|. Comparing (48) with (43) and comparing (49) with (44) yield the error
estimation of Eω which is similar to ENFFT:

‖Eω‖∞ ≤ C(ξ,m, σ)‖c‖1.

Hence
|ENFFTT | ≤ C(ξ,m, σ)‖c‖1‖g‖1. (50)

The inequality (50) is independent of i, therefore,

‖ENFFTT‖∞ ≤ C(ξ,m, σ)‖c‖1‖g‖1. (51)

3.3 Fast solvation force computation

The solvation force acting at the center of atom α, which is part of the forces driving dynamics is

Felec
α = −∂Gsol

∂xα
. (52)

Partition the solvation energy into polar and non-polar parts:

∂Gsol

∂xα
=

∂

∂xα
(Gcav +Gvdw) +

∂Gpol

∂xα
= γ

∂SA
∂xα

+
∂Gpol

∂xα
. (53)

The non-polar force is proportional to the derivatives of the volume and/or the surface area with
respect to the atomic coordinates. There has been previous work on analytically computing the
derivatives of the area/volume [31, 56, 20]. To compute the polar force, we first define

Gij = qiqj/(r2
ij +RiRj exp(−

r2
ij

4RiRj
))1/2. (54)

Then

Gpol = −τ
M∑
i=1

M∑
j=i+1

Gij −
τ

2

M∑
i=1

Gii. (55)

Differentiating (55) w.r.t. x, one gets

∂Gpol

∂xα
= −τ

M∑
i=1

M∑
j=i+1

∂Gij
∂xα

− τ

2

M∑
i=1

∂Gii
∂xα

, (56)

where
∂Gij
∂xα

=
∂Gij
∂rij

∂rij
xα

+
∂Gij
∂Ri

∂Ri
xα

+
∂Gij
∂Rj

∂Rj
xα

. (57)

From (54), one can easily compute ∂Gij
∂rij

and ∂Gij
∂Ri

, which are

∂Gij
∂rij

= qiqj

(
r2
ij +RiRje

−
r2ij

4RiRj

)− 3
2
(

1
4
e
−

r2ij
4RiRj − 1

)
rij ,
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∂Gij
∂Ri

= −qiqj
8Ri

(
r2
ij +RiRje

−
r2ij

4RiRj

)− 3
2

e
−

r2ij
4RiRj

(
4RiRj + r2

ij

)
.

∂rij
∂xα

is nonzero if i or j = α which will be ∂rαj
∂xα

= xα−xj
rαj

. In (57) the computation of ∂Ri
xα

for
i = 1, . . . ,M is not trivial. Because Γ depends on the position of the atoms, it is not easy to
compute the derivative of Ri directly from (14). To solve this problem, we convert the integration
domain back to the volume:

R−1
i =

1
4π

∫
ex

1
|r− xi|4

dr. (58)

Then by defining a volumetric density function to distinguish the exterior from the interior of the
molecule, we may have an integration domain that is independent of {xi}. One way of defining the
volumetric function is given in [42] where they first define a density function for each of the atoms

χi(r) =
{

1, ‖r− xi‖ ≤ ai
0, ‖r− xi‖ > ai

and then define the volumetric function by following the inclusion-exclusion principle

%(r) =
∑
i

χi −
∑
i<j

χiχj +
∑
i<j<k

χiχjχk −
∑

i<j<k<l

χiχjχkχl + . . . . (59)

There are some nice properties of this model. For example, the exterior region of the molecule is well
characterized by % = 0 and two atoms i and j are disconnected if for any r ∈ R3, χi(r)χj(r) = 0.
The drawback of this model is that function χ is not smooth, which makes it inapplicable to the
derivative computation. Therefore we smoothen χ by introducing a cubic spline near the atom
boundary:

%i(x) =


1, x ≤ ai
2
w3 (x− ai)3 − 3

w2 (x− ai)2 + 1, ai < x < ai + w
0, x ≥ ai + w

(60)

with x =‖ r − xi ‖. The region defined by ρi 6= 0 is regarded as the interior of atom i and this
region converges to the van der Waals volume of the atom as w goes to 0. In the SES model, two
atoms are considered to be completely separated if the distance between the centers is greater than
the sum of the radii plus the probe diameter. Otherwise they can be connected by the reentrant
surface of the rolling probe. By setting w = 1.4 rA, atoms i and j are disconnected in the same
sense as in the SES model iff %i(r)%j(r) = 0, for any r ∈ R3. In addition to this modification,
we neglect the cases that more than four atoms overlap simultaneously. Therefore the molecular
volumetric density function becomes

%(r) =
∑
i

%i −
∑
i<j

%i%j +
∑
i<j<k

%i%j%k −
∑

i<j<k<l

%i%j%k%l. (61)

We define the complementary function %̄ = 1 − %. It is easy to show that within the VWS of the
molecule, ρ̄ is always 0, beyond the SAS, ρ̄ is always 1, in between, 0 < ρ̄ < 1. Then (58) can be
rewritten as

R−1
i =

1
4π

∫
R3

%̄(r, {xj})
|r− xi|4

dr. (62)

Differentiating both sides of (62), one gets

− 1
R2
i

∂Ri
∂xα

=
1

4π

∫
R3

∂

∂xα

(
%̄(r, {xj})
|r− xi|4

)
dr. (63)
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So
∂Ri
∂xα

= −R
2
i

4π

(∫
R3

∂
∂xα

%̄(r, {xj})
|r− xi|4

dr +
∫

ex

∂

∂xα

1
|r− xi|4

dr

)
. (64)

For the first integral in (64),

∂

∂xα
%̄ = − ∂

∂xα
% = −∂%α

∂xα

1−
∑
j

%j +
∑
j<k

%j%k −
∑
j<k<l

%j%k%l

 = −∂%α
∂xα

gα,

where j, k, l are the atoms overlapping with atom α, g = 1−
∑

j %j +
∑

j<k %j%k −
∑

j<k<l %j%k%l,
and

∂%i
∂xα

(r) =


0, x ≤ aα
( 6
w3 (x− aα)2 − 6

w2 (x− aα))xα−r
x , aα < x < aα + w

0, x ≥ aα + w

with x = ‖r− xα‖. Noticing that ∂%α
∂xα
6= 0 only if aα < |r− xα| < aα +w, the first integral in (64)

is simplified as ∫ |r−xα|=aα+w

|r−xα|=aα
−∂%α
∂xα

gα(r)
1

|r− xi|4
dr. (65)

The integration domain of (65) is a regular spherical shell of the width w around atom α (Figure
7(a)). We switch to the spherical coordinate system:

x = xα + (aα + r) cos θ sinφ
y = yα + (aα + r) sin θ sinφ
z = zα + (aα + r) cosφ

where (r, θ, φ) ∈ [0, w]× [0, 2π]× [0, π]. We sample r, θ, φ by using the 2-point Gaussian quadrature
nodes in each dimension. For all the atoms in the molecule, they share the same set of sampling
points (r, θ, φ).

(a) shell (b) surface

Figure 7: When computing the derivatives of the Born radii ∂Ri
∂xα

, the quadrature points of the first
integral are points within a spherical shell around atom α, as shown in (a), whereas the second
integral is necessary when i ≡ α and the quadrature points are points on the surface, as shown in
(b). The dark region represents the molecule, the light grey region is the shell of width w around
atom α.

The second integral in (64) is nonzero if i ≡ α. In that case∫
ex

∂

∂xi

1
|r− xi|4

dr = −
∫

ex

∂

∂r
1

|r− xi|4
dr. (66)
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We compute each component of (66) individually and convert to the surface integration (Figure:
7(b)) by the divergence theorem:

−
∫

ex

∂

∂x

1
|r− xi|4

dr =
∫

Γ

nx(r)
|r− xi|4

dS '
N∑
k=1

wkn
k
x

|rk − xi|4
, (67)

−
∫

ex

∂

∂y

1
|r− xi|4

dr =
∫

Γ

ny(r)
|r− xi|4

dS '
N∑
k=1

wkn
k
y

|rk − xi|4
, (68)

−
∫

ex

∂

∂z

1
|r− xi|4

dr =
∫

Γ

nz(r)
|r− xi|4

dS '
N∑
k=1

wkn
k
z

|rk − xi|4
, (69)

where the quadrature weights and points (wk, rk) and the unit normals (nkx, n
k
y , n

k
z) are the same as

those used in Section 3.2. We compute (67), (68), and (69) by directly applying the fast summation
method with the coefficients ck = wkn

k
x, wkn

k
y , wkn

k
z , respectively. Since the same algorithm is

used in the Born radius derivative calculation, the error analysis is similar to the error analysis of
the Born radius calculation except that a quadrature error of the integration over the shell region
needs to be added.

To compute the force acting on each of the M atoms, we need to compute (66) for i = 1, . . . ,M .
By using the fast summation algorithm, the computational complexity of this part is O(N +
M + n3 log n), the same as the energy computation. To compute (65), since the shell integration
domain is narrow, only a small number of atoms have non-zero densities in this region, therefore
the complexity of computing (65) for a fixed α for i = 1, . . . ,M is O(M). Moreover, since the
integrand in (65) is very small if atom i and atom α are far apart, we use a cut-off distance d0 in
our computation and compute (65) only if d(i, α) ≤ d0. Therefore the overall time complexity of
computing (64) is O(N +M + n3 log n).

3.4 Results

We compare the polarization energy computed based on the fast summation algorithm and the
trivial summation in Table 2 for four proteins (PDB ID: 1CGI l, 1BGX, 1DE4, 1N2C). An ASMS
model is constructed for each protein with Ne number of patches. A three-point Gaussian quadra-
ture is used on each algebraic patch. We also compare the overall computation time of the two
methods. As we see from the table, for the small proteins (e.g. 1CGI l), the fast summation
method is slower than the trivial summation. However as the protein size gets larger (e.g. 1BGX,
1DE4, 1N2C), the fast summation is apparently faster than the trivial summation without losing
too much accuracy. The relative error ε between the fast summation and the trivial summation is
small. As for the trade-off between efficiency and accuracy, since in the current research of the MD
simulation efficiency is more concerned, the fast-summation-based GB is superior to the trivial GB
method.

In Figure 8 we compare Gpol computed by the fast summation based GB and the trivial summa-
tion method along with their computation time for proteins of various sizes. For all these proteins,
we generate the ASMS of the same number of patches (in our test we use 20,000 patches for each
protein). We choose the fixed parameters n = 30, m = 4, and σ = 2 for all the proteins. We
observe that the Gpol computed by the fastsum GB is close to that computed by the trivial GB
methods and the error gets larger as the molecule gets bigger. Even though the error analysis
in Section 3.2.3 does not show that the error depends on the size of the molecule, the analysis is
based on the assumption that the kernel function is defined on the domain [−1

2 ,
1
2 ]3. To ensure that

xi − rk, i = 1, . . . ,M , k = 1, . . . , N are all within this range, we scale the molecule. The larger
the molecule, the larger the scaling factor. Later on when we scale back to the original coordinates
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Protein ID 1CGI l 1BGX 1DE4 1N2C
M 852 19,647 26,003 39,946
Ne 29,108 112,636 105,288 83,528
N 116,432 450,544 421,152 334,112
n 100 100 100 100
σ 2 2 2 2
m 4 4 4 4

A Gpol -1380.988 -19734.848 -25754.552 -41408.959
timing 86 358 863 631

B Gpol -1343.150 -19297.528 -25388.455 -40675.383
timing 49 4327 5368 9925
ε 2.8% 2.3% 1.4% 1.8%

Table 2: Comparison of the electrostatic solvation energy Gpol (kcal/mol) and computation time
(second) of the fast summation method (A) and the trivial summation method (B). M is the
number of atoms. Ne is the number of patches, N is the number of integration points. n, σ, and m
are parameters in the fast summation method. ε is the relative percentage error |(GApol−GBpol)/GBpol|.

by multiplying the scaling factor, the error gets amplified. As we expect, computation time of the
fastsum GB increases as M becomes large but is much faster than the traditional GB method.

In Figure 9, we compare Gpol computed by the fast summation based GB versus the trivial
summation method and the computation time for a test protein 1JPS where we generate the
ASMS with different numbers of patches. We use the same values for the parameters n, m, and
σ as in the previous test. As shown in the figure, as the triangular mesh becomes denser, the fast
summation result converges rapidly to the result of the trivial method but takes less computation
time.

Protein ID M N t1 (s) t2 (s) Ttotal (s)
1ANA 249 6,676 66.05 0.14 66.19
1MAG 544 7,328 69.58 0.23 69.81
1PPE l 436 5,548 59.55 0.56 60.11
1CGI l 852 6,792 68.71 3.27 71.98

Table 3: Force calculation timing: M is the number of atoms, N is the number of triangles in the
surface triangular mesh, t1 is the time (in seconds) for computing (66) for i = 1, . . . ,M and t2
is the time for computing the rest of the terms in (57) for i, j, α = 1, . . . ,M . Ttotal is the overall
timing.

For the test proteins 1ANA, 1MAG, 1PPE l, 1CGI l, we compute the solvation force Felec
α , for

α = 1, . . . ,M . We show the timing results in Table 3. In general, if an atom has a strong solvation
force, this atom is in favor of being polarized, and hence is an active atom. On the contrary, if an
atom has a weak solvation force, it is more likely to be an inactive atom. For every test protein,
after we compute the solvation force for each atom, we sort the forces based on their magnitude
and choose the top most active atoms and the top inactive atoms. As shown in Figure 10, the top
5% of the most active atoms are rendered in red and the bottom 5% of the atoms are rendered in
blue. This provides a convenient and cheaper way, alternative to the experimental method, to help
the biologists quickly find an active site of a protein.
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(a)

(b)

Figure 8: In (a) we compare Gpol computed by the fastsum GB and the non-fastsum GB for various
proteins containing different number of atoms. In (b) we compare the computation time of the two
methods.

3.4.1 Conclusion

We introduce a fast summation based algorithm to calculate the effective Born radii and their
derivatives in the generalized Born model of implicit solvation. The algorithm relies on a variation
of the formulation for the Born radii and an additional analytical volumetric density function for
the derivatives. For a system of M atoms and N sampling points on the molecular surface, the
trivial way of computing the Born radii requires O(MN) arithmetic operations, whereas with the
aids of the Fourier expansion of the kernel functions of the Born radii (and their derivatives) and
the NFFT algorithm which essentially approximates the complex exponentials in the NDFT by
the DFT of a fast decaying smooth window function, the Born radii as well as their derivatives
can be obtained at cost of (M +N + n3 log n) where n is the number of frequencies in the Fourier
expansion. We show that the error of the algorithm decreases as the mesh gets denser, or as
any of the parameters σ, m, n increase. Other than the Born model developed with a Coulomb
field approximation, there has been other models for the Born radii evaluation, for example the

Kirkwood-Grycuk model [45] where R−1
i =

(
3

4π

∫
ex

1
|r−xi|6 dr

)1/3
. This model is recently applied to

the GBr6NL model which approximates the solvation energy of the nonlinear Poisson-Boltzmann
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(a)

(b)

Figure 9: For protein 1JPS, in (a) we compare Gpol computed by the fastsum GB and the non-
fastsum GB with various number of surface elements. In (b) we compare the computation time of
the two methods.

equation [96]. It is interesting to note that we can utilize a similar quadrature point generation via
ASMS and the fast summation algorithm to speed up this GBr6NL computation. In fact, by the
divergence theorem,

∫
ex

1
|r−xi|6 dr = 1

3

∫
Γ

(r−xi)·n(r)
|r−xi|6 dr and the rest follows similar to the methods

in this paper.

3.5 NFFT

The NFFT [79] is an algorithm for fast computation of multivariate discrete Fourier transforms
for nonequispaced data in spacial domain (NDFT1). The NDFT1 problem is to evaluate the
trigonometric polynomials

G(xj) =
∑
ω∈In

Gωe
2πiω·xj j = 1, . . . ,M, (70)

where In = {(ω1, ω2, ω3) ∈ Z3 : −n
2 ≤ ωi ≤

n
2 }. Without loss of generality, we assume xj ∈ [−1

2 ,
1
2 ]3.

Instead of computing the summations in (70) directly, one can approximate G by a function s(x)
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(a) 1PPE (b) 1MAG (c) 1ANA

(d) 1CGI l

Figure 10: Atoms that have the greatest electrostatic solvation force (top 5%) are colored in red;
atoms that have the weakest electrostatic solvation force (bottom 5%) are colored in blue.

which is a linear combination of the shifted 1-periodic kernel function ξ:

s(x) :=
∑
l∈Iσn

glξ(x−
l
σn

), (71)

where Iσn := {(l1, l2, l3) : li ∈ [−σn
2 ,

σn
2 ] ∩ Z, σ > 1} and l

σn := {( l1σn ,
l2
σn ,

l3
σn)}. We have σ > 1

because of the error estimation discussed in Section 3.2.3.
The kernel function ξ is defined as

ξ(x) :=
∑
i∈Z3

ξ0(x + i), where ξ0 ∈ L2(R3).

Good candidates for ξ0 include Gaussian, B-spline, sinc, and Kaiser-Bessel functions. Expand the
periodic kernel function ξ by its Fourier series

ξ(x) =
∑

ω∈Z3

Cω(ξ)e2πiω·x, (72)

with the Fourier coefficients

Cω(ξ) :=
∫

[− 1
2
, 1
2

]3
ξ(x)e−2πiω·x dx =

∫
R3

ξ0(x)e−2πiω·x dx = ξ̂0(ω).

Cut off the higher frequencies in (72), one can get

ξ(x) =

 ∑
ω∈Iσn

+
∑

ω∈Z3\Iσn

Cω(ξ)e2πiω·x ≈
∑

ω∈Iσn

Cω(ξ)e2πiω·x. (73)

Plug (73) into (71), we get

s(xj) ≈
∑
l∈Iσn

gl
∑

ω∈Iσn

Cω(ξ)e2πiω·(xj− l
σn

)

=
∑

ω∈Iσn

G̃ωCω(ξ)e2πiω·xj , (74)
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with the coefficients
G̃ω :=

∑
l∈Iσn

gle
−2πiω· l

σn . (75)

By defining

G̃ω :=

{
Gω
Cω(ξ) for ω ∈ In,
0 for ω ∈ Iσn \ In,

(76)

one can immediately get
s(xj) ≈

∑
ω∈In

Gωe
2πiω·xj = G(xj). (77)

The next problem is to compute gl. From (75), one can compute the coefficients gl which are
also coefficients in (77) by the discrete Fourier transform

gl =
1

σ3n3

∑
ω∈Iσn

G̃ωe
2πiω· l

σn =
1

σ3n3

∑
ω∈In

Gω

Cω(ξ)
e2πiω· l

σn , l ∈ Iσn, (78)

with complexity O(n3 log n) by the FFT algorithm.
Since the function ξ drops very fast, one can further reduce the computation complexity of (77)

by cutting off the tail of ξ. Define a function η0:

η0 := ξ0(x)χ[− m
σn
, m
σn

]3(x) where m� σn,m ∈ N.

Construct the one-periodic function η the same way as ξ is constructed:

η(x) =
∑
i∈Z3

η0(x + i).

Replacing ξ with η in (77), we obtain that

G(xj) ≈
∑

l∈Iσn,m(xj)

glη(xj −
l
σn

), (79)

where Iσn,m(xj) = {(l1, l2, l3) : σnxj,i − m ≤ li ≤ σnxj,i + m, i = 1, 2, 3}. There are at most
(2m + 1)3 nonzero terms in (79). Therefore the complexity of evaluating (79) for j = 1, . . . ,M is
O(m3M). Adding the complexity of computing the coefficients gl, the overall complexity of NFFT
algorithm is O(n3 log n+m3M).

Remark 3.1. If we reorganize the above equations, it is not hard to see that, in fact, (70) is
approximately computed by the expression

G(xj) =
∑
ω∈In

Gω

 1
(σn)3Cω(ξ)

∑
l∈Iσn

η(xj −
l
σn

)e2πiω· l
σn

 . (80)

From a linear algebra point of view, equation (80) can be written as the product of a matrix and a
vector. For example, for a one dimensional NFFT, (80) is equivalent to

g = ΞF D ĝ (81)

with vectors
g := [G(xi)]

M
i=1 , ĝ := [Gω]

n
2
−1

ω=−n
2
.

Ξ is a sparse matrix

Ξ :=
[
η(xi −

lj
σn

)
]
M×σn

,
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F is the classical Fourier matrix
F :=

[
e2πiωj

li
σn

]
σn×n

,

and D is an n × n diagonal matrix with the iith element being 1
σnCωi (ξ)

. For a multi-dimensional
NFFT, it is the same as the 1D case as long as one orders the indices of the multi-dimension into
one dimension.

As discussed in [79], in the first approximation (77), we see that s is equal to G after its higher
frequencies in the Fourier series are cut off. Hence the error introduced in (77) which is known as
the aliasing error is

E1
NFFT : =

∑
l∈Iσn

glξ(xj −
l
σn

)−G(xj)

=
∑

i∈Z3\{0}

∑
ω∈Iσn

G̃ω+iσnCω+iσn(ξ)e2πi(ω+iσn)·xj . (82)

Note that from (75), we have the condition G̃ω+iσn = G̃ω, for i ∈ Z3 and ω ∈ Iσn. By the
definition (76), one obtains

|E1
NFFT| ≤

∑
i∈Z3\{0}

∑
ω∈In

|Gω
Cω+iσn(ξ)
Cω(ξ)

|. (83)

Let ‖Ĝ‖1 =
∑

ω∈In
|Gω|. Then

|E1
NFFT| ≤ ‖Ĝ‖1 max

ω∈In

∑
i∈Z3\{0}

|Cω+iσn(ξ)
Cω(ξ)

|. (84)

In the second approximation (79), since ξ is replaced by η, the so caused error, known as the
truncation error, is

E2
NFFT : =

∑
l∈Iσn

glξ(x−
l
σn

)−
∑

l∈Iσn,m

glη(x− l
σn

)

=
∑

l∈Iσn\Iσn,m

gl[ξ(x−
l
σn

)− η(x− l
σn

)]

=
∑

l∈Iσn\Iσn,m

1
σ3n3

∑
ω∈In

Gω

Cω(ξ)
e2πiω· l

σn [ξ(x− l
σn

)− η(x− l
σn

)]. (85)

Thus

|E2
NFFT| ≤

1
σ3n3

∑
l∈Iσn

| Gω

Cω(ξ)
[ξ(x− l

σn
)− η(x− l

σn
)]|

≤ 1
σ3n3

max
ω∈In

(C−1
ω (ξ))‖Ĝ‖1

∑
l∈Iσn

|ξ(x− l
σn

)− η(x− l
σn

)|. (86)

3.6 NFFTT

The NFFTT algorithm deals with the fast computation of multivariate discrete Fourier transforms
for nonequispaced data in frequency domain (NDFT2):

a(ω) =
N∑
k=1

cke
−2πiω·rk , ω ∈ In. (87)
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Define a function

A(x) :=
N∑
k=1

ckξ(x− rk), (88)

where ξ is defined as same as in Appendix 3.5. The Fourier series of A(x) is:

A(x) =
∑

ω∈Z3

Cω(A)e2πiω·x. (89)

On the other hand,
N∑
k=1

ckξ(x− rk) =
N∑
k=1

ck
∑

ω∈Z3

Cω(ξ)e2πiω·(x−rk). (90)

Hence we get the relationship of Fourier coefficients of A and ξ:

Cω(A) =
N∑
k=1

cke
−2πiω·rkCω(ξ), ω ∈ Z3. (91)

Comparing (91) with (87) one obtains

a(ω) =
Cω(A)
Cω(ξ)

, ω ∈ In. (92)

It remains to compute Cω(A). By definition,

Cω(A) =
∫

[− 1
2
, 1
2

]3
A(x)e−2πiω·x dx

=
∫

[− 1
2
, 1
2

]3

(
N∑
k=1

ckξ(x− rk)

)
e−2πiω·x dx

=
N∑
k=1

ck

∫
[− 1

2
, 1
2

]3
ξ(x− rk)e−2πiω·x dx. (93)

Discretizing the integration in (93) by the left rectangular rule leads to

a(ω) ≈ 1
Cω(ξ)

N∑
k=1

ck
1

(σn)3

∑
l∈Iσn

ξ(
l
σn
− rk)e−2πiω· l

σn . (94)

Replacing ξ with η yields

a(ω) ≈ 1
(σn)3

1
Cω(ξ)

∑
l∈Iσn

ĝle
−2πiω· l

σn , (95)

where

ĝl :=
N∑
k=1

ckη(
l
σn
− rk), l ∈ Iσn. (96)

To compute ĝl, if one scans the rk list, then for each rk there are at most (2m+ 1)3 grid points (l)
that contribute nonzero η. Hence, the complexity of computing ĝl is O(m3N). After computing
ĝl one can easily evaluate (95) by the FFT algorithm at the complexity of O(n3 log n). Lastly
the complexity of computing (92) is O(n3). So the overall complexity of the NFFTT algorithm is
O(m3N + n3 log n).
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Remark 3.2. Similar to the NFFT algorithm, we may write the one-line formula for comput-
ing (87) by the NFFTT:

a(ω) =
N∑
k=1

ck

 1
(σn)3Cω(ξ)

∑
l∈Iσn

η(
l
σn
− rk)e−2πiω· l

σn

 , (97)

which in one dimension is equivalent to the linear system:

â = DT F ∗ ΞT c (98)

with vectors
â := [a(ω)]

n
2

ω=−n
2
, c := [ck]

N
k=1 .

Matrix Ξ is similar to that defined in Appendix 3.5

Ξ :=
[
η(
lj
σn
− ri)

]
N×σn

.

F ∗ is the conjugate transpose of the Fourier matrix F , and D is the same as that defined in Appendix
3.5. From the matrix expression, we see why the algorithm is called the “transpose” of NFFT.

Let Eω designate the error of a(ω). Eω can also be split into the aliasing error E1
ω introduced

in (94) and the truncation error E2
ω introduced in (95), Eω = E1

ω + E2
ω, for ω ∈ Iσn. By taking

the Fourier expansion of ξ, we get form (94), so

E1
ω = a(ω)− 1

Cω(ξ)

N∑
k=1

ck
1

(σn)3

∑
l∈Iσn

∑
j∈Z3

Cj(ξ)e2πi( l
σn
−rk)·j

 e−2πiω· l
σn

= a(ω)− 1
Cω(ξ)

N∑
k=1

ck
∑
j∈Z3

Cj(ξ)e−2πirk·j 1
(σn)3

∑
l∈Iσn

e2πi(j−ω)· l
σn .

Since
1

(σn)3

∑
l∈Iσn

e2πi(j−ω)· l
σn =

{
1, if j− ω = iσn, i ∈ Z3,
0, otherwise,

we have,

E1
ω = a(ω)− 1

Cω(ξ)

N∑
k=1

ck
∑
i∈Z3

Cω+iσn(ξ)e−2πirk·(ω+iσn). (99)

By (87),

E1
ω =

1
Cω(ξ)

N∑
k=1

ck
∑

i∈Z3\{0}

Cω+iσn(ξ)e−2πirk·(ω+iσn). (100)

Define ‖c‖1 =
∑N

k=1 |ck|. Then we have

|E1
ω| ≤ ‖c‖1

∑
i∈Z3\{0}

Cω+iσn(ξ)
Cω(ξ)

. (101)

In (95), the truncation error

E2
ω =

N∑
k=1

ck

 1
(σn)3Cω(ξ)

∑
l∈Iσn

[ξ(rk −
l
σn

)− η(rk −
l
σn

)]e−2πiω· l
σn

 , (102)

which has the bound

|E2
ω| ≤

1
(σn)3

‖c‖1
1

Cω(ξ)
max
k

∑
l∈Iσn

|ξ( l
σn
− rk)− η(

l
σn
− rk)|. (103)
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3.7 Continuity of f

As defined in Section 3.2.3,

f =
(r− xi) · n(r)
|r− xi|4

, (104)

where r 6= xi and n = ∇F with F given in (12). r(b1, b2, λ) is simply defined in (13). In this
appendix, we mainly discuss the continuity of n. As derived in [111],

∇F = T −1

(
∂F

∂b1
,
∂F

∂b2
,
∂F

∂λ

)T

(105)

where

T =

 (vi(λ)− vk(λ))T

(vj(λ)− vk(λ))T

(b1ni + b2nj + b3nk)T


is a nonsingular matrix. Hence n is well defined. Consider ( ∂n∂b1 ,

∂n
∂b2

):

(
∂n
∂b1

,
∂n
∂b2

)
=

 Fxx Fxy Fxz
Fxy Fyy Fyz
Fxz Fyz Fzz




∂x
∂b1

∂x
∂b2

∂y
∂b1

∂y
∂b2

∂z
∂b1

∂z
∂b2

 .

Let ν =
(
∂F
∂b1
, ∂F∂b2 ,

∂F
∂λ

)T
. We have Fxx Fxy Fxz

Fxy Fyy Fyz
Fxz Fyz Fzz

 =
(
Tx Ty Tz

) ν
ν

ν

+ TMT T (106)

where Fxy = ∂2F
∂x∂y , Tx = ∂T

∂x , and

M =

 Fb1b1 Fb1b2 Fb1λ
Fb1b2 Fb2b2 Fb2λ
Fb1λ Fb2λ Fλλ

 . (107)

To show T is differentiable, we take the first row of T and compute its derivative with respect to
x, i.e. (∂

2b1
∂x2

∂2b2
∂x2

∂2λ
∂x2 ) as an example. We write (13) in the form of

x = x(b1, b2, λ),
y = y(b1, b2, λ),
z = z(b1, b2, λ).

(108)

Taking the second derivatives of both sides of (108) with respect to x, we get

0 = Cf +
∂x

∂b1

∂2b1
∂x2

+
∂x

∂b2

∂2b2
∂x2

+
∂x

∂λ

∂2λ

∂x2
, (109)

0 = Cg +
∂y

∂b1

∂2b1
∂x2

+
∂y

∂b2

∂2b2
∂x2

+
∂y

∂λ

∂2λ

∂x2
, (110)

0 = Ch +
∂z

∂b1

∂2b1
∂x2

+
∂z

∂b2

∂2b2
∂x2

+
∂z

∂λ

∂2λ

∂x2
. (111)
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where

Cf =

 ∂b1
∂x
∂b2
∂x
∂λ
∂x

 ·


∂2x
∂b21

∂b1
∂x + ∂2x

∂b1∂b2
∂b2
∂x + ∂2x

∂b1∂λ
∂λ
∂x

∂2x
∂b1∂b2

∂b1
∂x + ∂2x

∂b22

∂b2
∂x + ∂2x

∂b2∂λ
∂λ
∂x

∂2x
∂b1∂λ

∂b1
∂x + ∂2x

∂b2∂λ
∂b2
∂x + ∂2x

∂λ2
∂λ
∂x

 ,

Cg =

 ∂b1
∂x
∂b2
∂x
∂λ
∂x

 ·


∂2y
∂b21

∂b1
∂x + ∂2y

∂b1∂b2
∂b2
∂x + ∂2y

∂b1∂λ
∂λ
∂x

∂2y
∂b1∂b2

∂b1
∂x + ∂2y

∂b22

∂b2
∂x + ∂2y

∂b2∂λ
∂λ
∂x

∂2y
∂b1∂λ

∂b1
∂x + ∂2y

∂b2∂λ
∂b2
∂x + ∂2y

∂λ2
∂λ
∂x

 ,

Ch =

 ∂b1
∂x
∂b2
∂x
∂λ
∂x

 ·


∂2z
∂b21

∂b1
∂x + ∂2z

∂b1∂b2
∂b2
∂x + ∂2z

∂b1∂λ
∂λ
∂x

∂2z
∂b1∂b2

∂b1
∂x + ∂2z

∂b22

∂b2
∂x + ∂2z

∂b2∂λ
∂λ
∂x

∂2z
∂b1∂λ

∂b1
∂x + ∂2z

∂b2∂λ
∂b2
∂x + ∂2z

∂λ2
∂λ
∂x

 .

So we get  ∂2b1
∂x2

∂2b2
∂x2

∂2λ
∂x2

 = T

 −Cf−Cg
−Ch

 . (112)

Using the same method, we can get the other rows of ∂T
∂x , matrices Ty and Tz by changing Cf , Cg,

Ch in (112). Therefore T is differentiable. Similarly, we can compute the higher order derivatives
of T and prove that T ∈ C∞, thus prove F ∈ C∞(Ω0), where Ω0 defined in Section 3.2.3 is the
canonical triangle. Therefore, as defined in (104), f ∈ C∞(Ω0).

4 Poisson Boltzmann Electrostatics

Models of molecular potential energy are often used in biology to understand the structure-function
relationships of proteins. Computation of molecular binding affinities and molecular dynamics [32,
75] involves repeated evaluation of molecular energy or forces as dynamic molecular configurations
are simulated and analyzed. Electrostatic interactions of a molecule with an ionic solution are
captured in the polarization term of the total potential energy. Since treating each solvent molecule
discretely is extremely computationally expensive for a realistic number of molecules, a common
and experimentally useful model for this polarization interaction is the Poisson-Boltzmann equation
which treats the solvent as a continuous medium [34, 39].

Finite difference, finite element, and boundary element methods have all been used to solve the
linearized Poisson-Boltzmann equation numerically [71]. Discretizing space with a regular lattice,
the earliest solvers were based on finite difference methods [40, 74, 90]. Later finite difference
approaches incorporated multigrid techniques [52, 55] and an alternate formulation [87] to improve
efficiency. However, discontinuous coefficients and Dirac point charges often limit the accuracy of
these methods.

Finite element methods eliminate some of these challenges by allowing the domain to be dis-
cretized with a more geometrically accurate mesh. Finite element methods have been developed and
analyzed for the linearized [8, 18, 26, 27] and nonlinear Poisson-Boltzmann equation [7, 8, 24, 53].
Both finite difference and finite element methods require a discretization of three-dimensional space.
If a uniform mesh of size h is used, then the number of degrees of freedom is O(h−3). Boundary ele-
ment methods provide an alternative in which all degrees of freedom lie on the molecular boundary
and (for a uniform mesh) only O(h−2) degrees of freedom are needed.

Zauhar and Morgan [106, 107, 108] formulated the linearized Poisson-Boltzmann equation as a
system of boundary integral equations (the nonderivative boundary integral equations, nBIE) and
solved this system numerically. The original system has been observed to exhibit poor conditioning
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for iterative linear solvers [67], but an alternative formulation (the derivative boundary integral
equations, dBIE) first stated by Juffer et al. [60] is well conditioned. Since the boundary element
method leads to a dense linear system, and these and other [114] early methods suffer from need
to compute this entire matrix.

Due to the special structure of the boundary element system, the fast multipole method [43]
can be used to efficiently approximate the necessary matrix-vector products without creating the
full matrix. This has been applied to several formulations of the molecular electrostatics problem:
nBIE [1, 64, 69], dBIE [17, 70], models involving only Poisson’s equation [13, 98] and a formulation
involving only single layer densities [15]. Nearly all of these codes utilize the solvent-exposed surface
produced by MSMS which is composed of spherical and toroidal patches but in some cases contains
sharp corners, and some codes approximate this surface with a flat triangulation [17]. This can
give hypersingular integrals which are challenging to discretize and a resulting solution error which
is dominated by the geometric approximation.

For the linearized Poisson-Boltzmann equation we have designed and implemented a bound-
ary element method and additionally studied its accuracy and efficiency on real protein struc-
tures. Our solver combines several key features which produce meaningful electrostatics calcula-
tions with modest surface mesh sizes. First, the dBIE formulation of the problem is used pro-
viding a well conditioned system for iterative methods in linear algebra. Second, by defining the
molecular domain using the C1 algebraic spline molecular surface, solutions only reflect a second
order geometric error from the domain approximation and numerically problematic hypersingu-
lar integrals are avoided. Third, a general purpose fast multipole package, KIFMM3d, is used to
efficiently approximate dense matrix computations simplifying the algorithm by separating the
details of the fast multipole method from the rest of the scheme. Our freely available solver
(http://cvcweb.ices.utexas.edu/software) is tested on a suite of actual proteins important
in molecular docking. We show that our software outperforms several alternative approaches (the
nonderivative boundary integral formulation and linear or nondifferentiable surface geometry) and
demonstrate benefits compared to a finite difference solver. For practical examples, key parameters
including singular and non-singular quadrature orders, fast multipole approximation order, and
GMRES termination tolerance are tuned to greatly improve the method efficiency with minimal
impact on the solution error.

Motivation for comuting the molecular polarization energy is contained in Section 4.1. In
Section 4.2 the nonlinear and linearized Poisson-Boltzmann equations are stated and then the latter
equation is formulated as a pair of boundary integral equations. Our numerical scheme for solving
these equations is described in Section 4.3. Polarization energy is formulated as a post-processes to
the Poisson-Boltzmann solution in Section 4.4. Sections 4.5 and 4.6 contain implementation details
and computational experiments, respectively.

4.1 Motivation

We begin with a general outline of the molecular energetics problem including a description of the
specific role of the polarization energy.

Molecular Potential Energy The total free energy of the system G is given be G = U − TS
where U is the potential energy, T is the temperature of the system, and S is the solute entropy.
The potential energy of a molecule in solution is divided into two components: U = EMM + Gsol,
where EMM is the molecular mechanical energy, and Gsol is the solvation energy. A common model
for the molecular mechanical energy EMM is given in [66].

For a molecule in solution, additional potential energy resulting from interaction of the solute
and solvent is called the solvation energy Gsol. The solvation energy is often modeled by three
terms:

Gsol = Gcav +Gvdw +Gpol, (113)
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where Gcav is the energy to form a cavity in the solvent, Gvdw is the van der Waals interaction
energy between solute and solvent atoms, and the polarization energy Gpol is the electrostatic
energy due to solvation [32, 39, 51, 89, 92].

Polarization Energy The polarization energy of a molecule occupying region Ω is the change
in the electrostatic energy due to the induced polarization of the solvent,

Gpol =
1
2

∫
Ω
φrxn(z)ρ(z) z. , (114)

where ρ(z) is the charge density at position z and the reaction electrostatic potential φrxn(z)
indicates the change in electrostatic potential caused by solvation, i.e., φrxn = φsol−φgas where φsol

and φgas are the potential of the molecular in solution and in a gas, respectively.
A number of applications involve the computation of polarization energy. For example, the

binding effect of a drug (molecule 1) and its target (molecule 2) is the difference between the
potential energy of the complex of the two molecules minus the sum of the potential energy of the
individual molecules:

∆Gbind = Gcomplex − (Gmolecule1 +Gmolecule2).

Polarization energy is an important component of each of these energy calculations.
Different theoretical approaches for computing binding solvation energy can be divided into two

broad categories: explicit and implicit [32, 39, 77, 95]. Explicit solvent models adopt a atomistic
treatment of both solvent and solute. Explicit approaches sample the solute-solvent space by molec-
ular dynamics or Monte Carlo techniques which involve a large number of ions, water molecules,
and molecular atoms [95]. This requires considerable computational effort and explicit solutions
are often not practical especially for large domains [100].

Implicit solvent models treat the solvent as a featureless dielectric material and adopt a semi-
microscopic representation of the solute. The effects of the solvent are modeled in terms of dielectric
and ionic physical properties. The most widely used implicit model for molecular electrostatics is
the Poisson-Boltzmann equation: it possesses a solid theoretical justification and has been explain
a number of experimental observations [32, 34, 35, 86, 92, 100]. Since the solution to partial
differential equations still requires substantial computational effort, several other implicit models
have been developed to approximate results of the Poisson-Boltzmann model. The most common
of these models is the Generalized Born formula [95, 5] which has also been used to successfully
approximate polarization energy for some applications [2, 36].

4.2 The Poisson-Boltzmann Equation

A molecule is defined as a stable group of at least two atoms in a definite arrangement held together
by very strong chemical covalent bonds. For a molecule embedded in an ionic solution, the domain
(R3) is separated into open interior (Ω) and exterior regions (R3 \ Ω) divided by the molecular
surface Γ = Ω ∩ R3 \ Ω [65]; see Figure 11.

Two important coefficients, the dielectric coefficient ε(z) and the ion strength I(z), are assumed
to be constant over Ω and R3 \ Ω:

ε(z) =

{
εI , x ∈ Ω,
εE , x ∈ R3 − Ω,

and I(z) =

{
0, z ∈ Ω,
I, z ∈ R3 − Ω.

The electrostatic potential in the interior and exterior of a molecule is governed by Poisson’s
equation,

∇(ε(z)∇φ(z)) = ρ(z), (115)
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Figure 11: Molecular domain Ω for the boundary element formulation. Γ denotes the surface of
molecular interior Ω. Atomic centers zk are contained inside Ω while mobile ions in solution occur
outside Ω. x and y are used to denote points on the molecular surface and the surface normal are
denoted ~n(x) and ~n(y). In the discrete system, x is typically used to identify a collocation point
while y usually represents a quadrature point.

where ρ(z) is a variable charge density. This charge density contains two components: charged
atoms belonging to the molecule itself and mobile ions as part of the solution. Atomic charges are
assumed to be Dirac distributions while mobile ions in solution are modeled with the Boltzmann
distribution,

ρ(z) := ρc(z) + ρb(z) = −4π
nc∑
k=1

qk
εI
δ(z− zk) + λ(z)

∑
i

eczicie
−ecziφ(z)/kBT . (116)

Since ρ(z) depends on φ, (115) is the nonlinear Poisson-Bolzmann equation rather than merely
Poisson’s equation. Definitions of each of the parameters in (116) and a few other parameters
needed for the linearized version are given below.

ε(z) dielectric coefficient at z
qk charge of the atom k
zk location of charge qk
nc number of point charges
λ(z) characteristic function of the set R3 \ Ω
ec charge of an electron
kB Boltzmann’s constant
T absolute temperature
I = 1

2

∑
i ciz

2
i ionic strength

ci, zi concentration and charge of ith ionic species

κ̄(z) =
√

8πe2cI(z)
kBT

modified Debye-Huckel parameter

Selecting a linear approximation to the nonlinear term ρb produces the linearized Poisson-
Boltzmann equation,

∇(ε(z)∇φ(z)) = ρc(z) + ρLb (z), (117)

where ρLb (z) = κ̄2(z)φ(z) is the first term of the Taylor expansion of ρb(z). In many cases the lin-
earized Poisson-Boltzmann equation provides a sufficiently accurate approximation of the nonlinear
Poisson-Boltzmann equation; see [35] and references therein.
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4.2.1 Boundary Integral Formulation

Potential theory [61, 93] provides the tools needed to derive a boundary integral formulation of the
linearized Poisson-Boltzmann equation. We begin by separating (117) into the interior and exterior
regions and explicitly stating interface conditions which must hold on molecular boundary Γ:

∇ (εI∇φ(z)) = −
nc∑
k=1

qkδ(z− zk) z ∈ Ω, (118)

∇ (εE∇φ(w)) = κ̄2φ(w) w ∈ R3 \ Ω, (119)
φ(z)|z=x = φ(w)|w=x x ∈ Γ, (120)

∂φ

∂~n
(z)
∣∣∣∣
z=x

=
εE
εI

∂φ

∂~n
(w)

∣∣∣∣
w=x

x ∈ Γ. (121)

Carefully applying Green’s second identity to the interior and exterior regions and taking limits
approaching Γ yields the boundary integral equations,

1
2
φ(x) +

∫
Γ

[
∂G0(x,y)
∂~n(y)

φ(y)−G0(x,y)
∂φ

∂~n
(y)
]

y. =
nc∑
k=1

qk
εI
G0(x, zk), (122)

1
2
φ(x) +

∫
Γ

[
∂Gκ(x,y)
∂~n(y)

φ(y)− εI
εE
Gκ(x,y)

∂φ

∂~n
(y)
]

y. = 0, (123)

where G0 and Gκ denote the fundamental solutions of the Poisson-Boltzmann equations,

G0(x,y) =
1

4π ||x− y||
, and Gκ(x,y) =

e−κ||x−y||

4π ||x− y||
.

Recall Figure 11 for an example domain including normal vectors at labeled boundary points x
and y.

An alternative boundary element formulation of the linearized Poisson-Boltzmann equation was
proposed by Juffer et al. [60]. This system (dBIE) is produced by taking linear combinations of
the original boundary integral equations and their derivatives.

1
2

(
1 +

εE
εI

)
φ(x) +

∫
Γ

(
∂G0(x,y)
∂~n(y)

− εE
εI

∂Gκ(x,y)
∂~n(y)

)
φ(y)y. (124)

−
∫

Γ
(G0(x,y)−Gκ(x,y))

∂φ(y)
∂~n(y)

y. =
nc∑
k=1

qk
εI
G0(x, zk),

1
2

(
1 +

εI
εE

)
∂φ(x)
∂~n(x)

+
∫

Γ

(
∂2G0(x,y)
∂~n(x)∂~n(y)

− ∂2Gκ(x,y)
∂~n(x)∂~n(y)

)
φ(y)y. (125)

−
∫

Γ

(
∂G0(x,y)
∂~n(x)

− εI
εE

∂Gκ(x,y)
∂~n(x)

)
∂φ(y)
∂~n(y)

=
nc∑
k=1

qk
εI

∂G0(x, zk)
∂~n(x)

y. .

This combination of the derivatives of (122) and (123) has been selected so the kernel ∂2G0(x,y)
∂~n(x)∂~n(y) −

∂2Gκ(x,y)
∂~n(x)∂~n(y) in (125) is not hypersingular. For certain numerical schemes, this reformulation has been
observed to produce a better well-conditioned linear system and fast convergence of iterative linear
solvers when compared to the original boundary integral equations [67].

4.2.2 Discretization by the Collocation Method

The boundary integral equations (either dBIE or nBIE) are discretized by selecting a finite-
dimensional function space and a set of collocation points. Each unknown function is required
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to belong to the selected function space and the integral equations are required to hold exactly
at the collocation points. The most commonly selected pairs of function spaces and collocation
points are piecewise constant functions with triangle centroid collocation points and piecewise lin-
ear functions with mesh vertex collocation points. Let {ψi}ndi=1 be a basis for the finite-dimensional
function space, i.e., φ(x) =

∑nd
i=1 φiψi(x) and ∂φ

∂~n(x) =
∑nd

i=1 ∂φiψi(x), and let xi denote the
collocation points. Then the nBIE formulation becomes a linear system of equations,

1
2

nd∑
j=1

φjψj(xi) +
∫

Γ

∂G0(xi,y)
∂~n(y)

nd∑
j=1

φjψj(y)y.

−
∫

Γ
G0(xi,y)

nd∑
j=1

∂φjψj(y)y. =
nc∑
k=1

qk
εI
G0(xi, zk),

i = 1..nd, (126)

1
2

nd∑
j=1

φjψj(xi) +
∫

Γ

∂Gκ(x,y)
∂~n(y)

nd∑
j=1

φjψj(y)y.

−
∫

Γ

εI
εE
Gκ(x,y)

nd∑
j=1

∂φjψj(y)y. = 0,

i = 1..nd. (127)

A similar system can be derived for the dBIE system. Solving this dense linear system (for unknowns
φi and ∂φi) involves a number of complications and simplifications. We briefly outlines the general
issues here and in the next section describe our specific approaches as applied to realistic proteins.

The integrals in (126) and (127) must be discretized by some quadrature rules, but the singular
kernels prevent the use of a fixed quadrature rule over a triangulation (or similar discretization)
of the boundary. For a boundary subdivided into patches {Γb}nbb=1, the integral is usually broken
into three parts: nonsingular, nearly singular and singular components. A different quadrature
rule is used for each type of boundary patch based on which component of the integral it belongs
to. The singular and non-singular integrals are usually performed only in a small neighborhood
of the singulatity xi. The remaining integrals are evaluated using a fixed nonsingular quadrature
rule and due to the rapid decay of the kernels, the simultaneous computation of these integrals
for each collocation point can be accelerated with the fast multipole method [43]. For example if
the first integral in (126) is discretized using a quadrature rule {(yq, ww)}nqq=1 then the resulting
summations,

nq∑
q=1

∂G0(xi,yq)
∂~n(yq)

wq

nd∑
j=1

φjψj(yq), i = 1..nd, (128)

can be accurately approximated via the fast multipole in O(max(nq, nd)) operations assuming that
the support of each basis function intersects a bounded number of boundary patches, i.e., the sum
in j in (128) involves a bounded number of terms.

Following the fast multipole calculation, each of the values is corrected to include accurate
singular and nearly singular quadrature rules for the appropriate boundary patches. Singular
integration is usually performed with by quadrature rules tailored to the position of the singularity
[29, 46, 58] while nearly singular integration usually involves (possibly adaptive) refinement of the
boundary patches [16, 46, 58, 88]. In some cases singular and nearly singular integration has been
studied with respect to certain specific surfaces associated with the linearized Poisson-Boltzmann
equation [10, 101].

4.3 BEM for Molecular Surfaces

We describe the details of our boundary element method: how the molecular surface is defined and
discretized, what basis functions are selected and how quadrature is performed.
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Figure 12: Molecular model of a protein (PDB id:1PPE, 436 atoms). (a) The van der Waals
surface of the protein which models the molecule as a union of balls. (b) The variational molecular
surface gives a smooth approximation of the van der Waals surface. (c) The variational surface is
then triangulated and then decimated to produce a smaller mesh. This decimated mesh contains
1,000 triangles. (d) The algebraic spline molecular surface (ASMS) fits a smooth surface over the
triangular mesh. (e) Electrostatic potential computed using the 1,000 patch ASMS. (f) Electrostatic
potential using an ASMS with 74,812 patches. The surfaces in (e) and (f) are colored by the
electrostatic potential, ranging from −3.8 kbT/ec (red) to +3.8 kbT/ec (blue).
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Figure 13: (a) A single prismatic scaffold region for the triangle with vertices v1, v2, and v3 and
associated surface normals ~n1, ~n2, and ~n3. The surface patch Γ̄i interpolates these normals. (b)
The ASMS is smooth between two scaffold patches Γ1 and Γ2.

4.3.1 Construction of the Molecular Surface

To define the molecular surface Γ, we begin with an experimentally derived protein structure from
the RCSB Protein Data Bank (PDB) [11], a worldwide data repository containing thousands of
large bio-molecules. Each PDB structure contains of list of spacial locations for each of the atoms
in a molecule. The molecular model for electrostatic calculations is obtained from a PDB file
by assigning charge and radius parameters derived from a variety of force fields, e.g., AMBER
[77], CHARMM [19], etc. For example, the adaptive Poisson-Boltzmann solver, APBS, applies the
all-atom AMBER 99 force field [28].

From a configuration of atomic positions and radii a molecular surface can be defined. The
simplest surfaces, the van der Waals and solvent accessible surfaces, are merely the boundary of a
union of balls [65]; see Figure 12(a). Alternatively the solvent excluded surface [25, 83] is defined to
be the boundary of the region outside this union of balls which is accessible by a probe sphere. The
solvent excluded surface eliminates many, but not all, of the non-differentiable cusps which occur
in the union-of-balls surfaces. For a smooth surface, the level-set of a sum of Gaussian functions
associated with each atom is often considered; see [14, 41], for example.

We utilize the molecular surface constructed in; the surface is generated by constructing a
Gaussian density function for the atom based on atomic positions and radii, evolving this function
according to a variational formulation and then considering a level-set of this function; see Fig-
ure 12(b). For the resulting surface, a triangular mesh with surface normal vectors at the vertices is
constructed using a dual contouring method [110]. If the surface mesh generated contains too many
triangles, it is decimated following the approach in [4] and further mesh smoothing is performed as
necessary; see Figure 12(c).

4.3.2 Surface Parametrization

To provide a smooth surface which interpolates mesh vertices and prescribed surface normals, we
utilize the algebraic spline molecular surface (ASMS) [112]. This surface is constructed from alge-
braic patches or A-patches which are a kind of low degree algebraic surface with dual implicit and
rational parametric representations [3]. The result is a molecular surface depicted in Figure 12(d)
which can be parametrized in terms of the barycentric coordinates of the triangles allowing for easy
construction of basis functions as described in the next section. We give a brief overview of this
construction; complete details can be found in [112, 113].
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For some triangle element Γj with vertices v1, v2, and v3 and normals ~n1, ~n2 and ~n3, the
A-patch Γ̄j is defined on this prism,

D(Γj) := {y : y = b1v1(λ) + b2v2(λ) + b3v3(λ), −1 ≤ λ ≤ 1},

where vi(λ) = vi+λ~ni and (b1, b2, b3) are the barycentric coordinates of the triangle; see Figure 13.
We define a function over the prism D(Γj) in Benstein-Bezier spline form by

Fd(b1, b2, b3, λ) =
∑

i+j+k=d

bijk(λ)Bd
ijk(b1, b2, b3),

where Bd
ijk(b1, b2, b3) = d!

i!j!k!b
i
1b
j
2b
k
3. For d ≥ 3 coefficients bijk(λ) can be selected so that Fd is

continuous between adjacent patches and for each vertex Fd(vi) = 0 and ∇Fd(vi) = ~ni.
The molecular surface Γ̄j is the zero level-set of Fd,

Γ̄j = {y : y = b1v1(λ) + b2v2(λ) + b3v3(λ), Fd(b1, b2, b3, λ) = 0}. (129)

This can be viewed as a parametric representation in two parameters b1 and b2. The third barycen-
tric coordinate can be computed from the first two, b3 = 1−b1−b2 and under some mild restrictions
on the mesh shape and vertex normals, Fd(b1, b2, b3, λ) = 0 can be solved for λ in terms of b1 and
b2. In practice this nonlinear equation is solved numerically with Newton’s method.

4.3.3 Selection of Basis Functions

We consider two different types of basis functions for the solution space and associated collocation
points: piecewise constant basis functions with triangle centroids as collocation points and piecewise
linear basis functions with mesh vertices as collocation points. In both cases these functions are
defined based on the barycentric coordinates of an underlying triangular mesh. Since the A-patches
can be parametrized by the barycentric coordinates, this construction can be directly applied to
the ASMS.

4.3.4 Quadrature

Let {(bq, wq)}
nq
q=1 be a (generic) quadrature rule for a reference triangle T where bq denote the

barycentric coordinates. Using a change of variables, this rule can be transferred to an arbitrary A-
patch using the parametrization (129). The resulting quadrature rule on Γ̄j is {(y(bq), J(bq)wq)}

nq
q=1

where J(bq) denotes the Jacobian of the parametrization.
Next we outline the quadrature rules for nonsingular, singular, and nearly singular integrals

to be computed. In each case, quadrature rules on a reference triangle can be transferred to the
curved molecular surface using the aforementioned change of variables.

Nonsingular Quadrature and the Fast Multipole Method Nonsingular quadrature is per-
formed using a fixed Gaussian quadrature rule. This gives a single quadrature rule for the entire
surface producing integrals of the form of (128). The source density wq

∑nd
j=1 φjψj(yq) must be

computed at each quadrature point yq. Since the basis functions are locally supported, the sum-
mation over j only involves a bounded number of terms for any particular quadrature point. Then
for all collocation points xi the summation in q can be approximated by the fast multipole method
in O(nq · nb) operations.
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Figure 14: Singular quadrature rules. (a) Quadrature rule for a triangle with a weak singularity at
a triangle vertex. (b) When singularity occurs in the triangle interior, the triangle is divided into
three subtriangles at the singularity and then the scheme depicted in (a) can be applied to each
subtriangle.

Singular Quadrature For smooth surfaces, the kernels in (122), (123), (124), and (125) are
all integrable. By performing a change of variables to polar coordinates around the singularity,
a smooth integrand is produced. For singularities occurring at a vertex of a triangle, a more
computationally useful change of variables is described clearly in [29]. This coordinate change
maps the a triangle into a square where a tensor-product Gaussian quadrature rule can be applied;
see Figure 14.

When a triangle centroid is selected to be a collocation point, the integrand singularity occurs
in the interior of the triangle. Suitable quadrature rules are formed by subdividing the triangle
into three new triangles with the singularity as a new vertex; see Figure 14. Then the previous
quadrature rule (which was designed for triangles with singularities at a vertex) can be applied to
each of the three new triangles.

Nearly Singular Quadrature Nearly singular quadrature is performed by subdivision. On each
subdivided triangle a Gaussian quadrature rule is applied. Precise convergence analysis imposes
many restrictions on how this refinement should be performed and which integrals must be consid-
ered nearly singular; for examples, see [58, 104]. In Section 4.6 we demonstrate that nearly singular
quadrature has limited importance for molecular structures and thus have avoided implementing a
more complex (and computationally demanding) quadrature procedure.

4.4 Polarization Energy Computation

After solving for the electrostatic potential φ and its normal derivative ∂φ
∂~n the total polarization

energy can be computed. Combining the expressions for the polarization energy (114) and the
charge density (116) gives

Gpol =
∫

Ω
φrxn(z)

nc∑
k=1

qkδ(z− zk)dz =
1
2

nc∑
k=1

φrxn(zk)qk (130)

where φrxn(x) = φ(x)− φgas(x) is the difference between the potential induced by the molecule in
solution and the molecule in a gas.

Using Green’s second identity as in the derivation of the boundary integral equations, formulas
for the potential both inside and outside the molecule can be obtained; see [60] for complete details.
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For a point z ∈ R3 \ Γ,

ε(z)
εI

φ(z) =
∫

Γ

(
εE
εI

∂Gκ(z,y)
∂~n(y)

− ∂G0(z,y)
∂~n(y)

)
φ(y)y.

+
∫

Γ
(G0(z,y)−Gκ(z,y))

∂φ(y)
∂~n(y)

dy +
nc∑
k=1

qk
εI
G0(z, zk).

(131)

The potential of the molecule in a gas is the solution to Poisson’s equation (115) with constant
dielectric ε(z) := εI , and no charge density due to mobile ions ρ(z) = ρc(z). As the right hand
side contains only a sum of Dirac functions, φgas is the sum of fundamental solutions to Poisson’s
equation,

φgas(z) =
nc∑
k=1

qk
εI
G0(z, zk). (132)

Subtracting (132) from (136) yields

φrxn(z) =
∫

Γ

(
εE
εI

∂Gκ(z,y)
∂~n(y)

− ∂G0(z,y)
∂~n(y)

)
φ(y) + (G0(z,y)−Gκ(z,y))

∂φ(y)
∂~n(y)

dy,

for all z ∈ Ω. The fast multipole method is then used to efficiently evaluate φrxn at each atomic
position zk for the energy computation (130).

4.5 Implementation Details

Here we outline the steps in our software pipeline followed by a description of the key parameters
to the algorithm.

4.5.1 Data Pipeline and Software Architecture

Given a molecular structure, a force field, and the concentrations of ions in solution, our code
computes polarization energy in the following steps.

1. Molecular Structure Preparation Molecular structures contained in the Protein Data
Bank [11] contain the types and positions of most of the atoms in a molecule. The software
package PDB2PQR [28] places missing hydrogen atoms in the original structure and assigns partial
charges and atomic radii based on the force field selected.

2. Molecular Surface and Triangular Surface Mesh Construction Based on the positions
and radii of the atoms, a molecular surface is constructed through a level-set formulation with
software. The level-set surface is approximated as a quality triangular mesh with surface normal
directions specified at the vertices using a dual contouring method [110]. If necessary, this triangular
mesh is decimated, and a geometric flow algorithm is applied to improve mesh quality [4].

3. Surface Parametrization The molecular surface is locally parametrized using the algebraic
spline construction described in Section 4.3.2. Quadrature points are computed for each type of
integral listed in Section 4.3.4.
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4. Numerical Solution The linear system ( equations (126) and (127) or the equivalent system
for the dBIE formulation) is solved using the GMRES routine provided by PETSc (Portable, Ex-
tensible Toolkit for Scientific Computation) [9]. Matrix-vector products are implemented manually
using PETSc’s shell matrix construction. Inside each matrix-vector product, KIFMM3d (Kernel-
Independent Fast Multipole 3d Method) [103] is used to efficiently perform summations for a fixed
quadrature rule and then singular and near field quadrature rules are used to provide a local
correction to the least accurate portions of the integrals.

5. Energy Computation The polarization energy is computed using the formulation in Sec-
tion 4.4. Numerical integration is again performed using KIFMM3d with local quadrature corrections
to singular or nearly singular integrals.

6. User Interface and Visualization The molecular visualization and computation package
TexMol provides a graphical interface for the algorithm parameters as well as immediate visualiza-
tion of the results.

4.5.2 Algorithm Parameters

When running the algorithm, a particular formulation must be selected and a number of parameters
must be set. One boundary integral formulation (nBIE or dBIE) must be selected and either
piecewise constant or piecewise linear basis functions can be used. Additionally, the following
parameters must be selected.

Ng Number of points in triangular Gaussian quadrature rule
Ns Number of points in triangular singular quadrature rule
Nns Number of subdivisions for the nearly singular quadrature rule
Dns Depth of triangles for the nearly singular quadrature rule
εtol Tolerance for terminating PETSc GMRES routine
Nfmm KIFMM3d accuracy parameter

The parameter Nfmm is the number of points used by KIFMM3d to represent equivalent densities

and effects the accuracy of the fast multipole evaluations. KIFMM3d runs in O(N
3
2

fmm) time.

4.6 Experimental Results

Two types of experiments are considered: a simple example with a known solution and realistic
protein complexes from the ZDOCK benchmark [73]. Results are compared to solutions of the lin-
earized Poisson-Boltzmann equations produced by the multigrid finite difference method provided
in APBS version 1.2.1 [8, 55].

4.6.1 Single Ion Model

We begin by studying the simplest molecule: a single atom with radius r and charge q. In this case
an explicit solution to the linearized Poisson-Boltzmann equation is known [62]:

φ∗(x) =


q

4πεI |x| + q
4πr

[
1

εE(1+κ) −
1
εI

]
x ∈ Ω,

qe−κ(|x|−r)

εE(1+κr)|x| x /∈ Ω.
(133)

The resulting polarization energy is

G∗pol =
q2

8πr

[
1

εE(1 + κ)
− 1
εI

]
. (134)
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Table 4: Comparison of solution error under several quadrature procedures on the single ion ex-
ample. Each quadrature scheme is listed as Ng/Ns/Dns. In all cases Nns = 6 and εtol = 10−7.

Mesh Quadrature Scheme
h Vertices 3/9/3 3/9/0 3/4/0 1/9/0 1/4/0

4.9e-1 42 5.88e-2 5.91e-2 6.05e-2 6.15e-2 6.29e-2
2.5e-1 82 1.93e-2 1.94e-2 1.98e-2 2.13e-2 2.18e-2
1.2e-1 162 5.36e-3 5.38e-3 5.55e-3 6.47e-3 6.64e-3
6.2e-2 322 1.41e-3 1.41e-3 1.49e-3 1.98e-3 2.06e-3
3.1e-2 642 3.62e-4 3.65e-4 4.06e-4 6.50e-4 6.90e-4
1.6e-2 1282 9.54e-5 9.70e-5 1.17e-4 2.38e-4 2.58e-4

Table 5: Comparison of the nBIE and dBIE formulations for the single ion model.
εtol 10−5 10−8

nBIE dBIE nBIE dBIE
h Error It. Error It. Error It. Error It.

4.9e-1 1.63e-1 5 5.91e-2 6 1.63e-1 10 5.91e-2 8
2.5e-1 4.47e-2 11 1.93e-2 9 4.47e-2 26 1.93e-2 15
1.2e-1 1.15e-2 6 5.38e-3 6 1.15e-2 28 5.38e-3 13
6.2e-2 2.95e-3 4 1.41e-3 6 2.95e-3 34 1.41e-3 13
3.1e-2 7.49e-4 3 3.65e-4 6 7.58e-4 43 3.65e-4 12

This example is used to test the various parameter settings for PB-CFMM. Relative error between
the exact solution φ∗ and the numerical solution φ is measured in the L2-norm,

Error =

√√√√√√
∫
γ (φ∗(y)− φ(y))2 +

(
∂φ∗(y)
∂~n − ∂φ(y)

∂~n

)2
y.∫

γ (φ∗(y))2 +
(
∂φ∗(y)
∂~n

)2
y.

. (135)

While derivatives of φ suggest that this expression is more closely related to the H1-norm, φ and
∂φ
∂~n are independent unknowns in the boundary integral formulation. So (135) is the L2-norm of

the unknown vector
(
φ, ∂φ∂~n

)
.

We begin by selecting acceptable quadrature rules. Table 4 contains a comparison of the solu-
tion error under different quadrature configurations. The simplified nature of our nearly singular
quadrature scheme means that eventually (i.e., when the size of the triangles in the surface mesh
becomes small enough) the quadratic convergence rate of the method will be lost. The table
demonstrates that if the nonsingular and singular quadrature rules are of high enough order, nearly
singular quadrature can be avoided. In practice we see that the three-point Gaussian quadrature
rule for nonsingular integrals and the nine-point (i.e., three by three) rule for singular integrals are
sufficient to preserve the convergence rate in the typical ranges that we consider. Higher degree
integration rules do not reduce the solution error for the mesh sizes listed.

Table 5 contains a comparison of nonderivative ((122) and (123)) and derivative ((124) and
((125)) boundary integral formulations. In [67] it is reported that matrices corresponding to the
derivative boundary integral equations are better conditioned for iterative solvers. We observe this
when performing the computation for small εtol. However for modest εtol values we find that both
formulations terminate in many fewer iterations without an impact on the solution error. Since
the dBIE formulation requires four times as many fast multipole calls as the nBIE formulation
(and thus typically four times the runtime), it can be desirable to use the nBIE formulation in
certain situations. This likely explains how the nBIE formulation has been used successfully by
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Table 6: Comparing the performance of the algebraic spline molecular surface (ASMS) to a linear
approximation of the domain. The exact energy value is -81.450 kcal/mol.

A-Spline Linear
h L2 Error Energy It. L2 Error Energy It.

4.9e-1 5.90e-2 -75.56 6 5.81e-1 -137.67 4
2.5e-1 1.94-2 -80.08 9 3.60e-1 -100.73 9
1.2e-1 5.38e-3 -81.61 6 1.92e-1 -89.37 10
6.2e-2 1.41e-3 -81.43 6 9.80e-2 -85.01 9
3.1e-2 3.65-4 -81.44 4 1.65e-3 -83.14 9

Table 7: Comparison of APBS and PB-CFMM for the single ion example. The exact polarization
energy is -81.450 kcal/mol with the interior and exterior dielectric constants 2 and 80.

solver # degrees Gpol memory time
name h of freedom (kcal/mol) (mb) (seconds)

APBS

4.0e-1 173 -87.663 1.4 0.56
2.0e-1 333 -84.476 8.2 1.18
1.0e-1 653 -82.178 59 8.83
5.0e-2 1293 -81.831 448 57.73
2.5e-2 2573 -81.594 3510 426.30

PB-CFMM

2.5e-1 82 -80.077 38 5.90
1.2e-1 162 -81.358 68 13.60
6.2e-2 322 -81.428 125 46.56
3.1e-2 642 -81.444 275 203.60
1.6e-2 1282 -81.449 995 830.09

some research groups; e.g. [1].
Table 6 contains a comparison of a curved A-spline molecular surface and a linear approximation

of the geometry. Polarization energy converges at the expected quadratic rate for the curved
geometry and at a linear rate for the linear geometry. Even for very coarse meshes (i.e., before
the faster convergence rate has taken effect) the curved geometry performs much better. This is
likely due to the hypersingular integrals associated with corners of the polygonal domain. Since
the A-spline molecular surface is differentiable, it produces no hypersingular integrals and thus no
associated numerical problems.

Table 7 contains a comparison of our solver with APBS for the single ion example. While the
computational time for each method is linear in the number of degrees of freedom, the number
of degrees of freedom grows at O(h−3) for the finite difference solver compared to O(h−2) for the
boundary element solver. The finite difference solver is much more efficient per degree of freedom:
this is expected because the linearity of the fast multipole method involves a larger constant then
the local finite difference computations. The boundary element method gives a more accurate result
when compared to finite difference grids with the same length scale.

4.6.2 Protein Binding Examples

We focus our experiments on a set of 212 ligand-receptor protein complexes from the ZDOCK bench-
mark [73]. Based on our experiments on the single ion model, we choose a conservative parameter
set for PB-CFMM: Ng = 3, Ns = 9, Dns = 0, εtol = 10−5, and Nfmm = 6. These parameter settings
were seen to preserve the expected convergence rates for the single ion model at small length scales.
Atomic charge and radius information is generated using the AMBER 99 force field.

Table 8 contains a summary of the results of running PB-CFMM and APBS on the set of test
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Table 8: Comparison of PB-CFMM and APBS on 212 molecules from the ZDOCK Benchmark. Error in
the energy value is computed with respect to the finest mesh using the same solver and reported
as a percentage.

solver PB-CFMM APBS
# of DOF 2000 8000 32000 653 1293 2573

median energy error % 2.72 0.44 - 5.36 3.94 -
max energy error % 32.68 3.58 - 44.06 7.4 -

median # of iterations 19 22 24 - - -
max # of iterations 78 53 46 - - -

median compute time 37.14 173.45 801.94 13.84 80.29 524.64
median time per iter 1.92 8.12 32.08 - - -

median memory usage 65 150 469 126 535 3577

molecules. The runtime of both solvers is observed to be linear in the number of degrees of freedom
as expected. Error in the energy values is computed with respect to the energy computed at the
finest level. We see that PB-CFMM-computed energy values are more consistent than those computed
with APBS.

Note that the median difference between the finest scale PB-CFMM and APBS results is 3.15%. This
appears to be much higher than the error in the PB-CFMM computations. Some of this discrepancy
is due to the differences in the molecular surfaces used by the two solvers since the surfaces given
to PB-CFMM involve some pre-processing; recall Section 4.3.1. Figure 15 contains plots of the energy
values computed under the different solvers and mesh sizes.

For a more detailed look at the results, we consider the per-atom energy values (i.e. individual
terms in the summation (130)) for a particular molecule, nuclear transport factor 2 (PDB id: 1A2K).
Figure 16 contains plots of the per-atom energy values for different mesh resolutions. The per-atom
energies are consistent, especially between the highest resolution meshes. The median error over
all atoms is 0.03 kcal/mol while the maximum error is 3.29 kcal/mol. Of the 3, 179 atoms, 46 have
errors larger than 1 kcal/mol, and only two atoms have error larger than 2 kcal/mol. Figure 17
contains comparisons of per-atom energies resulting from the APBS solver.

Figure 18 demonstrates an electric potential computation for a typical protein complex. Fig-
ures 18(a-c) depict electric potential a molecule using different resolution surfaces meshes. These
results can be compared to those produces by APBS shown in Figure 18(d). Figures 18(e-f) de-
pict the potential computed separately for the two components. Finally Figure 18(g) contains the
surface potential for the entire complex.

We demonstrate the need for the derivative boundary formulation and a curved approximation
of the geometry by comparison to simpler alternatives. For this task we considered a set of 20
proteins from the ZDOCK benchmark. The derivative boundary integral formulation requires fewer
iterations to terminate and for a fixed tolerance εtol, gives a more accurate solution. Specifically
we compared the dBIE and nBIE formulations for a very modest GMRES tolerance, εtol = 10−3.
The results are tabulated in Table 9. The dBIE formulation requires noticeably fewer GMRES
iterations, but the dBIE formulation requires more computation time because it requires 16 fast
multipole calls per iterations compared to only four required in the nBIE formulation. However, the
advantage is of the dBIE formulation is seen by looking at the error in the energy value computed
after termination: the dBIE energy values are very near the final value for a large εtol while the
nBIE energy values contain substantial error.

The curved representation of the geometry yields a similar, yet more dramatic, impact on the
energy computation: the computation requires more GMRES iterations while yielding much poorer
energy values.

Table 10 contains results of our algorithm on the 20 protein test set when varying the fast
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Figure 15: Scatter plots of polarization energy values computed for 212 proteins using different
solvers and mesh sizes.

Figure 16: Per-atom polarization energy values are compared for nuclear transport factor 2 (PDB
id: 1A2K). Polarization energy is computed using surface meshes with 2,000, 8,000, and 32,000
mesh vertices. The energy values for the high-resolution (32,000 vertex) mesh are given on the
horizontal axis.
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Figure 17: Per-atom polarization energy values are compared for nuclear transport factor 2 (PDB
id: 1A2K). Polarization energy is compared between PB-CFMM and APBS.

Figure 18: The electrostatic potential on molecular surface for the complex between nuclear trans-
port factor 2 and GTPase Ran (PDB id: 1A2K). In all cases, the potential is between −3.8 kbT/ec
(red) and +3.8 kbT/ec (blue). (a-c) Electric potential of the nuclear transport factor 2 molecule
using surface meshes containing 2,000, 8,000, and 32.000 triangles. (d) The surface potential com-
puted by APBS. (e-f) Electric potential of the two component molecules. (g) Electric potential of
the molecular complex.
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Table 9: Comparison of nBIE and dBIE formulations on 20 example proteins. Error is computed
with respect to the numerical solutions on the same mesh using a much lower GMRES tolerance
(10−7). *Computation was halted after 100 GMRES iterations: each computation involving linear
geometry reached 100 iterations.

geometry A-Spline A-Spline Linear
formulation nBIE dBIE dBIE

median # iterations 40 17 *
max # iterations 47 26 *

median energy error 11.28 0.12 50.65
max energy error 17.55 0.46 61.92

Table 10: Results of polarization energy computation on 20 example proteins when varying Nfmm.
Error in the energy computation is reported as a percentage.

Nfmm 2 4 6 8
median energy error 0.77 4.21× 10−3 1.24× 10−4 -

median compute time 316 493 737 1151

multipole accuracy parameter Nfmm. Meaningful differences in the final energy computation are
only apparent for the lowest Nfmm value and even then these differences are small. In practice,
we observe that polarization energy computations are not very sensitive to the fast multipole
accuracy, especially when compared to the effects of the problem formulation and the molecular
surface selection.

We have described a complete software pipeline for computing the electrostatic potential and
polarization energy of biomolecules based on atomic descriptions. Our software is based on general
purpose scientific computing codes PETSc and KIFMM3d, and performs favorably against a specialized
linearized Poisson-Boltzmann solver. Our experiments demonstrate the benefits of the dBIE for-
mulation of the Poisson-Boltzmann equation and a smooth representation of the molecular surface
when simulating actual proteins.

In a similar fashion to the polarization energy, interior and exterior electrostatic potential and
per-atom forces can also be computed as a post-process to the Poisson-Boltzmann solver. Integral
formulations of the interior and exterior electrostatic potential are given in [60] while a derivation
of the atomic forces can be found in [39]. Also worth consideration are more detailed models of
molecular electrostatics including an ion exclusion layer surrounding the molecule and regions of
differing dielectric constant. Altman et al. [1] formulate a system including these features with
respect to the nBIEs and a similar extension should apply to the dBIE system. Moreover, the
construction of the ASMS [113] should be useful in generating parallel surfaces required by the ion
exclusion layer by picking different level sets a single function over the prismatic scaffold region.

Both PETSc and KIFMM3d are designed for parallel computation [105] and can be applied to
our solution approach. However, for a number of problems the Poisson-Boltzmann equation must
be solved many times; for example, the molecular docking problem requires polarization energy
to be computed over many potential docked configurations. In such cases it is often more natu-
ral to find separate Poisson-Boltzmann solutions in parallel rather than parallelize the individual
computations.

4.7 Interior and exterior electrostatic potential

Using Green’s second identity as in the derivation of the boundary integral equations, formulas for
the potential both inside and outside the molecule can be obtained; see [60] for complete details.
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For a point z ∈ R3 \ Γ,

ε(z)
εI

φ(z) =
∫

Γ

(
εE
εI

∂Gκ(z,y)
∂~n(y)

− ∂G0(z,y)
∂~n(y)

)
φ(y)y.

+
∫

Γ
(G0(z,y)−Gκ(z,y))

∂φ(y)
∂~n(y)

dy +
nc∑
k=1

qk
εI
G0(z, zk).

(136)

When multiple evaluations of the potential are required, the integrals in (136) are discretized and
evaluated using the techniques in Section 4.3.4. In cases where all evaluation points are sufficiently
far from the molecular surface, a fixed Gaussian quadrature rule and the fast multipole method are
sufficient; no correction for nearly singular integrals in needed.
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of knots (almost) equal to Möller’s lower bound. In H. Brass and G. Hämmerlin, editor,
Numerical Integration III, pages 25–36. Birkhäuser, Basel, 1988.
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