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1.1 Introduction

Today, hybrid experimental approaches for capturing molecular structures (henceforth, com-
plexes), utilizing cryo-electron microscopy (cryo-EM), electron tomography (ET), X-ray
crystallography (X-ray) or nuclear magnetic resonance spectroscopy (NMR), need to be
ably complemented with faster and more accurate computational and geometric processing
for ultrastructure elucidation at the best level of resolution that is possible [Fra96].
Electron Microscopy (EM) and in particular single particle reconstruction using cryo-
EM, has rapidly advanced over recent years, such that several complexes can be resolved
routinely at low resolution (10-20 A) and in some cases at sub-nanometer (intermediate)
resolution (7-10 A) [BOF99]. These complexes provide not only insights into protein and
nucleic acid folds, but perhaps even more importantly provide information about how the
various structural components interact. There are increasing numbers of molecules where
the tertiary or secondary structure of a complex can be fully determined using EM [ZBJT01].
Often the crystal structures of individual domains or components of these complexes are
also known. An emerging trend in these fields is to fit the atomic resolution X-ray crystal
structures into the cryo-EM map, to provide a quasi-atomic resolution model of the overall
complex, possibly revealing details about molecular interactions within the assembly. In
addition, with the increasing capability of determining multiple functional conformers of a
complex, there is the promise of studying the dynamics of such interacting systems. The
large physical size and complexity of such complexes combined with intermediate to low
resolution models, presents challenges for structure to biological function determination.
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This chapter reviews some of the crucial three dimensional geometric post-processing once
a volumetric cryo-EM map (henceforth a 3D map) has been reconstructed, as essential steps
towards an enhanced and automated computational ultrastructure determination pipeline.
In particular the paper addresses 3D Map contrast enhancement, filtering, automated struc-
tural feature and subunit identification, and segmentation, as well as the development of
quasi-atomic models from the reconstructed 3D Map via structure fitting.

1.2 Map Preprocessing

1.2.1 Contrast Enhancement

Many reconstructed 3D Maps, as well as captured 2D EM images, possess low contrast,
or narrow intensity ranges i.e small differences between structural features and background
densities, thereby making structure elucidation all the more difficult. Image contrast en-
hancement is a process used to ”stretch” the intensity ranges, thereby improving the 2D
image or 3D Map quality for better geometric postprocessing such as feature recognition,
boundary segmentation, and visualization. The most commonly used methods in the past
utilized global contrast manipulation based on histogram equalization [GW92, Pra91]. It
is however well recognized today that using primarily global information is insufficient for
proper contrast enhancement, as it often causes intensity saturation. Solutions to this
problem include localized (or adaptive) histogram equalization [CLMS98, Sta00], which
considers a local window for each individual image pixel and computes the new intensity
value based on the local histogram defined within the local window. A more recently devel-
oped technique called the retinex model [JRW97b], in which the contribution of each pixel
within its local window is weighted by computing the local average based on a Gaussian
function. A later version, called the multiscale retinex model [JRW9Ta], gives better re-
sults but is computationally more intensive. Another technique for contrast enhancement is
based on wavelet decomposition and reconstruction and has been largely used for medical
image enhancement especially digital mammograms [LHW94, LSFH94].

A fast and local method for 2D image or 3D Map contrast enhancement that we have
obtained very good success with, is presented in [YB04a]. This is a localized version of
classical contrast manipulations [GW92, Pra9l]. The basic idea of this localized method
is to design an adaptive one dimensional transfer function (mapping intensity ranges to
intensity ranges) for each individual pixel (2D) or voxel (3D), based on the intensities in
a suitable local neighborhood. There are three major steps, which we briefly describe for
2D images as its generalization to 3D Maps is straightforward. First, one computes local
statistics (local average, minimum, and maximum) for each pixel using a fast propagation
scheme [Der90, YV95]. The propagation rule from a pixel, say, (m — 1, n) to a neighboring
pixel (m, n) is defined as follows (similar propagation rules exist for other neighbors):

lavg,, , = (1 - C) x lavg,, , + C x lavg,, ;, (1.1)

where C' is called the conductivity factor, ranging from 0 to 1. The matrix lavg stands for the
local average map, initialized with the input image’s intensity values. The above propaga-
tion rule is sequentially applied in row & column order [Der90, YV95]. In order to compute
local min/max maps, some modifications are required for the above propagation scheme. To
this end, a conditional propagation scheme is introduced in [YB04a]. Assume that Imin and
Imaz stand for the local min/max maps, respectively. The conditional propagation scheme
from (m — 1, n) to (m, n) is defined as follows:
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if (lming,—1 », < lmin,, ,,)
Imin,, , = (1 — C) x Imin,, , + C x Imin,,, 1,
(1.2)
if(lmax,,—1 , > lmax,, )
lmax,, , = (1 — C) x Imax,, , + C x Imax,,—1.,,

Once these local statistics are calculated, the second step is to design the 1-dimensional
adaptive transfer function, to achieve intensity range stretching on a per pixel basis. Similar
to global contrast manipulations, various linear or nonlinear functions can be used here but
all such functions should “extend” the narrow range of the local intensity histogram to a
much broader range so as to achieve contrast enhancement. In the approach of [YB04a], the
transfer function consists of two pieces: a convex curve (for stretching) in the dark-intensity
range and a concave curve (for inverse stretching) in the bright-intensity range. The overall
transfer function is C' continuous. Finally, in the last step, the intensity of each pixel
is mapped to a new one using the calculated transfer function. This method inherits the
advantages of the three afore-mentioned techniques, namely, global contrast manipulation,
adaptive histogram equalization and the retinex model. However, unlike global contrast
manipulation, this method is adaptive in the sense that the transfer functions are generally
different from pixel to pixel. Also, unlike adaptive histogram equalization, this method
considers a weighted contribution of each pixel within a local window. Furthermore, the size
of the local window does not need to be pre-specified, due to the conditional propagation
scheme used in this approach, which is also a significant difference between this method
and the retinex model. Finally, the method of [YB04a] demonstrates a multi-scale property
as different choosing different conductivity factors are chosen and used in the propagation
scheme. Paper [YB04a], also gives an anisotropic version of the propagation scheme detailed
above, and some results are shown in figure 1.1.

(a) (b) (c) (d)

FIGURE 1.1: Anisotropic filtering and contrast enhancement of the Rice Dwarf Virus
(RDV). (a) original map (showing only one slice). (b) filtered and enhanced (same slice).
(c) original map ( volume-rendered). (d) filtered ( volume-rendered).



1-4
1.2.2 Noise Reduction

Reconstructed 3D Maps are noisy due to both 2D image acquisition as well as computa-
tional errors in the 2D to 3D portion of the reconstruction pipeline [Fra96]. Applying 3D
noise reduction techniques on the 3D maps as a pre-processing step, facilitates improved
post-processing feature identification, segmentation and ultra structure determination. Tra-
ditional noise reduction filters applied to images include Gaussian filtering, median filtering,
and frequency domain filtering [GW92]. Most of the recent research however, has been de-
voted to local anisotropic filters that operate with a directional bias, and vary in their
ability to reduce noise without blurring the geometric structural features, especially edges
and corners.

Bilateral filtering [Bar02, DD02, Ela02, TM98]|, or sometimes called weighted Gaussian
filtering, uses an additional proximity weighting term to affect quasi-anisotropy. Partial
differential equation (PDE) based filtering techniques, known popularly as anisotropic geo-
metric diffusion [PM90a, Wei98a|, differ primarily in the complexity of the local anisotropic
modulation. Another popular anisotropic filtering approach is based on the use of the
wavelet transformation [DJ94]. The basic idea is to identify and zero out wavelet coeffi-
cients of a signal that likely correspond to image noise while maintaining the sharpness of
the edges in an image [XWHL94]. The development of nonlinear median-based filters in
recent years has also produced promising results. One of these filters, the mean-median
(MEM) filter [HLMR99, HKO01], behaves differently from the traditional median filter, and
has been shown to preserve fine details of an image while reducing noise. Among the afore-
mentioned techniques, two noise reduction methods, namely wavelet filtering [SHI7] as well
as non-linear anisotropic diffusion [FHO1], have also been applied to molecular tomographic
imaging data.

An approach we have experimented successfully with on denoising reconstructed 3D maps,
utilizes bilateral pre-filtering [JBWT03], coupled to an evolution driven anisotropic geomet-
ric diffusion PDE (partial differential equation) [BWXO03]. The PDE model is :

. Vo
O — d D°—— | = .
o~ I¥allaiv (D° 350 ) =0 ®

The efficacy of our method is based on a careful selection of the anisotropic diffusion
tensor D7 based on estimates of the normal and principal curvature directions of a fea-
ture isosurface (level-set) in three dimensions [BWXO03]. The diffusivities along the three
independent directions of the feature boundary, are determined by the local second order
variation of the intensity function, at each voxel. In order to estimate continuous first and
second order partial derivatives, a tricubic B-spline basis is used to locally approximate the
original intensity. A fast digital filtering technique based on repeated finite differencing, is
employed to generate the necessary tri-cubic B-spline coefficients. The anisotropic diffusion
PDE is discretized to a linear system by a finite element approach, and iteratively solved
by the conjugate gradient method.

In Figure 1.1, we show an example of a reconstructed cryo-EM map and the results
of filtering and contrast enhancement. In (a) and (b), only one slice of the 3D map is
illustrated. In (c) and (d), a volume-rendering of the original map is compared to that of
the filtered map.
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(a) (b) (©)

FIGURE 1.2: Tllustration of critical point extraction using gradient vector diffusion. (a)
one slice of herpesvirus capsid protein, vp5. (b) gradient vector field without diffusion
corresponding to the boxed out area in (a). (c) gradient vector field after diffusion (10
iterations) improves the detection of critical points.

1.2.3 Gradient Vector Diffusion

In the earlier subsection we considered volumetric filtering in the special context of “critical”
feature preservation. For a given volumetric map, the critical features are the essential values
that help define the hierarchical structure of a complex. In general these critical features
could be points, curves, or surfaces. The critical points of a scalar map can be classified
as one of three types: local maxima, local minima, and saddle points of the given scalar
function. However, in the context of structure identification, the maximal critical points
are of great interest, due to the fact that, in a molecular density map, higher densities
imply the existence of more atoms. These critical points can be easily computed from the
local maxima of a given scalar map. Since noise is always present in the original maps,
a pre-filtering process should be applied. As mentioned in the earlier subsection, a scalar
map pre-filter can be either linear or nonlinear. A linear filter (e.g., Gaussian filtering) may
destroy some weak features and hence eliminate some critical points. A nonlinear pre-filter
[PM90b, Wei98b], however, tends to “deform” a sub-region, yielding many unwanted critical
points.

A good alternative is a vector field filtering technique that is based on the diffusion of
gradient vectors of the scalar 3D map, from which the afore-mentioned critical points are
also easily extracted. In [XP98], the authors described a diffusion technique to smooth
gradient vector fields. The gradient vectors are represented by Cartesian coordinates and
a set of partial differential equations (PDEs) are separately applied to each component of
the vectors. The equations are linear or isotropic, and therefore inherit the drawbacks of
most linear filtering systems. A better way to diffuse a gradient vector field is based on the
polar-coordinate representation of the vectors [YB02a, YB02b]. A drawback of this method
is its computational complexity due to the efforts that have to be made to deal with the
periodicity of orientation. An improved method is presented in [YB04b, BYAO03], and we
provide some details below.
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(a) (b) (c)

FIGURE 1.3: Tllustration of critical point extraction using gradient vector diffusion. (a) one
slice (noise reduced) of rice dwarf virus (RDV). (b) after 10 iterations (1214 critical points
were extracted). (c) after 30 iterations (781 critical points were extracted). The number of
critical points can be further reduced by removing those whose density values are less than
a certain threshold.

We detect the critical points using a set of anisotropic diffusion equations :
‘2—1‘ = div(g(a) - Vu)

4v = div(g(a) - Vv) (1.4)

d .
G = div(g(a) - Vw)
where (u,v,w) are initialized with the gradient vectors of the original maps. g¢(-) is a
decreasing function and « is the angle between the central vector and its surrounding
vectors. For instance, we can define g(«) as follows:

= if @40 and §#0
9(6,) = (1.5)
0 if c=0or §=0

where k is a positive constant; ¢ and §stand for the central vector and one of the surrounding
vectors, respectively.

Once the gradient vector field is generated and diffused, we can define the critical points
as those where none of the surrounding vectors is pointing away from those points. These
critical points shall be frequently used in the following sections dealing with structural
feature identification.

To better illustrate the application of the anisotropic gradient vector diffusion technique
to accurately extract critical points from a given 3D map, we show cross-sectional two-
dimensional (2D) slices (Figure 1.2). The images are from a slice of the herpesvirus capsid
protein vp5 [ZDJT00]. For better illustration of vector fields, we only consider a small area
as boxed out in Figure 1.2(a). The vector field in Figure 1.2(b) is computed before the
vector diffusion. Figure 1.2(c) demonstrates the power of the anisotropic vector diffusion,
from which one can easily extract the critical points. Another example with greater detail,
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is illustrated in Figure 1.3, where one can see that running the vector diffusion with different
numbers of iterations can result in multiple levels of critical points.

1.3 Structural Feature Identification

1.3.1 Symmetry Detection

The symmetry of a shape or structure provides fundamental information for shape recogni-
tion, and representation. Given the reconstructed 3D map of a large biomolecular complex,
one may ask: (1) Does this structure exhibit certain global and local symmetries ? (2) If
it does, what type of symmetries are present (reflectional, rotational, translational, etc) ?
(3) If the symmetry is rotational, what is the folding number and what is the location of
the symmetry axis? Past relevant work devoted to answering the above questions in the
literature include [SS97, MYY93, YLTL94, YC94, DG04, SICT99, LZ03], most of which,
however, were applied to simpler inputs, such as a set of points, curves, or polygons.

In many cases, the 3D maps are of spherical viruses, whose protein capsid shells exhibit
icosahedral symmetry. In these cases, the global symmetry detection can be simplified
to computing the location of the 5-fold rotational symmetry axes, passing through the
twelve vertices of the icosahedron, after which the 3-fold symmetry axis for the twenty
icosahedron faces and the 2-fold symmetry axis for the thirty icosahedron edges can be
easily derived. However local symmetries of the protein arrangement on virus capsid shells
are more complicated, exhibiting varied k-fold symmetry and their detection requires a
modified correlation based search algorithm explained below [YBO05].

In almost all cases of single particle cryo-EM reconstruction, the origin of the 3D map is
identical to the origin of its corresponding icosahedron, as global icosahedral symmetry is
utilized in the reconstruction. Given an axis Iy, passing through the origin, where § and
o are defined in a classical way such that § € [—m, 7] and ¢ € [-7/2,7/2], a 3D scalar
map f(7) is said to possess a 5-fold rotational symmetry about Iy, if the following equation
holds:

f(f‘) = f(R(9,30727r/5) : F)7 for Vi (16)

where the 3 x 3 matrix R, o) is defined as the coordinate transformation that rotates
a point counterclockwise about an axis Iy, by an angle of a. In particular, the matrix
R9,p,0) can be decomposed into five fundamental coordinate transforms.

In order to detect, for example a 5-fold symmetry axis, one can simply correlate the
original map with its rotated map and search in the resulting correlation map for peaks
[MYY93]. This method has a high computational complexity of O(NM), where N is the
number of voxels and M is the number of angular bins. In current applications of icosahe-
dral virus reconstructions at medium resolution, N is roughly 700% and M is about 46,000
(a quasi-uniform sampling on the orientation sphere with a radius of 200-voxels). Although
a number of techniques can be employed to speed up the search process by reducing the
number of the angular bins (e.g., a principal axis method [SS97] or a coarse to fine hier-
archical approach), it is still expensive as N is large. In prior recent work [YB04c, YBO5],
introduced a method for the fast detection of rotational symmetries, given the fold num-
ber. The idea there is to reduce N, the number of voxels to be tested, by restricting the
correlation only to a subset of the critical points instead of the entire volume.

An example result of their method is shown in Figure 1.4(a) the scoring function of
the outer capsid layer of the rice dwarf virus (RDV) 3D map [ZBJ*01], where one can
clearly identify the “peaks” with high contrast. The corresponding 5-fold symmetry axes
and the reconstructed icosahedra are shown in Figure 1.4(b). Experiments on this 3D Map
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(a) (b) (c)

FIGURE 1.4: Detection of Symmetry axes and construction of global icosahedral symmetry
as well as local n-fold symmetry. (a) scoring function. (b) global icosahedral symmetry. (c)
local 6-fold symmetry.

data show that the correct symmetry axes could be calculated based only on 23 critical
points, in contrast to the total number of 512% voxels in the original map (details are
given in [YB04c, YBO05]). The approach has been extended to automatically detect local
symmetries, such as the 3- or 6-fold symmetry axes of the RDV map [YB05]. Figure 1.4(c)
demonstrates the detection of the local symmetry axes of the outer capsid layer of RDV.

1.3.2 Boundary Segmentation

Segmentation is a way to electronically dissect significant biological components from a
3D map of a macromolecule, and thereby obtain a clearer view into the macromolecules
architectural organization [Ell01]. For instance, it is often helpful to segment an asymmetric
local subunit out of an icosahedral virus such that further structural interpretation can be
conducted only on the asymmetric subunit instead of the entire map without loss of any
structural information. Segmentation of 3D maps is usually carried out either manually
[HYE96, KMM96, LLF97, MM99, HRS'01] or semi-automatically [Vol02, FH02, BYA03].
Current efforts on the selection and decomposition of an icosahedral map into its local
subunits also relies largely on manual work with extensive use of a graphical user interface
[ZBJT01, JLBT03]. This manual task can be tedious when the resolution is only marginally
high enough to discern the boundaries between subunits.

Automated segmentation is still recognized as one of the challenge problems in image pro-
cessing, although various techniques have been proposed for automated or semi-automated
segmentation. Commonly used semi-automatic methods include segmentation based on
edge detection, region growing and/or region merging, active curve/surface motion and
model based segmentation (see for example [Set99, YB02b]). In particular, two techniques
have been discussed in detail in the electron tomography community. One is called the
water-shed immersion method [Vol02] and the other is based on normalized graph cut and
eigenvector analysis [FH02].

Papers [YB04c, YB05] present steps towards an automatic approach for asymmetric sub-
unit detection and segmentation of 3D maps of icosahedral viruses. The approach is an
enhanced variant of the well-known fast marching method [MS98, Set96]. The basic idea of



Geometric Processing of Reconstructed 3D Maps of Molecular Complexes 1-9

the fast marching method is that a contour is initialized from a pre-chosen seed point, and
the contour is allowed to grow until a certain stopping condition is reached. Every voxel
is assigned with a value called time, which is initially zero for seed points and infinite for
all other voxels. Repeatedly, the voxel on the marching contour with minimal time value is
deleted from the contour and the time values of its neighbors are updated according to the
following equation:

VT - F(F) =1 (1.7)

where F(7) is called the speed function that is usually determined by the gradients of the
input maps (e.g., F(7) = e~ *IVIll where o > 0 and I is the original map). The updated
neighbors, if they are updated for the first time, are then inserted into the contour. The
traditional fast marching method are designed for a single object boundary segmentation.
In order to segment multiple targets, such as 60-component virus capsids or a 3-component
molecular trimeric subunit, one has to choose a seed for each of the components. However,
assigning only one seed to each component may cause appropriate boundary detection prob-
lems, as demonstrated in [YB05], and hence a re-initialization scheme becomes necessary.

The automatic approach of [YB04c, YBO05] consists of three steps: (1) detection of the
critical points; (2) classification of critical points; (3) a multi-seed fast marching method.
The technique for (1) the detection of critical points has been briefly described in the earlier
subsection on Gradient Vector Diffusion, of this chapter. All the critical points are regarded
as seeds in the fast marching method. In general, the number of critical points in a map
is much larger than the number of object components of interest. In other words, each
component is assigned with a number of seeds instead of just one. Every seed initiates a
contour and all contours start to grow simultaneously and independently. Two contours
corresponding to the same component merge into a single contour, while two contours
corresponding to different components stop on their common boundaries.

The initial classification of critical points as part of step (2) of the algorithm, is crucial
in the segmentation of virus 3D maps. The critical points are classified utilizing local or
global symmetry and based on their equivalence in terms of the asymmetric components
that are to be segmented. Once all the seeds are classified, the above multi-seed variant
of the fast marching method is used. First, each component initially possesses multiple
seeds and hence multiple initial contours. Second, each marching contour is assigned a
membership index based on the classification of seeds and the assignment to components.
Once a voxel (volume element of the 3D Map) is conquered by a marching contour, it is
assigned with the same index as the marching contour. Third, two marching contours with
the same index merge into one when they meet, while two marching contours with different
indices stop at their touching boundaries.

The segmentation approach or [YB04c] has been applied to the global asymmetric compo-
nents dissection of icosahedral virus 3D maps. For viruses with more than 60 subunits that
form a quasi-equivalent icosahedron, one additionally needs to incorporate the local sym-
metry axes of the viruses into the multi-seed classification and segmentation process[YBO05].
Results from the above automatic segmentation technique applied to a reconstructed Cryo-
EM 3D Map of the Rice Dwarf Virus (RDV)[ZBJ101] are shown in Figure 1.5. The RDV
has double spherical protein shells (called capsids) with icosahedral symmetry. The first
level segmentation is a separation of these two shells from the 3D map (see Figure 1.5
(a)). Next is a segmentation of the asymmetric subunits within each capsid. The sixty
asymmetric subunits of the outer capsid viewed from the 5-fold symmetry axis is shown in
Figure 1.5(b). Each subunit consists of four and one third trimeric sub-subunits [ZBJ*01].
Figure 1.5 (c¢) and (d) illustrates the segmented trimers (260 in total), where (c) shows the
view from outside while (d) shows the view from the inside. The segmentation shown in (c)
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(d) (e) (f)

FIGURE 1.5: Visualization of the architecture of the Rice Dwarf Virus (RDV) 3D map (a)
segmented outer and inner icosahedral capsid boundaries (b) segmented asymmetric sub-
units of the outer capsid (60 subunits in total). Each asymmetric subunit consists of four
and one third trimers. (¢) & (d) segmented trimeric subunits (260 in total), where (c¢) shows
the view from the outside while (d) shows the view from inside. (e) each segmented trimeric
subunit consists of three monomeric sub-subunits. (f) segmented monomeric subunit rep-
resents the 3D density map of a single P8 protein. The RDV 3D map data is courtesy Dr.
Wah Chiu, NCMI,BCM, Houston

and (d) requires the local symmetry detection as shown in Figure 1.4(c) and the algorithm
discussed in detail in [YB05]. Figure 1.5 (e) shows the segmented trimeric subunit con-
sisting of three monomeric units, each of the same protein P8. Figure 1.5(f) shows the P8
protein monomeric unit segmented from the trimeric unit based on local 3-fold symmetry.
It is worthwhile pointing out that in the visualization of the segmented trimeric subnits in
Figure 1.5(b) only five colors are used to distinguish between sixty subunits, such that any
five subunits surrounding the 5-fold symmetry axis would have different colors. In other
directions, however, one may see two adjacent subunits having the same color although
technically they have different component memberships. One can certainly find a more
sophisticated coloring scheme to assure any two adjacent subunits always have different
colors. Several more example segmentations for both reconstructed cryo-EM 3D Maps and
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synthetic 3D maps generated from crystal structure data are given in [YBO05].

1.3.3 Secondary Structure Identification

Although atomic structures are not detectable in reconstructed 3D cryo-EM maps, given
their low feature resolution, it is sometimes feasible to locate secondary structures (alpha
helices and beta sheets) from those maps [ZBJT01, CBWZ02]. An approach for detect-
ing alpha helices in 3D maps has been described in [WMSCO01], where the alpha helix is
modelled with a cylinder (length and thickness) and the cylinder is correlated with the
segmented protein map. Since the best solution is achieved by exhaustively searching in
translation space (3D) and orientation space (2D), this method is computationally expen-
sive. In addition, this approach is designed only for alpha helix detection, not for the beta
sheets. Another approach, designed for beta sheet detection, was recently proposed by
[KM03, KXTMO04]. This method uses a disk (planar) model for beta sheets. It inherits the
disadvantage of slow computational speed due to the exhaustive search in both translation
and orientation space, and furthermore cannot find curved beta sheets.

It is of course possible to combine the two methods above to detect both alpha helices
and beta sheets, however to detect secondary structures efficiently one must avoiding the
exhaustive search in both translation and orientation space. One possible approach is to
consider scoring candidate helices/sheets only at the critical points of the 3D Map. This
way, the search in translation space can be reduced to a significantly smaller number of
locations. In addition, the search in orientation space at each critical point can be further
reduced by utilizing the local structure tensor [FL03, Wei98a]. Given the 3D map f(x,y, 2),
the gradient tensor is defined as:

2 fofy fof
G= fzfy fy2 fyfz (18)
fufe fufs fZ

This matrix has only one non-zero eigenvalue: f2 4 f7 + fZ. The corresponding eigenvector
of this eigenvalue is exactly the gradient (fz, fy, f»). Therefore, this matrix alone does not
give more information than the gradient vector. To make the gradient tensor useful, a
spatial average (over the image domain) should be conducted for each of the entries of the
gradient tensors, yielding what is called the local structure tensor. The averaging is usually
based on a Gaussian filter:

fo*goz Jefy* 9o fofz* ga
T=Gy= fmfy*ga fy?*ga fyfz*ga (1-9)

fofs %90 fyfs*9a  [2%0a

Here g, is a Gaussian function with standard deviation «. The eigenvalues and eigenvectors
of the structure tensor 7" indicate the overall distribution of the gradient vectors within the
local window, similar to the well-known principal component analysis (PCA). Three typical
structures can be characterized based on the eigenvalues [FL03]. Let the eigenvalues be
A1, A2, A3 and A1 > Ao > A3. Then we have the following classifications:

1. blobs: A\; &= \g = A3 > 0.
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(a) (b) () (@

FIGURE 1.6: Illustration of secondary structural identification using local structure tensor
at critical points of the 3D Map (a) The X-ray atomic structure representation of cytochrome
¢’ (PDB-ID = 1bbh). (b) The volumetric representation of a Gaussian blurred 3D map
generated from the X-ray structure (c) The detected skeletons of the 3D map. (d) Four
helices are finally constructed from the skeletons, while the two on the bottom are discarded
as being too small for being helices

2. lines: A1 &~ Ay >> A3 = 0.

3. planes: Ay >> Ay =~ A3 =~ 0.

For each of the critical points of the 3D map, the structure tensor and its corresponding
eigenvalues are calculated. Next, the above criterion based on the eigenvalues of the local
structure tensor is computed at each of the critical points to distinguish between alpha
helices (line features) and beta sheets (plane features). A critical point classified as an alpha
helix, is to extended on both sides along the direction of the line structure determined by
the local structure tensor, yielding a segment of the median axis of the 3D map. Similarly,
for a critical point corresponding to a beta sheet feature, the plane feature is extended
yielding a piece of median surface of the density map. Since a true alpha helix or beta sheet
may consist of more than one critical point, it is necessary to merge a number of median
segments and median surfaces, from which the final alpha helixes and/or beta sheets are
constructed.

Figure 1.6 illustrates this approach on a Gaussian blurred map of the X-ray atomic
structure of cytochrome ¢’ (PDB-ID = 1bbh). Figure 1.6(a) shows the atomic structure,
consisting of four alpha-helices, visualized as ribbons. The blurred map of this structure is
visualized by contour rendering in Figure 1.6(b). Based on the the critical points of the 3D
map and use of the structure tensor, the skeletons (median segments/planes) are computed
and shown in Figure 1.6(c). From the skeletons, the four alpha helices are constructed as
shown in Figure 1.6(d). Note that two segments of median axes on the bottom are discarded
simply because their lengths are too small to be a true alpha helix.
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1.4 Structure Fitting

A primary technique for structure interpretation and molecular model construction is to
attempt to fit a known high-resolution structure (obtained by X-ray or NMR) into a recon-
structed 3D density map. This technique is commonly known as structure fitting [Ros00b].
This technique bridges the resolution gap between low-resolution maps (e.g., lower than 10
A) [BKF] and the atomic protein structures (e.g. lower than 3 A). Figure 1.7 shows an
example of structure fitting between the P8 monomeric protein, segmented from the RDV
3D map [ZBJ101], and its X-ray atomic structure [NMT103]. Figure 1.7(a) shows the seg-
mented P8 monomeric protein (also see Figure 1.5(f)). The crystal structure of P8 monomer
is shown in Figure 1.7(b), where one beta sheet (top) and two alpha helices (middle and
bottom) are highlighted and used as a high-resolution fitting model. This high-resolution
model is fit against the cryo-EM map of P8 monomer and its best position/orientation
within the cryo-EM map is determined and show in Figure 1.7(c).

(a) (b) (c)

FIGURE 1.7: Example of structural fitting in the segmented P8 monomeric protein of
RDV. (a) P8 monomeric protein iso-surface visualization (b) X-ray atomic structure of the
P8 monomeric protein represented in ways of balls&sticks and cartoons. One beta sheet
(top) and two alpha helices (middle and bottom) are highlighted and used as a fitting model.
(c) By maximizing the correlation between the X-ray atomic model and the 3D map of the
P8 monomer, one builds a pseudo-atomic model of the 3D map

There are several papers discussing various techniques on structure fitting. An excellent
review of prior work on this topic is given in [WCO01b]. One of the popular methods for
volumetric matching is based on Fourier transforms [MM97, MRO1]. The rigid-body fitting
can be thought of as the minimization of the discrepancy between the cryo-EM maps and
the atomic structure in Fourier space. The discrepancy is defined as follows:

R:ZHFem(f”_A‘Fcalc(farat)an n=1 or 2 (1.10)
f

where F.,, and F,,. are the Fourier transforms of the 3D map and the calculated atomic
structure (that is, a Gaussian blurred 3D map of the atomic structure). Here r and ¢ stand
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for rotation and translation parameters, respectively, and both r and ¢ have three degrees
of freedom.

Instead of fitting the structures in Fourier space, we can also perform the fitting in the
real space [VH99, KJ97, Cow98]. It is known that the minimization of the R factor seen
above is equivalent to the maximization of the cross-correlation defined as below:

c / poms(B) et (B, 1 £)dF (111)

where pen, and peqie are the twin 3D maps of the cryo-EM and the Gaussian blurred atomic
structure. The cross-correlation can be calculated by exhaustive searching with scaling
or sampling of the translation (¢) and rotation (r) parameters. While the Fast Fourier
Transform (FFT) is easily used to speed up the cross-correlation scoring calculation over 3D
translations [Cro72, KW02], it can also be used to compute the cross-correlation coefficients
over rotational parameter (r) space, by first re-expressing the 3D map using trivariate
spherical harmonics.

Another improvement on the conventional cross-correlation scoring method is to use a
locally defined cross-correlation score [Ros00a]. In general, the global correlation method
does not exclude the densities in the cryo-EM map that do not correspond to the atomic
structure being considered. In addition, maximizing (1.11) often makes the solution “drift”
to the highest density region in the cryo-EM map, which, however, does not mean the
best-matched region. Hence the normalized and localized method [Ros00a] often gives
more accurate fitting scores. One disadvantage of this method, however, is that the cross-
correlation is conducted in real-space and a six-parameter searching space is considered in
[Ros00a], resulting in a very slow performance. Recently, Roseman [Ros03] incorporated
the fast Fourier transform (FFT) into the local correlation algorithm and applied it to
the particle detection in two-dimensional electron micrographs. It was said that the local
correlation algorithm together with FFT could be two orders of magnitude faster than the
explicit real-space implementation [Ros03]. However, no results have been reported for 3D
maps using this fast local correlation algorithm.

The conventional cross-correlation method can also be enhanced by a contour-based fitting
method [CWO01], in which the correlation coefficient is defined the same as (1.11) except
that the Laplacian operator is applied to both maps before the calculation of the cross-
correlation. Although this method is called contour-based fitting, it is not actually based
on the detection of the contours. Due to the Laplacian operator that enhances the edges
of both the cryo-EM map and the calculated atomic structure, this method was shown in
[CWO01] to give improved results (the resulting correlation map has higher contrast) than
the classic cross-correlation method. However, as pointed out in [WCO01b], the Laplacian
filter may also amplify the noise, which as a result may weaken the performance of this
method.

All the above methods for structure fitting are based on cross-correlation between the
cryo-EM reconstructions and the calculated atomic structures. A different strategy is based
on a data reduction technique. This method has been studied by Wriggers et al [WMSM98,
WMM99, WCO01a, WBO01], based on a vector quantization technique [Gra83, IEE96]. The
idea of vector quantization is to represent a 3D map with a certain number of vectors (or
points in 3D space), from which a weighted graph is constructed. Instead of computing
the cross-correlation between the cryo-EM 3D map and the calculated 3D atomic blurred
map, one computes a new “difference” function between the two graphs corresponding to
the cryo-EM map and the calculated atomic structure map. The “difference” function can
be used to search for the best volumetric matching. Although this approach reduces the
overall search time for its best match, and it is also possible to extend this to flexible fitting
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[WC01b, WBO01], it has two limitations. First, this method requires that the component of
the cryo-EM map to be fitted should be isolated from the entire map. Second, the number
of vectors must be carefully chosen. A large number of vectors exponentially increases
the computational time while a small number of vectors may not be sufficient for perfect
alignment and matching of the structural features of the map.

1.5 Conclusion

The field of structural biology, is increasingly dependent on computational processing
for structural determination of complexes from 3D Maps. Each of the computational
structure/ultra~structure elucidation methods that we highlighted above in separate sub-
sections, remains an active area of future research and development, as there is still a ways
to go. Nevertheless, we are optimistic that with progressively better techniques for im-
age acquisition, coupled to efficient map reconstruction, and enhanced computational 3D
map processing for structure elucidation, its only a matter of time when the resolution gap
between X-ray structures and cryo-EM structures would be bridged.
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