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Molecular Solvation Models and Minimal Surfaces
Molecular surfaces of proteins and other biomolecules, areoften modeled as smooth analytic interfaces separating the

molecule from solvent (an implicit solvation model).
These analytic solvation models are often of high genus witha myriad of interconnected tunnels and pockets with openings

(mouths). All these interfaces are biochemically significant as pockets are often active sites for ligand binding or enzymatic
reactions, and tunnels are often solvent ion conductance zones.

In this talk, we present a general characterization of thesesolvation interfaces and approximately model them as piece-
wise minimal surfaces, namely, the solution of non-linear elliptic or biharmonic partial differential Euler-Lagrange equations
obtained from the minimization of high-order energy functionals.
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Chapter 2

Spatial Occupancy

Molecules are commonly modeled as a collection of atoms represented by spheres, with radii equal to their van der Waals radii.
Three types of surfaces are defined based on this representation.

Probe sphere

SAS

VDW Volume

SAS Volume

Reentrant patch
of SCS

VDW Surface

SCS and VDW Surfaces
Overlapping regions of

Figure 2.1: Different molecular surfaces and regions are shown for a 3 atom model in 2D. The SAS is the locus of the center of
the rolling probe sphere. The VDW surface is the exposed union of spheres representing atoms with their van der Waals radii
and contains the VDW volume. The lower side of the rolling probe defines the smooth SES which contains parts of the VDW
surface and reentrant patches. The region between the SAS and the SES is defined as the SAS volume, and the region between
the SAS and the VDW volume is refered to as the SES volume.

van der Waals (VDW) surface.The surface of the set of spheres is known as thevan der Waals surface.

Solvent Accessible Surface (SAS).Proteins do not exist in isolation, but commonly found in solutions, especially water. The
Solvent Accessible Surface(SAS) is defined as the locus of the center of a solvent proble (e.g., a water molecule) rolling along
the VDW surface of a molecule [57]. If water molecules are modeled as spheres with radias 1.4 Å, then the SAS of a given
molecule can be found by increasing the radius of each atom inthat molecule by 1.4 Å, and taking the surface of the set of
inflated atoms.

Solvent Contact Surface (SCS).The VDW surface contains too many internal atoms and patcheswhich are not accessible by
the solvent, and the SAS contains regions that should be occupied by the solvent. Thus both these surfaces contribute to large
errors in biomolecular energy computation. In order to overcome this drawback, Richards [66] gave a definition for molecular
surface as a set of contact and reentrant patches. A probe solvent sphere, rolling over the atoms of a protein defines a region
in which none of its points pass through. The boundary of thisvolume is continuous and defines a new molecular surface.
This surface is composed of convex patches where the probe touches the atom surfaces, concave spherical patches when the
probe touches more than 2 atoms simultaneously and toroidalpatches when the probe rolls between two atoms. This surfaceis
commonly known as theSolvent Contact Surface(SCS), orSolvent Excluded Surface(SES), orLee-Richards(LR) Surface, or
simply the Molecular Surface. The major drawback of SCS is that cusps created by the self-intersection of the rolling probe,
cause singularity during energy computation.

9



10 CHAPTER 2. SPATIAL OCCUPANCY

Figure 2.2: 3D image showing the decomposition of SCS into three different kinds of patches: convex spherical, toroidaland
concave spherical.

Figure 2 shows the surfaces described above for a 3 atom example as a 2D cross section, and Figure 2 shows the different
types of re-entrant patches on an SCS.

See Appendix A for further details about structure of biomolecules like proteins and RNA.
In Section 2.1 we introduce different ways to model the VDW, SAS and SCS surfaces of molecules. Sections 2.2 and 2.3

describe two different algorithms to produce such representations. Section 2.4 and 2.5 presents techniques to maintain the
surfaces under dynamic change of radii and atom movements. And Section 2.6 discuss multiresolution models of molecules.

2.1 Surface Representations

2.2 Molecular Surface using Voronoi-Cell Complexes

2.2.1 Atom Boundary Patch as a Trimmed NURBS

The representation we use for molecule (property) surfacesis a boundary representation. Two classes of information are used:
(a) geometric description of each patch, (b) topological relations amongst the patches. We maintain the following datastructures
related to the molecule.

1. The weighted Voronoi diagram [4, 53] (power diagram)D of the molecule atom centers (the weights are the squares of
the atoms radii).

2. A regular triangulationT (dual of the power diagram) of the same set of weighted pointsas in [37].

3. A NURBS patch per molecule atom.

We have selected NURBS as basic modeling primitive [55]. Foran appropriate choice of parameterization we obtain
a single trimmed NURBS for each atom’s external surface contribution. Each such patch is the intersection of one sphere
(representing one atom) with the exterior of all its neighboring spheres. Consider the intersectionS∩R of a spherical surface
S= {x : ‖x−x0‖= r0} with the external of sphereR= {x : ‖x−x1‖ ≥ r1}. There always exists an halfspaceπ = {x : (x· l)≤ d}
such that:

S∩R= S∩π .
For each atom we can reduce our patch representation problemto the intersection of a sphere with a set of halfspaces. The

union of balls model [35] provides the equation of each halfspace intersecting one atom1. Note that, since we use a parametric

1Given the Voronoi complex of the weighted centers of the molecule atoms, the halfspaces whose common intersection generates the Voronoi cell of the
atomB are those with whichS= ∂B must be intersected.
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representationS= f (u,v), we need to compute the domainD in (u,v) space such thatf (D) = S∩π .
To have an efficient representation we want to obtain only oneNURBS patch per atom. Moreover, since we will use this

formulation to achieve a representation of the surface parametric in the radii of the atoms we need a formulation that maps
continuous modifications of the radii into continuous modifications of the domainD. This is not achieved with the classical
NURBS sphere representation as a rotational surface of a half circle [65] since there are two points (north and south pole) of
the sphere that are the image of two lines in the parameter domain (sayu= 0, u= 1 if the interval of theu domain is[0,1]).
This implies that when the boundary plane ofπ crosses one of the poles the corresponding trimming curve inthe(u,v) domain
would have a discontinuous change in shape.

Without loss of generality we assume thatSis the unitary sphere. The parameterization we adopt is the following (see [13]):

x =
2u

u2+ v2+1

y =
2v

u2+ v2+1
(2.1)

z =
u2+ v2−1
u2+ v2+1

This parameterization maps the (infinite) rectangular domain

[−∞,+∞]× [−∞,+∞]

to the unitary sphere. Note that in practice we do not deal with an infinite domain since we do not represent an entire sphere
but only one spherical patch. In particular assume that we are considering the intersectionS∗ of the unit sphereS with the
halfspacez≤ d (with a rigid body transformation and a scaling we can alwaysreduce the first intersection to this case). We
determine a positive constantl such thatS∗ ⊂ f (I), whereI is the square domain[−l ,+l ]× [−l ,+l ]. In the parameter domain

this corresponds to the conditionD ⊂ I . The minimum value ofl that satisfies such condition isl =
√

1+d
1−d . Regarding the

numerical stability of the method it is important to note that for d = 0.999 we getl = 44.710. . .. Even whend is much larger
than a realistic value, we still deal with a small domain region.

The next step is to determine the domainD. At this end we simply replace the parametric equations (2.1) of the of the
sphere to the variables in the Cartesian inequality ofπ obtaining the Cartesian inequality definingD.

u2+ v2−1
u2+ v2+1

≤ d ⇒ u2+ v2≤ l2 (2.2)

Thus the domainD is a disc with center in the origin and radiusl . Note that a variation ofd corresponds to a scaling ofD, that
can be performed by simply scaling its control polygon (oncea NURBS representation is defined for the trimming curve ofD).
For any additional cutting halfspacēπ : ax+by+ cz≤ d we have:

(c−d)u2+(c−d)v2+2au+2bv− (c+d)≤ 0 (2.3)

If the planeax+by+ cz= d contains the singular point of the parameterizationP = (0,0,1) thenc= d. In this case the
trimming curve is the straight line:

2au+2bv− (c+d)= 0. (2.4)

The domainD must be intersected with the half-plane 2au+2bv− (c+d)≤ 0.
If c−d 6= 0 the trimming curve derived from (2.3) has Cartesian equation:

(u+
a

c−d
)2+(v+

b
c−d

)2 =
a2+b2+ c2−d2

(c−d)2 (2.5)

In general we note that all the trimming curves are circles (possibly with infinite radius) so that the regionD can be modeled as
progressive intersection/difference of a sequence of circles. Corresponding to the cutting halfspaceπ̄ of normalized equation

ax+by+cz≤ d, with a2+b2+c2=1, we have in parameter space a circleC of center( a
c−d ,

b
c−d ) and radius

√
1−d2

c−d . The region
defined by such circle (inside/outside) depends on the sign of the termc−d. Forc−d < 0 P= (0,0,1) is insideπ̄ and hence
the points of the plane at infinity are included in the region corresponding tōπ . That isπ̄ is mapped onto the outside ofC. This
requiresC to be parameterized with a clockwise orientation. Symmetrically c+d < 0 implies thatπ̄ corresponds to the region
insideC and henceC must be parameterized with a counterclockwise orientation.
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2.2.2 Solvent Accessible Surface

In this section we discuss the representation of the solventaccessible surface of a molecule. Since we are representingthe
molecule with a union of ballsB, in the following, with some abuse of terminology, we will call B both the molecule or the
union of balls. Similarly each single ballB will be called either a ball or an atom.

Assume we have a ballB of radiusr (a solvent atom) free to move in space without intersecting the union of ballsB (a

molecule). We say thatB is in a legalposition if its interior
◦
B does not intersectB.

Definition 2.2.1. Thesolvent accessiblesurface Sa of the union of ballsB relative to a solvent atom B of radius r, is the locus
(envelope) of the centers of the spheres with radius r tangent to B.

(a) (b)

Figure 2.3: TheHIV-2 PROTEASE(a) and one solvent accessible surface (b) for the same molecule.

From [35, 36] we know thatSa is the boundary surface of the union of ballsB′ that has the same set of atoms asB but
with all the radii increased byr (see figure 2.3). On the basis of this property we can achieve arepresentation ofSa parametric
in r. For r = 0 we obtain the van der Waals surface of the molecule∂B. Varying the value ofr we get the accessible surfaces
of different solvents.

LetV ′ ∈ V ′ be the convex cell corresponding to the ballB′ ∈B′. V ′ is the intersection of a set ofk halfspaceπ1∩ . . .∩πk.
The the contribution ofB to the boundary ofB (the surfaceSa for r = 0) is given by∂B∩π1∩ . . .∩πk.

Now assumer > 0 and consider the sphereB′ in B′ corresponding toB in B. The contribution ofB′ to Sa is computed by
intersecting∂B′ with the same set of halfspacesπ ′1, . . . ,π

′
k′ .

To compute the trimming curves in the parameter space(u,v) of the NURBS patch representing∂B′ ∩ π ′1∩ . . .∩ π ′k′ we
apply a mapping that transformsB′ into the unitary ballBu. Under this mapping the variation ofr corresponds to have a fixed
(unitary) radius ballBu intersected with a set of varying halfspaces. Formally, if the ballB′ and one halfspaceπ ′ have equations:

B′ : x2+ y2+ z2≤ R2

π ′ : ax+by+ cz+d≤ 0

we apply the coordinate transformationx= Rx′,y= Ry′,z= Rz′ to mapB′ to Bu:

Bu : x′2+ y′2+ z′2≤ 1

π ′ : ax′+by′+ cz′+
d
R
≤ 0

The change of the radiusRof B′ to R+ r is hence mapped in normalized coordinates(x′,y′,z′) to the change of the parameter
d
R of the halfspaceπ ′ to d

R+r . This means that the equation of the trimming circles can be rewritten, including the parameterr,
as:

(u+
a

c− d
R+r

)2+(v+
b

c− d
R+r

)2 =
a2+b2+ c2− ( d

R+r )
2

(c− d
R+r )

2
(2.6)
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that is a circle of center( a
d

R+r −c
, b

d
R+r −c

) and radiusr =
√

(R+r)2−d2

|(R+r)c−d| . To maintain the description of the domainD we have

to maintain a 2D dynamic union of balls that is equivalent to maintain a weighted Voronoi diagram of moving points in the
plane [43, 6].

Note also that the coefficientd of the plane equation is also function ofr. In fact as the radius of each ball is increased by
r the Voronoi plane that separates two balls moves toward the smaller one. An example is shown in figure 2.4. The distances
l1, l2 of the Voronoi planeπ from the centers of the two balls must be such that the power distances ofπ are equal, that is:

l21− r2
1 = l22− r2

2

Moreover the sum of two distances is constant (the two balls grow but do not move):

l1+ l2 = l

From these two equations we get forl1 so:

l21− r2
1 = (l − l1)

2− r2
2 ⇒ l1 =

l2+ r2
1− r2

2

2l

Whenr1 changes tor1+ r andr2 changes tor2+ r we have:

l ′1 = l1+
r1− r2

2l
r

l ′2 = l2+
r2− r1

2l
r

Figure 2.4: As the radius of the two balls is increased by 1 theVoronoi plane that separate them moves towards the smaller ball.

2.2.3 Rolling Ball Surface

In this section we extend the method to achieve an exact NURBSrepresentation of the rolling ball surfaceSr of a moleculeB.
The goal is to achieve an intermediate stage toward to construction the solvent contact surfaceSc defined in the next section.
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In Figure 2.5 is shown the Fullerene molecule along with two solvent contact surfaces corresponding to two different solvent
radii.

We assume to have a ballB of radiusr (the solvent molecule) which is free to roll along the union of ballsB (the molecule).
The union of all the ballsB (moving tangentially toB in all the possible directions) is a region whose outer envelope strictly
contains (ifr > 0) B and whose inner envelope is tangent toB (see [9]).

(a) (b) (c)

Figure 2.5: The Fullerene molecule (a) and two solvent contact surfaces (b),(c) corresponding to two different solventradii.

Definition 2.2.2. Therolling ball surface Sr of the moleculeB with respect to a ball B of radius r is the inner envelope of the
region described by B rolling onB in all possible directions.

The close relationship between the solvent accessible surface and the rolling ball surface is evident from this definition.

Proposition 2.2.1. (Necessary Condition) If a point p lies on the rolling ball surface Sr then it lies also on the boundary of a
ball B with center on the solvent accessible surface Sa.

PROOF. By Definition 2.2.2 whenp∈ Sr there exists a ballB of radiusr such thatp∈ ∂B, B∩B 6= /0 and
◦
B∩B = /0. But if

the centerq of B does not belong toSa either
B∩B = /0

or ◦
B∩B 6= /0

⊓⊔

Using the regular triangulationT ′ associated withB′ we can define the set of patches composingSr . First, recall the
relationship between∂T ′ and∂B′:

• each vertexv of ∂T ′ corresponds to a spherical patch of∂B′;

• each edgee of ∂T ′ corresponds to the intersection line between two adjacent spherical patches of∂B′;

• each trianglet of ∂T ′ corresponds to the intersection point between three adjacent spherical patches of∂B′.

We base the construction of the rolling ball surface on theseproperties. Using Connolly’s terminology [27] (as we will later
see that the solvent contact surface is a subset of the rolling ball surface) we have (a) each vertexv of ∂T ′ corresponding to a
“convex” spherical patch inSr , (b) each edgee of ∂T ′ corresponding to a “saddle” toroidal patch inSr , and (c) each trianglet
of ∂T ′ corresponding to a “concave” spherical patch inSr . The definitions of these three kinds of patches are reportedin the
following three sections.

“Convex” Spherical PatchesConsider the spherical patch ¯v with radiusr + r1 of ∂B′ associated with the vertexv (see
figure 2.6). It represents a moving solvent ball that maintains contact with∂B at a pointp. The surface described by the point
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p is in turn a spherical patch of radiusr (part of∂B). It can be computed from the power diagram of∂B. Call B the ball (of
radiusr1) of B with centerv. It contributes the patch∂B∩π1∩ . . .∩πk (that is the Voronoi cell ofv is π1∩ . . .∩πk) to ∂B .
The ballB contributes the patch∂B∩ π̄1∩ . . .∩ π̄k to Sc, whereπ̄i is parallel toπi but nearer tov. Without loss of generality we
assumev to be the origin(0,0,0) andπ1 to be orthogonal to thex axis (with a rigid body transformation we can always achieve
this situation). The halfspaceπ1 is x≤ d and the halfspacēπ1 is x≤ d̄ where:

d̄ =
dr1

(r + r1)
.

We can so determine any halfspaceπ̄i corresponding toπi and hence∂B∩ π̄1∩ . . .∩ π̄k.

Figure 2.6: A solvent atom of radiusr that rolls on the molecule surfaceB maintaining its center on the solvent accessible
surfaceB′. Its point of contact withB belongs to the solvent contact surfaceSc.

“Saddle” toroidal patches
A similar argument holds for saddle toroidal patches. With reference to figure 2.7 we consider the edgee of ∂T ′ with

extreme verticesv1 andv2. The edgee corresponds on∂B′ to a (portion of) circle ¯e of intersection between two adjacent balls
∂B1∩∂B2. Thus, it is possible to roll a solvent ball, moving its center along the arc ¯e.

If the edgee is not a facet of any triangle of∂T ′ thenē is an entire circle. The ball that rolls maintaining its center onē
describes a torusE. We are interested in just a portion of∂E. Consider the planeπ of the Voronoi diagram on whiche lies.
Applying the procedure specified in the previous section we compute two planesπ1 andπ2 by translatingπ towardsv1 andv2,
respectively. The intersection of∂E with the region withinπ1 andπ2 generates two toroidal patches. The one nearest to the
torus axisv1v2 is the toroidal patchE∗ that belongs toSr .

Figure 2.7: (Left) A solvent atomB of radiusr that rolls on the molecule surfaceB maintaining its center on the solvent
accessible surfaceB′ and two points of contact with two molecule atoms. The portion of circle of ∂B that belongs to the
triangle with the three verticesv1,v2 center ofB, belongs to the rolling ball surfaceSr . (Middle) The toroidal NURBS patches
of the rolling ball surfaceSr of the caffeine molecule. (Right) The toroidal NURBS patches ofSr shown together with the union
of balls.

If the edgee is the arc from point̄t1 to point t̄2 then the toroidal patch associated withe is the portion of the patchE∗

intersected with two more halfspaces. Callπ(v1,v2,v3;v4) the halfspace that containsv1,v2,v3 in its boundary andv4 in its
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interior (withv1,v2,v3,v4 affinely independent). The toroidal patch corresponding toe is (see figure 2.7):

E∗∩π(v1,v2, t̄1; t̄2)∩π(v1,v2, t̄2; t̄1).

“concave” spherical patches

Figure 2.8: A solvent atom of radiusr tangent to the molecule surfaceB maintaining its center on the solvent accessible surface
B′ and three points of contact with three molecule atoms. The portion of ∂B inside the tetrahedron with verticesv1,v2,v2, center
of B, belongs to the rolling ball surfaceSc.

Finally, consider the trianglet of ∂T ′ with verticesv1, v2, andv3. It corresponds to the point̄t in ∂B′. In this case we have
a solvent atomB with no degrees of freedom (it cannot roll since its center isfixed in t̄). The contribution ofB to Sc is thus
given by:

∂B∩π(v1,v2, t;v3)∩π(v1,v3, t;v2)∩π(v2,v3, t;v1).

Figure 2.9: Complete Connolly surface of a caffeine molecule.

Figure 2.9 depicts a complete solvent contact surface (a superset of the rolling ball surface) of the caffeine molecule with
the concave patches highlighted in purple.

2.2.4 Solvent contact surface

In this section we extend the method to achieve an exact NURBSrepresentation of the solvent contact surfaceSc (also known
as the Connolly surface) of a moleculeB. The surface is defined as follows.

Definition 2.2.3. A point p belongs to thesolvent contactsurface Sc of the moleculeB with respect to a solvent with atoms of
radius r iff:
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• there exists a legal ball B1 of radius r that contains p in its boundary:

∃B1 | p∈ ∂B1 and
◦
B1 ∩B = /0 (2.7)

• there is no legal ball B2 of radius r that contains p in its interior:

◦
B2 ∩B = /0 ⇒ p 6∈

◦
B2 (2.8)

The close relationship between the solvent contact surfaceand the rolling ball surface becomes clear from this definition.

Proposition 2.2.2. If a point p lies on the solvent accessible surface Sc then it lies also on the rolling ball surface Sr .

PROOF. The proof can immediately be derived from the comparison ofdefinition 2.2.2 with definition 2.2.3. Further, from this
follows that lemma 2.2.1 holds not only forSr , but also forSc. ⊓⊔

The problem that remains to be solved is the removal of (possible) self intersections that the rolling ball surface mighthave,
and that make it differ from the solvent contact surface (fora classification of the classes of self-intersection that may occur
see [9], fig1). This problem can be geometrically highlighted even with a set of two small balls along which a large radius probe
is rolled (see figure 2.10). In this case the blending surfaceis formed by a toroidal patch that is self-intersecting.

(a) (b)

Figure 2.10: (a) The rolling ball surface (in green) with a probe of radius 10 on two spheres (in red) of radius 1 is a self
intersecting surface. (b) The corresponding solvent contact surface has no self intersection.

To show the same problem for the concave patches at least three spheres are needed. Figure 2.11 shows three possible
configurations of the solvent contact surface for a set of three balls. From the picture it is clear how complex the shape can get
(with sharp features, varying in genus and possibly disconnected) even for a simple configuration of three balls.

In the following sections we will show how the patches of the rolling ball surface can be trimmed to get the exact represen-
tation of the solvent contact surface. As for the previous case we will report a brief sketch of the proof of correctness.

Convex PatchesThe convex patches of the solvent contact surface are exactly the same of the rolling ball surface. This
derives immediately from the following:

Proposition 2.2.3.The solvent contact surface Sc of the moleculeB is completely included within the region between∂B and
∂B′, where∂B′ is the corresponding solvent accessible surface.

SinceSc does not intersect the interior ofB there is no nee to further trim the convex patches since they belong to∂B.
Toroidal PatchesFirst of all, we exclude the possibilities of two toroidal patches intersecting each other and of a toroidal

patch intersecting with a concave/convex patch.

Proposition 2.2.4. Given two toroidal patches Ti ,Tj (with i 6= j) their relative interiors are disjoint:

◦
T i ∩

◦
T j= /0

Proposition 2.2.5. Given a toroidal patch Ti and a concave (convex) patch Cj , their relative interiors are disjoint:

◦
T i ∩

◦
C j= /0
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(a)

(b)

(c)

Figure 2.11: Three possible configurations of the solvent contact surfaces and rolling ball surfaces for different radii of the
solvent and molecule atoms. On the left the self-intersecting rolling ball surfaces are shown. On the right the corresponding
solvent contact surfaces are shown (without self-intersections).
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From the two previous lemmas we derive that one toroidal patch can intersect only itself. This happens when it can be
constructed as rotational surface of an arc of circle aroundan axes that intersect the arc (see figure 2.12). For each arca rotating
around an axisl intersectinga we must remove that portion ofa lying on the “wrong” side ofl . In this way we compute the arc
a′ (a disconnected subset ofa) whose rotational surface aroundl has no self intersection as in figure 2.10.

(a) (b)

Figure 2.12: (a) The arca rotating around the axesl describes a self intersection portion of torus. (b) The arca′ rotating around
the axesl describes portion of torus with no self intersection.

Trimming the Concave Patches
First of all, we exclude the possibility of a concave patch intersecting either itself or a convex patch (we already know that

it cannot intersect a toroidal patch).

Proposition 2.2.6. Given a concave patch Ci and a convex patch Cj , their relative interiors are disjoint:

◦
Ci ∩

◦
C j= /0

Proposition 2.2.7. One concave patch cannot intersect itself.

As show in Figure 2.11 two distinct concave patches can intersect each other. Since each concave patch is a portion of sphere
we have to deal again with a sphere-sphere intersection problem. Hence we can simply maintain the regular triangulationof the
centers of the concave patches (in this case all the weights are equal) so that we have all the relation of reciprocal intersection
between concave patches. It has been shown in section 2.2.1 that the intersection between each pair of spheres is mapped to the
insertion of an additional trimming circle in the domain space. Taking into account the intersections between pairs of concave
patches, we must add some trimming circles to the domains of each concave patch to obtain the result of Figure 2.11.

2.3 Molecular Surface Computation using Adaptive Grids

An algorithm to compute the molecules SES and other related properties is presented, which provides an accurate surface
definition and efficient representation for operations required during docking.

The algorithm uses an octree based subdivision scheme to adaptively improve the resolution of the representation near the
surface. The surface itself is approximated as a level set ofa signed distance function computed based on values assigned at the
gridpoints.

2.3.1 Signed Distance Function based Family of Surfaces

We define a volume functionΦ and use its contours to provide a family of molecular surfaces. Consider the union of atoms
of the molecule∪B. Inflate each atomb in this set by the probe radius (solvent radius)rp to give the new complex∪Brp. Let
its boundary beΓB. Let Φ define the signed distance function ofΓB, such that the interior (closer to van der Waals) is given a
positive sign. Let all regions within the atom (see [84] for definitions) be given a constant positive high valueH.

Observations and lemmas:

• IsosurfacesSI with isovaluesI : 0≤ I ≤ H form a family of surfaces.

• ΓB = S0, as defined by Lee and Richards, is the SAS of the molecule.
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(a) (b)

Figure 2.13: (a)The Molecular Surface defined as the contourat a distance ofrp away from theSSAS, towards the atom centers.
(b)3 atoms showing different surfaces and regions.SSAS: dark blue,VSAS: pink, SSES: red,VSES: light blue,SVDW: yellow and
VVDW: green

• Srp is the SES.

• Sx→H− is the van der Waals surface.

• {x : 0≤Φ(x)≤ H} defines a volume exclusion function, which can be convenientto use in electrostatic computations.

• The region{x : −rp ≤ Φ(x) ≤ rp} has a high probability for the presence of surface atoms of a protein docked to the
current one.

The above observations point to the obvious advantages in using such a definition for our molecular structure representation
for docking. Let us further examine some of them in detail.

ΓB = S0 is the SAS, andSrp is the SES: By definition of the SAS, it is the locus of the center of the probe as it rolls over the
spherical atoms of the protein. But it should be noted that the grid based definition also includes holes, which may be removed
if necessary. The SES surface is always defined by points on the probe. It is in fact the boundary of the region accessible toany
part of the probe radius. Hence, it is always at a constant distance ofrp away from the locus of the center. Therefore, our third
observation follows. Again, holes are included in our definition and need to be removed if required.
{x : 0≤ Φ(x) ≤ H} provides a volume exclusion function: Volume exclusion functions are used in setting up dielectric

constant for electrostatic computations. The twin requirements of smoothness at the boundary and accuracy in modelingthe
SES are not met by many of the definitions in practise today. Our definition is provides a ‘sufficiently’ smooth function around
the SES (Φ is smooth in the radial direction), and contains the SES within it.

Isosurfaces SI with isovalues I : 0≤ I ≤H form a family of surfaces
At the extremes isovalues, we have the SAS and the VDW surfaces, and the SES lies in between them at an isovalue ofrp.
Interface of docked ligand is in the region {x :−rp≤Φ(x)≤ rp} :
For good shape complementarity, as observed in docked complexes, atoms of the ligand must lie close to the surface of

the protein. The above ‘skin’ definition provides a functional representation for such a region, as it defines the region where a
probe sphere is in touch with the protein.

2.3.2 Notations

Let the moleculeM is represented as a collection of atomsAi and each atom is represented using a centerci and radiusr i . Let
the radius of the prove used for defining the Solvent accessible surface (SAS) and Solvent excluded surface (SES) berp.
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Figure 2.14: Quadtree, a 2D analog of Octree. The root represents the largest square. Children of a node represent the four
sub-squares of the parent square (nodes are ordered left to right, corresponding to sub-squares ordered clockwise starting at
top-left)

Let us consider a gridG in which the molecule is embedded to have a maximum and minimum grid spacing,hmax,hmin. Let,
l be the length of the maximum side the molecule. We assume that, hmax= 2khmin andl = Nhmin. For each grid-cellg∈ G, let
dist(g, p) be the shortest distance from an arbitrary pointp to any point ong. See notes at the end of this chapter for details.

Also, letSVDW represent the van der Waals surface of the molecule andVVDW be the volume enclosed bySVDW. Similarly,
we defineSSAS, VSASandSSES, VSES.

2.3.3 Adaptive grids octree

An octree is a spatial decomposition data structure for 3 dimensions. It is a special case of ak-d tree withk = 8. The entire
volume (usually uniform cube) is represented by the root of the octree. Every nodeni of the octree has no children or exactly 8
children, corresponding to the 8 sub-cubes formed by bisecting the cube represented byni alongX, Y andZ axes. If a node has
no children, then it is called a leaf. See Figure 2.14 for a 2D example.

Hence, instead of havingO(N3) grid-cells, we can only ncrease the resolution near regionsof interest, namely near the
surface of the molecule and have a coarse-grained grid elsewhere (outside the molecule and inside the VDW surface).

To facilitate the computation ofSSES, SVDW etc., the adaptive grids is defined as an augmented octree, where each cell
(node) and each gridpoint (corners of cells) contains some additional information as listed below.

• Grid-cells: The following are stored at each grid-cellg∈G-

– Whether it belongs toSVDW or SSAS.

– A list of atoms,AVDW|∀Ai ∈ ASAS: dist(g,ci)≤ r i

– A list of atoms,ASAS|∀Ai ∈ ASAS: dist(g,ci)≤ (r i + rp)

• Grid-points For each gridpointp

– Whether it belongs toVVDW, VSASor lie outsideVSAS

– A list atoms,BVDW|∀Ai ∈ AVDW : dist(p,ci)≤ r i

– A list atoms,BSAS|∀Ai ∈ ASAS: dist(p,ci)≤ (r i + rp)

– A signed distance valueδ denoting the shortest distance ofp from theSSAS
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2.3.4 Algorithm sketch

The algorithm iteratively classifies the grid-cells and grid-points and then computes the signed distance values (δ ).

• Initialization:

1. Create a grid with uniform grid-size ofhmax

2. Create corresponding octree.

3. Mark all cells as belonging to neitherSVDW norSSAS

4. Mark all gridpoints as outside ofVSAS

5. Assignδ =−∞ for all gridpoints.

• Insertion: For each atomAi ∈M

1. InsertAi into G by locally updating pointsp ∈G as belonging toVSASor VVDW. If p belongs toVVDW, setδ = ∞.

• Refinement:

1. For each cellg∈G, determine whether it is a boundary cell.

2. For all boundary cells intersected by more than three atoms, subdivide recursively and classify the subdivided
vertices and cells.

• Computing SSES: For each gridcellg∈G classified asSVDW

1. For each pointp aroundg belonging toVSAS, find the closest distanceδ of the pointp from theSSASboundary.

2. Use level sets of the signed distance function defined by the δ values. See Section 2.3.1 for details of the signed
disance function based family of surfaces.

Each step of the algorithm is explained in greater detail in the following sections.

2.3.5 Algorithm details

Vertex classification

For any gridpointp, if dist(p,ci)≤ r i thenp is classified as belonging to theVVDW, and if r i < dist(p,ci) ≤ (r i + rp), thenp is
classified as belonging to theVSAS. The listsBVDW andBSASare also updated. Note that, vertices classified asVVDW are fixed
while vertices markedVSAScould become markedVVDW with the insertion of new atoms.

We use the method described by [3] for sphere-cube intersection tests. The cost of this insertion is linear in the number of
atoms and cubic in the resolution of the grid:O(Mh3

max).

Cell classification

We examine the classification of the eight corners of each cell of the grid. If some vertices are classified asVVDW and others
are not, then mark the cell (and the vertices) as belonging toSVDW. Otherwise if some of the vertices are classified asVSASand
some other vertices are classified as outsideVSAS, mark the gridcell (and the vertices) as belonging toSSAS. Update the lists
AVDW andASAS. This operation is linear in the number of cells of the gridO((N−1)3).

Adaptive subdivision ofSSAS

Each boundary cellg which contains more than three atoms contributing to it is subdivided up to a user defined resolution. We
classify each subdivided vertex using the atoms inASASof g, as belonging to the interior of theVSASor not. Using a technique
similar to obtain boundary cells, we generate a list of finer boundary cells in the subdivided cells. The maximum cost of this
operation isO((N−1)3(hmax/hmin)

3), although the average case cost should be much smaller as only the boundary cells are
involved.
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Figure 2.15: An adaptive subdivision of the input grid. In this 2D figure, we have subdivided quads with more than 1 SAS patch
as an example. In the figure, brown and greed lines define the boundary of atoms without and with solvent enlarged radius. The
cells belonging toSSASare colored light green and the cells belonging toSVDW are colored light brown. Gridpoints belonging
to VDVW andSVDW are colored red. Gridpoints belonging toVSASandSSASare colored blue (these are used forSESestimation).
Gridpoints belonging toSSAS, but outside ofVSASare colored green
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Computing δ

For each gridpointp in VSASandSVDW, search all cells belonging toSSASaroundp for the shortest distanceδ from p to theSSAS.
For cells with only one intersecting atom, the exact distance fromp to the spherical patch ofSSASin that cell is computed (see
Section 2.3.6 for details). On the other hand, if a cell contains more than one atom (and is hence subdivided), we just takethe
minimum distance from the center of all the subdivided cell to p as the distance of the spherical patch in the cell top. The cost
of this search will vary asr3

p, the number of boundary van der Waals cells in the volume and the accuracy desired (as provided
by hmin).

2.3.6 Spherical Patch Intersection

Let us define a sphere as having a centerc = {cx,cy,cz} and radiusr. Define a cube with pointsa1, ..,a8. The following
computations are applied for each gridpointai iff dist(ai ,c)≤ r.

Intersection of sphere and face of cube

The intersection is always arc(s) of a circle. We will consider only a face parallel to the xy plane. Other cases should follow
similarly. The point of projection ofc to the plane containing the face isc′ = {cx,cy,z coordinate of face}. This point is
the center of the circular arc. The radius using Pythagoras theorem is

√
r2−dist(p′,c)2. The intersection points on the edges,

if any, is now computed by intersecting this circle with the line containing the edge, and checking whether the points liewithin
the edge.

Shortest distance of point to a circular arc on the same plane

Lemma Given a circular arc with centerc′, radiusr and endpointsp1, p2 and a pointq on the same plane, letd0 = dist(q,c′),
d1 = dist(q,p1) andd2 = dist(q,p2). Then, the shortest distance ofq to the arc is defined as follows-

• If the point is inside the infinite sector defined by the arc, then the shortest distance is :r −d0.

• Otherwise, the shortest distance =min(d1,d2).

Shortest distance of point to a spherical patch inside a cube

The spherical patch is bounded by circular arcs on the faces of the cube. Consider the circle a boundary arc is part of. The
centerc of the sphere and this circle will form an infinite cone. Hencethe collection of boundary arcs form a collection of
infinite cones.

Lemma The shortest distance of a pointp to a spherical patch in a cube is:

• Point is inside each of the infinite cones. The shortest distance is :r −dist(p,c).

• Otherwise, the shortest distance is the minimum of the shortest distances of the point to each of the bounding arcs.

2.3.7 Complexity

For M atoms (includingB boundary atoms), smallest grid spacingh, grid lengthN, VDW radiusr and solvent radiusrp, the
timing complexity is

• SDF initialization:O(N3)

• Insertion of atoms:O(M(
2(r+rp)

h )3)

• Boundary atom detection:

– Uniform grid traversal:O(N3)

– Sphere traversal:O(M(
2(r+rp)

h )3)
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– Octree traversal:O(log(N3)B)≤O(log(N3)M)

• Patch voxel distance computation:O(M(
2(r+rp)

h )6C), C is cost(dist(patch, voxel))

• Isocontouring for visualization:O(N3)

2.3.8 Self Intersections in Patch Complex Model

A patch complex (consisting of convex, concave and toroidalpatches) can be derived using our adaptive grid structure and SAS
sphere intersection enumeration. But the patch complex is known to have problems of bad intersections. According to lemma
3, 4, 5, 6 and 7 from Bajaj et al [15], there are only two possible self intersections that occur in the commonly used rollingball
model:

• A toroid can self intersect with itself (Figure 10(a) in [15]).

• A concave patch can intersect with another in the case of a 3 atom model (Figure 9 in [15]).

In figure 2.16, we show the surface computed when two atoms arepresent, and moved close till they form a single surface
patch. In the case of surfaces computed from the rolling ballmodel, we would instead get a self intersecting toroidal patch
when the gap between the atoms becomes smaller than the diameter of the probe radius. This can be computed by looking at
all pairs of intersecting SAS spheres, which is already given in our adaptive grids. To examine the intersection of two concave
patches, we look at the three atoms model as shown in figure 2.17. Again, we get similar results compared to [15]. This case
occurs when there are three intersecting SAS atoms, and can be enumerated by our grid.

(a) The toroidal patch is disjoint and there is no self
intersection.

(b) As the atoms come closer, a well defined
toroidal patch is created.

Figure 2.16: The solvent excluded surfaces of two atoms which come closer.

(a) The 2 concave patches are disjoint and
there is no wrong intersection.

(b) As the atoms come closer, a well defined
patch, similar to the approximations in [15]
is created.

(c) At mutually closer distances,
the topology changes and the cen-
ter hole disappears.

Figure 2.17: The solvent excluded surfaces of three atoms which come closer.

2.3.9 Operations Supported by the Adaptive Grid

1. Surface atoms detection
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Surface atoms are defined as those within a certain distance from the Molecular Surface. To obtain these atoms, we
first compute the Molecular Surface. Next we search locally around each atom to find the distance of the atom from the
surface. This operation is linear in the number of atoms and cubic in the resolution of the grid.

2. Population of skin region

We define the skin region of one molecule as the region belonging to the probe as it rolls on the surface, and defined as
Solvent Accessible Surface 2 Volume (VSAS2). We define the skin implicitly as a set of spheres packing theregion. The
packing density is itself chosen to approximately equal thepacking of the atoms belonging to the molecular surface. The
region is defined over a trilinear grid in which the molecule is embedded. The grid spacingh is chosen to preserve the
features of the molecule. Assuming that the interatomic distance is∼ 1, we can useh= 0.5. By finding the boundary
vertices of theSAS, we can obtain potential centers for the skin spheres. A packing algorithm decides, based on the
packing density required, if a potential center should contain an atom or not.

3. Area volume computations

We use primal contouring to define the surface and volumes. The area under the surface is approximated by piece-
wise linear elements of the isocontour. The volume is approximated by the volume enclosed by that piecewise linear
approximation. This cost is linear in the size of the grid.

4. Curvature and normal computations

These differential properties are computed using a two stepprocess. Initially, when we propagate the distance from
the SSAS, we also store whether the nearest patch is the intersectionof one, two or more spheres. In each case, we
can analytically provide the answer to the curvatures. For example, for a sphere with radiusr, the Mean and Gaussian
curvatures are−1/r and 1/r2 respectively. In the second step, we compute the derivatives from the isocontour. At points
where the two vary significantly, we choose to keep the value provided by the differencing scheme as the signed-distance
algorithm used is only an approximation.

2.3.10 Sum of Gaussians (SoG) based approximation

The adaptive grid is also used to compute a sum of Gaussians approximation to the Molecular Surface. A base uniform
grid is used to compute the Fourier coefficients of the atom centers and the kernel function using a non-equispaced fast Fourier
Transform. The summation is evaluated at points around the surface chosen from the adaptive grid. For details of this algorithm,
kindly refer to the technical report [14]. The cost of the algorithm, forM atoms,N output points,n Fourier coefficients and a
accuracy requirementε is:

Lemma For tensor product kernels with Fourier coefficientsKω , the number of coefficientsn needed is at most:

n= min(n̂) : ∑
ω∈In̂

(Kω )
2 ≥ V

2π −
Mminj (|cj |2)V

(||c||1)2
( ε

3)
2, whereV is the integral of the kernel from(−0.5..0.5]3.

Lemma For tensor product kernels whose Fourier coefficients decayat least inversely with frequency, the number of
coefficientsn needed isO(M1/3ε3/2).

Lemma The fourier coefficients of a Gaussian functione−Bx2
decay as the inverse of the frequencyω :

Gω ≤max( 1
2π
√

π ,
1

2π er f( π√
B
), 3
√

B
eπ3/2 ,4

√
2

πe,
Be−(1+π2/B)

π4 ) 1
ω , (ω ≥ 2). The truncation of the Gaussian can be expressed as

convolution with a sync function in Fourier space. Hence theFourier series coefficients of the truncated Gaussian function can

be now written as
∞∫
−∞

√π
Be−π2t2/Bsin(2πω)/(2πω− t)dt. We then bound the sync function with a polynomial and integrate by

parts to obtain the result.

2.3.11 Results

Region classification and construction of molecular surfaces
Before we provide timing, geometric and functional properties and skin, surface regions, we present the results of our

classification and signed distance function on a 3 atom modelin figure??. Using a relatively high resolution grid of 1283, we
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classify grid points depending on the volume and surface it is part of, giving priorities of surface class over volumes and SES
class over other surfaces. The figure is a 2D cross section of avolume rendering of the classified volume.

The Solvent Excluded Surface
The solvent excluded surface is obtained as an isocontour with value equal to probe radius. In figure 2.18, we show colored

visualizations of four different molecules.

(a) An acetylcholine esterase (1C2B.PDB). It is shown in
its tetramer form. Each unit, containing 4172 atoms each,
is colored with a different color.

(b) The nicotinic acetylcholine
receptor with over 14,000 atoms
(2BG9.PDB). It has 5 chains,
shown in different colors.

(c) The large ribosomal subunit (1JJ2.PDB) has almost
100,000 atoms. The main RNA chain (in brown) and
other chains are shown.

(d) The tobacco mosaic virus, a helical virus
(1EI7.PDB). The repeating subunits, each contain-
ing 2806 atoms, are shown.

Figure 2.18: The solvent excluded surfaces of four different molecules.

Family of surfaces
In figure 2.19, we show four different surfaces computed fromthe adaptive grid, at four different isovalues. The myoglobin

molecule, 101m.pdb, is used as a test case. At a distance of 0,we get the SAS surface, which is the union of spheres model,
with each atom represented as a sphere with radius equal to the sum of its radius and a probe radius. In this example, we useda
probe radius of 1.4Å. As we go further away, we get a smooth deformation of the SAS surface to the SES surface, as shown in
the different figures. Since we are interested in the SES, we do not compute further in practise, but in theory, higher isovalues
will take us closer to the van der Waals surface. This exampleshows the utility of our method as a volume exclusion function
for computing electrostatics, which needs a smooth decay atthe SES boundary.
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(a) Isovalue=0 yields the SAS (b) Intermediate surface at isovalue 0.8

(c) Intermediate surface at isovalue 1.1 (d) At isovalue 1.4 (probe radius), we obtain the SES.

Figure 2.19: Our signed distance function based definition yields a family of surfaces which we can extract using a novel
adaptive grid based algorithm.

Timing
The cost of the algorithm depends on the depth of the adaptivegrid, the resolution of the initial base grid and the size of

the molecule. In table 2.1, we provide the time taken to compute the properties on the grid, including surfaces and demarking
volumetric regions for different molecules and grid sizes.As the number of atoms increase, the time taken increases, but the
fixed output grid size reduces the number of relevant search points within the SAS and VDW regions. Hence there is no direct
correlation seen between the two. If the grid resolution canbe chosen depending on the molecule size, then the time would
increase monotonically with the number of atoms for molecules with similar distribution of atoms (say for a set of globular
proteins).

Surface atoms detection
The surface atoms of three proteins from the complexes, anti-idiotypic fab (1iai.pdb), hemagglutinin (2vir.pdb) and bob-

white quail lysosyme (1bql.pdb) are visualized in figure 2.20. The interior atoms are colored by the residue they belong to while
the outer surface atoms all have an orange color. We show a cutoff of the three molecules to reveal the surface and interior.
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PDB Id Number of atoms time (643) time (1283)

3sgb 1912 11 85
1brc 2197 6 58
2ptc 2243 6 53
2kai 2267 7 74
3tpi 2313 6 54
1tab 2387 9 72
1ppf 2520 7 63
4cpa 2739 10 85
1mkw 4844 8 60

Table 2.1: Times (in seconds) taken to compute the adaptive grid based surfaces and volume regions for different initialgrids
which are adaptively subdivided to a depth of 3.

(a) Hemagglutinin (b) Anti-Idiotypic Fab (c) Bob-white quail lysosyme

Figure 2.20: Surface atoms of three complexes shown in orange over the interior atoms which are colored by their residue type.

SAS2 skin region construction
From the same above three complexes (1iai,2vir and 1bql), weextract the second protein and compute the skin regions (see

figure 2.21) defined by the volume where the probe is present and touching the molecule. This region is used later in docking
as it represents a volume where the interface atoms from the docking protein have a high probability of being present.

2.4 Dynamic Update of Molecular Surface Under Change in Radii

We analyze the complexity of two main classes of updates thatyield a family of all the molecular surfaces obtained for different
solvent radii: (1) updates that keep the Power Diagram fixed (quadratic growing of the radius of the solvent ball); (2) updates
that modify the Power Diagram (linear growing of the radius of the solvent ball).

In both cases efficiency is achieved trough the introductionof a novel geometric construction. In case (1) we use a new
constructive approach to duality that generalizes the standard “lifting” scheme [35], showing that the Power Diagram of a
molecule (3D union of balls) constitutes a compact representation of the collection of all the Power Diagrams of the trimming
circles of all the patches in a molecular surface. In particular the convex cell of the 3D Power Diagram relative to the ball B
is the dual of the 2D Power Diagram of the trimming circles ofB. As a first approximation (with the bonus of being simpler
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(a) Immunoglobulin from influenza virus (b) Idiotypic fab of virus neutralizing antibody (c) Hylel 5 Fab

Figure 2.21: Surface atoms of three complexes shown in orange over the interior atoms which are colored by their residue type.

and more efficient) we consider the molecular surfaces obtained by disproportionally increasing the solvent radius so that the
associated Power Diagram remains unchanged. We show how we can keep track of the topological changes that occur in the
trimming curves of the patches that form the molecular surface so that its boundary representation can be updated efficiently.
Furthermore, we compute and dynamically update an exact boundary representation of the molecular surface so that the same
dynamic data structure is also suitable for molecular modeling operations such as those supporting synthetic drug design [55].

In the case (2) setting, where the 3D Power Diagram is subjectto flips, we use the same construction as in [41] based on
the definition of a 4D complex of convex polytopesC whose “horizontal” slices are all the possible 3D Power Diagrams of
the growing balls for any growth factorr. Hence we apply a simple hyperplane sweep algorithm to optimally maintain the
dynamic Power Diagram of the linearly growing balls. Thus inthis case we compute exactly the offset of the union of balls (so
that its topology can be precisely determined), even when itrequires a change in the nearest neighbor (under power distance)
relations among the atoms corresponding to flips in the associated Regular Triangulation. More generally, for a set of balls
in d-dimensional space this requires the construction of a complex of convex polytopes in(d+ 1)-dimensional space whose
“horizontal” slices are all the possible Power Diagrams.

In Section 2.4.1 we introduce the fundamental equations that form the basis of the presented approach for molecular model-
ing. For a more extensive discussion of the conditions underwhich the present approach can be extended to a more general case
unifying geometries other than spheres, the interested reader is referred to [18]. While for our purposes we deal withd = 3, the
results are easily extended to arbitrary dimension.

See Section 2.2.1 for a discussion on trimmed NURBS representation of Molecular surfaces. And the Relavant Math Section
for details about power diagrams.

2.4.1 Preliminaries

Balls in ℜ3 and Halfspaces inℜ4

In this section we introduce the fundamental equations thatform the basis of the presented approach for molecular modeling.
For a more extensive discussion of the conditions under which the present approach can be extended to a more general case
unifying geometries other than spheres, the interested reader is referred to [18]. While for our purposes we deal withd = 3, the
results are easily extended to arbitrary dimension.

Consider inℜ4 the implicit equation of the unit ball:

ξ 2
1 + ξ 2

2 + ξ 2
3 + ξ 2

4 −1≤ 0 . (4.9)

Its boundary has parametric equations which are:

ξi =
2xi

x2
1+ x2

2+ x2
3+1

, i = 1,2,3 ξ4 =
x2

1+ x2
2+ x2

3−1

x2
1+ x2

2+ x2
3+1

. (4.10)
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The boundary of the ball (4.9) is the closure of the image ofℜ3 in ℜ4 under the mapping (4.10). The inverse map of (4.10)
is given by

xi =
ξi

1− ξ4
, i = 1,2,3 (4.11)

for (ξ1,ξ2,ξ3,ξ4) on the unit sphereξ 2
1 + ξ 2

2 + ξ 2
3 + ξ 2

4 = 1. The point(0,0,0,1) in ℜ4 is the image of the point at infinity of
ℜ3.

Now consider the linear halfspace:

h : a0+a1ξ1+a2ξ2+a3ξ3+a4ξ4≤ 0 , (4.12)

where not all of{a1,a2,a3,a4} are zero. Its pre-image inℜ3, given by the mapping (4.10), is

b : a0(x
2
1+ x2

2+ x2
3+1)+a1 2x1+a2 2x2+a3 2x3+a4(x

2
1+ x2

2+ x2
3−1)≤ 0 . (4.13)

If a2
1+a2

2+a2
3+a2

4−a2
0≥ 0 anda0+a4> 0, this is the ball of center−(a1,a2,a3)/(a0+a4) and radius(a2

1+a2
2+a2

3+a2
4−a2

0)
1/2/(a0+

a4). If a2
1+a2

2+a2
3+a2

4−a2
0 ≥ 0 anda0+a4 < 0, this is the union of the sphere of center−(a1,a2,a3)/(a0+a4) and radius

(a2
0−a2

1−a2
2−a2

3−a2
4)/(−a0−a4) and its exterior. Whena0+a4 = 0, this is a halfspace, and whena2

1+a2
2+a2

3+a2
4−a2

0 < 0
anda0+a4 6= 0, this is a ball of imaginary radius, and contains no real points.

A fundamental relationship is that spheres that contain a point (c1,c2,c3) in ℜ3 map to hyperplanes that pass through the
point(2c1,2c2,2c3,c2

1+ c2
2+ c2

3−1)/(c2
1+ c2

2+ c2
3+1) in ℜ4. This is a result of the relation

(c2
1+ c2

2+ c2
3+1)a0+2(c1a1+ c2a2+ c3a3)+ (c2

1+ c2
2+ c2

3−1)a4 = 0 .

A consequence of this relationship is that a set of spheres passing through two distinct points inℜ3 correspond to a set
of hyperplanes inℜ4 that contain a certain line. Since the actual points of intersection inℜ3 are mapped to points onB, the
line in ℜ4 must intersectB in two points. A set of spheres inℜ3 which intersect at one point are mapped to into hyperplanes
whose line of intersection is tangent toB. A set of spheres whose combined intersection is empty are mapped to hyperplanes
whose line of intersection, if any, does not intersectB. This situation is illustrated ford = 2 in Figure 2.22. Letl be the line of
intersection of the boundaries∂h′∩∂h′′ corresponding to two distinct intersecting ballsb′ andb′′. We have that∂b′ intersects
∂b′′ if and only if l intersectsB, that is, if the distance froml to the originO is smaller than 1:

∂b′∩∂b′′ = 1 or 2 points ⇐⇒ l ∩B 6= /0 ⇐⇒ dist(l ,O)≤ 1 .

dim (b′∩b′′) = 0 ⇐⇒ l ∩B= 1 point ⇐⇒ dist(l ,O) = 1 .

Figure 2.22: The intersection between the boundaries of twodisksb′, b′′ in ℜ2 corresponds to a linel intersecting the sphereB.

Similarly we can consider three distinct disksb′, b′′, andb′′′. If their intersection is a region bounded by three circulararcs,
one from each disk, then the three boundary circles correspond to three planes∂h′, ∂h′′, and∂h′′′ that intersect in a pointp
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Figure 2.23: The non-empty intersection, when bounded by three circular arcs, between three disksb′, b′′, andb′′′ in ℜ2,
corresponds to a pointp contained in the ballB.

contained inB. This is illustrated in Figure 2.23. If the three circular boundaries intersect in one or two points, then the planes
intersect in a point on∂B (or possibly in a line that intersectsB).

b′∩b′′∩b′′′ = region bounded by 3 arcs (or points)⇐⇒ p∈ B (4.14)

dim (∂b′∩∂b′′∩∂b′′′) = 0 ⇐⇒ p∈ ∂B . (4.15)

Proof of equation (4.14).
Let the three circles be(x− xi)

2 + (y− yi)
2 = r2

i , i = 1,2,3. Then the three corresponding planes are(1+ x2
i + y2

i −
r2
i )− 2xiξ1− 2yiξ2 + (1− x2

i − y2
i + r2

i )ξ3 = 0. Their point of intersection, if unique and finite, is givenby (ξ1,ξ2,ξ3) =
(D1/D4,D2/D4,D3/D4), where

D1 =

∣∣∣∣∣∣

−1− x2
1− y2

1+ r2
1 −2y1 1− x2

1− y2
1+ r2

1
−1− x2

2− y2
2+ r2

2 −2y2 1− x2
2− y2

2+ r2
2

−1− x2
3− y2

3+ r2
3 −2y3 1− x2

3− y2
3+ r2

3

∣∣∣∣∣∣
,

D2 =

∣∣∣∣∣∣

−2x1 −1− x2
1− y2

1+ r2
1 1− x2

1− y2
1+ r2

1
−2x2 −1− x2

2− y2
2+ r2

2 1− x2
2− y2

2+ r2
2

−2x3 −1− x2
3− y2

3+ r2
3 1− x2

3− y2
3+ r2

3

∣∣∣∣∣∣
,

D3 =

∣∣∣∣∣∣

−2x1 −2y1 −1− x2
1− y2

1+ r2
1

−2x2 −2y2 −1− x2
2− y2

2+ r2
2

−2x3 −2y3 −1− x2
3− y2

3+ r2
3

∣∣∣∣∣∣
, D4 =

∣∣∣∣∣∣

−2x1 −2y1 1− x2
1− y2

1+ r2
1

−2x2 −2y2 1− x2
2− y2

2+ r2
2

−2x3 −2y3 1− x2
3− y2

3+ r2
3

∣∣∣∣∣∣
.

The condition that this point of intersection lies in the interior ofB is

D2
1+D2

2+D2
3−D2

4 < 0 . (4.16)

If D4 = 0, then the point of intersection is at infinity, and the inequality (4.16) cannot be satisfied. (IfD1 = D2 = D3 = D4 = 0,
then the three planes have a line in common which intersectsB, and it can be shown that the centers of the three circles are
collinear and the circles intersect in two points.)

The intersection of three disks is bounded by three circulararcs exactly when each disk contains exactly one of the two
points of intersection of the other two circles. In order forthe first two circles to intersect in two points, we need that the
distance between their centers is strictly between|r1− r +2| andr1+ r2. This can be expressed algebraically as

A1 = [(x1− x2)
2+(y1− y2)

2− (r1− r2)
2][(x1− x2)

2+(y1− y2)
2− (r1+ r2)

2]< 0 . (4.17)
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Next, we need thatr3 is between the distance from(x3,y3) to the two points of intersection of the first two circles. This condition
turns out to be expressible as ∣∣∣∣∣∣

x1 x2 x3

y1 y2 y3

1 1 1

∣∣∣∣∣∣

2

A1+A2
2

[(x1− x2)2+(y1− y2)2]2
< 0 (4.18)

where

A2 = [(x2− x1)(x2− x3)+ (y2− y1)(y2− y3)]r
2
1

+[(x2− x1)(x3− x1)+ (y2− y1)(y3− y1)]r
2
2

+[(x2− x1)
2+(y2− y1)

2][(x3− x1)(x3− x2)+ (y3− y1)(y3− y2)− r2
3] .

Remarkably,

D2
1+D2

2+D2
3−D2

4 =

∣∣∣∣∣∣

x1 x2 x3

y1 y2 y3

1 1 1

∣∣∣∣∣∣

2

A1+A2
2 .

Therefore, if the intersection of the three disks is boundedby three circular arcs ((4.17) and (4.18) hold), then the intersection
point of the three planes is withinB ((4.16) holds). If the intersection point of the three planes is a point withinB ((4.16) holds),
then (4.18) holds. Since (4.18) holds, we must haveA1 < 0, so that (4.17) holds as well, and then the three circles intersect
pairwise in two points, and each disk contains exactly one ofthe two points of intersection of the other two circles.

Convex Hulls and Boolean Combination of Balls

Consider the intersection ofn balls or their complements, such asb1∩ b̄2∩ b̄3∩·· · ∩bn. We can map each of thebi or b̄i to a
halfspaceh in ℜd+1 so that the computation of the intersection is reduced to a convex hull computation. Note that if all the balls
are complemented we get the complement of the union of balls as in [35]. In general, for the computation of the topological
structure of a non-linear, non-convex, possibly disconnected region inℜd, the intersection of inequalities of the type (4.13) is
reduced to the computation of the boundary of the convex polytopeCP, intersection of halfspaces (4.12), and intersecting this
boundary with the unit sphere (4.9).

This mapping generalizes the “lifting” scheme [33] so that it can represent both the interior and the exterior of balls and so
that one can compute any boolean combination of balls instead of just their union. In the present formulation we also represent
the balls by their implicit inequality (4.12) instead of just a center and a radius, so that one can deal with infinite radius spheres
(note that such cases arise in practice in the computation oftrimming curves).

An additional advantage of the present mapping with respectto the “lifting” scheme is the compact representation of several
collections of curve arrangements in the special case of thecollection of trimming circles of patches that form a molecular
surface. In fact, in this case we need only to observe that theconvex polytopeCP, that is dual to each arrangement of trimming
curves of each patch, is indeed the cell of that patch in the 3-dimensional Power Diagram. This implies we need not represent
a separate polytope for each arrangement of trimming curvessince the 3-dimensional Power Diagram contains them all. The
advantage in storage comes from representing only once any lower-dimensional face shared by more than one polytope. This
sharing of faces also provides savings in storage of explicit adjacency information for each boundary curve of each patch.

2.4.2 Maintaining the Molecular Surface Under Quadratic Growth

We call quadratic growth the scheme of growing balls which keeps the Power Diagram unaltered and thus the topology of the
union of balls is given by the correspondingα-shape. Under this growth of the balls we only need to maintain the set of trimming
curves of each patch in the surface. In particular we need to efficiently detect any topological change (new intersections between
curves, creation/deletion of connected components) that occur in the trimming curves (circles and lines) in the domainplane.

This goal can be achieved by looking at each patch separately(actually the computation can be performed in parallel for
all patches) and classifying the faces of its associated polytopeCP with respect to the relative ballB at the current size. This is
achieved by using the relations stated in Section 2.4.1 as follows:

• Each facet ofCP that intersects∂B corresponds to a circle that is effectively involved in the set of trimming curves.
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Figure 2.24: (a) If the radii of two balls are incremented by the same amount, then their Voronoi separator moves towards
the smaller one. (b) If the squares of the radii of two balls are incremented by the same amount, then their Voronoi separator
remains the same.

• Each edge ofCP that intersects∂B corresponds to two circles that intersect each other.

This leads to the following algorithm for maintaining trimming curves. For each facef of CP we determine its minimum
distancedm and its maximum distancedM from the origin (the center ofB). This tells us when the circle associated withf
is involved in the boundary of the trimming circles. We organize the ranges of all the faces in an Interval tree so that we can
efficiently perform range queries, optimal in space and time. While growing the ballB we look at the faces ofCP which range
[dm,dM] contains the current radiusr of B to directly determine the topology of the trimming circles.For example, if the range
of a facet ofCP contains f but none of its boundary edges implies that an entire circle forms a separate component in the
boundary of the trimming curves.

At the same time this tells us that in the growing process the values ofdm, dM of the faces ofCPconstitute the set of “event
points” at which the growth ofr produces some topological change in the trimming circles. Hence we can efficiently maintain
the dynamic arrangement of circles in the plane.

The topological structure of the molecule is given by the Regular Triangulation and its dual, the Power Diagram. We
examine the family of triangulations that yield the topological structure of the molecular surfaces (solvent contact or solvent
excluded surfaces) while the solvent radius grows.

The determination of the topological structure of such molecular surfaces is an important problem addressed by several
papers [30]. The family of shapes obtained from a weightedα-shape [37, 35] is based on a quadratic growth of the radii of
the balls and therefore not directly related to the family based on the growth of the solvent ball radius. In fact the fundamental
property on which theα-shape construction is based on is that for anyα, the Power Diagram/Regular Triangulation remains
the same. This is achieved by growing each sphere by a different amount, namely the radius of each sphere is augmented by
a quantity such that the square of each radius is increased bythe same quantity (see Figure 2.24). This implies that smaller
spheres are grown more than the larger ones. As a consequencethe resulting surface does not reflect exactly the required
molecular surface (see Figure 2.25). When this level of approximation (possibly incorrect both in geometry and in topology) is
not satisfactory, one needs to resort to the method introduced in the following section.
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Figure 2.25: The difference between a quadratic and a lineargrowth of the molecule for a given probe radius. The molecular
surface (top) is grown quadratically (middle left), hence maintaining the topology of the set of patches, giving an approximation
to the real molecular surface computed by linear growth (middle right). The topology differences can be seen in the weighted
zero alpha shapes (bottom) from a different view point.

Figure 2.26: Examples of several topological changes in theset of NURBS patches, while growing the probe radius linearly.
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2.4.3 Maintaining the Molecular Surface under Linear Growth

The fundamental dynamic setting we consider is the case of a global linear growth of all the atoms of a molecule, corresponding
to a linear growth of the solvent atom radiusr. In this case the Voronoi Diagram (or more exactly Power Diagram) plane that
separates the two balls moves as a function ofr resulting in topological changes of the triangulations andin the set of NURBS
patches defining the molecular surface (see Figure 2.26). Infact, as the radius of each ball is increased byr, the Voronoi plane
that separates the two balls moves towards the smaller ball.For example in Figure 2.24, the distancesl1, l2 of the Voronoi plane
π from the centers of the two balls must be such that the power distances ofπ are equal, that is:

l21− r2
1 = l22− r2

2

Moreover, the distance between the two balls is constant (the two balls grow but do not move):

l1+ l2 = l

>From these two equations we obtain forl1:

l21− r2
1 = (l − l1)

2− r2
2 = l2+ l21−2l1l − r2

2

l1 =
l2+ r2

1− r2
2

2l
Whenr1 changes tor1+ r andr2 changes tor2+ r we have:

l1 =
l2+(r1+ r)2− (r2+ r)2

2l

=
l2+ r2

1+ r2+2r1r− r2
2− r2−2r2r

2l

=
l2+ r2

1− r2
2+2r(r1− r2)

2l

In general, consider two ballsB1,B2 (of radii r1 and r2 respectively) inℜd and assume, without loss of generality, a
coordinate system with the origin in the center ofB1 and the center ofB2 on the positive part of thex1 axis (the center ofB2 is
the point(l ,0, . . . ,0)). The hyperplane of the Power Diagram that separatesB1 from B2 has the equation:

π : x1 =
l2+ r2

1− r2
2

2l
+ r

2(r1− r2)

2l
(4.19)

which is linear inr. Hence this is also a hyperplane in the(d+ 1)-dimensional space(x1, . . . ,xd, r). Figure 2.27 shows the
1-dimensional case of two balls (segments) that grow quadratically (a) or linearly (b). In the first case the hyperplane of the
Power Diagram that separatesB1 from B2 remains the same for all values ofr. In the second case, the hyperplane of the Power
Diagram that separatesB1 from B2 moves linearly withr with a slope towards the center ofB1.

This fundamental observation leads to the construction of the Power Diagram of a set of growing balls as the intersectionof
a hyperplaner = constwith a complexC of convex polytopes in the(d+1)-dimensional space(x1, . . . ,xd, r). If the molecule
B is composed ofn balls {B1, . . . ,Bn} then the complexC is a collection ofn convex polytopes{C1, . . . ,Cn} one per ball.
In particular the cellCi associated with the ballBi is the intersection of all the halfspaces of points “nearer”to Bi then toB j

(with j = 1, . . . , i − 1, i + 1, . . . ,n). The boundary hyperplane of such halfspaces is given by equation (4.19). Note that cell
Ci is defined as the intersection of all possiblen+ 1 halfspaces since by linear growing many flips can occur in the Regular
Triangulation. A flip occurs when an edge connecting two opposite vertices of a quadrilateral comprising two triangles in the
triangulation is replaced by the edge connecting the other two vertices, as illustrated in Figure 2.28. The brute force application
of the technique as described here requires the computationof n convex hulls [22] in four-dimensional space, which leads to
anO(n3) time worst case complexity. For our purposes this is just a preprocessing step needed to construct the data structure
used for animating the molecular surface, so we do not reportin the present paper the details of an efficient computation of this
complexC . Note however, that in the case of a molecule in three dimensions(d= 3) we have to compute a set of 4-dimensional
convex hulls that can be computed more efficiently, in an output sensitive sense, by using the algorithm given in [21]. Theuse
of this algorithm would indeed be beneficial because the overall number of faces inC is indeedO(n2). This is proved by a
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Figure 2.27: The 1-dimensional case of ball growth. The quadratic growth (a) keeps the Power Diagram hyperplane (a point)
still. The linear growth (b) moves the Power Diagram hyperplane linearly withr.

technique introduced in [18] that generalizes the “lifting” scheme for the computation of Power Diagrams [33] and maps the
construction of the complexC to a convex hull computation (intersection of halfspaces) in one dimension higher (that is in
dimensiond+2). In the case of a molecule in three dimensions, this leads to the computation of the convex hull in dimension
five that can be computed optimally [22] inO(n2) time. This is certainly optimal in odd dimension (and in particular in the case
of molecules whered = 3) since a single Power Diagram (andC contains many of them) already has the same number of faces
as a(d+1)-dimensional convex polytope.

In the previous section we introduced the construction of a complex of convex polytopesC embedded in the(d+ 1)-
dimensional space(x1, . . . ,xd, r) whose “horizontal” slices (that is an intersection with thehyperplaner = const) are the Power
Diagrams of the ballsB with radii uniformly increased byr. This data structure allows us to animate (update) efficiently the
representation of a molecular surface (solvent accessibleor solvent contact) with respect to a change in the solvent radius.

In particular we can achieve simple and efficient updates on the Power diagram localized in regions where the topological
changes actually occur. In this way we can then in turn directly apply the method described in Section 2.4.2.

Being that the Power Diagram is the intersection of a horizontal hyperplaneH : r = const with the complexC , in the
dynamic setting the linear growth of the radii is simply a sweep of such horizontal hyperplanesH along ther-axis. Hence the
“event points” at which we have to update the topological structure of the Power Diagram are the vertices ofC . In particular to
compute these hyperplane sections ofC we apply the robust approach in [17] which is based on the robust “above or “below”
classification of the vertices ofC with respect toH. We sort the vertices ofC by theirr coordinates so that their classification
is obtained in logarithmic time by locating the current height value ofH in such a sorted list of vertices. This approach is also
suitable for the dynamic growth setting in which we will be continuously moving the hyperplaneH. In fact in such a scenario,
each time we cross a vertex ofC , we will need to update only the cells incident to this vertex. Moreover in general, if we
suddenly change our solvent radius from a valuer1 to a valuer2, we will be able to detect the vertices whoser coordinate is in
the range[r1, r2], change their above/below classification and consequentlyupdate all the incident faces ofH ∩C .

We reach the conclusion that when spheres grow linearly, some flips can occur in the Regular Triangulation, unlike the
quadratic growth, so that the usualα-shape construction is invalid (see Figure 2.28).

2.4.4 Examples

Example 1

Here we choose a coordinate system so that two of the balls have centers on theξ1-axis inℜ3. Specifically, consider three balls
B′, B′′, andB′′′. Choose a coordinate system so that their centers are located at (0,0,0), (l12,0,0), and(l13cosβ , l13sinβ ,0),
wherel12 andl13 are the distances between the centers ofB′ andB′′, and between the centers ofB′ andB′′′, respectively, andβ
is the angle made by the three centers, withB′ at the vertex. We can assume 0< β < π . Let the solvent ball have radiusr.

We consider the two planesπ1,π2 relative to two trimming curvesc1,c2. The position of the linel = π1∩π2 of intersection
is used to track the intersection betweenc1 andc2 and to give their 2D NURBS representation.



38 CHAPTER 2. SPATIAL OCCUPANCY

Figure 2.28: A simple case of a Regular Triangulation for which the topology changes in a simple linear growth of the radius
of the balls.

With the above coordinate system, the two planes have equations (see Figure 2.29):

π1 : ξ1 = a1+ ra2 (4.20)

π2 : (cosβ )ξ1+(sinβ )ξ2 = a3+ ra4 (4.21)

where

a1 =
l212+ r2

1− r2
2

2l12
a2 =

r1− r2

l12

a3 =
l213+ r2

1− r2
3

2l13
a4 =

r1− r3

l13
.

in accordance with (4.19).
The image of the trimming curve is the intersection of the spherical surfaces of the ballsB′(r) andB′′(r), which we define

as the balls of radiir1 + r and r2 + r centered at(0,0,0) and(l12,0,0), respectively. The implicit equation of the spherical
surface ofB′(r) is thenξ 2

1 + ξ 2
2 + ξ 2

3 = (r1+ r)2, and one finds that theξ3 coordinate of the two points of intersection between
this sphere and the linel is

ξ3 = ±
√
(r1+ r)2− ξ 2

1 − ξ 2
2 (4.22)

The segment of the linel = π1∩π2 within B′(r) then has the parametrization:

ξ1 = a1+ ra2

ξ2 = a5+ ra6 (4.23)

ξ3 =
√
(r1+ r)2− (a1+ ra2)2− (a5+ ra6)2 u ,

−1≤ u≤ 1 ,

where

a5 =
a3−a1cosβ

sinβ
a6 =

a4−a2cosβ
sinβ

.
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For brevity, these quantities which will appear frequentlyin the sequel will be named as follows. Keep in mind that all of
thesebi are functions ofr.

b1 = r1+ r

b2 = a1+ ra2

b3 = a3+ ra4

b4 = a5+ ra6

b5 =
√

b2
1−b2

2−b2
4

b6 =
√

b2
1−b2

2

b7 =
√

b2
2+b2

4

To map the surface of the ballB′(r) to a plane, we use an inverse mapping similar to (4.11) but fora sphere of radiusr1+ r
instead of 1 and specificallyd = 2:

x1 =
ξ1

r1+ r− ξ3

x2 =
ξ2

r1+ r− ξ3
.

>From this one obtains the intersection pointsq1 andq7 (see Figure 2.29(b); these points lie on a line through the origin) in the
(x1(r),x2(r)) parameter space as

q1 =

(
b2

b1+b5
,

b4

b1+b5

)

q7 =

(
b2

b1−b5
,

b4

b1−b5

)

and the trimming curve is an arc of the circle with center

q0 =

(
b1

b2
,0

)

and radius
b6

b2
.

One next needs to find suitable break pointsq3 andq5 (see Figure 2.29). Ideally we want none of the arcs
⌢

q1q3,
⌢

q3q5,
⌢

q5q7

to be close to 180◦. We can make sure that none of these arcs exceeds 120◦ as follows. Letq8 be the midpoint of segmentq1q7,
and letq9 be the intersection of the perpendicular bisector ofq1q7 with the arc

⌢
q3q5. Now chooseq3 andq5 to be on the line

perpendicular to
←→
q8q9 that intersects the

←→
q8q9 at a point 3/4 of the way fromq8 towardsq9. In the limiting case whenq1 and

q7 coincide, which occurs when(r1+ r)2 = (a1+ ra2)
2+(a5+ ra6)

2, the three arcs
⌢

q1q3,
⌢

q3q5,
⌢

q5q7 are all 120◦, and they all
shrink as the arcq1−q3−q5−q7 shrinks.

In thex1x2-plane, line
←→
q1q7 has the equation(a5+ ra6)x− (a1+ ra2)y= 0. We also have

q8 =

(
b1b2

b2
7

,
b1b4

b2
7

)

and

q9 =

(
b1

b2
+

b4b6

b2b7
,−b6

b7

)
.
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>From this we get

q3 =

(
4b1b2

7−b1b2
4+3b4b6b7

4b2b2
7

−

√
6b2

1b2
4+7b2

2b
2
5+6b1b4b6b7

4b2
7

,

b1b4−3b6b7

4b2
7

−
b4

√
6b2

1b2
4+7b2

2b
2
5+6b1b4b6b7

4b2b2
7





q5 =

(
4b1b2

7−b1b2
4+3b4b6b7

4b2b2
7

+

√
6b2

1b2
4+7b2

2b
2
5+6b1b4b6b7

4b2
7

,

b1b4−3b6b7

4b2
7

+
b4

√
6b2

1b2
4+7b2

2b
2
5+6b1b4b6b7

4b2b2
7


 .

We now determineq2, q4, andq6 as the points of intersection of the tangents lines throughq1, q3, q5, andq7. We get

q4 =

(−7b2
1b3

4+4b2
1b4b2

7−12b1b6b3
7−7b2

2b4b2
5−9b4b2

6b2
7

4b2b2
7(b1b4−3b6b7)

,
7b2

1b2
4+7b2

2b+52+9b2
6b

2
7

4b2b2
7(b1b4−3b6b7)

)
.

Also

q2 = (1/d1)
(

b2[7b3
1b2

2b3
4+7b3

1b
5
4−4b3

1b
3
4b2

7+7b2
1b

2
2b3
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1b

2
2b4b5b2
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1b

5
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3
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2
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4
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4b2

6b2
7+12b1b
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where

c1 =
√

6b2
1b2

4+7b2
2b

2
5+6b1b4b6b7

d1 = b2
7(b1+b5)[(−b1b4b5−b2

2b4−b4b2
6)c1

+b2
1b2b4b5−b1b2b3

4+b1b2b4b2
6−3b1b2b5b6b7+3b2b

2
4b6b7−3b2b

3
6b7]

d2 = b2
7(b1−b5)[(b1b4b5−b2

2b4−b4b
2
6)c1

+b2
1b2b4b5+b1b2b3

4−b1b2b4b2
6−3b1b2b5b6b7−3b2b

2
4b6b7+3b2b

3
6b7]

We now need rational parametrizations of the circular arcs.The parametrization for arcq1−q2−q3 is provided by

(x1,x2) =
(1− t)2q3+2t(1− t)w1q2+ t2q1

(1− t)2+2t(1− t)w1+ t2 , 0≤ t ≤ 1 ,

for a particular value for the weightw1, which turns out to be the cosine of half the angle∠q1q0q3, or cosq1q0q2. This can be
computed as

w1 =
(q1−q0) · (q2−q0)

‖q1−q0‖‖q2−q0‖
.

Analogous parametrizations hold for arcsq3−q4−q5 andq5−q6−q7.

Figure 2.29: (a)(ξ1,ξ2) section of the(ξ1,ξ2,ξ3) space. The circle is a cross section of ballB′(r) of radiusr1 + r. Line l ,
which is parallel to theξ3 axis, is the intersection of the planesπ1 andπ2, which in turn are the Voronoi planes separatingB′(r)
andB′′(r) and separatingB′(r) andB′′′(r). (b) control points of the trimming curve that is part of the boundary ofb′(r) for
Example 1. (c) the same control points in Example 2.

Example 2

Here we place the balls inℜ3 so that the line through the endpoints of a trimming arc is parallel to thex1-axis inx1x2-space. Con-
sider three ballsB′, B′′, andB′′′. Choose a coordinate system so that their centers are located at(0,0,0), (l12cosα,−l12sinα,0),
and(l13cos(β −α), l13sin(β −α),0) wherel12 and l13 are the distances between the centers ofB′ andB′′, and between the
centers ofB′ andB′′′, respectively,β is the angle made by the three centers, withB′ at the vertex (0< β < π), and

α = tan−1
[
(a3+ ra4)− (a1+ ra2)cosβ

(a1+ ra2)sinβ

]
.

With this definition we have thatα is the angle between the ray through the centers ofB′ andB′′, and theξ1-axis, and

cosα =
b2sinβ

(b2
2−2b2b3cosβ +b2

3)
1/2

sinα =
b3−b2cosβ

(b2
2−2b2b3cosβ +b2

3)
1/2

.
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Note thatα is a function ofr. This coordinate system is chosen so that the Voronoi planesdefined below intersect at theξ1-axis.
Let the solvent ball have radiusr. We consider the two planesπ1,π2 relative to two trimming curvesc1,c2. The position of

the linel = π1∩π2 of intersection is used to track the intersection betweenc1 andc2 and to give their 2D NURBS representation.
With the above coordinate system, the two planes have equations:

π1 : (cosα)ξ1− (sinα)ξ2 = a1+ ra2 (4.24)

π2 : [cos(β −α)]ξ1+[sin(β −α)]ξ2 = a3+ ra4 (4.25)

where theai are the same as in Example 1:

a1 =
l212+ r2

1− r2
2

2l12
a2 =

r1− r2

l12

a3 =
l213+ r2

1− r2
3

2l13
a4 =

r1− r3

l13
,

in accordance with (4.19).
The image of the trimming curve is the intersection of the spherical surfaces of the ballsB′(r) andB′′(r), which we define

as the balls of radiir1+ r andr2+ r centered at(0,0,0) and(l12cosα,−l12sinα,0), respectively. The implicit equation of the
spherical surface ofB′(r) is thenξ 2

1 +ξ 2
2 +ξ 2

3 = (r1+ r)2, and one finds that theξ3 coordinate of the two points of intersection
between this sphere and the linel is

ξ3 = ±
√
(r1+ r)2− ξ 2

1 − ξ 2
2 (4.26)

The segment of the linel = π1∩π2 within B′(r) then has the parametrization:

ξ1 = (a1+ ra2)/cosα
ξ2 = 0 (4.27)

ξ3 =
√
(r1+ r)2− (a1+ ra2)2/cos2 α u ,

−1≤ u≤ 1 .

To map the surface of the ballB′(r) to a plane, we use an inverse mapping similar to (4.11) but fora sphere of radiusr1+ r
instead of 1 and specificallyd = 2:

x1 =
ξ1

r1+ r− ξ3

x2 =
ξ2

r1+ r− ξ3
.

>From this one obtains the intersection pointsq1 andq7 (see Figure 2.29(c)) in the(x1(r),x2(r)) parameter space as

q1 =




b1cosα−

√
b2

1cos2 α−b2
2

b2
,0





q7 =




b1cosα +
√

b2
1cos2 α−b2

2

b2
,0




and the trimming curve is an arc of the circle with center

q0 =

(
b1cosα

b2
,−b1sinα

b2

)
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and radius
b6

b2
.

In thex1x2-plane, line
←→
q1q7 is just thex1-axis, and line

←→
q8q9 is x1 = b1cosα/b2. We also have

q8 =

(
b1cosα

b2
,0

)

and

q9 =

(
b1cosα

b2
,−b1sinα +b6

b2

)
.

>From this we find that the break pointsq3 andq5 are

q3 =

(
b1cosα

b2
− (7b2

6−b2
1sin2 α +6b1b6sinα)1/2

4b2
,−3

4
b1sinα +b6

b2

)

q5 =

(
b1cosα

b2
+

(7b2
6−b2

1sin2 α +6b1b6sinα)1/2

4b2
,−3

4
b1sinα +b6

b2

)
.

We now determineq2, q4, andq6 as the points of intersection of the tangents lines throughq1, q3, q5, andq7. We get

q4 =

(
b1cosα

b2
,−b1sinα

b2
+

4b2
6

b2(b1sinα−3b6)

)
.

Also

q2 =

(
b1cosα

b2
− 3b2

6(b1sinα +b6)

b2[b1(c2− c1)sinα +3b6c1]
,−b1sinα

b2
+

b2
6(c2−4c1)

b2[b1(c2− c1)sinα +3b6c1]

)

and

q6 =

(
b1cosα

b2
+

3b2
6(b1sinα +b6)

b2[b1(c2− c1)sinα +3b6c1]
,−b1sinα

b2
+

b2
6(c2−4c1)

b2[b1(c2− c1)sinα +3b6c1]

)

where

c1 =
√

b2
1cos2 α−b2

2

c2 =
√

7b2
6−b2

1sin2 α +6b1b6sinα .

2.5 Maintaining Union of Balls Under Atom Movements

We describe thepacking grid data structure[7, 8] for maintaining a setM of balls in 3-space efficiently under the following set
of queries and updates. ByB= (c, r) we denote a ball withcenterc and radiusr.

Queries.

• INTERSECT( c, r ): Return all balls inM that intersect the given ballB= (c, r). The given ball may or may not belong
to the setM.

• RANGE( p, δ ): Return all balls inM with centers within distanceδ of point p. We assume thatδ is at most a constant
multiple of the radius of the largest ball inM.

• EXPOSED( c, r ): Returnstrue if the ballB= (c, r) contributes to the outer boundary of the union of the balls inM. The
given ball must belong toM.
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T IME COMPLEXITY

OPERATIONS

ASSUMING

tq = O (log logw),
tu = O (logw)

ASSUMING

tq = O (log logn),

tu = O

(
logn

log logn

)

RANGE( p, δ ) | INTERSECT( c, r ) | EXPOSED( c, r )
(δ = O (rmax))

O (log logw) (w.h.p.) O (log logn) (w.h.p.)

SURFACE( ) O (#balls on surface) (worst-case)

ADD( c, r ) | REMOVE( c, r ) | MOVE( c1, c2, r ) O (logw) (w.h.p.) O

(
logn

loglogn

)
(w.h.p.)

ASSUMPTIONS: (i) RAM with w-bit Words,(ii) Collection ofn Balls,
and(iii ) rmax= O (minimum distance between two balls)

Table 2.2: Time complexities of the operations supported bythe packing grid data structure.

• SURFACE( ): Returns the outer boundary of the union of the balls inM. If there are multiple disjoint outer boundary
surfaces defined byM, the routine returns any one of them.

Updates.

• ADD( c, r ): Add a new ballB= (c, r) to the setM.

• REMOVE( c, r ): Remove the ballB= (c, r) from M.

• MOVE( c1, c2, r ): Move the ball with centerc1 and radiusr to a new centerc2.

We assume that at all times during the lifetime of the data structure the following holds.

Assumption 2.5.1. If rmax is the radius of the largest ball in M, and dmin is the minimum Euclidean distance between the
centers of any two balls in M, then rmax= O (dmin).

In general, a ball in a collection ofn balls in 3-space can intersectΘ(n) other balls in the worst case, and it has been shown
in [25] that the boundary defined by the union of these balls has a worst-case combinatorial complexity ofΘ

(
n2
)
. However,

if M is a “union of balls” representation of the atoms in a molecule, then assumption 2.5.1 holds naturally [49, 76], and as
proved in [49], in that case, both complexities improve by a factor ofn. The following theorem states the consequences of the
assumption.

Theorem 2.5.1. (Theorem 2.1 in [49], slightly modified) Let M= {B1, . . . ,Bn} be a collection of n balls in 3-space with radii
r1, . . . , rn and centers at c1, . . . ,cn. Let rmax = maxi {r i} and let dmin = mini, j

{
d(ci ,c j)

}
, where d(ci ,c j) is the Euclidean

distance between ci and cj . Also letδM = {δB1, . . . ,δBn} be the collection of spheres such thatδBi is the boundary surface of
Bi . If rmax= O (dmin) (i.e., Assumption 2.5.1 holds), then:

(i) Each Bi ∈M intersects at most216· (rmax/dmin)
3 = O (1) other balls in M.

(ii) The maximum combinatorial complexity of the boundary of theunion of the balls in M isO
(
(rmax/dmin)

3 ·n
)

= O (n).

PROOF. Similar to the proof of Theorem 2.1 in [49]. ⊓⊔

Therefore, as Theorem 2.5.1 suggests, for intersection queries and boundary construction, one should be able to handleM
more efficiently if assumption 2.5.1 holds. The efficiency ofour data structure, too, partly depends on this assumption.
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2.5.1 Preliminaries

Before we describe our data structure we present several definitions in order to simplify the exposition.

Definition 2.5.1(r-grid and grid-cell). An r-grid is an axis-parallel infinite grid structure in 3-space consisting of cells of size
r× r× r (r ∈ R) with theroot (i.e., the corner with the smallest x, y, z coordinates) of one of the cells coinciding with origin of
the (Cartesian) coordinate axes. The grid cell that has its root at Cartesian coordinates(ar,br,cr) (where a,b,c∈Z) is referred
to as the(a,b,c, r)-cell or simply as the(a,b,c)-cell when r is clear from the context.

Definition 2.5.2(grid-line). The(b,c, r)-line (where
b,c∈ Z) in an r-grid consists of all(x,y,z, r)-cells with y and z fixed to b and c, respectively. When r is clear from the context
the(b,c, r)-line will simply be called the(b,c)-line.

Observe that each cell on the(b,c, r)-line can be identified with a unique integer, e.g., the cell at indexa∈ Z on the given
line corresponds to the(a,b,c, r)-cell in ther-grid.

Definition 2.5.3 (grid-plane). The(c, r)-plane(where c∈ Z) in an r-grid consists of all(x,y,z, r)-cells with z fixed to c. The
(c, r)-plane will be referred to as the c-plane when r is clear from the context.

The(c, r)-planecan be decomposed into an infinite number of lines each identifiable with a unique integer. For example,
indexb∈ Z uniquely identifies the(b,c, r)-line on the given plane. Also each grid-plane in ther-grid can be identified with a
unique integer, e.g., the(c, r)-plane is identified byc. The proof of the following lemma is straight-forward.

Lemma 2.5.1. Let M= {B1, . . . ,Bn} be a collection of n balls in 3-space with radii r1, . . . , rn and centers at c1, . . . ,cn. Let
rmax= maxi {r i} and let dmin = mini, j

{
d(ci ,c j)

}
, where d(ci ,c j) is the Euclidean distance between ci and cj . Suppose M is

stored in the2rmax-grid G. Then

(i) If rmax=O (dmin) (i.e., Assumption 2.5.1 holds) then each grid-cell in G contains the centers of at most64·(rmax/dmin)
3 =

O (1) balls in M.

(ii) Each ball in M intersects at most 8 grid-cells in G.

(iii ) For a given ball B∈M with center in grid-cell C, the center of each ball intersecting B lies either in C or in one of the
26 grid-cells adjacent to C.

(iv) The number ofnon-empty(i.e., containing the center of at least one ball in M) grid-cells in G is at most n, and the same
bound holds for grid-lines and grid-planes.

At the heart of our data structure is a fully dynamic one dimensional integer range reporting data structure for word RAM
described in [62]. The data structure in [62] maintains a setS of integers under updates (i.e., insertions and deletions), and
answers queries of the form: report any or all points inSin a given interval. The following theorem summarizes the performance
bounds of the data structure which are of interest to us.

Theorem 2.5.2. (proved in [62]) On a RAM with w-bit words the fully dynamic one dimensional integer range reporting
problem can be solved in linear space, and w.h.p. bounds ofO (tu) andO (tq+ k) on update time and query time, respectively,
where k is the number of items reported, and

(i) tu = O (logw) and tq = O (loglogw) using the data structure in [62]; and

(ii) tu = O (logn/loglogn) and tq = O (log logn) using the data structure in [62] for small w and a fusion tree [42] for large
w.

The data structure can be augmented to store satellite information of sizeO (1) with each integer without degrading its
asymptotic performance bounds. Therefore, it supports thefollowing three functions:

1. INSERT( i, s ): Insert an integeri with satellite informations.

2. DELETE( i ): Delete integeri from the data structure.

3. QUERY( l , h ): Return the set of all〈 i, s 〉 tuples withi ∈ [l ,h] stored in the data structure.



46 CHAPTER 2. SPATIAL OCCUPANCY

2.5.2 Description (Layout) of the Packing Grid Data Structure

We are now in a position to present our data structure. LetDPG be the data structure. We represent the entire 3-space as a
2rmax-grid (see Definition 2.5.1), and maintain the non-empty grid-planes (see Definition 2.5.3), grid-lines (see Definition2.5.2)
and grid-cells (see Definition 2.5.1) inDPG. A grid component (i.e., cell, line or plane) is non-empty ifit contains the center of
at least one ball inM. The data structure can be described hierarchically. It hasa tree structure with 5 levels: 4 internal levels
(levels 3, 2, 1 and 0) and an external level of leaves (see Figure 2.30). The description of each level follows.

Figure 2.30: Hierarchical structure of DPG

The Leaf Level “Ball” Data Structure ( DPG−1). The data structure stores the centerc= (cx,cy,cz) and the radiusr of the
given ballB. It also includes a Boolean flagexposedwhich is set totrue if B contributes to the outer boundary of the union of
the balls inM, andfalseotherwise. If another ballB′ intersectsB, it does so on a circle which divides the boundaryδB of B into
two parts: one part is buried insideB′ and hence cannot contribute to the union boundary, and the other part is exposed w.r.t.B′

and hence might appear on the union boundary. The circular intersections of all balls intersectingB define a 2D arrangement
A on δB which according to Theorem 2.5.1 hasO (1) combinatorial complexity. A face ofA is exposed, i.e., contributes to
the union boundary, provided it is not buried inside any other ball. Observe that if at least one other ball intersectsB, andA
has an exposed facef , then each edge off separatesf from another exposed facef ′ which belongs to the arrangementA′ of
a ball intersectingB. We store all exposed faces (if any) ofA in a setF of sizeO (1), and with each facef we store pointers
to the data structures ofO (1) other balls that share edges withf and also the identifier of the corresponding face on each ball.
Observe that ifB does not intersect any other balls thenF will contain only a single face and no pointers to any other balls.

The Level 0 “Grid-Cell” Data Structure ( DPG0). The “grid-cell” data structure stores the root (see Definition 2.5.1)(a,b,c)
of the grid-cell it corresponds to. A grid-cell can contain the centers of at mostO (1) balls inM (see Lemma 2.5.1). Pointers to
data structures of all such balls are stored in a setSof sizeO (1). Since we create “grid-cell” data structures only for non-empty
grid-cells, there will be at mostn (and possibly≪ n) such data structures, wheren is the current number of balls inM.

The Level 1 “Grid-Line” Data Structure ( DPG1). We create a “grid-line” data structure for a(b,c)-line provided it contains
at least one non-empty grid-cell. The data structure storesthe values ofb andc. Each(a,b,c)-cell lying on this line is identified
with the unique integera, and the identifier of each such non-empty grid-cell is stored in an integer range search data structure
RRas described in Section 2.5.1 (see Theorem 2.5.2). We augment RR to store the pointer to the corresponding “grid-cell”
data structure with each identifier it stores. The total number of “grid-line” data structure created is upper bounded byn and
possibly much less thann.
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The Level 2 “Grid-Plane” Data Structure ( DPG2). A “grid-plane” data structure is created for ac-plane provided it contains
at least one non-empty grid-line. Similar to the “grid-line” data structure it identifies each non-empty(b,c)-line lying on the
c-plane with the unique integerb, and stores the identifiers in a range reporting data structureRRdescribed in Section 2.5.1. A
pointer to the corresponding “grid-line” data structure isalso stored with each identifier. The data structure also storesc. The
total number of “grid-plane” data structures created cannot exceedn, and will possibly be much less thann.

The Level 3 “Grid” Data Structure ( DPG3). This data structure maintains the non-empty grid-planes ofthe 2rmax-grid in
an integer range reporting data structureRR(see Section 2.5.1). Eachc-plane is identified by the unique integerc, and each
such integer stored inRR is also accompanied by a pointer to the corresponding “grid-plane” data structure. The “grid” data
structure also stores asurface-rootpointer which points to the “Ball” data structure of an arbitrary exposed ball inM.

We have the following lemma on the space usage of the data structure.

Lemma 2.5.2. Let M be a collection of n balls as defined in Theorem 2.5.1, andlet Assumption 2.5.1 holds. Then the packing
grid data structure storing M usesO (n) space.

PROOF. The space usage of the data structure is dominated by the space used by the range reporting data structures, the
grid-cells and the “ball” data structures. Since the range reporting data structures use linear space (see Theorem 2.5.2) and total
number of non-empty grid components (i.e., planes, lines and cells) isO (n) (see Lemma 2.5.1), total space used by all such
data structures isO (n). The grid cells contain pointers to “ball” data structures,and since no two grid-cells point to the same
“ball” data structure, total space used by all grid-cells isalsoO (n). Each “ball” data structure contains the arrangementA and
the face decompositionF of the exposed (if any) faces of the ball. The total space needed to store all such arrangements and

decompositions isO
(
(rmax/dmin)

3 ·n
)

(see Theorem 2.5.1) which reduces toO (n) under Assumption 2.5.1. Thus the total

space used by the data structure isO (n). ⊓⊔

2.5.3 Queries and Updates

The queries and updates supported by the data structure are implemented as follows.
Queries.

(1) RANGE( p, δ ): Let p= (px, py, pz). We perform the following steps.

i. Level 3 Range Query: We invoke the function
QUERY( l , h ) of the range reporting data structureRRunderDPG3 (i.e., the level 3 “grid” data structure) withl =
⌊(pz− δ )/(2rmax)⌋ andh = ⌊(pz+ δ )/(2rmax)⌋. This query returns a setS2 of tuples, where each tuple〈 c, Pc 〉 ∈ S2

refers to a non-emptyc-plane with a pointerPc to its level 2 “grid-plane” data structure.

ii. Level 2 Range Query: For each〈 c, Pc 〉 ∈ S2, we call the range query function under the corresponding level 2 data

structure withl =
⌊
(py− δ ′)/(2rmax)

⌋
andh =

⌊
(py+ δ ′)/(2rmax)

⌋
, where(δ ′)2 = δ 2− (c− pz)

2 if c− pz < δ , and
δ ′ = rmax otherwise. This query returns a setS1,c of triples, where each triple〈 b, c, Pb,c 〉 ∈ S1,c refers to a non-empty
( b, c )-line with a pointerPb,c to its level 1 “grid-line” data structure. We obtain the setS1 by merging allS1,c sets.

iii. Level 1 Range Query: For each〈 b, c, Pb,c 〉 ∈S1, we call the integer range query function under the corresponding level

1 “grid-line” data structure withl = ⌊(px− δ ′′)/(2rmax)⌋ andh= ⌊(px+ δ ′′)/(2rmax)⌋, where(δ ′′)2 = δ 2− (b− py)
2−

(c− pz)
2 if δ 2 > (b− py)

2+(c− pz)
2, andδ ′′ = rmaxotherwise. This query returns a setS0,b,c of quadruples, where each

quadruples〈 a, b, c, Pa,b,c 〉 ∈ S0,b,c refers to a non-empty( a, b, c )-cell with a pointerPa,b,c to its level 0 “grid-cell”
data structure. We obtain the setS0 by merging allS0,b,c sets.

iv. Ball Collection: For each〈 a, b, c, Pa,b,c 〉 ∈S0, we collect from the level 0 data structure of the corresponding( a, b, c )-
cell each ball whose center lies within distanceδ from p. We collect the pointer to the leaf level “ball” data structure of
each such ball in a setS, and return this set.

The correctness of the function follows trivially since it queries a region in 3-space which includes the region coveredby

a ball of radiusδ centered atp. It is straight-forward to see that the function makes at most O

(
π · (⌈δ/rmax⌉+1)2

)
calls to
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(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 2.31:Top row: Level 3 Range Query. (a) Query region defined by the sphere of radiusδ at pointp inside the level 3
grid, (b) The level 3 grid as a collection of level 2 grid-planes, (c) and (d) Range reporting query returns the set of non-empty
grid-planes within the query region.Middle row: Level 2 Range Query. (a) On each grid-plane, query region is defined by a
circular slice of the sphere of radiusδ at pointp, (b), (c) and (d) Range reporting query on such a grid-plane returns the set of
non-empty grid-lines within the query region.Bottom row: Level 1 Range Query. (a) and (b) Query region in each grid-line is
defined as an interval, (c) and (d) For each grid-line, range reporting query returns the set of non-empty grid-cells

a range reporting data structure, and collects balls from atmostO
(

4
3π · (⌈δ/rmax⌉+1)3

)
grid-cells. Using Lemma 2.5.1 and

Theorem 2.5.2, we conclude that w.h.p. the function terminates inO

(
(δ/rmax)

2 · tq+((δ + rmax)/dmin)
3
)

time. Assuming

rmax= O (dmin) (i.e., Assumption 2.5.1) andδ = O (rmax), the complexity reduces toO (tq) (w.h.p.).

(2) INTERSECT( c, r ): Let B= (c, r) be the given ball. We perform the following two steps.

i. Ball Collection: We call RANGE( c, r+ rmax) and collect the output in setSwhich contains pointers to the data structure
of each ball inM with its center within distancer + rmax from c.

ii. Identifying Intersecting Balls: FromS we remove the data structure of each ball that does not intersectB, and return
the resulting (possibly reduced) set.

We know from elementary geometry that two balls of radiir1 andr2 cannot intersect unless their centers lie within distance
r1+ r2 of each other. Therefore, step(i) correctly identifies all balls that can possibly intersectB, and step(ii) completes the
identification. Step(i) takes

O

(
tq+(rmax/dmin)

3
)

time w.h.p., and step(ii) terminates inO
(
(rmax/dmin)

3
)

time in the worst case. Therefore, under As-

sumption 2.5.1 w.h.p. this function runs inO (tq) time.

(3) EXPOSED( c, r ): Let B= (c, r) be the given ball. We locateB’s data structure by calling RANGE( c, 0 ), and return

the value stored in itsexposedfield. Clearly, the function takesO
(

tq+(rmax/dmin)
3
)

time (w.h.p.) which reduces toO (tq)

(w.h.p.) under Assumption 2.5.1.
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(4) SURFACE( ): Thesurface-rootpointer under the level 3 “grid” data structure points to the“ball” data structure of a
ball B on the union boundary ofM. We scan the setF of exposed faces ofB, and using the pointers to other exposed balls
stored inF we perform a depth-first traversal of all exposed balls inM and return the exposed faces on each such ball. Letm
be the number of balls contributing to the union boundary ofM. Then according to Theorem 2.5.1 the depth-first search takes

O

(
(rmax/dmin)

3 ·m
)

time in the worst case which reduces toO (m) under Assumption 2.5.1.

Updates.

(1) ADD( c, r ): Let c= (cx,cy,cz) and letc′u =
⌊

cu
2rmax

⌋
, whereu∈ {x,y,z}. We perform the following steps.

i. If M 6= /0, letG be the grid data structure, otherwise create and initializeG. Add input ball toM.

ii. Query the range reporting data structureG.RRto locate the data structureP for thec′z-plane. IfP does not exist create
and initializeP, and insertc′z along with a pointer toP into G.RR.

iii. QueryP.RRand locate the data structureL for the(c′y,c
′
z)-line. If L does not exist then create and initializeL, and insert

c′y along with a pointer toL into P.RR.

iv. Locate the data structureC for the(c′x,c
′
y,c
′
z)-cell by queryingL.RR. Create and initializeC if it does not already exist,

and insertc′x and a pointer toC into L.RR.

v. Create and initialize a data structureB for the input ball and add it to the setC.S.

vi. Call INTERSECT( c, r ) and find the setI of the “ball” data structures of all balls that intersect theinput ball. Create the
arrangementB.A using the balls inI . The new ball may partly or fully bury some of the balls it intersects, and hence
we need to update the arrangementB′.A, the setB′.F and the flagB′.exposedof eachB′ ∈ I . The setB.F is created and
B.exposedis initialized using the information in the updated data structures inI . If the surface-rootpointer was pointing
to a ball inI that got completely buried by the new ball, we update it to point to B instead.

Observe that the introduction of a new ball may affect the surface exposure of only the balls it intersects (i.e., bury some/all
of them partly or completely), and no other balls. Hence, theupdates performed in step(vi) (in addition to those in earlier
steps) are sufficient to maintain the correctness of the entire data structure. Steps(i) and(v) takeO (1) time in the worst case,
and w.h.p. each of steps(ii), (iii ) and(iv) takesO (tq+ tu) time. Finding the intersecting balls in step(vi) takes

O

(
tq+(rmax/dmin)

3
)

time w.h.p., according to Theorem 2.5.1 creating and updating the arrangements and faces will take

O

(
(rmax/dmin)

3× (rmax/dmin)
3
)
= O

(
(rmax/dmin)

6
)

time (w.h.p.). Thus the ADD function terminates in

O

(
tq+ tu+(rmax/dmin)

6
)

time w.h.p., which reduces toO (tu) (w.h.p.) assumingrmax= O (dmin) (i.e., Assumption 2.5.1).

(2) REMOVE ( c, r ): This function is symmetric to the ADD function, and has exactly the same asymptotic time complex-
ity. Hence, we do not describe it here.

(3) MOVE( c1, c2, r ): This function is implemented in the obvious way by callingREMOVE ( c1, r ) followed by
ADD( c2, r ). It has the same asymptotic complexity as the two functions above.

Therefore, we have the following theorem.

Theorem 2.5.3.Let M be a collection of n balls in 3-space as defined in Theorem2.5.1, and let Assumption 2.5.1 holds. Let tq

and tu be as defined in Theorem 2.5.2. Then the packing grid data structure storing M on a word RAM:

(i) usesO (n) space;

(ii) supports updates (i.e., insertion/deletion/movement of aball) in O (tu) time w.h.p.;

(iii ) reports all balls intersecting a given ball or withinO (rmax) distance from a given point inO (tq) time w.h.p., where rmax

is the radius of the largest ball in M; and
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(iv) reports whether a given ball is exposed or buried inO (tq) time w.h.p., and returns the entire outer union boundary of M
in O (m) worst-case time, where m is the number of balls on the boundary.

In Table 2.2 we list the time complexities of the operations supported by our data structure.

2.5.4 Molecular Surface Maintenace Using DPG

In this section, we briefly describe applications of the packing grid data structure for efficient maintenance of molecular surfaces.
Maintaining van der Waals Surface of Molecules

For dynamic maintenance of the van der Waals surface of a molecule we can use the packing grid data structure directly. Each
atom is treated as a ball with a radius equal to the van der Waals radius of the atom (see [19] for a list of van der Waals radius
of different atoms).

Maintaining Lee-Richards (SCS/SES) Surface
We can use the packing grid data structure for the efficient maintenance of the Lee-Richards surface of a molecule under
insertion/deletion/movement of atoms. The performance bounds given in Table 2.2 remain unchanged. We maintain two
packing grid data structures:DPG andDPG’. The DPG data structure keeps track of the patches on the Lee-Richards surface,
andDPG’ is used for detecting intersections among concave patches.

Before adding an atom toDPG, we increase its radiusrs, wherers is the radius of the rolling solvent atom. TheDPG data
structure keeps track of all solvent exposed atoms, i.e., all atoms that contribute to the outer boundary of the union of these
enlarged atoms. Theorem 2.5.1 implies that each atom inDPG contributesO (1) patches to the Lee-Richards surface, and the
insertion/deletion/movement of an atom results in local changes of onlyO (1) patches. We can modifyDPG to always keep
track of where two or three of the solvent exposed atoms intersect, and once we know the atoms contributing to a patch we can
easily compute the patch inO (1) time [10].

The Lee-Richards surface can self-intersect in two ways:(i) a toroidal patch can intersect itself, and(ii) two different
concave patches may intersect [10]. The self-intersections of toroidal patches can be easily detected fromDPG. In order to
detect the intersections among concave patches, we maintain the centers of all current concave patches inDPG’, and use the
INTERSECTquery to find the concave patch (if any) that intersects a given concave patch.

2.6 Clustering and Decimation of Molecular Surfaces

In this section we discuss a multiresolution representation scheme for molecular shapes using the object’s skeletal structure
(i.e. zero-shape). This scheme is coupled with error estimates that takes into account the actual boundary surface of the shape.
The boundary representation is derived from the topological structure underlying the representation of the molecularbody
(see Figure 2.40). Specifically, we consider the following three different boundary surface models: the Solvent Accessible
Surface (SAS), the Lee-Richards Solvent Contact Surface, and the molecular skin. These three surfaces all have an underlying
topological structure based on the regular (weighted Delaunay) triangulation and power diagram of the input set of balls. In
case of actual molecules the input is a set of atoms each represented as a ball with its van der Waals radius. The corresponding
weighted-point representation is the center of the atom associated with a weight equal to the square of the van der Waals radius.
See section 2.2.1 for details about this representation.

A particular kind of vertex clustering as is used as decimation primitive. The clustering replaces two balls (atoms) with
one. The weight of the new ball is chosen in order to preserve some covering relation between the coarse and fine levels of
resolution. This covering property is important to guarantee a conservative estimate of the location where the molecule lies and
can be used in several application domains such as collisiondetection and ray casting. The Delaunay property is preserved after
the clustering by applying a sequence of flips in the triangulation.

For fast traversal, the multiresolution data structure created using this ball clustering primitive is a Directed Acyclic Graph
(DAG) of nodes, where each node represents a clustering operation and the edges denote dependencies between nodes. A cut
in this graph is a collection of edges which intersect all paths from the root to the leaves once and only once. Any such cut
represents a valid multi-resolution approximation of the model [29, 58]. A more adaptive and space-efficient model is a forest
of binary trees storing the cluster ball as the parent of the two replaced balls. This model depends on run-time updates ofthe
triangulation (flips), but supports a much larger space of possible triangulations due to the reduced number of dependencies.
The hierarchy is built bottom up by a sequence of decimation stages until a maximum error tolerance is reached or there areno
more balls to be removed.
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Figure 2.32: Scaffolding model. PointsA,B,C,D,E, in the planez= 0, are the atom centers, and are the vertices of a Delaunay
triangulation. PointsP,Q,R, in the planez= 1, are the vertices of the corresponding Voronoi diagram.

Several error norms are used to evaluate the quality of any adaptive level of detail including support for the estimationof
conservative bounds of the exact Hausdorff distance. Whilethe decimation scheme, the hierarchical structure and the error
estimates are defined in any dimension, we show practical results for a 2D implementation.

2.6.1 Preliminary- Mixed Cell Complex

The mixed cell complex consists of the weighted Delaunay triangulation, or regular triangulation (see the Related MathSection
for definitions), at the lowest level, say the planez= 0, and the corresponding weighted Voronoi diagram, or powerdiagram,
at the highest level, sayz= 1. Then each vertex of the power diagram is connected by line segments to the three vertices of the
triangle to which it corresponds in the regular triangulation. (see Figure 2.32). Thus tetrahedra are formed by this construction;
one example is tetrahedronPABC. Furthermore, two points connected by an edge in the power diagram are connected to two
triangles that share an edge in the regular triangulation. Thus another set of tetrahedra is formed by the four endpointsof two
such corresponding edges. For example,P andQ are connected to triangles△ABCand△ACE, and the edgesPQandAC form
tetrahedronPQAC.

For any value ofz between 0 and 1 we can take a cross section of the structure defined above and obtain intermediate
tessellation of the space into convex cells. In each non empty tile we have a portion of a quadratic surface (curve) that match in
C1 continuity with the patches defined in the neighboring tiles. The whole surface is called themolecular skinand is used as a
representation for molecular boundaries.

At each level we can connect appropriate segments with A-splines or a molecular skin to represent the molecular surface
at varying degrees of resolution. Figure 2.33 shows the power diagram and regular triangulation atz= 1/3 andz= 2/3,
respectively.

2.6.2 Decimation of Molecular Shapes

In this subsection we focus on the problem of decimating molecular shapes. We consider the problem from the viewpoint of
decimating the set of weighted points that induces the molecular shape (the centers of the atoms) rather then decimatingsome
triangulation of its boundary. This approach has two main advantages: (i) one has to deal with a set of smaller cardinality
because a high quality representation of the boundary wouldrequire a dense sampling with many points per atom, (ii) the same
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Figure 2.33: (a) Power diagram and (b) regular triangulation for the cross section of the mixed cell atz= 1/3, and (c) power
diagram and (d) regular triangulation atz= 2/3.
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multiresolution data structure induces a hierarchical representation for several types of molecular shapes (e.g. SAS, SCS or
skin) instead of having a distinct multiresolution representation for each of them. Roughly speaking the goal of decimating
a molecular shape is to produce acoarsebut simpler representation of the original model that is too large for the available
computational resources.

Definition 2.6.1. (Coarsening). Given a model M (molecular shape) of cardinality k (number of balls) anycoarse representa-
tion M′ of M (written M′ ≻M) is a model of cardinality k′ < k and such that: p∈M⇒ p∈M′.

We say thatM′ is a coarsening ofM. For example Figure 2.34(a-d) shows three coarse representationsM1,M2,M3 of the
molecular shapeM in Figure 2.40. The four representations are in the following relationship:M3≻M2 ≻M1 ≻M

More generally it is easy to show that:

Property 1. The relation “≻” is transitive.

The transitive property of “≻” suggests a simple and efficient way to build a multiresolution representation of a molecular
model by successive application of local coarsening primitives.

(a) M1 ≻M (b) M2 ≻M1 (c) M3 ≻M2 (d) M3 ≻M

(e) M1 ≻M (f) M2 ≻M1 (g) M3 ≻M2 (h) M4 ≻M3 (i) M4 ≻M

Figure 2.34:Top: Coarsening relationships between three representationsM1,M2,M3 of the molecular shapeM in Figure 2.40.
Bottom: Coarsening relationships between four representationsM1,M2,M3,M4 of a second molecular shapeM.

Vertex Clustering

General decimation schemes like edge-contraction do not preserve the Delaunay property which is the basis for all our molecu-
lar models. The known schemes like [28] for decimation that guarantee the Delaunay property while building a multiresolution
hierarchy also do not seem appropriate in our case. This is because we do not use the triangulation as a direct shape repre-
sentation of the molecular body. The triangulation is instead used to describe the skeletal structure of the molecule. Hence
in the decimation process we have to take into account more than the modifications that occur in the triangulation itself the
modifications that are induced to the corresponding molecular shape (union of balls, SAS, SCS, ...).

Let pu = (u,wu), pv = (v,wv) be two weighted vertices.e= (u,v) is a part of the zero shape if:‖u− v‖2−wu−wv < 0
(see [34] for the complete condition). This means that the two balls representingpu and pv overlap, and therefore they are
good candidates for clustering. In order not to be dependenton the radius of the atoms, we actually use the Euclidean distance
between the vertices to represent priority for clustering.Hence, we are looking on all atoms which overlap and cluster the
closest ones first.
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Clustering is done by removing the two vertices from the triangulation and inserting a new one. We choose the weight
and position of the new vertex such that its ball will enclosethe two replaced vertices balls. The fact is, that if we choose a
ball which isε greater than the enclosing ball, and correct to preserve a regular triangulation, then the two old vertices will be
redundant and will not need to be removed2. We use two variation of the Vertex Clustering primitive depending on the tradeoff
between efficiency and accuracy.

Definition 2.6.2. (Coarse Representation Ball). Let M= {bi}ki=0 be the set of balls representing the original atoms of a given
molecular shape, and let M′ ⊂M. Then b is acoarse representationof M′ if for each bj ∈M‘ , b≻ b j .

LVC (Local Vertex Clustering) is the simpler and more efficient version of vertex clustering (see Figure 2.35(a)):

Definition 2.6.3. (LVC). Let b1,b2 be be a coarse representation of M1,M2, (Mi ⊂ M). The Local Vertex Clustering (LVC)
coarse representation of M1∪M2 is a single ball b of radius r such that:

b= min
r
{b : b≻ b1∪b2} .

Figure 2.35a shows the case where the ballsa,b,c,d,e and f are in the following relation:e= LVC{a,b}, f = LVC{c,d}
andg= LVC{e, f}. It is easy to see that theLVC can be computed in constant time. In particular consider twoballsb1,b2 of
radii r1, r2 and which centersc1,c2 have distanced = ‖c1− c2‖. The ballb= LVC{b1,b2} has radiusr and centerc given by:

r =
d+ r1+ r2

2
, c=

c1+ c2

2
+

r1− r2

2d
(c1− c2).

A more tight coarsening procedure is based on the following clustering scheme (see Figure 2.35(b)):

Definition 2.6.4. (MVC). Let b1,b2 be be a coarse representation of M1,M2, (Mi ⊂ M). The Minimum Vertex Clustering
(MVC) coarse representation of M1∪M2 is a single ball b of radius r such that:

b= min
r
{b : b≻M1∪M2} .

Clearly, the computation of the MVC coarsening is more expensive than the LVC. We determine the MVC using the Smallest
Enclosing Ball Library by Dave White [79] which implements the optimal algorithm by Emo Welzl [78] generalized from the
case of a set of points to the case of a set of balls.

(a) (b)

Figure 2.35: Two cascaded step of Vertex Clustering coarsening. (a) Local Vertex Clustering (LVC). (b) Minimal Vertex
Clustering (MVC).

2Note that the points do not always become redundant in the sense that a flip will remove them from the triangulation. They are redundant only in the sense
the points of their ball are also points of at least one other ball, hence their removal would not alter the molecular body itself (the set of boundary points does
not change and the set of interior points remains the same).
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2.6.3 Multiresolution Hierarchy

Construction

The basic decimation operation used for building the hierarchy is vertex clustering of edges which lie on the zero-shape.

Definition 2.6.5. (independent clustering). Let ev = (v0,v1),eu = (u0,u1) be two edges in the triangulation. and v2,u2 the
two new vertices introduced if ev,eu were clustered. ev and eu can beindependently clusteredif and only if∀i,vi 6= ui .

The construction algorithm proceeds by creating consecutive levels of coarser approximations of the triangulation. Each
level is constructed by using a priority queue (heap) for thezero-shape edges according to the error norm used (see Sec-
tion 2.6.4). For fast traversal, The decimation operationsare collected in a DAG similar to [28]. This structure requires that
only non-dependent vertices be clustered in each level.

Definition 2.6.6. (Dependent Vertex). A vertex v is considereddependentat level k if one of the following is true:
1) v has been clustered at any level i< k.
2) v has been introduced (as a cluster of two others) at level k.
3) v is a neighbor of u, where u satisfies either 1 or 2 above.

In order to gain larger adaptiveness in the space of possibletriangulations, and reduce considerably the storage size,our
scheme introduces a cluster-forest of binary trees insteadof the DAG. Each node in this forest represents a new ball as the parent
of the two balls being clustered. The triangulation is updated during runtime while traversing the trees and inserting/removing
balls. In this scheme, a vertex is considered dependent onlyif it satisfies the first two conditions of the above definition, hence
the number of dependencies are much smaller and the space of possible triangulations is larger.

In both hierarchies, to guarantee a broad structure, edges outside the zero-shape are considered if a predefined minimum
percent of the vertices are not removed (very rare in practice). An outline of the algorithm for building the hierarchy isas
follows:

let T be the triangulation
let Z be the zero-shape
let H be a min heap of zero edges
loop until coarse enough:

insert all Z edges to H
while H is not empty do:

remove minimal e= (u,v) from H
check that u and v

are non-dependent
cluster u and v to w:
remove u from T and correct
remove v from T and correct
insert w to T and correct
update Z
update H

The supporting structures for this algorithm are the triangulation, the zero-shape, and the heap of zero edges. After each
decimation step, the triangulation is changed, which induces a change in the zero shape. Some zero edges could be gone, and
new zero edges can be created. This means the heap needs to be updated after each decimation step. Also, in order to maintain
an independent set in each level, vertices are marked as dependent (and in the case of the DAG, also their neighbors).

2.6.4 Error Estimates

While we use the zero-shape to guide the decimation process,it is important to have a bound on the geometric error while
decimating, and during traversal of the hierarchy. The firsttype of error metric that we consider is just the length of theedge. In
order not to be dependent on the radii of the atoms, we actually use the Euclidean distance between the vertices to represent the
priority. Hence, we are looking at all atoms which overlap and cluster the closest ones first. However, since we are interested in
the union of balls and not the actual zero shape, the second error metric we use involves the difference in area between thenew
ball and the two old balls. The larger this area is the more likely the shape will change drastically if this clustering is used. The
last error metric actually computes the exact Hausdorff distance between the boundary of the two old balls and the new one.
The Hausdorff distance function is defined as:
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Definition 2.6.7. (One Way Hausdorff Distance). Given two molecular shapes M1,M2 and a point-point distance function
(norm) d(p,q), the one-way Hausdorff distance h(M1,M2) is the maximum of the minimum point-point distance functiond(p,q)
for all p in M1 and q in M2:

h(M1,M2) = max
p∈M1
{min

q∈M2
d(p,q)} .

Definition 2.6.8. (Hausdorff Distance). The Hausdorff distance between two molecular shapes H(M1,M2) is the maximum
between the two one-way Hausdorff distance functions:

H(M1,M2) = max{h(M1,M2),h(M2,M1)} .

By definition 2.6.1 of the relation “≻” we have immediately that:

Property 2. M1 is a coarse representation of M2 if and only if the one-way Hausdorff distance of M2 from M1 is zero:

M1 ≻M2⇔ h(M2,M1) = 0 .

Property 3. If M1 is a coarse representation of M2, then the Hausdorff distance between M1 and M2 is equal to the one-way
Hausdorff distance of M1 from M2:

M1≻M2⇒H(M1,M2)≡ h(M1,M2) .

We determine a conservative estimate of the Hausdorff distanceH(M1,M2) by computing the one-way Hausdorff distance
between two adjacent levels in a Local Vertex Clustering step as follows.

(a) (b)

Figure 2.36: The one-way Hausdorff distance betweenb3 andb1∪b2 is determined at the pointpof intersubsection between∂b3

and the Voronoi separator betweenb1 andb2. (a) Configuration ofb1∩b2 6= /0 wherel > 0 (note that in such 2D subsection of
the balls, the Voronoi separator has a secondary closed curve inside the two circles that is not of our interest). (b) Configuration
for b1∩b2 = /0 wherel < 0.

Consider two ballsb1,b2 of radii r1, r2 > 0 and whose centersc1,c2 are distance‖c1− c2‖ = r1+ r2−2l apart (see Fig-
ure 2.36). We assume that neitherb1 ⊆ b2 nor b2 ⊆ b1, which impliesl < min{r1, r2} or l > max{r1, r2}. Without loss of
generality we place the centers of the two circles around theorigin along thex axis so that their centers have coordinates
c1 = (−r1+ l ,0) andc2 = (r2− l ,0). The LVC ballb3 then has centerc3 = (r2− r1,0) and radiusr1+ r2− l . The pointp where
we can evaluate the distanceH(b1∪b2,b3) is the intersubsection between the boundary ofb3 and the Voronoi separator ofb1

andb2. It is hence given by the solution of the following system:





(x− r2+ r1)
2+ y2 = (r1+ r2− l)2

√
(x+ r1− l)2+ y2− r1 =√

(x− r2+ l)2+ y2− r2
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This has a closed form solution that can be readily derived from:





(r1+ r2−2l)2x2

+2(r1− r2)[(r1− l)2+(r2− l)2]x
− (2r1− l)(2r2− l)(r1− r2)

2 = 0

y=±[−x2+2(r2− r1)x
+(r1+ r2− l)2− (r1− r2)

2]1/2 .

Error of MVC Using the Minimal Vertex Clustering decimation we can achieve a tighter encapsulation between each level
of resolution and the input model. This makes it more difficult to compute the error bound as we cannot simply accumulate the
error bounds from level to level. This is because each level of resolution contains the input model but not the immediately finer
approximation. This means that we have to compare each ball at the current level of approximation with the contained balls in
the finest level of resolution, requiring the evaluation of the error function at several vertices of the actual Voronoi diagram (the
real Voronoi diagram and not the Power diagram) and at the intersubsection between the Voronoi diagram and the cluster ball.
Fortunately it can be shown (see Appendix 2.6.6 for details)that the square root of the norm of the Power distance can be used
as an upper bound of the actual Euclidean distance so that we can use the Power diagram in place of the real Voronoi diagram.
This makes such computation viable in practice because we have to compute the Power diagram and hence this error estimate
does not substantially increase the complexity of the computation.

2.6.5 Analysis

Hierarchy Construction.

We first consider the case of LVC where the entire hierarchy isconstructed by a sequence of vertex insertion steps. Each
insertion can make at least two vertices in the previous level of resolution redundant or irrelevant. Redundant means they
are removed from the triangulation by the flipping sequence.Irrelevant means they do not contribute to the boundary of the
molecular shape any more and hence are not considered in the following decimation steps. Therefore, the complexity of the
molecular shape decreases by at least one ball per decimation step so that for an initial shape based onn balls, the hierarchy is
constructed with a sequence of less thann LVC steps. In other words the complexity of constructing theinitial fine resolution
mesh and the complexity of constructing the entire hierarchy are the same. Ifd is the dimension of the embedding space, then
the complexity isO(nlogn+ n⌊d/2⌋) (or O(nlogn+ n⌈d/2⌉) if appropriate randomization applies) [38] since it is at most the
triangulation time for 2n points. Note that the logarithmic factor introduced by the using a priority queue in the decimation
does not increase the overall complexity. If MVC decimationis used the only difference is that instead of just insertinga vertex,
each decimation step involves the insertion of one ball and the removal of two, which means a factor of three is added.

Traversal

As mentioned previously we consider two possible options: (a) explicit storage in the hierarchy of the sequence of flips per-
formed during the decimation or (b) reduction of the hierarchy to a tree of balls.

In the first case the storage size isO(n⌊d/2⌋) (which reduces to expectedO(n⌈d/2⌉) in the randomized case), this being the
order of the total number ofd-simplices in the triangulation as well as the total number of flip operations performed during the
construction of the hierarchy. In the second case, the storage size remains linear in any dimension, since it is only a balanced
tree of 2n nodes in the worst case.

The complexity of the traversal needed to transform the meshfrom one cut of the hierarchy to another is proportional to the
number of flips it takes to perform the transition, which is proportional to the number of simplices that are being replaced in the
initial and final triangulations. In particular ifk d-simplices are being created in the new cut then the transition time isO(k).
The constant that is hidden in theO(k) depends on the kind of hierarchy that is used. For a full DAG representation the constant
is very small since the new triangulation is just read from the DAG. In the case of a tree hierarchy the constant is large since
each flip operation involves the determination of Delaunay conditions that are equivalent to computation of(d+1)× (d+1)
determinants. Using for example Gaussian elimination for the determinant evaluation, it would make the overall complexity
O(d3k). Note that in this case the space of possible adaptive triangulations corresponding to cuts of the tree hierarchy is much
larger than in the case of the DAG hierarchy because one is notconstrained by neighboring dependencies between the pre-
recorded sequences of flips.
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2.6.6 Examples

The method was tested on both artificial shapes and 2D projections of real molecules (see Figure 2.37). The hierarchies built
would be different mainly in the order of decimation steps, and differences would be mostly local in nature. As can be seenin
the examples, the desired behavior of preserving as much as possible the structure of the shape while decimating is met.

(a) 315 (b) 149 (c) 71 (d) 45 (e) 24 (f) 15

(a) 303 (b) 144 (c) 73 (d) 33 (e) 14 (f) 6

(a) 79 (b) 45 (c) 31 (d) 25 (e) 16 (f) 5

(a) 318 (b) 80 (c) 33 (d) 21 (e) 15 (f) 3

(a) 318 (b) 147 (c) 83 (d) 37 (e) 14 (f) 5

Figure 2.37: Multiresolution molecular shapes. The imagesshow the boundary of the union of balls and the zeroα-shape. The
numbers denote the number of balls in each resolution. Rows 1-3 are artificial examples demonstrating how the topological
structure is followed during decimation. The asymmetry in the spirals shape is a result of the pair-wise clustering. Rows 4
and 5 are two different parallel projections of the gramicidin molecule. There is a large amount of overlapping balls dueto the
projection, which accounts for the rapid drop in the number of balls at the first stages of decimation with small error.
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Related Work

Union of Balls using Voronoi-Cell Complexes

Several different approaches have been developed to achieve this efficiency for molecular surface computations [27, 70, 71,
72, 75, 77]. Other work on surface representations featuresthe use of metaballs, molecular surfaces, and blobby models
[1, 20, 80, 31, 44, 47, 52, 60, 63, 64, 81, 82, 83].

In previous work on dynamic triangulations the focus has been mostly on the simpler Delaunay/Voronoi structures (un-
weighted case) [6, 53, 24, 43, 48, 2, 67, 68]. Little has been done on the more general case of dynamic Regular Triangula-
tion/Power Diagrams and for dimensions greater than two. Moreover, the kinds of dynamic operations developed are usually
just the insertion/deletion of a single point. Such local operations become inefficient when we need to perform even a simple
but global modification.

Molecular Surface Computation using Adaptive Grids

Since Richards introduced the SES definition, a number of techniques have been devised to compute the surface, both static
and dynamic, implicit and explicit. Connolly introduced two algorithms to compute the surface. First, a dot based numerical
surface construction and second, an enumeration of the patches that make up the analytical surface (See [27], [26] and his
PhD thesis). In [77], the authors describe a distance function grid for computing surfaces of varying probe radii. Our data
structure contains approaches similar to their idea. A number of algorithms were presented using the intersection information
given by voronoi diagrams and the alpha shapes introduced byEdelsbrunner [37], including parallel algorithms in [75] and a
triangulation scheme in [1]. Fast computations of SES is described in [71] and [70], using Reduced sets, which contains points
where the probe is in contact with three atoms, and faces and edges connecting such points. Non Uniform Rational BSplines
( NURBs ) descriptions for the patches of the molecular surfaces are given in [11], [10] and [12]. You and Bashford in [84]
defined a grid based algorithm to compute a set of volume elements which make up the Solvent Accessible Region.

Maintaining Union of Balls Under Atom Movements

Though a number of techniques have been devised for the static construction of molecular surfaces (e.g., [27, 26, 77, 37,75, 1,
71, 70, 84, 46, 11, 10, 85, 16]), not much work has been done on neighborhood data structures for the dynamic maintenance
of molecular surfaces as needed in MD. In [12] Bajaj et al. considered limited dynamic maintenance of molecular surfaces
based on Non Uniform Rational BSplines ( NURBS ) descriptions for the patches. Eyal and Halperin [39, 40] presented an
algorithm based on dynamic graph connectivity that updatesthe union of balls molecular surface after a conformationalchange
in O

(
log2n

)
amortized time per affected (by this change) atom.

Clustering and Decimation of Molecular Surfaces

Using multiresolution models for molecules can substantially improve rendering speed and interactive response ratesin molec-
ular interaction tools. Similar improvements in performance would be achieved when a set of balls is used as an approximate
representation of a generic object either for modeling (meta-balls [47, 64], blobby models [83]) or for collision detection [52].
Direct application of previous approaches for the decimation and multiresolution representation of the surfaces themselves
[71, 56] can have serious embedding and self-intersection problems and are specific to the surface definition. A possibleso-
lution if this problem has been addressed in [74] but limitedto the case of the boundary surface of tetrahedral meshes. Our
multiresolution scheme updates the underlying structure of the molecule, maintaining at any level of detail a regular triangu-
lation of the current weighted point-set. In this way we explicitly track the topology of the molecular body at any adaptive
level of resolution. Moreover this guarantees correct embedding in all resolutions and creates an approximation from which the
surface boundary can be computed in any of the previous schemes.

There are many approaches for creating multiresolution representations of geometric data for graphics and visualization [69,
59, 54]. They vary in both the simplification scheme like vertex removal [28], edge contraction [50], triangle contraction [45],
vertex clustering [73], wavelet analysis [32], and also in the structure used to organize the levels of detail (either a linear order
or a using a DAG).

Maintaining the regular triangulation at all resolutions rules out the possibility of using decimation techniques like edge
or triangle contraction, which do not guarantee the (weighted) Delaunay property. Other known decimation schemes thatcan
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guarantee this property such as vertex removal, do not seem appropriate in this case since they do not preserve the molecule
features as a subset of the whole triangulation. Techniqueswhich preserve features in the triangulation by tagging specific edges
or vertices [23] are more suitable for preserving specific edges or regions. We are more interested in applying the decimation
on a subset of the triangulation while this subset can changeduring the decimation.

Sphere trees have also been used in [51] for the purpose of fast collision detection. In this work, Sphere hierarchies arebuilt
around a given object either by replacing special octree regions or by placing balls on the medial-axis surfaces approximated
using voronoi edges of some point sampling of the object. Thebasic approach of building the hierarchy by clustering pairs
of balls for collision detection [52] is similar to ours. However in this scheme the simplification process does not update the
underlying triangulation and hence does not track the topological changes induced by the decimation process. This makealso
the scheme unable to cluster balls that get in contact only after some simplification steps.
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Relevant Mathematics

Voronoi-Delaunay Diagram

For a finite set of pointsP in R
3, the Voronoi cell ofp∈ P is

Vp = {x∈ R
3 : ∀q∈ P−{p}, ‖x− p‖ ≤ ‖x−q‖)}.

If the points are in general position, two Voronoi cells withnon-empty intersection meet along a planar, convex Voronoifacet,
three Voronoi cells with non-empty intersection meet alonga common Voronoi edge and four Voronoi cells with non-empty
intersection meet at a Voronoi vertex. A cell decompositionconsisting of theVoronoi objects, that is, Voronoi cells, facets,
edges and vertices is the Voronoi diagram VorP of the point setP.

The dual of VorP is the Delaunay diagram DelP of P which is a simplicial complex when the points are in general position.
The tetrahedra are dual to the Voronoi vertices, the triangles are dual to the Voronoi edges, the edges are dual to the Voronoi
facets and the vertices (sample points fromP) are dual to the Voronoi cells. We also refer to the Delaunay simplices asDelaunay
objects.

Euclidean VS Power distance.

For MVC the choice of using the Power distance in place of the Euclidean distance is motivated by the the efficiency and
simplicity of the construction of the power diagram together with the fact that the power distance can be proven to be an upper
bound of the Euclidean distance.

(a) (b)

Figure 2.38: Relationship between the Euclidean distanceE(p,B) between the pointp and the ballB and their Power distance
P(p,B), (a) Configuration ford > r. (b) Configuration ford < r.

Consider a pointp at distanced from the centerc a ballB of radiusr as in Figure 2.38. We define:

E(p,B) = |d− r| , P(p,B) =
√
|d2− r2| .

Then we have the following chain of inequalities (wherer andd are positive numbers):

0≤ 4dr(d− r)2 = 4d3r−8d2r2+4dr3

(d− r)4 = d4−4d3r +6d2r2−4dr3+ r4

≤ d4−2d2r2+ r4 = (d2− r2)2

E(p,B) = |d− r| ≤
√
|d2− r2|= P(p,B) .
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In conclusion we have that for any given ballB and pointp, the functionP(p,B) provides an upper bound on the distance
E(p,b):

E(p,B)≤ P(p,B) , (6.28)

with equality holding only whend = r, i. e. the point is on the surface of the ball (and in trivial cases whered or r is zero).
For a collection ofn ballsB = {B1, . . . ,Bn} the distance functions are extended as follows:

E(p,B) = min
1≤i≤n

|di− r i| (6.29)

P(p,B) =
√

min
1≤i≤n

|d2
i − r2

i | (6.30)

The problem in comparingE(p,B) with P(p,B) is that they may achieve their minimum for different values of i because in
general the Power diagram is not coincident with the Voronoidiagram. Figure 2.6.6 shows an example of comparison between
the Voronoi diagram of two circles (in red) with the corresponding Power diagram (in blue). In this example the minimum
distance of the pointp from the setB = {B1,B2} is achieved ati = 1 for P(p,B) and ati = 2 for E(p,B):

P(p,B) = P(p,B1)

E(p,B) = E(p,B2) .

In general for a given pointp we call iP, iE the two indices such that:

P(p,B) = P(p,BiP)

E(p,B) = E(p,BiE) .

From equations (6.29) and (6.28) we have that:

E(p,B) = E(p,BiE)≤ E(p,BiP)

≤ P(p,BiP) = P(p,B) .

(a) (b)

Figure 2.39: Power diagram (in blue) and Voronoi diagram (inred) of two circles. (a) Case of nonintersecting circles. (b) Case
of intersecting circles.
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(a) (b) (c) (d) (e) (f)

Figure 2.40: The combinatorial and geometric structures underlying a molecular shape: (a) The collection of balls (weighted
points). (b) Power diagram of a set of the points. (c) Regulartriangulation. (d) Theα-shape (withα = 0) of the points. (e)
Partitioning of the molecular body induced by the power diagram. (f) The boundary of the molecular body.

Power Diagram

Given a weighted pointP= (p,wp) wherep∈ IRn andw∈ IR , thepower distancefrom a pointx∈ IRn to P is defined as

πP(x) =
√
‖p− x‖2−wp ,

where‖p− x‖ is the ordinary Euclidean distance betweenp andx.
In molecule context, we define the weight of an atomB with center atp and radiusr to bewB = r2. Thepower distanceof

x to B is

πB(x) =
√
‖p− x‖2− r2 .

Given a set{Pi} of weighted vertices (each vertex has a weightwi associated with it), the Power Diagram is a tiling of the
space into convex regions where theith tile is the set of points nearest to the vertexPi , in the power distance metric [4]. The
power diagram is similar to the Voronoi diagram using the power distance instead of Euclidean distance.

The weighted Voronoi cell of a ballB in a moleculeB is the set of points in space whose weighted distance toB is less than
or equal to their weighted distance to any other ball inB [36]:

VB = {x∈ IR2|πB(x)≤ πC(x) ∀C∈B} .

Thepower diagramof a molecule is the union of the weighted Voronoi cells for each of its atoms (Figure 2.40(b)).

Regular Triangulation

Theregular triangulation, orweighted Delaunay triangulation, is the dual (face adjacency graph) of the power diagram, just as
the Delaunay triangulation is the dual shape of the Voronoi diagram. Vertices in the triangulation are connected if and only if
their corresponding weighted Voronoi cells have a common face (Figure 2.40(c)). This implies that two vertices are connected
if and only if they have a nearest neighbor relation measuredin power distance metric

Given a set ofn 2D points with weights, it has been shown [38], that their regular triangulation can be computed inO(nlogn)
time, by incrementally inserting new points to the existingtriangulation and correcting it using edge flips.

Weighted Alpha Shapes

A simplexs in the regular triangulation of{Pi} belongs to theα-shape of{Pi} only if the orthogonal center of (the weighted
point orthogonal to the vertices of)s is smaller thanα (see [34] for the complete condition). The alpha shape whereα = 0,
called the zero-shape, is the topological structure of molecules [41]. For example, an edgee= (u,v) is a part of the zero-shape
only if ‖u− v‖2−wu−wv < 0, which means that the two balls centered atu andv intersect (Figure 2.40(d)).
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Adaptive grid, Oct-tree and k-d tree

B-splines and B-patches

A-splines and A-patches

An A-patch of degreen over the tetrahedron[∂1∂2∂3∂4] is defined by

Gn(x,y,z) := Fn(α) = Fn(α1,α2,α3,α4) = 0, (6.31)

where
Fn(α1,α2,α3,α4) = ∑

i+ j+k+l=n

ai jkl B
n
i jkl (α1,α2,α3,α4), (6.32)

Bn
i jkl (α1,α2,α3,α4) =

n!
i! j!k!l !

α i
1α j

2αk
3α l

4,

and(x,y,z)T and(α1,α2,α3,α4)
T are related by




x
y
z
1


=

[
∂1 ∂2 ∂3 ∂4

1 1 1 1

]



α1

α2

α3

α4


 . (6.33)

Control points computation for trimmed NURBS patches

In this appendix we explain the computation of the NURBS control points. The approach we take is to compute the control
points once for all molecule atoms. That is each atom will be represented by its specific domainD in (u,v) space and the
same set of normalized control points that represent the unitary sphere with center in the origin. Then we apply an affine
transformation to map the unitary sphere to the position taken by the atom. To have a unique base set of control points (defining
a portion of the normalized sphere) that can represent any atom we need to be sure that for each ballB in B there is at least a
neighbor ballB̄, that intersectsB for the smallest portion. This is because we wish to compute the control points of a portion of
sphere which is a (bounded) rectangular domain and a minimumsuperset of any domainD of any atom.

Fortunately this condition is satisfied for all molecules. For example in the ball and stick representation used in Raster3D [5,
61] a bond (stick) is drawn between to atoms of radiir1, r2 if the distancer between the centers of the two atoms is less than
0.6(r1+ r2). Since in a molecule there is at least one bond per atom we havethat for each atom there is at least a neighbor atom

for which r < 0.6(r1+ r2). If we also consider that minimum atom size in a molecule is 1.3
◦
A and the maximum is 2.18

◦
A we

have that each atom is intersected by a neighbor atom for at least 0.15477% of its radius. This means that, with reference to
equation (2.2) we can always assume to haved≤ 0.84523 that isl ≤ 3.45288299571568. For this fixed value ofl we apply a
change of polynomial basis to get the coordinates(x,y,z) of one quarter of the control points (and relative weightw) as in the
table below.

The other control points are just computed mirroring these twice with respect to thex andy axis. The knots vectors are
u : [−1−1−100111] v : [−1−1−100111].
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x y z w
P1 0 0 −1 1
P2 0 1 −1 1
P3 0 2 0 2
P4 1 0 −1 1
P5 1 1 −1 1
P6 1 2 0 2
P7 2 0 0 2
P8 2 1 0 2
P9 2 2 1 3

Figure 2.41: Control point computation
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Chapter 3

Smooth Surfaces

The computation of electrostatic solvation energy (also known as polarization energy) for biomolecules plays an important role
in the molecular dynamics simulation [63], the analysis of stability in protein structure prediction [110], and the protein-ligand
binding energy calculation [66]. The explicit model of the solvent provides the most rigorous solvation energy calculation [87].
However, due to the large amount of solvent molecules, most of the computation time is spent on the trajectories of the solvent
molecules, which severely increases the computation cost of this method [96]. An alternative method is to represent thesolvent
implicitly as a dielectric continuum [102], then the electrostatic potential is known by solving the Poisson-Boltzmann (PB)
equations [26][80]. A more efficient method is to approximate the PB electrostatic solvation energy by the generalized Born
(GB) model [111][28][72], which computes the electrostatic solvation energy∆Gelec as

Gpol =−
τ
2 ∑

i, j

qiq j

[r2
i j +RiRj exp(− r2

i j
FRiRj

)]
1
2

, (0.1)

whereτ = 1
εp
− 1

εw
, εp is the solute (low) dielectric constant,εw is the solvent (high) dielectric constant,qi is the atomic

charge of atomi, r i j is the distance between atomi and j, F is an empirical factor (could be 4 [111] or 8 [72]), andRi is the
effective Born radius of atomi. The effective Born radius reflects how deep an atom is buriedin the molecule and consequently
determines the importance to the polarization. The formulation of the effective Born radii is derived in [55]:

R−1
i =

1
4π

∫

Γ

(r − xi) ·n(r)
|r − xi|4

dS, (0.2)

whereΓ is the molecular surface of the solute,xi is the center of atomi, andn(r) is the unit normal of the surface atr .
The details of the derivation of (6.13) and a fast evaluationalgorithm based on the fast Fourier transform (FFT) for (6.13) is
discussed in [20]. Since the numerical integrations are done on the molecular surfaceΓ, an accurate and analytic representation
of Γ is needed.

Three well-known molecular surfaces are shown in Figure 3.1in 2D. The van der Waals surface (VWS) is the union of a
set of spheres with atomic van der Waals radii. The solvent accessible surface (SAS) is the union of augmented van der Waals
spheres with each radius enlarged by the solvent probe radius (normally taken as 1.4 ) [69]. The solvent excluded surface
(SES, also called molecular surface or Connolly surface) isthe boundary of the union of all possible solvent probes thatdo not
intersect with the interior of the VWS [40][93]. As described in [40], the SES consists of the convex spherical patches which
are parts of the VWS as well, the toroidal pathces and the concave spherical patches, which are generated by the probes rolling
along the intersections of neighboring atoms. The VWS causes an overestimation of the electrostatic solvation energy,while
the SAS leads to an underestimation [72]. The SES is the most accurate when it is applied in the energetic calculation and
therefore it is most often used to model the molecular surface. However the SES still has one significant drawback: it contains
cusps when the rolling probe self-intersects, which may cause singularity in the Born radii and the force calculations.

In the energetic computation, knowing the patch complexes of the molecular surface is not enough. For convenience, an
analytical representation of the molecular surface is needed and the singularity should also be avoided.
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Figure 3.1: Three molecular surfaces are shown for two atomsin two dimension. The boundary of the union of balls (pink)
with the van der Waals radii is the VWS. The SAS (purple) is theunion of augmented van der Waals spheres with each radius
enlarged by the radius of a solvent probe (light blue). The SES (the blue curve) is boundary of all possible solvent probesthat
do not intersect with the interior of the VWS.

3.1 Implicit Solvation Surface from volumetric Density Maps (Radial Basis Splines,
Cin f)

We extract an implicit solvation surface (molecular surface) as a level set (isocontour) of the volumetric electron density maps
[15]. The implicit solvation surface is chosen to be a good approximation of the Lee-Richards molecular surface [69] by
choosing an appropriate weighting parameter of the summation of Gaussian kernel functions.

3.1.1 Gaussian Density Map

The molecular surface has been approximated in the past [29,52, 58] by an isocontour:

M :=
{

x∈R
3 : G(x) = 1

}
with G(x) =

N

∑
i=1

e
Bi

(
‖x−xi‖2

r2i
−1

)

, (1.3)

where (xi, ri) are the center and radius of theith atom in the biomolecule, andBi < 0 is called the ‘decay rate’, which controls
the rate of decay of each atom’s Gaussian kernel. Note thatBi must be negative to ensure that the density function goes to zero
as‖ x−xi ‖ goes to infinity. In order to make the distance betweenM andM0 as uniform as possible, we takeC= Bi/r2

i , where
C< 0 is a given constant. NowG(x) becomes

G(x,C) =
N

∑
i=1

eC(‖x−xi‖2−r2
i ). (1.4)

In the following for the molecular surfaceM(Ci) = {x∈ R
3 : G(x,Ci) = 1}, we considerC=C1, . . . ,Cl . As shown in Fig.

3.2, the different effects ofC and constantBi(= B) are shown for a two-sphere system, one is centered at (0, 0, 0) with radius
of 1.0, the other one is at (2.8, 0, 0) with radius of 2.0. It canbe observed that

Table 1: C (1/Angstrom2) /Bi (constant) and Implicit Solvation Models in Fig. 3.2
Red Green Magenta Blue

Fig.3.2(a) C = -0.125 C = -0.25 C = -0.5 C = -1.0
Fig.3.2(b) Bi= -0.125 Bi= -0.25 Bi= -0.5 Bi= -1.0

• C leads to more uniform inflation thanBi .

• Small balls have more inflation than big ones.

• Large error occurs around the intersection region, and the error reduces gradually away from it.
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Figure 3.2: Implicit Solvation models by choosing various Cin (a) and Bi in (b). Yellow balls are two input atoms. The
correspondence between C/Bi values and these models are shown in Table 1.

• LargerC andBi lead to greater inflation. For the same C andBi value, e.g., -0.125,Bi tends to introduce more inflation.

• Inflation of the molecular surfaces distorts the polar solvation energies and hence to be seriously avoided.

Fig. 3.3 shows implicit solvation models of Ribosome 30S. Compared with Fig. 3.3(a), proteins inflate much more seriously
in Fig. 3.3(e). rRNA in Fig. 3.3(c) and (f) looks similar, butproteins in Fig. 3.3(f) look a little more inflated than Fig. 3.3(b).
rRNA in Fig. 3.3(d) and (g) looks similar too, but proteins inFig. 3.3(g) are close to proteins in Fig. 3.3(c).

3.1.2 Multi-Level Gaussian Density Map

In order to reduce the inflation caused by Gaussian summationas well as to model molecular surfaces with varying resolution
on the implicit solvation surface, we introduce a multi-level Gaussian map. First, we introduce some notation as shown in Fig.

3.4. LetN0 = {N(0)
0 , · · · ,N(n)

0 } denote the index set of all the atoms withN(i)
0 = {i}. SupposeN0 is grouped into several subsets

N(i)
1 , i = 1,2, · · · ,n1, such that

n1⋃

i=1

N(i)
1 = N0, N(i)

1

⋂

1≤i 6= j≤n1

N( j)
1 = φ . (1.5)

The setN1 := {N(i)
1 }

n1
i=1, whose elements are also sets, may be further grouped into some subsetsN(i)

2 , i = 1,2, · · · ,n2, such thatn2⋃

i=1

N(i)
2 = N1, N(i)

2

⋂

1≤i 6= j≤n2

N( j)
2 = φ . (1.6)

The collection of{N(i)
2 }

n2
i=1 is denoted byN2. This hierarchical grouping process could be repeated several times according to

the molecular complex considered. In practice, two or threeiterations suffice. By using these setsN(i)
k and a given sequence

{pk} of p with pk > 0, thek-level Gaussian map are defined recursively as

G
N
(i)
k
(x) = ∑

N∈N
(i)
k

[GN(x)]
pk , N(i)

k ∈Nk,

where 0-level Gaussian map is defined by Eqn. 1.4 (C = 1.0) or

G
N(i)

0
(x) = K(‖x− xi‖)/K(r i), K(x) = e−x2

.

The atom group format depends on what kind of structure we wish to model and mesh. For a protein, atoms may be grouped
by residues, meaning that atoms in the same residue are classified into one group. Then the residues are grouped accordingto
their neighborhood along the protein backbone.
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(a) C = -0.03125 (b) C = -0.125 (c) C = -0.25 (d) C = -0.5

(e) B = -0.03125 (f) B = -0.125 (g) B = -0.5

Figure 3.3: Implicit solvation models of Thermus Thermophilus small Ribosome 30S (1J5E) crystal subunit for various Gaus-
sian kernel parameters. The pink color shows 16S rRNA and theremaining colors are proteins.

Figure 3.4: The definition of multi-level surfaces.
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(a) low resolution (b) residue-level resolution (c) atomiclevel resolution

Figure 3.5: Implicit solvation models of Haloarcula Marismortui large Ribosome 50S (1JJ2) crystal subunit. (a)p1 = 0.03125;
(b) p1 = 0.125; (c)p1 = 0.5. p2 = 1.0. The light yellow and the pink color show 5S and 23S rRNA respectively, the remaining
colors are proteins.

For each k-level Gaussian MapG
N
(i)
k
(x), a k-level surface is defined by

M
N(i)

k
:= {x∈ IR3 : G

N(i)
k
(x) = 1}.

This surface encloses the surfaceMN for N ∈N(i)
k . Hence, all theseN(i)

k define a hierarchical surface family. We call the surface
MN as the child ofM

N
(i)
k

, andM
N
(i)
k

the parent ofMN. The enclosing relation of this hierarchical surface family is strict, meaning

that the minimal distance fromMN to M
N(i)

k
is greater than zero for anyN ∈ N(i)

k . We further define the B-surface ofMN for all

N ∈ N(i)
k as

S
N(i)

k
= Bd

( ⋃

N∈N
(i)
k

{x∈ IR3 : GN(x)≤ 1}
)
,

where Bd() denotes the boundary of a region inIR3. Note thatS
N
(i)
k

is enclosed strictly byM
N
(i)
k

.

The purpose of introducing a multi-level Gaussian map is to address the structure of molecules at a certain level. For
instance, at the residue level of a protein, we dealt with each residue as one unit and therefore the protein is consideredat
the residue level resolution. The sub-structures of the residue (atoms), are not individually identifiable. Similarly, at the next
higher level, a group of residues is dealt as one unit and therefore the protein is considered at an even coarser feature resolution.
The goal of addressing certain level structure and un-addressing the higher level ones is achieved by the properly selection of
the parameterpk in the multi-level Gaussian map. Basically, largerpk should be chosen to address thek-level structure and a
smallerpk−1 is used to un-address the(k−1)-level structures.

Considering three levels of structures, including the atomic, the residue and the next level of grouping, we can construct
a three level Gaussian map with givenp1, p2 and p3. To address the second level structure, we need to choosep3 larger and
p2 smaller, whilep1 has less influence than the second level structure. Quite often it also suffices to consider only a two-
level Gaussian map instead of three: level one is at the protein residue level, while level two is at a coarser resolution level.
Henceforth in this paper, we provide details for only two-level Gaussian maps.

In computing implicit solvation molecular surfaces, various models are constructed by choosing differentp1 ∈ (0,∞) and
p2 ∈ (0,∞) in the Gaussian map. To make the constructed model correspond to a certain level,p1 andp2 need to be selected
properly. For a fixed level, the structure at this level should be distinguishable. For instance, at the residue level, the individual
residues should be observed, while atoms may not be distinguished clearly. Fig. 3.5 shows constructed models of Ribosome
50S at low resolution, residue and atomic level resolutions.
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3.1.3 Approximation Computation

In order to obtain a good approximation to the molecular surface from the multi-level Gaussian map, we bound the error at

each level. To bound the approximation for the first level, weneed to compute the minimal distance fromMN, N ∈ N(i)
1 to its

parent surfaceM
N
(i)
1

. On the other hand, in order to have an error controlled approximation of the second level surface, we need

to compute the maximal error fromMN, N ∈ N(i)
2 to its parent surfaceM

N
(i)
2

. Hence, we need to consider the error computation

for both levels of surfaces. The error computations are based on a point projection algorithm.
Given the surfaceMN, a pointq /∈MN and a unit directionn, the point projection algorithm in the following computes a

nearby intersection pointp of the lineq+ tn (t ∈ (−∞,∞)) with the surfaceMN.

Algorithm 3.1.3.1 (Point Projection).

1. Compute an interval[a,b] for t, on whichGN(q+ tn)− 1 changes sign once. This is achieved by a linear search step
in a certain range[A,B]. If (∇GN(q))Tn[GN(q)−1] < 0, search inn direction, otherwise in−n direction. If such an
interval could not be found, the project point does not existand return a failure signal. After the interval is determined,
sett0 = a+b

2 andk= 0.

2. Computetk+1 by the Newton iteration method

tk+1 = tk−
GN(q+ tkn)

nT∇GN(q+ tkn)
. (1.7)

If tk+1 /∈ (a,b), replacetk+1 by a+b
2 .

3. Replace the interval[a,b] by [a, tk+1] if GN(q+ tn)−1 changes sign over[a, tk+1], and replace[a,b] by [tk+1,b] otherwise.

4. If |b− a| < ε (ε is a given error tolerance, we usually take it to be10−4), stop the iteration andp = q+ tk+1n is the
projection point, otherwise, setk= k+1 and go back to step 2.

We specify the searching range[A,B] in step 1 of the algorithm to be[−4,4], since the atom diameters are around 4. Errors
beyond that are not considered here. If the projection exists, then the projection pointp of point q on the surfaceMN in the
directionn is denoted byPMN(q,n).

Minimal Error of Level One Surface

Now we assumek = 1, then the child surfaces are atoms. LetN = { j} ∈ N(i)
1 , the minimal error fromMN = SN to M

N(i)
1

is

defined by

dN := min
p∈M

N
(i)
1 ,N

‖p− x j‖− r j , j ∈ N.

Let q= x j + r j
p−xj
‖p−xj‖ , thenq is on the sphereSN andp is the projection ofq to the surfaceM

N
(i)
1

in the spherical normal direction

n(q). That is,p= PM
N
(i)
1

(q,n(q)). Hence in order to computedN, we need to computePM
N
(i)
1

(q,n(q)) for q∈ SN.

Next we consider the computation of the minimal distance from MN to M
N(i)

1
, where N ∈ N(i)

1 . First we assume that each

atom (sphere) is uniformly sampled withmvertices. This sampling is achieved by translating a triangulated unit sphere to each
of the atomic centers and re-scaling it to the atom’s van der Waal radius. We obtain the unit sphere triangulation from [116].
For each vertexq on the triangulated atom surfaceMN, PM

N
(i)
1

(q,n(q)) is computed using thepoint projectionalgorithm, where

n(q) is the spherical normal atq.

Algorithm 3.1.3.2 (Minimal Error computation).
SetdN = 4. for each triangle vertexq∈ SN∩SN0 do{ computePMN1

(q,n(q)), and then compute

dN = min{dN,‖PMN1
(q,n(q))− x j‖− r j},

if PMN1
(q,n(q)) ∈MN1,N.

(1.8)
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}
Table 2 shows the minimal error of our level one surface for a residue and a chain from Ribosome 30S, wheree(M) is defined

ase(M) := max
N∈N

(i)
1

dN. It can be observed that the error decreases asp increases. The algorithm for computing minimal error

can also be used to compute the maximal error by changing the min to max in (1.8). Maximal errors for Ribosome 30s are also
listed in Table 2 for differentp1 (see the second row).

Table 2: Minimal Error and Maximal Error of First Level Surfaces of Ribosome 30S (1J5E) (Angstrom)

p1 0.25 0.5 1.0 2.0 4.0 8.0 16.0
Min Error (atomic) 8.338e-02 2.829e-03 6.287e-06 < 10−6 < 10−6 < 10−6 < 10−6

Max Error (atomic) 1.634e+00 8.656e-01 4.121e-01 2.038e-01 8.893e-02 3.940e-02 1.842e-02

Maximal Error of Level Two Surface

The maximal error fromMN to M
N
(i)
2

, N ∈ N(i)
2 is defined as

dN := max
q∈MN,PM

N
(i)
2

(q,n)∈M
N
(i)
2 ,N

‖q−PM
N
(i)
2

(q,n)‖,

whereq∈MN, PM
N
(i)
2

(q,n) is the normal direction projection ofq to the surfaceM
N
(i)
2

. This error is computed as follows. Let

N1 ∈N(i)
2 . Algorithm 3.1.3.3 (Maximal Error computation).

SetdN1 = 0.
for eachN ∈N1 do{

for each triangle vertexq∈ SN∩SN0 do{
computeq̃ := PMN1

(q,n(q)), and
computePM

N
(i)
2

(q̃,n(q̃)) if q̃∈MN1,N

and then compute
dN1 = max{dN1,‖PMN1

(q,n(q))−PM
N
(i)
2

(q̃,n(q̃))‖
if PM

N
(i)
2

(q̃,n(q̃)) ∈M
N(i)

2 ,N1
.

}
}
Again, the projection points ˜q= PMN1

(q,n(q)) andPM
N
(i)
2

(q̃,n(q̃)) are computed by the point projection algorithm, where

the searching range[A,B] is set to be[0,4], since we knowM
N
(i)
2

enclosingMN and we are not interested in the errors that are

larger than 4.
The first row of Table 3 shows the maximal errors of the second level (residue level) surfaces for ribosome 30s, wherep1

is chosen to be 0.5, p2 = 0.25,0.5,1.0, · · · ,16. The second row lists the maximal errors of the second level (low level) surfaces
for the samep1 andp2. The results show that the errors decrease approximately asa linear rate asp2 increases.

Table 3: Maximal Error of Second Level Surfaces of Ribosome 30S (1J5E) (Angstrom)

p2 0.25 0.5 1.0 2.0 4.0 8.0 16.0
Max Error (residue) 3.923e+00 2.124e+00 6.832e-01 3.240e-01 1.550e-01 7.794e-02 3.278e-02

Max Error (low) 9.899e+00 7.695e+00 8.045e-01 2.365e-01 1.390e-01 6.113e-02 2.653e-02

3.1.4 Good Approximations of Molecular Surfaces

We have discussed that it is often sufficient to consider a two-level Gaussian map to approximate molecular surfaces. To address
certain structures,p1 is taken to be a small value to blur the higher level details,p2 is chosen to be larger to enhance the feature
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of the current level structure. As we have shown in the last section, a smallerp1 leads to a larger error for the level one surface,
and a largerp2 leads to a smaller error for the second level surface. Therefore, our strategy for obtaining a tight enclosing
surface approximation is to remove the level one error and ignore the error of the second level.

Figure 3.6: The left picture shows the inflation effect by theGaussian map. The right one shows the tight enclosure of atoms.
The centers of the five atoms are(−2,0,0), (2,0,0), (0,−1,0), (0,1,0) and(0,0,0). The corresponding radii are 0.8, 0.9, 1.1,
1.3 and 1.3. The parameterp in the Gaussian map is chosen to be 0.4. The tight approximation on the right figure is obtained
by shrinking the five radii into 0.55644, 0.72525, 0.60476, 1.04567 and 0.0 respectively. The unit is Angstrom.

The main idea to obtain a tight level one enclosing surfaceM
N(1)

1
is to reduce the radii of the atoms, such thatM

N(i)
1

touches

the original atoms (see Fig. 3.6). Supposey∈M
N(i)

1
is the nearest point to thej-th atom, j ∈N(i)

1 , and the distance fromy to the

atom isd j . Then we have

∑
l∈N

(i)
1 ,l 6= j

[K(‖y− xl‖)/K(r l )]
p1 +[K(‖y− x j‖)/K(r j)]

p1 = 1. (1.9)

whereK(x) = e−x2
. Now we adjust the radiusr j to r̃ j , such that the new nearest pointy is on the j-th sphere. Since the

dominating part of (1.9) is the second term of the left hand side, we therefore require ˜r j satisfying
0≤ r̃ j ≤ r j , (1.10)

K(r j +d j)/K(r j) = K(r j)/K(r̃ j). (1.11)

From this we obtain

r̃ j =

{
K−1

[
K(r j )

2

K(r j+d j )

]
, if

K(r j )
2

K(r j+d j )
∈ Range(K),

0, otherwise,

whereK−1 denotes the inverse function ofK(x), Range(K) := {y∈ IR : y= K(x), x∈ (0,∞)}. Based on this analysis, we build
the following iterative algorithm for computing ˜r j .

Algorithm 3.1.4.1 (Sphere Shrinking).

For i = 1,2, · · · ,n1 do the following steps:

1. Setl = 0, r(l)j = r j , d(l)
j = ∞, ∀ j ∈N(i)

1 .

2. Compute the minimal distanced(l+1)
j , ∀ j ∈N(i)

1 from the j-th atom to the iso-surface defined by the multi-level Gaussian

mapG(l)

N
(i)
1

(x) = ∑
j∈N(i)

1
[K(‖x− x j‖)/K(r(l)j )]p1, using Algorithm 4.2.
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3. Compute

r(l+1)
j =





K−1

[
K(r j )K(r

(l )
j )

K(r j+d(l )j )

]
, if

K(r j )K(r
(l )
j )

K(r j+d(l )j )
∈Range(K),

0, otherwise.

4. If max
j∈N

(i)
1
|d(l)

j −d(l+1)
j |< ε (we takeε = 10−4), terminate thel loop andr(l+1)

j are the required results. Otherwise, set

l = l +1 and go back to step 2.

Remark: The condition
K(r j )K(r(l )j )

K(r j+d(l )j )
∈Range(K) may lead to some of the atoms located in the interior of the molecule to become

untouchable. Figure 3.6 shows that the circle at the origin is not touched.

The experiments show the sphere shrinking algorithm converges at a linear rate. Table 4 lists the errore(l)max=max
j∈N(i)

1
|d(l)

j |
for 20 amino acids withp1 = 0.4.

Table 4: Errorse(l)max for 20 amino acids andp1 = 0.4

l ALA ARG ASN ASP CYS GLN GLU GLY HSD ILE
0 5.13e-01 6.97e-01 5.99e-01 6.23e-01 5.36e-01 6.26e-01 7.06e-01 4.34e-01 7.36e-01 6.00e-01
2 6.22e-02 1.37e-01 2.66e-01 6.75e-02 5.86e-02 1.16e-01 7.78e-02 5.33e-02 7.20e-02 5.62e-02
4 2.80e-03 3.79e-02 5.83e-02 1.50e-03 6.82e-04 1.76e-03 4.57e-04 1.90e-02 1.45e-02 2.73e-03
6 5.76e-04 2.30e-02 1.83e-04 4.93e-04 1.81e-04 4.51e-04 1.38e-04 8.62e-05 5.30e-03 5.60e-04
8 1.30e-04 6.95e-04 6.06e-05 1.64e-04 4.97e-05 1.74e-04 4.26e-05 6.31e-06 2.20e-03 1.25e-04
10 3.14e-05 2.18e-04 2.22e-05 5.59e-05 1.39e-05 7.84e-05 1.32e-05 7.16e-07 9.94e-04 3.11e-05

l LEU LYS MET PHE PRO SER THR TRP TYR VAL
0 8.48e-01 8.62e-01 6.08e-01 6.14e-01 7.98e-01 9.63e-01 1.06e-00 6.01e-01 6.10e-01 7.07e-01
2 6.51e-02 3.96e-01 1.13e-01 8.94e-02 2.06e-03 8.81e-02 3.06e-02 9.17e-02 6.03e-02 2.86e-02
4 5.72e-03 1.54e-03 7.78e-03 6.50e-03 3.62e-04 5.28e-04 6.63e-03 1.49e-02 4.25e-02 5.76e-03
6 1.27e-03 5.18e-04 2.25e-03 1.90e-03 9.12e-05 1.19e-04 1.68e-03 6.42e-03 1.69e-03 1.36e-03
8 3.03e-04 1.77e-04 6.77e-04 7.13e-04 2.35e-05 2.66e-05 4.67e-04 2.90e-03 6.93e-04 3.56e-04
10 7.52e-05 6.23e-05 2.09e-04 3.02e-04 6.26e-06 5.88e-06 1.36e-04 1.56e-03 3.52e-04 9.78e-05

Fig. 3.7 shows multi-resolution implicit solvation surface approximations of an ASN-THR-TYR peptide with variousp1

andp2. Fig. 3.7(a) shows an atomic level model, Fig. 3.7(a∼g) are residue level models. It can be observed that when the same
p1 is selected, smallerp2 leads to fatter surfaces. Compared with Fig. 3.7(g), Fig. 3.7(f) is more tight.

Fig. 3.8 shows multi-resolution implicit solvation surface approximation of Ribosome 30S. Fig. 3.8(a) is a low level model,
the pink color shows 16S rRNA and the remaining colors are proteins. One protein (Chain B) is separated from the whole
structure. The residue level model can be constructed by selecting smallp1 and largep2 as shown in Fig. 3.8(b), and the atomic
level model is constructed by selecting largep1 and smallp2 as shown in Fig. 3.8(c).

3.2 Mixed-Voronoi-Del complexes (C1)

3.3 Algebraic Shell Splines (C1)

3.3.1 Algorithm Sketch

There are four main steps in our algebraic spline molecular surface (ASMS) construction algorithm: (1) construct an initial
triangular mesh of the SES; (2) build a prism scaffold surrounding the triangulation; (3) define a piecewise polynomial with
certain continuity; (4) extract the 0-contour of the piecewise polynomial. We are going the explain each step in detail in the
following and discuss how to make use the parametrization ofthe ASMS in the numerical integration.

3.3.2 Initial triangulation of the MS

So far a lot of work has been done on the triangulation of the SES or its approximation [35][2][67][122][17]. The ASMS
generation could be applied to any of these triangulations.In our current research we use the triangulation generated by a
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Figure 3.7:Different effects of changingp2 and tight/non-tight approximations for an ASN-THR-TYR peptide which consists of 49 atoms.
The surface (b), (c) and (d) are the same as outer surfaces of (e), (f) and (g) respectively. The inner surface of (e), (f) and (g) is the hard sphere
model of three residues. (a) shows the atomic level approximation of the hard sphere model, wherep1 = 5.0, p2 = 1.0; (b), (e), (c) and (f)
show the tight approximation of the residue level withp1 = 0.4. But differentp2 are used. We choosep2 = 2.0 for (b) p2 = 0.5 for (c). It
could be observed that largerp2 leads to closer approximation. (d) and (g) show non-tight approximations using the samep1 and p2 as (c)
and (f). Comparing with (f), even larger error is observed in(g).

Figure 3.8: Multi-resolution models of Ribosome 30S. (a) - Ribosome 30Sat the low level withp1 = 0.0625, p2 = 1.0 in multi-level
Gaussian map. Ribosome 30S contains 22 chains and each of them is painted in a different color. The pink color shows 16S rRNA and the
remaining colors are proteins. The blue box shows one protein (Chain B). (b) - Chain B at the residue level withp1 = 0.4, p2 = 5.0. It
consists of 234 residues. (c) - Chain B at the atomic level with p1 = 5.0, p2 = 1.0. It consists of 1900 atoms.
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program in the software TexMol [17][7] as the initial. Features of the molecular surface are well preserved in this triangulation.
We then decimate the mesh [21] to obtain a coarser one.

3.3.3 Implicit/parametric patches generation

Given the triangulation meshT, let [viv jvk] be one of the triangles wherevi , v j , vk are the vertices of the triangle. Suppose the
unit normals of the surface at the vertices are also known, denoted asnl , (l = 1, j,k). Let vl (λ ) = vl +λnl . First we define a
prism (Figure 3.9)Di jk := {p : p = b1vi(λ )+b2v j(λ )+b3vk(λ ), λ ∈ Ii jk}, where(b1,b2,b3) are the barycentric coordinates
of points in[viv jvk], andIi jk is a maximal open interval containing 0 and for anyλ ∈ Ii jk , vi(λ ), v j(λ ), vk(λ ) are not collinear
andni , n j , nk point to the same side of the planePi jk(λ ) := {p : p = b1vi(λ )+b2v j(λ )+b3vk(λ )}.

Figure 3.9: A prismDi jk constructed based on the triangle[viv jvk].

Next we define a function in the Benstein-Bezier (BB) basis over the prismDi jk :

F(b1,b2,b3,λ ) = ∑
i+ j+k=n

bi jk(λ )Bn
i jk(b1,b2,b3), (3.12)

whereBn
i jk(b1,b2,b3) is the Bezier basis

Bn
i jk(b1,b2,b3) =

n!
i! j!k!

bi
1b j

2bk
3.

Figure 3.10: The control coefficients of the cubic Bezier basis of functionF .

We approximate the molecular surface by the zero contour ofF , denoted asS. In order to makeS smooth, the degree of
the Bezier basisn should be no less than 3. For simplicity, here we consider thecase ofn= 3. The control coefficientsbi jk(λ )
should be properly defined such thatS is continuous. In Figure 3.10 we show the relationship of thecontrol coefficients and the
points of the triangle whenn= 3. Next we are going to discuss these coefficients are defined.

SinceSpasses through the verticesvi, v j , vk, we define

b300= b030= b003= λ . (3.13)

To obtainC1 continuity at the vertices, we requireb210−b300=
1
3∇F(vi) · (v j(λ )− vi(λ )), where∇F(vi) = ni . Therefore
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b210= λ +
1
3

ni · (v j(λ )− vi(λ )). (3.14)

b120, b201, b102, b021, b012 are defined similarly.
To obtain theC1 continuity at the midpoints of the edges ofT, we defineb111 by using the side-vertex scheme [85]:

b111= w1b(1)111+w2b(2)111+w3b(3)111, (3.15)

where

wi =
b2

j b
2
k

b2
2b2

3+b2
1b

2
3+b2

1b2
2

, i = 1,2,3, i 6= j 6= k.

.
Next we are going to defineb(1)111, b(2)111 andb(3)111 such that theC1 continuity is obtained at the midpoint of the edgev jvk, vivk

andviv j . Consider the edgeviv j for instant. Recall that any pointp = (x,y,z) in Di jk can be represented by

(x,y,z)T = b1vi(λ )+b2v j(λ )+b3vk(λ ). (3.16)

Therefore differentiating both sides of (3.16) with respect to x, y andz, respectively, yields

I3 =




∂b1
∂x

∂b2
∂x

∂λ
∂x

∂b1
∂y

∂b2
∂y

∂λ
∂y

∂b1
∂z

∂b2
∂z

∂λ
∂z







(vi(λ )− vk(λ ))T

(v j(λ )− vk(λ ))T

(b1ni +b2n j +b3nk)
T


 , (3.17)

whereI3 is a 3×3 unit matrix. Denote

T :=




(vi(λ )− vk(λ ))T

(v j(λ )− vk(λ ))T

(b1ni +b2n j +b3nk)
T



 , (3.18)

and letA= vi(λ )− vk(λ ), B= v j(λ )− vk(λ ) andC= b1ni +b2n j +b3nk, thenT = (A B C)T .
From (3.17) we have




∂b1
∂x

∂b2
∂x

∂λ
∂x

∂b1
∂y

∂b2
∂y

∂λ
∂y

∂b1
∂z

∂b2
∂z

∂λ
∂z


= T−1 =

1
det(T)

(B×C, C×A, A×B) . (3.19)

According to (3.12), at the midpoint ofviv j , (b1,b2,b3) = (1
2,

1
2,0), we have




∂F
∂b1
∂F
∂b2
∂F
∂λ


 =




(vi(λ )− vk(λ ))T

(v j(λ )− vk(λ ))T

(ni +n j)
T/2




(

ni +n j

4

)
+




3
2(b210−b111)
3
2(b120−b111)

1
2



 .

By (3.15), at(b1,b2,b3) = (1
2,

1
2,0) we haveb111= b(3)111. Therefore the gradient at(1

2,
1
2,0) is

∇F = T−1(
∂F
∂b1

,
∂F
∂b2

,
∂F
∂λ

)T

=
ni +n j

4
+

1
2det(T)

[3(b210−b(3)111)B×C+ 3(b120−b(3)111)C×A+A×B] (3.20)

Define vectors

d1(λ ) = v j(λ )− vi(λ ) = B−A,

d2(b1,b2,b3) = b1ni +b2n j +b3nk =C,

d3(b1,b2,b3,λ ) = d1×d2 = B×C+C×A. (3.21)
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Let

c=C(
1
2
,
1
2
,0), (3.22)

d3(λ ) = d3(
1
2
,
1
2
,0,λ ) = B× c+ c×A. (3.23)

Let ∇F = ∇F(1
2,

1
2,0). In order to haveC1 continuity at(1

2,
1
2,0), we should have∇F ·d3(λ ) = 0. Therefore, by (3.20)

and (3.23), we have

b(3)111=
d3(λ )T(3b210B× c+3b120c×A+A×B)

3||d3(λ )||2
. (3.24)

Similarly, we may defineb(1)111 andb(2)111.
Now the functionF(b1,b2,b3,λ ) is well defined. The next step is to extract the zero level setS. Given the barycentric

coordinates(b1,b2,b3) of a point in the triangle[viv jvk], we find the correspondingλ by solving the equationF(b1,b2,b3,λ ) =
0 for λ and this could be done by the Newton’s method. Then we may get the corresponding point onSas

(x, y, z)T = b1vi(λ )+b2v j(λ )+b3vk(λ ). (3.25)

3.3.4 Smoothness

Theorem 3.3.1.The ASMS S is C1 at the vertices of T and the midpoints of the edges of T .

Theorem 3.3.2.S is C1 everywhere if every edgeviv j of T satisfiesni · (vi− v j) = n j · (v j − vi).

Theorem 3.3.3.S is C1 everywhere if the unit normals at the vertices of T are the same.

Proofs of the theorems are shown in [124].

3.3.5 Parametrization and quadrature

In this section, we would like to show how the ASMS is applied to the computation of (6.13). Since we use the ASMS to
represent the molecular surface, nowΓ = S. Let f = (r−xi)·n(r)

|r−xi |4 . We decompose the entire surfaceS into patches{Sj} with Sj

being the AMSM generated over trianglej, then we have
∫

S
f (x) dS= ∑

j

∫

Sj

f (x) dS. (3.26)

For any pointx = (x,y,z) on Sj , by the inverse map of (3.25), one can uniquely mapx to a point in trianglej and get its
baricentric coordinates(b1,b2,b3) with b3 = 1−b1−b2. Therefore,x, y, zcan be represented in terms of(b1,b2):

x= x(b1,b2,), y= y(b1,b2), z= z(b1,b2)

Replacing(x,y,z) with (b1,b1,b3) in (3.26) and letting

g(b1,b2) = f (x(b1,b2),y(b1,b2),z(b1,b2)),

we get
∫

Sj

f (x) dS=
∫

σ j

g(b1,b2)
√

EG−F2 db1db2, (3.27)

where
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E = (
∂x
∂b1

)2+(
∂y
∂b1

)2+(
∂z

∂b1
)2,

F =
∂x
∂b1

∂x
∂b2

+
∂y
∂b1

∂y
∂b2

+
∂z

∂b1

∂z
∂b2

,

G= (
∂x
∂b2

)2+(
∂y
∂b2

)2+(
∂z

∂b2
)2.

We then apply the Gaussian quadrature to (3.27):

∫

σi

g(b1,b2)
√

EG−F2 db1db2≈
n

∑
k=1

Wkg(b
k
1,b

k
2)
√

EG−F2|bk
1,b

k
2
, (3.28)

where(bk
1,b

k
2,b

k
3) andWk are the Gaussian integration nodes and weights on the triangles.

3.3.6 Error of the ASMS model

In order to show the error ofS to the true surfaceS0, we do a test on some typical surfaces (Table 3.1)S0 := {(x,y,z) : z=
f (x,y), (x,y) ∈ [0,1]2} which are considered as the true surfaces. We generate a triangulation mesh over the true surface with
the maximum edge lengthh being 0.1. Based on the mesh, we construct the ASMS modelS. The error ofS to S0 is defined
as max||p−q||

||q|| , wherep ∈ S, q ∈ S0, andp andq have the same(b1,b2,b3) volume coordinates but differentλ coordinates. We

sample(p, q) on the surfaces and compute the maximum relative error.

Table 3.1: Relative error and Convergence

Function(x,y) ∈ [0,1]2 max{ ||p−q||
||q|| } C

z= 0 0 0
z= x2+ y2 2.450030e-05 1.010636e-2
z= x3+ y3 1.063699e-04 2.610113e-2

z= e−
1
4 [(x−0.5)2+(y−0.5)2] 5.286856e-07 6.288604e-5

z= 1.25+ cos(5.4y)
6+6(3x−1)2

2.555683e-04 4.58608e-2

z= tanh(9y−9x) 1.196519e-02 1.896754e-1
z=

√
1− x2− y2 8.614969e-05 1.744051e-1(h4)

z= [(2−
√

1− y2)2− x2]1/2 1.418242e-05 1.748754e-02

For the point pairp(b1,b2,b3,λp) andq(b1,b2,b3,λq) defined above, we prove that their Euclidean distance is bounded by
the difference of theirλ coordinates.

Lemma 3.3.1. The error of the approximation pointp to the true pointq is bounded by|λp−λq|.
PROOF.

||p−q|| ≤ b1||vi(λp)− vi(λq)||+b2||v j(λp)− v j(λq)||+b3||vk(λp)− vk(λq)||
≤ |λp−λq|(b1||ni ||+b2||n j ||+b3||nk||)
= |λp−λq|

⊓⊔



3.3. ALGEBRAIC SHELL SPLINES (C1) 85

To study the rate of converges ofS to S0, we gradually refine the initial mesh. Since the error is bounded by|λp−λq|, we
compute the ratio of the maximum difference ofλp andλq to h, h2, h3, and so forth. Ash decreases, we check if the ratio
converges or not, which allows us to know the highest rate of convergence ofSto S0. For most of the test functions in Table 3.1,
we observe thatSconverges toS0 as fast asO(h3). We also observe that for the casez=

√
1− x2− y2, the rate of convergence

reachesO(h4). We show the limit of the ratio|λ−λ ′|
h3 ash ↓ 0, denoted asC, in Table 3.1. Hence we draw the following claim:

Claim: Let h be the maximum side length of triangulation meshT, p be the point on the ASMS,q be the corresponding point
on the true surface, thenp converges toq at the rate ofO(h3). i.e. There exists a constantC such that||p−q|| ≤Ch3.

4600 Triangles 9216 Triangles 18434 Triangles

Figure 3.11: The top row is the triangulation of the SES of protein 1ML0 with different number of triangles. The bottom row
is the ASMS generated from the above corresponding triangulation.

We generated the ASMS for the real proteins based on different size of meshes (Figure 3.11) and show the error of the
ASMS to the SES of three proteins: 1GCQ (843 atoms), 1ML0 (1051 atoms), and 1KKL (1276 atoms) in Table 3.2. Here
the SES is modeled as a level set of the summation of fast decaying Gaussian functions. The ASMS is generated from the
triangulation of the SES at different resolution. The number of triangles of the initial meshes are listed in Table 3.2. The error
εmax is defined as the one-way Hausdorff distance from the ASMS to the SES:εmax= max

p∈ASMS
min

q∈SES
||p−q||. As we see in the

table, the errors are small and decrease rapidly as the initial triangulation becomes dense.

3.3.7 Application to the biomolecular energetic computation

We apply the ASMS model to the GB electrostatic solvation energy computations of the example proteins 1HIA (693 atoms),
1CGI (852 atoms), and 1PPE (436 atoms). The ASMS modelsS for the proteins are generated based on the initial mesh
with different number of triangles (Table 3.3). We show the ASMS of the example molecules generated from the decimated
triangulations in Figure 6.4 and Figure 3.13. As a comparison, we compute the polarization energyGpolfor both the ASMS
and the piecewise linear (PL) surfaces and show the energy results and the timing in Table 3.3. For all the computations, a
4-point Gaussian quadrature rule over a triangle [43] is used for the numerical integration in (3.28) when computing theBorn
radii. The running time contains the time cost of computing the integration nodes over the surfaces, computing the Born radii,
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Table 3.2: Error of ASMS to the SES

1GCQ 1ML0 1KKL
No. of ∆s εmax No. of ∆s εmax No. of ∆s εmax

16,312 0.266069 18,400 0.233949 19,968 0.260418
32,624 0.142149 36,864 0.142380 39,544 0.134689
65,456 0.082550 73,736 0.083895 79,096 0.085855

and evaluatingGpol. If we consider the energy computed from the dense mesh as accurate, as we see from the table, theGpol

computed from the coarse PL model has a large error, however for the coarse ASMS model, it is very close to the dense mesh
result but with less time. On the other hand, to get a energy result of the same accuracy, fewer number of triangles are needed
for the ASMS model than the PL model. For example, for the protein 1CGI, theGpol computed from the ASMS with 3674
triangles is -1394.227 kcal/mol. However to get a similar result, 8712 triangles are needed for the piecewise linear model.
Therefore the ASMS model is much more efficient in the energetic computation than trivial piecewise linear models.

Table 3.3: electrostatic solvation energy and timing

Protein No. of Gpol (kcal/mol) Timing (s)
ID Triangles PL AS PL AS

29108 -1371.741894 -1343.1496 39.64 40.31
1CGI 8712 -1399.194841 -1346.2230 12.94 12.64

3674 -1678.444735 -1394.2270 7.40 6.11
27480 -1361.226603 -1340.6384 30.23 31.18

1HIA 7770 -1389.017538 -1347.8067 9.43 9.93
3510 -1571.890827 -1388.4665 5.21 5.21
24244 -835.563905 -825.3252 17.27 18.26

1PPE 6004 -852.713039 -828.2158 5.09 5.39
2748 -933.956234 -845.5085 2.74 3.27

3.4 Variational B-spline Surfaces (C2)

3.4.1 Geometric Flow for Molecular Surface Construction

Given a non-negative functionf (x) over a domainΩ ∈ R
3, we generate a molecular surfaceΓ in Ω, such that the energy

functional
E(Γ) =

∫

Γ
f (x)dx+λ

∫

Γ
h(x,n)dx (4.29)

is minimal, wherex andn are the surface point and surface normal, respectively.h(x,n) is another given non-negative function
overR3×R

3 which is used for regularizing the molecular surface. Hereλ ≥ 0 is a constant. From minimizing energy functional
(4.29), the partial differential equation (PDE) in the level-set form is obtained as the Euler Lagrange equation [22]. Furthermore
an evolutionary PDE equation is obtained as an iterative (time dependent) geometric flow approximation to the PDE.

Given a molecular representation (i.e., PDB) which consists of a sequence of atoms with centers{xi}mi=1 and radii{r i}mi=1
(see Fig. 3.14(a)), we construct molecular surfaces which minimize the general energy functional (4.29). In [25], we select
f (x) = g(x)2 andh(x,n) = 1 with

g(x) = 1−
m

∑
i=1

e−Ci(‖x−xi‖2−r̃2
i ), r̃ i = r i + rb,

whererb is the probe radius, which usually is 1.4Å (the radius of water). The constantCi > 0, which is also called the Gaussian
decay rate, is determined so thatg(x) = 0 is an approximation of the solvent accessible surface within a given toleranceε. We
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(a) (b) (c) (d)

Figure 3.12: Molecular models of a protein(1HIA). (a) is Theatomic model. (b) is the initial dense mesh of the SES (27480
triangles). (c) is the decimated mesh of the SES model (7770 triangles). (d) is the ASMS (7770 patches) generated from (c).

(a) (b) (c)

(d) (e) (f)

Figure 3.13: The top row are the models of 1CGI and the bottom row are the models of 1PPE. (a) and (d) are the atomic
structures of the proteins. (b) and (e) are the decimated triangular meshes of the proteins with 8712 triangles and 6004 triangles,
respectively. (c) and (f) are the ASMS models generated from(b) and (e), respectively.
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(a) (b) (c)

Figure 3.14: Molecular Surfaces of Protein (PDB Id: 6PTI). (a) the van der Waals surface. (b) shows ourC2 smooth implicit
B-spline molecular surface. (c) shows the tight enclosure of the implicit B-spline molecular surface superimposed with the van
der Waals surface.

(a) (b) (c)

(d) (e) (f)

Figure 3.15: Resolution adaptive molecular surfaces of theE - Glycoprotein (PDB Id: 1OKE) of the envelope of the Dengue
virus. (a) the van der Waals surface. (b) ourC2 implicit B-spline molecular surface of 1OKE at 10̊A resolution (Residues 1-52,
133-193 and 281-296 are colored red. Residues 53-132 and 194-280 are colored yellow. Residues 297-394 are colored blue.
The coloring method is based on [84]). (c) ourC2 implicit B-spline molecular surface complexed with a ligand (green) at 10̊A
resolution. (d) (e) and (f) are a zoomed view of the boxed portions in (a), (b) and (c) respectively (only one of the two boxes
are shown in each case as they are identical).

chooseCi as ln2
ε r̃ i

. The second term of (4.29) is used to regularize the constructed surface, whereλ is a small number. In the
examples provided in the following, we chooseλ as 0.01. To further eliminate depression and smooth out high curavtures, we
select functionh(x,n) = ‖∇g(x)‖2 in this paper and demonstrate its efficiency by comparing it to a number of prior analytic
surfaces [18, 123]. Minimizing energy functional (4.29) for this choice ofh(x,n) yields the following Euler-Lagrange equation

(g2+λ‖∇g‖2)div

(
∇φ
‖∇φ‖

)
+

2g(∇g)T∇φ +λ [∇(‖∇g‖2)]T∇φ
‖∇φ‖ = 0.

Thus the corresponding level-set formulation of the evolution equation (see [118] for derivation details or [47]) is

∂φ
∂ t

= (g2+λ‖∇g‖2)div

(
∇φ
‖∇φ‖

)
‖∇φ‖+2g(∇g)T∇φ +λ [∇(‖∇g‖2)]T∇φ (4.30)

= H(φ)+L(∇φ),
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where

(φ) = (g2+λ‖∇g‖2)div

(
∇φ
‖∇φ‖

)
‖∇φ‖, L(∇φ) = 2g(∇g)T∇φ +λ [∇(‖∇g‖2)]T∇φ .

This evolution equation is solved by our higher-order levelset methods [25]. The first order termL(∇φ) is computed using
an upwind scheme over a finer grid, and the higher order termH(φ) is computed using a spline presentation defined on a
coarser grid. Ifφ is a signed distance function and a steady solution of equation (4.30), then the iso-surfaceφ = −rb is an
approximation of molecular surface (see Fig. 3.14(b)).

We suppose that equation (4.30) is solved in a bounding box domainΩ which is uniformly partitioned with verticesG0 =
{xi jk}ni jk=0. Let Gl be the set of vertices of the grid which is generated by binarysubdivisionG0 uniformly l times. Letφ be
a piecewise trilinear level set function defined on a gridGl , with l = 0 or 1 or 2, andΦ be the cubic spline approximation of
φ over gridG0. Without loss of generality, we takel = 1 for simplicity. Thus the main algorithm in [22] can be repeated as
follows.

Algorithm 1 . Smooth molecular surface construction

1. Computeg(x) over the gridGl .

2. Compute an initialφ (= φ0) by takingφ(x) = g(x) and then update it using a reinitialization step, such that‖∇φ‖ = 1.
Let Γ0 be the initial closed level set surface ofφ0 with interiorD ⊂ R

3.

3. Updateφ by solving equation (4.30) for one time step using a finite difference method.

4. Reinitializeφ , convertφ to Φ, and then return to the previous step if the stopping criterion is not satisfied.

5. Generate a level set surface{x : Φ(x) =−rb}, which is the required approximation of the smooth molecular surface.

In the following subsections, we summarize the main issues in the implementation of the above algorithm.

Level set evolution

Equation (4.30) is solved in a thin shell of the moving surface to accelerate computation and reduce errors. We first initialize
φ0 to be the signed distance function ofΓ0, if necessary, reinitialization step can be done first (see subsubsection 3.4.1). Then
we define a thin shell aroundΓ0 by

N0 = {x ∈Gl : |φ0(x)|< H },
whereH is the thickness of the shell should be evaluated first. To prevent numerical oscillations at the boundary of the thin
shell, we should introduce a cut-off functionc(x) in (4.30) as

{ ∂φ
∂ t = c(φ)[H(φ)+L(∇φ)],
φ(x,0) = φ0(x),

(4.31)

onN0 for one time step and getφ1(x). The time step is chosen such that the interface moves less than one grid size∆x. At each
grid pointxi jk in the thin shellN0, computev0(xi jk) = c(φ0(xi jk))[H(Φ0(xi jk))+L(∇φ0(xi jk)]. Let

τ = min
{

∆x,∆x/ max
xi jk∈N0

|v0(xi jk)|
}
.

Then updateφ0 by the explicit Euler scheme

φ1(xi jk) = φ0(xi jk)+ τv0(xi jk), xi jk ∈ N0.

Sinceφ1 is no longer a signed distance function, a reinitializationstep is required to get a newφ1 and a new thin shellN1.
The process fromφ0 to φ1 described above is repeated to get a sequence{φm}m≥0 of φ , and a sequence of thin shells{Nm}m≥0,
until the following termination conditions

max
xi jk∈Nm

|vm(xi jk)|< ε and m< M

are satisfied. We chooseε = 0.001.M is a given upper bound of the iteration number, we chooseM = n, wheren3 is the number
of grid points inGl .
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The construction of an initial surfaceΓ0

The construction of an initial surface is pivotal to the level-set methods. If the initial surface is near to the final minimal surface,
a few evolution steps are enough. In our variational molecular surface construction, we useg(x) = 0 as an initial surfaceΓ0. To
further speed the computation, we use a local fast computation of the Gaussian functione−C[‖x−xi‖2−r̃2

i ] in g(x) aroundxi . For
details on fast Gaussian summation, refer to [18, 23].

Adaptive reinitialization

In general, it is impossible to prevent the evolving level set functionφ(x) from deviating away from a signed distance function.
Flat or steep regions could develop around the interface, making further computation and level set determination highly inac-
curate. Hence a reinitialization step to reset the level setfunctionφ to be a signed distance function is usually necessary. This
problem has been carefully studied in [90]. The main idea is to solve a Hamilton-Jacobi equation. We omit the details hereand
refer the reader to [22].

3.4.2 Illustrative Examples

In this subsection, we provide implementation details of several applications of the methods. Our variational molecular surface
algorithm has been implemented in our molecular visualization software package TexMol [8]. We now present illustrative
examples of variational molecular surfaces, such as multiresolution molecular models and hierarchical macromolecular struc-
ture surfaces. Quantitative comparative surface analysiswith Gaussian and adaptive grid molecular surfaces methodsare also
described.

(a) (b)

Figure 3.16: Adaptive ResolutionC2 Smooth Implicit B-spline Molecular Surfaces. (a) yellow legs and green antenna at about
5 Å resolution, and the blue body at about 10Å resolution of 1HZH (PDB Id). (b) adaptive resolution with legs and antenna at
about 10Å resolution, and the body at about 5Å resolution.
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Adaptive resolutions of molecular surface models

To capture molecular features, such as pockets and tunnels,one can model molecular surfaces with varying and adaptive
resolution. Our variational molecular surface method provides an approach to achieve this. Since the initial surface is an
approximation surface, one can select a spatially adaptivedecay rateC to capture the initial surface at adaptive resolution. In
Fig. 3.15, we show such an example of a ligand-binding pocketin the dengue virus (DV) envelope (E) Glycoprotein. Fig. 3.16
shows another example, where different portions of the molecular surface of a monomer of the intact human Immunoglobulin
B12 (PDB Id 1HZH) are shown at different resolutions.

(a) (b) (c)

(d) (e) (f)

Figure 3.17: HierarchicalC2-Smooth Implicit B-Spline Molecular Surface Models of the Envelope of the Dengue Virus Figure.
(a) Two chains of the monomeric envelope glycoprotein. (b) 1three-fold envelope and the van der Waal of the other part of the
envelope. (PDB Id: 1K4R) (c) 1 five-fold envelope and the van der Waal of the remain part of the envelope. (PDB Id: 1K4R).
(d) the smooth implicit B-Spline molecular surface of two chains of the monomeric envelope glycoprotein colored using [84].
(e) similar to (b) using the coloring of (d). (f) similar to (b) using the coloring of (d).

Hierarchical molecular surface segmentation of large macro-molecular complexes

Large biomolecular complexes, such as ribosomes and viruses are assemblies of multiple proteins and nucleic acids and dozens
to thousands of structural/functional biomolecular subunits. Hierarchical molecular surface segmentation with distinguishable
coloring is extremely useful in achieving better understanding of the structural organization of such assemblies. Here we present
one example of a hierarchical structure organization of themolecular surface of the icosahedral envelope of the DengueVirus
in Fig. 3.17. Where figure (a) is the molecular surface of two chains. Figure (b) is a molecular surface of a three-fold partof the
envelope with the other parts as van der Waals surfaces. Figure (c) is a molecular surface of a five-fold part of the envelope with
the other parts as van der Waals surfaces. In figure (d), molecular surfaces of different residues groups are colored differently.
The other two figures are similar to (b) and (c) separately.
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Comparative examples

In this subsubsection, we compare ourC2 smooth B-spline molecular surface with molecular surfacesgenerated by level sets
of Gaussian functions [123] and molecular surfaces generated by adaptive grid methods [18]. We also compare the difference
between different regularization terms in the generation of variational molecular surfaces, in particular with respect to [22, 25].

(a) (b) (c) (d)

Figure 3.18: Comparison of Three Different Molecular Surface Models (PDB Id: 1FSS). (a) the Gaussian molecular surface.
(b) molecular surface by the adaptive grid method with the difference between this surface and the surface of (a), displayed as
a color mapped function on surface. (c) ourC2 molecular surface and the difference between this surface and the surface of (a),
again displayed as color mapped function on surface. (d) is the color bar of the difference.

Fig. 3.18 shows this comparison for Acetylcholinesterase complexed with Fasciculin-II, having 1FSS as its PDB Id. The

molecular surface using Gaussian functions is defined by{x ∈ R
3 : g(x) = 1}, whereg(x) = ∑n

i=1e
− d

r2i
[‖x−xi‖2−(r i)

2]
. In figure

(a), we show Gaussian molecular surface. Figures (b) and (c)show the results of the adaptive grid method and our variational
method. The differences between the Gaussian molecular surface with the surfaces generated by the adaptive grid method
and our variational method are also respectively plotted ascolor mapped functions on the Gaussian surfaces. For two surfaces
S1,S2, we calculated the difference by the following simple method

Diff (x,S2) = min{dist(x,y),y ∈ S2},x ∈ S1,

where dist(x,y) is the Euclidean distance of two points. Then we displayed the difference by a color mapped function defined
on the initial surfaceS1. In this example, we select Gaussian surface asS2 and adaptive grid surface and our variational surface
asS1. In Fig. 3.19, an illustrative example is given for the Aspartate Carbamoyltransferase (PDB Id 4AT1). We show our
molecular surface in figure (a). Similar to the above example, we depict in figure (b) the difference between our variational
molecular surface and the Gaussian surface,S2 is the molecular surface produced by our variational method. Similarly in figure
(c), we show the difference between the adaptive grid molecular surface with our molecular surface. From these figures, we
can see that the variational molecular surface is differentfrom the Gaussian and adaptive grid surface.

To better quantitate this difference, in Table 3.4 and Table3.5, we compare the results of area and volume computation
using our variational method, and that of Gaussian, of adaptive grid molecular surfaces. The results of Gaussian molecular
surfaces and adaptive grid molecular surfaces are implemented in TexMol. Since the surfaces produced by Gaussian functions
often yield artifacts such as narrow depressions or tunnelsand furthermore are quite inflated [9] (see Fig. 3.18 and 3.19), the
surface area is enlarged and the enclosed volume is smaller.The result shows that our method gives larger volumes to Gaussian
molecular surfaces but much smaller surfaces areas. They are also free from the topological surface artifacts. Comparing results
with the adaptive grid method, we find that both the surface areas and volumes of our method are larger.

On comparison between different regularization terms

In this paper, we use another regularization term to decrease unwanted surface depression or narrow tunnel artifacts onthe
molecular surface. Compared with the regularization term we used in [25], while no obvious visual differences can be observed,
we show example of the molecular surfaces with our differentregularization term in Fig. 3.20. Figures (a) and (d) are the
variational molecular surface enclosing the van der Waals surface. Figures (b) and (e) are the mean curvature and Gaussian
curvature plots of the functional with area as regularization term. Figures (c) and (f) are the mean curvature and Gaussian
curvature plots of the functional with the new regularization term used in this paper.
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(a) (b) (c) (d)

Figure 3.19: Comparison of Three Different Molecular Surface Models of the Aspartate Carbamoyltransferase (PDB Id: 4AT1).
(a) our B-spline molecular surface. (b) Gaussian molecularsurface with difference with (a) shown a color mapped function on
surface. (c) molecular surface using an adaptive grid with grid resolution 1283 and with difference with (a) shown as a color
mapped function on surface. (d) is the color bar.

Molecule PDB Id A1 A2 A3

Acetylcholinesterase Fasciculin 1FSS 25638.6 20233.6 20335.6
Fas.2 Mouse Acetylcholinesterase Complex1MAH 16920.2 17061.0 17121.8
Glutamine Synthetase 2GLS 262196.6 172746.3 158346.8
Aspartate Carbamoyltransferase 4AT1 45059.5 32608.0 32300.5
HIV Capsid C 1A8O 11294.4 7015.9 6334.3
GroEL-GroES Complex 1AON 404391.4 283704.5 204322.9
Quinoprotein Methylamine Dehydrogenase2BBK 63868.9 25349.6 21396.8
Scapharca Inaequivalvis 2Z8A 22827.4 11228.7 9997.8

Table 3.4: Surface area of different proteins computed using three different methods. A1 is computed for Gaussian molecular
surface. A2 is computed for adaptive grid molecular surface. A3 is computed for the molecular surface using our methods.

Molecule PDB Id V1 V2 V3

Acetylcholinesterase Fasciculin 1FSS 94653.5 78017.2 84453.0
Fas.2 Mouse Acetylcholinesterase Complex1MAH 116586.9 113528.9 119776.8
Glutamine Synthetase 2GLS 48724.5 46250.6 42617.0
Aspartate Carbamoyltransferase 4AT1 96081.7 90061.6 97158.3
HIV Capsid C 1A8O 22997.3 21801.2 24718.3
GroEL-GroES Complex 1AON 43316.1 38817.6 30928.9
Quinoprotein Methylamine Dehydrogenase2BBK 130205.1 133399.8 144046.2
Scapharca Inaequivalvis 2Z8A 44518.0 45002.0 50330.7

Table 3.5: Molecular volume of different proteins computedusing three different methods. V1 is computed via Gaussian
molecular surface. V2 is computed for adaptive grid method surface. V3 is computed for the molecular surface using our
methods.

3.5 Meshing of Molecular Interfaces

In this subsection, we describe an approach to generate quality triangular/tetrahedral meshes for complicated biomolecular
structures directly from the PDB format data, conforming toa good implicit solvation surface approximation. There arethree
main steps in our mesh generation process:

1. Implicit Solvation Surface Construction – A smooth implicit solvation model is constructed to approximate the Lee-
Richards molecular surface by using weighted Gaussian isotropic atomic kernel functions and a two-level clustering
techniques. See subsection 3.1 for details

2. Mesh Generation – A modified dual contouring method is usedto extract triangular and interior/exterior tetrahedral
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(a) (b) (c)

(d) (e) (f)

Figure 3.20: Feature Preserving Adaptive Resolution Molecular Surfaces of the Nicotonic AcetylCholine Receptor Protein
2BG9. (a) (d) our molecular surface enclosing the the van derWaals surface. (b) and (c) are the mean curvature plots of the
variational molecular surface generated by the minimal area regularization and the gradient magnitude squares regularization
functional. (e) and (f) are the respective Gaussian curvature plots.

meshes, conforming to the implicit solvation surface. The dual contouring method [120, 121] is selected for mesh gen-
eration as it tends to yield meshes with better aspect ratio.In order to generate exterior meshes described by biophysical
applications [108, 109, 119], we add a sphere or box outside the implicit solvation surface, and create an outer boundary.
Our extracted tetrahedral mesh is spatially adaptive and attempts to preserve molecular surface features while minimizing
the number of elements.

3. Quality Improvement – Geometric flows are used to improve the quality of extracted triangular and tetrahedral meshes.

The generated tetrahedral meshes of the monomeric and tetrameric mouse acetylcholinesterase (mAChE) [31, 32] have
been successfully used in solving the steady-state Smoluchowski equation using the finite element method [108, 109, 119].

3.5.1 Mesh Generation

There are two main methods for contouring scalar fields, primal contouring [77] and dual contouring [61]. Both of them can
be extended to tetrahedral mesh generation. The dual contouring method [120, 121] is often the method of choice as it tends to
yield meshes with better aspect ratio.

Triangular Meshing

Dual contouring [61] uses an octree data structure, and analyzes those edges that have endpoints lying on different sides of
the isosurface, calledsign change edges. The mesh adaptivity is determined during a top-down octreeconstruction. Each sign
change edge is shared by either four (uniform case) or three (adaptive case) cells, and one minimizer point is calculatedfor
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(a) (b) (c)

Figure 3.21: The analysis domain of exterior meshes. (a) - ‘O’ is the geometric center of the molecule, suppose the circum-
sphere of the biomolecule has the radius ofr. The box represents the volumetric data, and ‘S0’ is the maximum sphere inside
the box, the radius isr0(r0 > r). ‘S1’ is an outer sphere with the radius ofr1(r1 = (20∼ 40)r). (b) - the diffusion domain is
the interval volume between the molecular surface and the outer sphere ‘S1’, here we chooser1 = 5r for visualization. (c) - the
outer boundary is a cubic box.

each of them by minimizing a predefined Quadratic Error Function (QEF) [54]:

QEF[x] = ∑
i
[ni · (x− pi)]

2 , (5.32)

wherepi , ni represent the position and unit normal vectors of the intersubsection point respectively. For each sign change edge,
a quad or triangle is constructed by connecting the minimizers. These quads and triangles provide a ‘dual’ approximation of
the isosurface.

A recursive cell subdivision process was used to preserve the trilinear topology [121] of the isosurface. During cell subdi-
vision, the function value at each newly inserted grid pointcan be exactly calculated since we know the volumetric function
(Eqn. (1.4)). Additionally, we can generate a more accuratetriangular mesh by projecting each generated minimizer point onto
the isosurface (Eqn. (1.3)).

Tetrahedral Meshing

The dual contouring method has already been extended to extract tetrahedral meshes from volumetric scalar fields [120, 121].
The cells containing the isosurface are called boundary cells, and the interior cells are those cells whose eight vertices are inside
the isosurface. In the tetrahedral mesh extraction process, all the boundary cells and the interior cells need to be analyzed in
the octree data structure. There are two kinds of edges in boundary cells, one is a sign change edge, the other is an interior
edge. Interior cells only have interior edges. In [120, 121], interior edges and interior faces in boundary cells are dealt with
in a special way, and the volume inside boundary cells is tetrahedralized. For interior cells, we only need to split them into
tetrahedra.

Adding an Outer Boundary In biological diffusion systems, we need to analyze the electrostatic potential field which
is faraway from the molecular surface [60, 71]. Assume that the radius of the circum-sphere of a biomolecule isr. The
computational model can be approximated by a field from an outer sphereS1 with the radius of(20∼ 40)r to the molecular
surface. Therefore the exterior mesh is defined as the tetrahedralization of the interval volume between the molecular surface
and the outer sphereS1 (Fig. 3.21(b)). Sometimes the outer boundary is chosen to bea cubic box as shown in Fig. 3.21(c).

First we add a sphereS0 with the radius ofr0 (wherer0 > r and r0 = 2n/2 = 2n−1) outside the molecular surface, and
generate meshes between the molecular surface and the outersphereS0. Then we extend the tetrahedral meshes from the
sphereS0 to the outer bounding sphereS1. For each data point inside the molecular surface, we keep the original function
value. While for each data point outside the molecular surface, we reset the function value as the smaller one off (x)−α and
the shortest distance from the grid point to the sphereS0. Eqn. (5.33) shows the newly constructed functiong(x) which provides
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a grid-based volumetric data containing the biomolecular surface and an outer sphereS0.

g(x) =





min(‖x−x0‖− r0, f (x)−α), if f (x)< α,‖x−x0‖< r0,
‖x−x0‖− r0, if f (x)< α,‖x−x0‖ ≥ r0,
f (x)−α, if f (x)≥ α,

(5.33)

wherex0 are coordinates of the molecular geometric center. The isovalueα = 0.5 for volumetric data generated from the
characteristic function, andα = 1.0 for volumetric data generated from the summation of Gaussian kernels.

The molecular surface and the outer sphereS0 can be extracted as an isosurface at the isovalue 0,Sg(0) = {x|g(x) = 0}. All
the grid points inside the interval volumeIg(0) = {x|g(x)≤ 0} have negative function values, and all the grid points outside it
have positive values.

(a) (b)

Figure 3.22: 2D triangulation. (a) Old scheme, (b) New scheme. Blue and yellow triangles are generated for sign change edges
and interior edges respectively. The red curve represents the molecular surface, and the green points represent minimizer points.

Mesh Extraction
Here we introduce a different scheme from the algorithm presented in [120, 121], in which we do not distinguish boundary

cells and interior cells when we analyze edges. We only consider two kinds of edges - sign change edges and interior edges.
For each boundary cell, we can obtain a minimizer point by minimizing its Quadratic Error Function. For each interior cell,
we set the middle point of the cell as its minimizer point. Fig. 3.22(b) shows a simple 2D example. In 2D, there are two cells
sharing each edge, and two minimizer points are obtained. For each sign change edge, the two minimizers and the interior
vertex of this edge construct a triangle (blue triangles). For each interior edge, each minimizer point and this edge construct a
triangle (yellow triangles). In 3D as shown in Fig. 3.23, there are three or four cells sharing each edge. Therefore, the three (or
four) minimizers and the interior vertex of the sign change edge construct one (or two) tetrahedron, while the three (or four)
minimizers and the interior edge construct two (or four) tetrahedra.

Compared with the algorithm presented in [120, 121] as shownin Fig. 3.22(a), Fig. 3.22(b) generates the same surface
meshes, and tends to generate more regular interior meshes with better aspect ratio, but a few more elements for interiorcells.
Fig. 3.22(b) can be easily extended to large volume decomposition. For arbitrary large volume data, it is difficult to import
all the data into memory at the same time. So we first divide thelarge volume data into some small subvolumes, then mesh
each subvolume separately. For those sign change edges and interior edges lying on the interfaces between subvolumes, we
analyze them separately. Finally, the generated meshes aremerged together to obtain the desired mesh. The mesh adaptivity is
controlled by the structural properties of biomolecules. The extracted tetrahedral mesh is finer around the molecular surface,
and gradually gets coarser from the molecular surface out towards the outer sphere,S0. Furthermore, we generate the finest
mesh around the active site, such as the cavity in the monomeric and tetrameric mAChE shown in Fig.3.29 (a∼b), and a coarse
mesh everywhere else.

Mesh Extension
We have generated meshes between the biomolecular surface and the outer sphereS0, the next step is to construct tetrahedral

meshes gradually from the sphereS0 to the bounding sphereS1 (Fig. 3.21). The sphereS0 consists of triangles, so we extend
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Figure 3.23: Sign change edges and interior edges are analyzed in 3D tetrahedralization. (a)(b) - sign change edge (the red
edge); (c)(d) - interior edge (the red edge). The green solidpoints represent minimizer points, and the red solid pointsrepresent
the interior vertex of the sign change edge.

Figure 3.24: (a) - one triangle in the sphereS0 (blue) is extendedn steps until arriving at the sphereS1 (red); (b) and (c) - a
prism is decomposed into three tetrahedra in two different ways.
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each triangle radially as shown in Fig. 3.24 and a prism is obtained for each extending step. The prism can be divided into
three tetrahedra. The extension step lengthh can be calculated by Eqn. (5.34). It is better for the sphereS0 to be triangulated
uniformly since the step length is fixed for each extension step.

r0+h+2h+ · · ·+nh= r1 =⇒ h=
2(r1− r0)

n(n+1)
(5.34)

wheren is the step number. In Figure 3.24, supposeu0u1u2 is a triangle on sphereS0, andu0, u1, u2 are the unique index
numbers of the three vertices, whereu1 < u0 andu1 < u2. For one extension step,u0u1u2 is extended tov0v1v2, and the two
triangles construct a prism, which can be decomposed into three tetrahedra. In order to avoid the diagonal conflict problem, a
different decomposition method (Fig. 3.24(b∼c)) is chosen based on the index number of the three vertices.If u0 < u2, then
we choose Fig. 3.24(b) to split the prism into three tetrahedra. If u2 < u0, then Fig. 3.24(c) is selected

Assume there arem triangles on the sphereS0, which is extendedn steps to arrive at the sphereS1. mprisms or 3mtetrahedra
are generated in each extending step, and a total of 3mn tetrahedra are constructed in the extension process. Therefore, it is
better to keep a coarse and uniform triangular mesh on the sphereS0.

3.5.2 Quality Improvement

There are two sub-steps in mesh quality improvement:

1. Denoising and improving the aspect ratio of the surface mesh (surface vertex adjustment in the normal and the tangent
directions).

2. Improving the aspect ratio of the volumetric mesh (vertexadjustment inside the volume).

We use geometric partial differential equations (PDEs) to handle the first step. Geometric PDEs, such as the mean curvature
flow, the surface diffusion flow and Willmore flow, have been intensively used in surface and imaging processing [117, 116].
Here we choose surface diffusion flow to smooth the molecularsurface because of its volume preserving, and furthermore it
approximates spheres accurately (quadratic precision).

∂x
∂ t

= ∆H(x)n(x)+ v(x)T(x), (5.35)

whereH is the mean curvature,n is the unit surface normal vector,v(x) is the velocity in the tangent directionT(x), and∆ is

the Laplace-Beltrami operator,∆ = ( ∂ 2

∂x2 ,
∂ 2

∂y2 ,
∂ 2

∂z2 ).

Eqn. (5.35) is solved over a triangular mesh with vertices{xi} by discretizing each of its terms. In temporal space,∂x
∂ t is

approximated by the Euler scheme
xn+1
i −xn

i
τ , whereτ is time step-length.xn

i is the approximating solution att = nτ, xn+1
i is the

approximating solution att = (n+1)τ, andx0
i = xi serves as the initial value. Discretizing schemes for∆ andH in the spatial

space are given in [116], we do not go to detail here. Furtherv(x)T(x) is approximated by

[m(xn
i )− xn

i ]−n(xn
i )

T [m(xn
i )− xn

i ]n(x
n
i ), (5.36)

wherem(xn
i ) is defined as the mass center of all the surface triangles incident toxn

i . A mass centerP of a regionV is defined by
finding p∈V, such that

∫
V ‖ y− p ‖2 dσ = min, whereV could be a piece of surface or a volume inR

3. For our surface mesh
case,V consists of triangles around vertexxn

i . Then we could derive that

m(xn
i ) =

1
3

xn
i +

1
3 ∑

j∈N(i)

xn
j (△ j +△ j+1)/A(xn

i ), (5.37)

whereN(i) is the index set of the one ring vertex neighbors ofxn
i ,△ j is the area of the triangle[xn

i xn
j−1xn

j ]. A(xn
i ) is the total of

triangle areas.
Usually, people use the geometric center [116], instead of the mass center, however we observed that the mass center works

better for biomolecules. The discretization leads to a positive-definite linear system, and the approximate solution is obtained
by solving this linear system.
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Figure 3.25: The surface comparison before/after quality improvement. The left column shows the original surface of anASN-
THR-TYR peptide, and the right column shows the surface after mesh regularization. The top row shows the smooth shading
surfaces, and the bottom row shows snapshots of the meshes.

After the molecular surface is regularized, the next step isto improve the volumetric mesh by relocating each interior vertex
to the mass center of its surrounding tetrahedra. Letpi be an interior vertex,p j be one of its neighboring vertices, then the
mass center of all tetrahedra aroundpi is computed bym(pi) =

1
4 pi +

1
4Vi

∑ j Vi j p j , whereVi j is the volume summation of all the
tetrahedra around the edge[pi p j ], Vi is the volume summation of the tetrahedra around the vertexpi . This is similar in spirit to
the multi-linear centroid smoothing scheme [14].

Fig. 3.25 shows the difference of the mesh before and after the quality improvement steps. The left column shows the
original iso-surface of an ASN-THR-TYR peptide, and the right column shows the results after mesh regularization. It is
obvious that after quality improvement, the surface mesh ismore regular and has better aspect ratio (twice the ratio of incircle
radius to circumcircle radius).

The left picture in Fig.3.28 shows the improvement of the aspect ratio, and Fig.3.26∼3.27 show the improvement in mesh
regularization. We can see that noises are removed and features are preserved since the surface diffusion flow preservesvolume
and spherical geometry. The surface error is restricted within half of the grid size for the binary data from the characteristic
function, and almost zero for the data from Gaussian densitymap since we have projected each boundary vertex onto the
isosurface.
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Figure 3.26: Comparison of mAChE (9308 vertices, 18612 triangles) before and after surface mesh regularization. (a) - original;
(b) - after mesh regularization.

Figure 3.27: Comparison of Ribosome 30S (13428 vertices, 26852 triangles) before and after surface mesh regularization. Left
- original; Right - after mesh regularization.

In [121], the edge contraction and linear averaging method was used to improve the quality of tetra meshes with the edge-
ratio (the longest edge length over the shortest edge length) and Joe-Liu parameter (2

4
3 ×3× (|V|) 2

3/∑0≤i< j≤3 |ei j |2, where|V|
denotes the volume,ei j represents the edge connecting vertexvi andv j ) as metrics. The goal is to improve the worst parameters
in each iteration. Here we still use the same edge contraction scheme, but relocate each interior vertex to its mass center (Eqn.
(5.37)) since it can minimize the energy defined earlier (

∫
V ‖ y− p ‖2 dσ ). From the right picture in Fig. 3.28, we can see that

the worst Joe-Liu parameter is improved significantly afterquality improvement. Fig. 3.29 and 3.31 show interior tetrameshes
of mAChE and Ribosome 30S.
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Figure 3.28: The histogram of the aspect-ratio and Joe-Liu parameter.

3.5.3 Results and Conclusion

Monomeric mAChE: The extracted tetrahedral meshes of the monomer as shown in Fig. 3.29 have been used in the finite
element analysis of the steady-state Smoluchowski equation (SSSE) for diffusion rate constant calculations [108] [109]. Note
the adaptive meshes around the narrow gorge region (the active site in mAChE is at the bottom of this gorge).

Figure 3.29: Interior and exterior tetrahedral meshes of monomeric mAChE. The left two pictures conform to the SAS with
inflation σ = 2, and the right two pictures conform to the surface constructed from Gaussian summation withp1 = 0.25,
p2 = 1.0. From left to right: (65147 vertices, 323442 tets), (121670 vertices, 656823 tets), (103680 vertices, 509597 tets) and
(138967 vertices, 707284 tets). The color shows electrostatics potential (leftmost) and residues (the right two).

Tetrameric mAChE: We also generated adaptive tetrahedral meshes for the acetylcholinesterase in tetrameric form, with
two different arrangement of the monomers. Each monomer hasan active site accessible though a long narrow gorge (20
Angstrom), so there are a total of four gorges. Fig. 3.30 shows the two crystal structures. In the first crystal structure,two
gorges are partially blocked, while the other two are completely accessible to solvent. In the second one, all the four gorges
are open. Each of the adaptive meshes have finer triangles around the region of the four gorges. These meshes are also used in
calculating the diffusion rate constant [119].

Ribosome:Ribosomes are macromolecular complexes responsible for the translation of mRNA into proteins. These com-
plexes consist of two subunits: the larger 50S and the smaller 30S, both of the subunits are composed of rRNA and protein
constituents. Atomic level, residue-level and low resolution structure models were constructed from density maps as shown
in Fig. 3.3 and 3.5. The constructed exterior meshes are being used for the finite element solution of the Possion-Boltzmann
equation [27]. Fig. 3.31 show interior and exterior meshes of the Ribosome 30S/50S.

We have developed a quality molecular meshing approach directly from PDB molecular structural data, with adaptivity
at prescribed active sites on the molecular surface. Our generated meshes continue to being used in several boundary/finite
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Figure 3.30: Interior and exterior tetrahedral meshes of tetrameric mAChE,p1 = 0.5, p2 = 1.0. The left two pictures show the
1st crystal structure 1C2O (133078 vertices, 670950 tets),and the right two pictures show the 2nd one 1C2B, (106463 vertices,
551074 tets). Gorges are shown in red boxes.

Figure 3.31: Interior and exterior tetrahedral meshes of Ribosome 30S, low resolution,p1 = 0.03125,p2 = 1.0. From left to
right: (33612 vertices, 163327 tets), (37613 vertices, 186496 tets) and (40255 vertices, 201724 tets). The pink color shows 16S
rRNA and other colors show proteins.
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element biophysics simulations [108, 109] [119].

3.6 Multi-resolution Surfaces

Exploratory visualization of large molecules and even larger biomolecular complexes (LBCs) is useful in understanding the
structure of the entity in question and visually inspect itsbio-chemical properties. Although, advancement in computer graphics
has made this exploration possible, it is still extremely memory intensive and far from being real-time when it comes to
visualization of large macromolecules and molecular complexes at high resolution. As the resolution of the representation is
varied, different features of the molecules are discernable. At high resolutions, near the 1 and 2 Å range, one can distinguish
atoms from each other, showing a very high detailed map of themolecule. At this atomistic resolution, biologists can study
the active sites in detail. Active sites, or activity sites where different proteins bind and interact, or small molecules (ligands)
dock with proteins are often studied by molecular biologists at this fine resolution. For example, during the oxy-deoxy process
in the hemoglobin molecule and the binding/dissociation ofthe oxygen ion with the Iron ion, the activity site is the region
surrounding the heme group of atoms containing the Iron ion,and hence the area of interest and activity is necessarily best
visualized there at atomistic detail(resolution), while the rest of the atoms of the protein scaffolding the heme couldbe captured
at coarser resolutions. In figure 3.32, we show an example of this multiresolution visualization of the hemoglobin molecule with
the region surrounding one of the active sites depicted at a finer resolution. At lower resolutions, between 5 to 10 Å, secondary
structures become more apparent in volumetric maps. Imaging data of large structures like icosahedral viruses, captured at
very low resolutions show the arrangement of protein capsomers on their genomic enclosing shell. When scientists look at
each capsomer in a higher resolution, the arrangement of proteins, then the structures in the proteins and finally the atomic
arrangements become apparent. In figure 3.33, we show the Large Ribosomal Subunit at two different resolutions, bringing
out different sets of features independently. Hence we see that studying large biomolecular complex (LBC) structures involves
visualization at multiple levels of resolution.

3.6.1 Interactive Exploratory Visualization

This program takes an ASCII formatted file containing the center coordinates commonly referred to as the PDB (Protein Data
Bank). Each atom’s type gives it a unique radius. The user canalso select to color the resulting adaptive meshes by properties
like the chain number etc. The interface allows the user to change the resolution inside and outside theroverand the isovalues.
A set of three axis, aligned with the global x, y and z axes (colored red, green and blue for the positive axes) are used to both
move and resize therover . A wireframe of a cube is rendered to show the outline of therover . These geometry are rendered
with no depth in OpenGL to always keep them on top (In figure 3.34, we have added depth to therover to show the reader the
actual position). Knobs at the end of the axes are used to resize the inner region. The traditional user interface transformations
like translation, zoom and rotation are provided.

On loading a PDB file, an adaptive surface is extracted with the rover in a default position, the outer region at low resolution
5Å and the inner region at atomic resolution and more denselysampled. UI widgets are provided for the user to change all of
the above parameters.

Autonomous Movement ofRover

We also generate a trajectory for therover to move autonomously by tracing a path within the pockets (depressions) and tunnels
(through holes) on the molecular surface that we identify. For this purpose, we realy heavily on the critical points of the distance
function imposed by the molecular surface. The distance functionhS assigns every pointx its distance to the surfaceS. When
S is known only via a discrete representation, for example a set of pointsP, one approximateshS by hP where at every point
x∈R

3, the function value ofhP gives the distance to the nearest sample pointp∈ P. The critical points ofhP are of four types
- maxima, index-1 saddle, index-2 saddle, minima and all four types of critical points can be detected along with their indices
by using Voronoi and Delaunay diagram ofP [107].

To automate the movement of therover , we first detect the pockets and tunnels of the molecular surface. A pocket is a
depression on the surface with narrower mouth and a tunnel isa through hole on the surface that contributes to the genus of
the surface. In order to detect these topological features,we cluster the maxima and index 2 saddle points lying exterior to the
surface and compute their stable manifolds. For details of the algorithm, see [9].
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(a) The entire hemoglobin molecule is represented at a coarse
resolution, showing the main globular chains.

(b) TheRoveris moved to a region of interest, which is resolved
at a higher resolution.

(c) A zoom into theRovershowing smooth adaptive surfaces. (d) The wireframe rendering shows crack free isocontouring.

Figure 3.32: A single resolution image of the hemoglobin molecule hides important active site details. We provide the user
with a rover to dynamically compute regions of interest with higher resolution using a combination of novel fast summation
algorithms and smooth dual contouring techniques.
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(a) A lower resolution model showing the different RNA chains
and proteins in different colors. The tertiary and global structure
of the molecule is apparent at this resolution.

(b) The Ribosome is rendered at higher resolution, showing near
atomic details. While this is useful to study a small portionlike
an active site, this destroys all global information in the image.

Figure 3.33: Comparison between details revealed by high and low resolution molecular surfaces.

Once these features are detected, the task is to build a trajectory through these features so that therover can follow the
path. To build one such path, we restrict our computation only within each pocket or tunnel and collect the index 1 and index
2 saddle points lying inside these features. We then computethe unstable manifold of the saddle points. The unstable manifold
of an index 2 saddle point (U2) is one dimensional, where as the unstable manifold of the index 1 saddle point(U1) is two
dimensional. Computation of these structures has been described in detail in [57]. TheU1s are further starred to remove the
tiny, thin patches along the path and a clean one dimensionalpolylinear trajectory is created. We can this trajectoryT. The
distance function is then sampled onT at close enough intervals in order to estimate the dimensions of theroverat every sample
point onT. The dimension of therover is then set to the maximum distanxe function value within thepocket/tunnel. Figure
3.35 shows the performance of the feature (pocket and tunnel) identfication along with the trajectories of therover computed
inside them.

3.6.2 Multiresolution Molecular Surfaces

Let us consider an LBC withM atoms centered atci , and radiir i ,0≤ i ≤M. Since we are dealing with proteins and RNA, we
can simplify our problem by assuming that the radii come froma small discrete set, so each set can be computed separately
and summed up (the fast summation algorithms do not considerdifferent radii for the kernels). Let the roving cube break
this set into two disjoint setsVout,Vin with Mout,Min : Mout+Min = M atoms each. We allow three different kinds of dynamic
updates. First, the resolution of the inner and outer functions (fout, fin), controlled by changing the parametersβout andβin.
The isovalues in each region (isoout, isoin) can be changed, showing the skin (molecular surface at isovalue 1) and the backbone
(regions of higher density). The user is also allowed to roamthe dataset, visualizing regions in higher resolution using the
Rover. In figure 3.36, we show the main steps in our algorithm. Theseinteractions require maintaining a set of active atoms in
theRover, dynamically updating the new function and a smooth adaptive isocontouring algorithm.

Atom set query

To speed up the query of particles lying in and out of the sub-volume we construct of a range tree on the input centers [65]. A
range tree is anO(log(M)) method (for anM atom system) for determining a subset of the input which liesinside any given
range. We consider the construction of the range to be pre-processing and is not included in the actual computation. On every
repositioning of the sub-volume, we have to query the range tree to obtain the subset of centers inside the sub-volume andits
complement set (centers that are outside the sub-volume.) Note that this is two range queries and not one. The complexity
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Figure 3.34: Therover in action.
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Figure 3.35: Top row: The surface of gramicidin D ion channelis shown (transparent) with the detected tunnel inside (yellow
body and red mouths). The subfigure in the right pannel shows the path detected via the unstable manifolds of index 1 and 2
saddle points falling inside the tunnel. Bottom row: The molecular surface of mouse Acetylcholinesterase (mAchE) is shown
(transparent) with the pocket (green) identified. The active site of this molecule resides inside the gorge enclosed by the pocket.
A closeup of the triangulation is shown in the left corner andthe path detected inside the pocket is shown in the right corner.

for the range query given a bound isO(log(M + k))) for some constantk. Range tree also carries the storage overhead of
O(M logM).

Fast density function update

For interactive visualization of dynamically updatedRoverand resolution, isovalue parameters, we need algorithms tocompute
the functionsfout and fin efficiently. When theRovercube is moved, a new volumefin needs to be computed for isosurfacing.
This is probably the most common update operation performedduring interaction. We provide precomputation based algorithms
to speed up this update.

Direct summation:If we haveN output points andM Gaussians, then we can compute the sum at all the points in O(NM)
time and O(M+N) memory. If the rate of decay of the Gaussian ishigh, then we can use a truncated Gaussian and update only
around it. Consider a width ofw for a truncated Gaussian. Using local summations, we get a computation cost ofMw3. For
grids (whereN is large, typically 1283 to 2563), and slow decay Gaussians, this operation can be expensive.

Fast summation algorithms The Gaussian function summation can be expressed as a convolution. This allows the functions
fout, fin to be quickly computed with a change ofβout,βin using the Fourier transform. There are fast Gaussian summation
algorithms including general multi-pole methods. We follow the method outlined in [91],[16] to compute both the functions.
The cost of updating the function in theRoveris seen to vary as̄M logM̄ for M̄ atoms influencing the inner function. In the
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Figure 3.36: A block diagram showing the system implementation.

case of LBCs where a large number of atoms are represented in asmaller subgrid, this dependence on the number of atoms
will be a bottleneck to the update process. In [16] the summation is approximated as a sum of locally defined functionsφ such

as bsplines or truncated Gaussians (see also [92]):f (x) = G⊗
M−1
∑

i=0
δ (x− ci) ≈ φ ⊗ ∑

i∈In
k⌊x−i⌋δ (⌊x− i⌋) whereφ is a locally

supported function,k is a the set of coefficients forφ . In is a cubic set of indices:{{i, j,k} : i, j,k ∈ −n/2 .. n/2−1}. Their
algorithm usesO(n3 logn+Mm3+N3 logN) time andO(n3+N3+M) memory, wheren is taken to be the same order ofM and
controls the error withm for this precomputation. The truncated function has support of size 2m+1. Using this higher order
grid, a simple convolution withφ is used to computefin. Thus, for grids with low atom density, a range tree is used toobtain
atoms within the newrover and the function computed. For grids with high atom density,we switch to using a precomputed
higher order grid. A convolution withφ with the correct subset ofk gives usfin. This step is independent of̄M, but requires the
precomputation of the coefficientsk.

Updateβout: The Fourier transform of the new Gaussian can be done analytically. The cost is in multiplying the two set of
frequencies (O(N3

out)) and performing an inverse Fourier transform (O(N3
out logNout)). We also need to isocontour the outer and

boundary regions.
Updateβin: For the range tree partitioning method, we obtain the list ofatoms within theRoverin O(M logM) time and

perform a fast summation in approximatelyO(Min+N3
in logNin) time [16]. The higher order grid update is more expensive. We

would need to precompute the coefficientsk again everywhere, and then perform the convolution ofφ with a subset to update
fin.

Roverupdate:The currentβin gives us the width of the truncated kernels. Using the range tree data structure, we query for
the set of atoms influencing therover and perform a fast summation to updatefin. The mesh needs to be recomputed. If the
movement of the rover was small we can reuse the previously compute fin and its corresponding isosurface. The movement of
theroveralso allows us to perform any well known caching algorithm tostore frequently visited active sites in high resolution
in our cache.

Smooth adaptive isocontouring

We use dual contouring [62] as our surface extraction algorithm. Dual contouring uses the dual map of the primal contouring
(Marching Cube) and normal tagging (Hermite Data) to extract the iso-contour. We choose this method primarily because of
it avoids the degenerate cases of primary contouring where cracks are introduced. Our algorithm differs from that of Ju et
el [62] in the minimizer computation. Instead of Hermite data and QEF minimizer, we compute a vertex termedbishoulder
point [76] that closely approximates the true contour. In figure 3.37, we show how the bishoulder point is a better minimizer for
smooth functions (If we were to perform isocontouring of objects with sharp edges, we would not use this technique). Lopes
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(a) The traditional QEF minimizer forces sharp edges in the func-
tion, leading to unrealistic isosurfaces for the smooth electron
density function of molecules.

(b) A bishoulder point based dual contouring algorithm results in
smooth contours.

Figure 3.37: The hemoglobin molecule (PDB:1A00) is rendered using the traditional QEF minimizer and our bishoulder point
based dual contouring algorithm. We see that our method leads to smooth realistic isosurfaces.

and Brodlie [76] detailed in their reports the mathematicalreasoning behind bishoulder point’s accuracy. We retain the general
principle of dual contouring in generating quads. The algorithm traverses each cell recursively. Upon locating a leaf node that
contains iso-contour, we check thesign-change edgesof the cell. Consider the interval defined by the function values of an
edge’s endpoints. If the iso-value is within that interval,then the edge is a sign-change edge. For example, in Figure 3.38(a),
AB, AC, and AD are sign-change edges. We refer to a sign-change edge as beingminimalwhen it is an edge of the smallest
cell neighboring itself. In Figure 3.38(a), AB is the minimal sign-change edge. If the edge is not minimal, then it is skipped. If
the sign-change edge is minimal, then a quad is created, connecting the four bishoulder points of the four cells neighboring the
sign-change edge.

Our dual contouring algorithm uses an octree as its surface extraction data structure. The octree is a recursive subdivision
of space into variable-sized cells. Its structure is inherently similar to that of a uniform cell division in MC. We can exploit
its subdivision structure to produce adaptive cells. This is a simple matter of subdividing cells that borders the sub-volume.
Figure 3.38(b) illustrates the use of adaptive cell construction with octree.

3.6.3 Examples and Timings

We have implemented the algorithm for theRoverusing standard C++ and QT (www.trolltech.com). All the experiments were
done on an AMD Opteron 246. We looked at different size molecules, ranging from the hemoglobin (PDB:1A00) which has
approximately 4000 atoms, to the Ribosomal subunits (PDB:1J5E,PDB:1JJ2) which have around 100,000 atoms and the Human
Rhinovirus Virus, which has over a million atoms.

In figures 3.39 and 3.40, we show both the methods of multiresolution our algorithm provides. First, the site of interest in
the molecule is smoothed using a sharper kernel than the restof the molecule to differentiate it and provide higher detail in that
region. Next, we use our smooth, adaptive dual contouring algorithm to extract an adaptive mesh which provides high detail
at the region of interest and lower resolution elsewhere. These two parameters, the kernel decay rate and the isocontouring
mesh refinement can be controlled by the user to obtain feature based functions and visualizations. In figure 3.39, the heme
is the active site of the molecule and the region of interest.Hence, the atoms of the heme are smoothed using a gaussian at
a 1A resolution while the rest of the molecule was blurred a coarser resolution of 3A. Also, by allowing the user to provide
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(a) (b)

Figure 3.38: (a) is a 2D analog for the sign-changed edge. (b)is an example of adaptive cell construction with octree.

a cube around the heme, the adaptive isocontouring algorithm was used to extract a higher resolution mesh around the active
site. In figure 3.40, we use the same two multiresolution techniques to show the trimer, a unit of symmetry of the icosahedral
Human Rhinovirus. The Large and small Ribosomal subunits are responsible in part for the creation of proteins and widely
studied. The main active sites are called as the A,P and E sites. There is also the formation of the cavities and exit tunnels in the
bound complex. It is a rich complex with various features including small proteins helping its activity. In figure 3.41, we see
that increasing the resolution in theRoverand changing properties like the grid spacing and color helps the user focus on the
regions of interest. The smoothness of the dual contouring is maintained even though there is a sharp increase in both resolution
and sampling density, as shown in figure 3.42. Timing resultsand the number of quads generated in the adaptive isocontouring
are presented in table 3.6.3.
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(a) The heme of the myoglobin is colored
differently using an additional color func-
tion summation. The function around the
heme is extracted at higher resolution.

(b) The atomic resolution is able to
clearly distinguish the ring of atoms com-
posing the heme structure.

(c) The wireframe mesh of the iso-
contour.

Figure 3.39: The myoglobin molecule showing the heme structure. We used a kernel with sharp decay rate, modeling the atomic
structure for the heme where the oxy-deoxygenation takes place. A coarser rate of decay was used for the rest of the molecule
as the active site is of primary interest for the end user. Theregion around the heme was extracted at a higher resolution using an
adaptive isocontouring algorithm. To maintain the required features, fewer frequencies were required for most of the molecule
as compared with the heme.

(a) The virus with one capsid
shown in higher resolution.

(b) A zoomed view to present the
smooth isocontour.

(c) The wireframe mesh of the
adaptive isocontour.

Figure 3.40: The Human Rhinovirus, an icosahedral virus (1FPN.PDB) showing a trimer (a symmetry unit) in higher resolution.
The trimer was smoothed using a sharper gaussian than the rest of the virus. Also, an adaptive isocontouring technique was
employed to extract a higher resolution mesh in a cube containing the trimer.

Related Work

Implicit Solvation Surface from volumetric Density Maps (Radial Basis Splines,Cin f)

There are three different yet often used molecular interfaces [98], the van der Waals surface (VWS), the solvent-accessible
surface (SAS) and the solvent-excluded surface (SES) [41] or sometimes called the Lee-Richards surface [69]. The SES orthe
Lee-Richards surface is by far the molecular surface of choice for solvation energy calculations [60, 71], and is the surface for
our meshing approximations.

According to the properties of molecular structures, Laug and Borouchaki used a combined advancing front and generalized
Delaunay approach to mesh molecular surfaces [68]. Algorithms were developed for sampling and triangulating a smooth
surface with correct topology [3]. Skin surfaces, introduced by Edelsbrunner in [44], have a rich combinational structure and
provide a smooth alternative to the Lee-Richard’s surface.Cheng et. al [36] maintained an approximating triangulation of a
deforming skin surface. Bajaj et. al [10] give NURB approximateion of Lee-Richards molecular surfaces as well as present
methods to maintain molecular surfaces for varying solventradii [13]. Compressed volumetric representation of molecular
surfaces is given in [6]. Simplex subdivision schemes are used to generate tetrahedral meshes for molecular structuresin
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PDB Number of Coarse Volume Fine Volume Polygonization Number of
ID particles Summation Summation Time Quads

(secs) (secs/atoms)
Coarse Volume Resolution: 643 | Subvolume Resolution: 523

1A00 4770 0.94 0.32/470 0.72 73181
1J5E 51743 0.94 0.66/10997 0.68 43092
1JJ2 90418 0.93 0.63/10426 0.66 49176

Coarse Volume Resolution: 128 | Subvolume Resolution: 1043

1A00 4770 2.95 3.09/474 4.32 313421
1J5E 51743 3.68 2.95/11180 3.82 216307
1JJ2 90418 3.02 2.95/10598 3.54 251904

Coarse Volume Resolution: 256 | Subvolume Resolution: 2063

1A00 4770 10.81 25.79/474 28.76 1257644
1J5E 51743 10.89 27.97/11180 29.04 926541
1JJ2 90418 10.35 26.32/10598 23.55 1074166

Table 3.6: This table shows the timing results of our method.All tests are performed on AMD Opteron 246 with 16GB of
memory. The subvolume is sampling(40%)3 = 6.4% of the entire input domain. In the third set of results, we perform the
surface extraction at very high resolutions, where the small domain in theRoveris sampled at 2063.

(a) The Small Ribosomal Sub-
unit at a single resolution.

(b) Therover is used to visualize
a region of interest at higher res-
olution.

(c) The Large Ribosomal Sub-
unit at a single resolution.

(d) An active site is extracted at
higher resolution showing atomic
details. The rest of the molecule
still presents the global features.

Figure 3.41: We present global and local views in the Ribosomal subunits and contrast it with using a single overall resolution.
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Figure 3.42: Close up images of an active site in the Small Ribosomal subunit, showing the smooth adaptive dual contour.

solving the Poisson-Boltzmann equation [60]. Gaussian functions have been used to construct density maps [29, 58, 83, 1, 81],
from which implicit solvation models are approximated as anisocontour [58, 71, 52]. However, it still remains a challenge to
generate quality and adaptive triangular and tetrahedral meshes for arbitrary molecular structures.

Algebraic Shell Splines (C1)

One way to generate an analytical representation of the molecule is to define an analytical volumetric density function,for
example, the summation of Gaussian functions [59], Fermi-Dirac switching function [73], or piecewise polynomials [72], and
approximate the SES by an iso-contour of the density function. Techniques of fast extracting an iso-contour of smooth kernel
functions are developed in [5][19]. However the error of thegenerated isosurface could be large and result in inaccurate energy
computation. A NURBS representation for the SES is presented in [11]. Although it provides a parametric approximation to
the SES, it does not solve the singularity problem. Edelsbrunner [45] defines another paradigm of a smooth surface referred
to asskin which is based on the Voronoi, Delaunay, and Alpha complexesof a finite set of weighed points. Theskin model
has good geometric properties such as it is free of singularity and it can be decomposed into a collection of quadratic patches.
Triangulation schemes based on theskinmodel are provided in [34][35]. However when applied to the energetic computation,
theskin triangulation which in fact is a linear approximation to theSES has to be very dense to gain accuracy, which causes
oversampling on the surface and hence makes the computationvery slow.

Meshing of Molecular Interfaces

Mesh Generation:As reviewed in [89, 112], octree-based, advancing front based and Delaunay like techniques were used for
triangular and tetrahedral mesh generation. The octree technique recursively subdivides the cube containing the input geometry
until the desired resolution is reached [104]. Advancing front methods start from a boundary and move a meshed front from
the boundary towards empty space within the domain [50, 75].Delaunay refinement is used to refine triangles or tetrahedra
locally by inserting new nodes to maintain the Delaunay criterion (‘empty circumsphere’) [38]. Sliver Exudation [37] was
used to eliminate slivers (bad aspect ratio). Shewchuk [105] solves the problem of enforcing boundary conformity by useof
constrained Delaunay triangulations (CDT).

The predominant algorithm for isosurface extraction from volume data is Marching Cubes (MC) [77], which computes
a local triangulation within each cube to approximate the isosurface by using a case table of edge intersections. MC was
extended to extract tetrahedral meshes between two isosurfaces [51]. A different and systematic algorithm was proposed for
interval volume tetrahedralization [86]. By combining SurfaceNets [56] and the extended Marching Cubes algorithm [64],
octree based dual contouring [61] generates adaptive multiresolution isosurfaces with preservation of sharp features. The dual
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contouring method has also been extended to extract adaptive and quality tetrahedral meshes from volumetric imaging data
[120, 121].

Quality Improvement: Algorithms for mesh quality improvement can be classified into three categories [112, 89]: local
coarsening/refinement by inserting/deleting points, local remeshing by face/edge swapping and mesh smoothing by relocating
vertices.

Laplacian smoothing relocates vertex position at the average of the nodes (vertices) incident to it [48]. Instead of relocating
vertices based on a heuristic algorithm, the optimization technique measures the quality of the surrounding elements to a
node and attempts to optimize it. The optimization-based smoothing yields better results, nevertheless it is more expensive
than Laplacian smoothing. Therefore, a combined Laplacian/Optimization-based approach was recommended [33, 49]. The
Laplacian operator was discretized over triangular meshes[82], and geometric flows have been used in surface and imaging
processing [101, 117]. Physically-based simulations are used to reposition nodes [74]. Anisotropic meshes are obtained from
bubble placement and equilibrium [106]. Mesh regularization was discussed in [88, 115].

Multi-resolution Surfaces

The electron density and shape are used in a similar sense in the literature with respect to molecular surface modeling. There
have been many definitions for the molecular surface of biomolecules.

Molecular surface visualization Many smooth models of the molecular surface have been proposed, including explicit
rolling ball blend models and implicit Gaussian models. TheSolvent Accessible Surface (SAS) [70] is defined as the locus
of the center of the probe when it is in touch with the moleculeand not intersecting it. The Solvent Excluded Surface (SES)
[94] provides a smooth contour of the molecular surface. It is the surface which envelopes the region not accessible to the
solvent. Later analytical expressions for the patches which make up the surface were given in [42] and [39]. A general surface
description for a set of points is given in [46]. Non Uniform Rational BSplines (NURBS) descriptions for the patches of the
molecular surfaces are given in [12] and [24]. A triangulation based on a similar idea of using weighted Voronoi and Delaunay
triangulations is given in [4]. Fast computations of the SESis described in [99] and [97]. In [100], the authors describean
algorithm to update the triangulation if only a part of the molecule changes positions. Using Gaussians around the atom centers
to represent the van der Waals region of influence, many authors represented molecular surfaces as isocontours of this field
[30], [58]. A similar function was used at the interface to model varying probe radii by [113]. Fast computation of the NURBS
representation when the probe radius changes was given in [24]. Due to its computational efficiency, the gaussian function is
being used more frequently even in docking algorithms [95].

Resolution of density maps The electron density of an atom at a pointx is represented as a Gaussian function:f (x) =

eβ ( |x−c|2
r2
−1), wherec, r are the center and radius of the atom. If we consider the function value of 1, we see that it is satisfied at

the surface of the sphere (x : |x−c|= r). Using this model, the electron density of a LBC withM atoms atx is just a summation

of Gaussians:f (x) =
M−1
∑

i=0
e

β ( |x−ci |2
r2i
−1)

. Hereβ is a parameter used to control the rate of decay of the Gaussian and known as the

blobbinessof the Gaussian [30], [58]. Isosurfaces of this function with isovalue 1 are extracted using traditional isosurfacing
methods like primal/dual marching cubes. In [58]β = −2.3, f (x) = 1 is provided as a good approximation to the Molecular
Surface. This is used as theatomic resolution(res) model’s parameter. Through correspondence with Dr Wah Chiu’s group
from from Baylor College of Medicine, Houston USA, and from EMAN [79], we also have the following parameters for the
Gaussians: The Gaussian is weighted by the number of electronsτi for the ith atom. The resolution is taken as the distance in

Å where the Gaussian function decays to either 0.5 or 1/e of the peak. Hence,f (x) =
M−1
∑

i=0
τie−a|x−ci |, a= log2

res2
, or a= 1

res2
.

Another commonly used definition is method is in the Fourier domain:F (e−ax2
)(k) = e−π2k2/a, a= log2π2

res2
, or a= π2

res2
.

Adaptive isocontouring Marching Cubes (MC) has been a widely used uniform grid isocontouring algorithm [78]. By
storing only the cells containing an iso-contour, uniform data grids are converted adaptively into octrees [103]. Several post-
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processing are performed in which cells meeting certain criteria are merged, producing an adaptive contour. Westermann et al.
described an octree-based extraction method [114] that patches the cracks produced by traditional MC by limiting difference
of levels between neighboring cells to two and by applying a pyramid averaging scheme to cover the cracks with additional
polygons. Dual contouring reported in [62] describes a method that contours on the dual graph of MC, producing crack free
isosurfaces.

Multiresolution modeling There have been various algorithms used in multiresolutionmodeling in research areas both in
and outside of molecular modeling. A good survey of existingtechniques are presented in [53].
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Relevant Mathematics

Partial Differential Equations

Fast Summations and Fourier Transforms
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Chapter 4

Complementary Space

Molecular surfaces are solvent contact interfaces betweenthe strongly covalent bonded atoms of the molecule and the ionic
solvent environment which is mostly water. Molecular surfaces often contain a number of pockets, holes and interconnected
tunnels with many openings (mouths), aka molecular features in contact with the solvent. Several of these molecular features
are biochemically significant as pockets are often active sites for ligand binding or enzymatic reactions[7], and tunnels are
often solvent ion conductance zones [63]. Since pockets or holes or tunnels share similar surface feature visavis theiropenings
(mouths), we shall sometimes refer to these molecular features collectively as generalized pockets or pockets.

The surface of a protein can be represented as a closed compact surfaceS in R
3 and the closed interiorV as the region

bounded byS. It is important to correctly identify the main biophysicalfeatures ofS in the protein surfaces, i.e. "pockets", so
that they can be used for quantitatively analyzing the binding affinities of ligands and other biochemical reactions. Studying the
shapes and other biochemical properties of protein pocketshas many potential applications in biomedical research, for example
screening potential drug molecules in computational drug design.

4.1 Mouths and Pockets

The surface of a protein can be represented as a closed compact surfaceS in R
3 and the closed interiorV as the region bounded

by S. It is important to correctly identify the main biophysicalfeatures ofS in the protein surfaces, i.e. "pockets", so that
they can be used for quantitatively analyzing the binding affinities of ligands and other biochemical reactions. Studying the
shapes and other biochemical properties of protein pocketshas many potential applications in biomedical research, for example
screening potential drug molecules in computational drug design.

In this subsection, we present a simple and fast geometric algorithm for extracting pockets of any closed compact smooth
surface, particularly complicated molecular surfaces of proteins. This algorithm employs a two-step level-set marching method,
first outward from the original protein surfaceS, and then backward from a topological simple enclosing shell T resulted from
the first marching. The backward marching step would move thefront back to the original surfaceS, except the "pocket" regions
onS. Thus the pockets are defined as the regions outsideSand not reached by the backward propagation, as illustratedin Figure
4.1.

The result of this marching algorithm is computed as a 3D volumetric "pocket function" P(x), whereP(x)> 0 if x is inside
the pocket regions onSandP(x)< 0 if x is outside. This volumetric representation of pockets is very convenient, since it allows
us to compute the pocket bounding surfaces as a level setP(x) = 0, quantify shape attributes of the pockets , and visualize them
with volume and surface visualization techniques.

This pocket extraction algorithm is a geometrical method independent of any particular model of the protein surface. It
works for any representation of protein surfaces, as long asthe final protein surface is described as a closed compact surface. It
constructs a smooth representation of the pockets as a volumetric pocket functionP(x), from which the pocket envelops can be
extracted as the level setP(x) = 0. The extracted envelops match very well with the geometricshapes of the protein pockets,
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(a) (b)

Figure 4.1: (a) Outward propagation fromS to the shellT. (b) Backward propagation fromT to the final frontF. Pockets are
extracted as the yellow shaded regions betweenF andS.

as demonstrated by the examples in the later subsections. Our Pocket extraction and feature analysis algorithm is also clearly
generalizable to many other classes of free-form surfaces.

4.1.1 Pocket Extraction Algorithm

We present in subsection 4.1.1 our pocket extraction algorithm, which applies a two-step marching approach to compute the
pocket functionP(x). subsection 4.1.1 describes our method of computing signeddistance function (SDF) that is central to the
pocket extraction algorithm in subsection 4.1.1.

Pocket Extraction

In Figure 4.1, we first use a simple 2D example to illustrate the basic ideas of our pocket extraction algorithm, i.e. the two-step
surface marching method. Consider the closed compact surfaceS, the green inner curve in Figure 4.1 in 2D space. The two-step
marching method consists of a outward propagation (fill) step and a backward propagation (removal) step, in order to extract
pockets onS.

The first marching step starts from the original surfaceSand moves outwards at a constant speed to fill all pockets, voids,
and depressions on the surface. As shown in Figure 4.1(a), the front propagates outward from the surfaceS to a final shell
surfaceT. The propagation front would change its shape and topology during the marching. For example, the topology of the
intermediate frontR (dashed line) in Figure 4.1(a) is different from bothSandT. Eventually the topology of the front would
become the same as that of a simple sphere. The outward marching stops at the final shell surfaceT, which is far enough
away fromS with a distancet such thatT has the same topology as a simple sphere and its topology would not change any
more by further outward propagation. The exact value of the marching distancet from Sto T is not significant in the following
computations of the pocket function, as long as it is sufficiently large to ensure thatT is a simple shell. For a protein, we typical
chooset to be as least twice the largest dimension of the protein.

The second marching step starts from the shellT backward towards the original surfaceSand moves at a constant speed,
in order to reveal the pockets onS. The marching distance of the second step is selected to be the same ast in the first step, so
that the backward propagation front would not penetrateSand stops when it reachesS. However, notice the outward marching
in the first step is irreversible and the final front of the second marching cannot extend into the depressed regions, i.e. pockets,
on the surfaceS. Therefore in our algorithm,pocketsare defined as the regions between the final frontF of the backward
marching, dashed line in Figure 4.1(b), and the original surfaceS. In the simple 2D example in Figure 4.1, the pocket region is
illustrates as a shaded (yellow) area. This definition intuitively captures the main geometric characteristics of protein pockets.
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Next we need to develop a mathematical representation of thepocket regions.

Starting from the initial surfaceS, the propagation front of the first outward marching step moves along its outer normal
directions at a speedv(x). The marching frontR(t) at timet can be determined according to the level set method [56], i.e. R(t)
is the zero level set of a functionφ(x, t) satisfying the evolution equation:

φt + v|▽φ |= 0

with initial conditionφ(x, t = 0) = d(x), whered(x) is the signed distance function (SDF) fromS, defined as

|d(x)|= min
y∈S
||x− y||. (1.1)

The SDFd(x) is positive/negative whenx is outside/inside the surfaceS, and the marching frontR(t) is the level setφ(x, t) = 0.
If the speedv= 1 is constant, as we would assume in our two-step marching algorithm, the marching frontR(t) at time(distance)
t is simply the level set

d(x) = t. (1.2)

We will discuss an efficient algorithm to compute the signed distance functions (SDF) of a closed compact surface in
subsection 4.1.1, based on the fast distance transform. Applying the SDF algorithm, we present here the main algorithm of
computing a volumetricpocket function P(x) to represent the pockets on the protein surfaceSas follows:

1. Compute the SDF for S:Compute the signed distance functiondS(x) from the original surfaceS, wheredS(x)> 0 if x is
outsideSanddS(x)< 0 if x is inside.

2. Extract the Shell Surface T:Extract the shell surfaceT as the level setdS(x) = t, where the distancet > 0 is large enough
so thatT has the same topology as a simple sphere. As mentioned earlier, the exact value oft is not significant in the
algorithm.

3. Compute the SDF for T:Compute the signed distance functiondT(x) from the surfaceT, where the sign ofdT(x) is
inverted, i.e.dT(x)> 0 if x is insideT anddT(x)< 0 if x is outsideT.

4. Construct the Pocket Function P(x): The volumetric pocket functionP(x) is constructed as:

P(x) = min(dS(x),dT(x)− t)− ε, (1.3)

wheredS(x) anddT(x) are the SDFs computed in step 1 and 3. Notice that min(dS(x),dT(x)− t) > 0 only for points
outside the surfaceSand not reached by backward marching from the shellT, i.e. points in the pockets. A small positive
valueε is introduced to account for the size of solvent atoms, whichis typically set to a value between 1 and 1.5 Å. The
bounding surfaces of pockets (pocket envelops) then can be extracted as the level setP(x) = 0.

5. Smooth the Pocket Function P(x): AlthoughP(x) constructed in the previous step matches well with geometric features
of the pockets on the surfaceS, it can be noisy because of the small bumpiness onS. In order to remove small noises and
focus on the main features of the pockets, we apply a smoothing step to the pocket functionP(x). In our implementation,
one step of bilateral filtering [62] is applied to smoothP(x).

This pocket extraction algorithm is simple, flexible, and robust. Figure 4.2 shows a successful extraction of two tunnels
in an "8" shape. It works for any closed compact surfaces inR

3 space. Particularly it can be used for any molecular surface
models: union of balls, solvent accessible surface, or contours of electron density functions.

In order to show the effectiveness of our algorithm, we randomly select the "Bacteriochlorophyll Containing Protein" (PDB
ID: 4BCL) from the protein data bank (PDB) [6]. This protein has a very complex molecular surface and contains one large
binding site in the middle and small dents on its surface, as shown in Figure 4.3(a). The pocket functionP(x) of the protein
(4BCL) is computed using the algorithm described in this subsection. To better reveal the geometric relations between the
extracted pockets and the protein surface, we look at a 2D slice of the data. Figure 4.3(b) shows a slice of the protein 4BCL,
as a color-map of its SDFdS(x). The cross-subsection of the protein surface is displayed in Figure 4.3(b) as white curves, on
which the SDFdS(x) = 0. The large tunnel in the middle of the protein is clearly visible, with several additional small surface
dents and internal voids.
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(a) (b)

(c) (d)

Figure 4.2: (a) The original gray surface of the "8" shape andthe final shell surface (clipped) in dark red. (b) The "8" shape and
its tunnel envelops shown in green. (c) Volume rendering of the pocket functionP(x) of the "8" shape. (d) Another view of the
tunnel envelops extracted as a level set ofP(x).
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Figure 4.3(c) shows the color-mapped slice of the pocket function P(x) and the cross-subsection of the pocket envelop as
white curves. The cross-subsections of the protein surfaceand the pocket envelop are finally superimposed in Figure 4.3(d).
We can see that our pocket extraction algorithm has almost perfectly located all pockets and holes in the molecular surface and
how well they match with the geometric features on the protein surface. The pocket openings are extracted and displayed as
yellow line segments, where the two separate openings of middle tunnel are clearly visible.

(a) (b) (c) (d)

Figure 4.3: Pocket extraction example for the "Bacteriochlorophyll Containing Protein" (PDB ID: 4BCL). (a) The protein
surface and the big tunnel in the middle. (b) A cross-subsection of the protein surface shown as white curves on a slice of the
color-mapped protein SDF. (c) A cross-subsection of the pocket envelop is shown as curves on the slice of the color-mapped
pocket function. (d) The pocket envelop in (c) is superimposed onto the protein surface in (b), and they match perfectly.

Signed Distance Functions

Efficient and stable computation of signed distance functions (SDF)d(x) from a surface plays a central role in the pocket extrac-
tion algorithm described in subsection 4.1.1. A number of SDF algorithms were developed in recent years. In this subsection,
we present a method of computing the SDFd(x) based on fast distance transforms [30]. Other stable SDF algorithms may also
be applied, like SDF algorithms running on GPU [59] for better performance.

Given a 2D/3D binary image as input, the distance transform calculates the shortest distance from each pixel (voxel) to the
nearest non-zero pixels (voxels). The distance transform computation is very efficient and can be done in time linear to the
number of pixels (voxels). We extend the distance transforms to compute SDF for any closed compact surface.

Considering a closed compact surfaceSembedded in a regular grid, we define a grid pointp as anear point, highlighted
in Figure 4.4(a) for a 2D example, if at least a cell containing p intersectsS. Otherwisep is defined as afar point. The signed
distance functiondS(x) to the surfaceS is computed as follows:

1. Construct a binary imageI0 by setting the values of near points to 1 and far points to 0.

2. Compute the distance transform for the binary imageI0. As the result of the distance transform, the value of a near point
is now 0 and the value of a far point is the distance to the closest near point. Furthermore, the closest near pointcp to
each far pointp is recorded.cp is called thenear cousinof p. The time for this step is linear in the number of grid points.

3. For each near pointq, compute the shortest distancedS(q) from q to the surfaceS and set the sign ofdS(q) posi-
tive/negative ifq is outside/insideS, and record the point ˜q onSthat is nearest toq. So now we have the SDF for the near
points, and will compute the SDF for the far points in the nextstep.

4. The SDFdS(p) of a far pointp has the same sign as that of its near cousincp. The magnitude ofdS(p) is approximated
as|p− c̃p|, where ˜cp ∈ S is the point onSnearest tocp recorded in step 3.

We now explain more details of the step 3 in the above SDF algorithm. Without loss of generality, we assume the surfaceS
is decomposed into simplices, e.g. triangles in 3D, and the normal vectors of all its vertices always point towards the outside of
S. We need to compute the shortest distance from a near pointq to S, and determine whether a near pointq is outside or inside



128 CHAPTER 4. COMPLEMENTARY SPACE

(a) (b)

Figure 4.4: (a) A 2D example of SDF computation, all near points in the grid are highlighted in orange. (b) A 2D example of
determining whether near points are inside/outside the surfaceS. For the pointq1, its nearest point ˜q1 ∈ S is within a single
simplex and it is simply determined by the dot-product rule.But the nearest ˜q2 ∈ S of q2 is on the corner shared by two
simplices. A ray (the dashed line) is cast fromq2 to find the nearest intersecting simplex.

S. First, we calculate the point ˜q∈ Snearest toq, which is done by examining the triangles close to the pointq. Next we need
to decide whetherq is outside/insideS. In R

3, the nearest point ˜q∈ Sof q may be inside a triangle, on a triangle edge, or on a
triangle vertex.

• If q̃ belongs to only a trianglet ∈ S, i.e. q̃ is within the interior oft, thenq is outsideS if (q− q̃) ·nt > 0, wherent is the
normal vector of the trianglet. But this simple dot-product rule fails if ˜q is a shared point of two or more simplices, i.e.
q̃ is on a corner or edge ofS.

• If q̃ is on a edge of corner ofS, we use a ray-shooting method to find the closest simplex toq. We cast a rayRq from
q through an interior point of a simplex containing ˜q and compute the intersubsection points betweenRq and all other
simplices sharing the same ˜q. A 2D example is illustrated in Figure 4.4(b). The first simplex t0 intersected byRq is
chosen and the sign ofdS(q) is set as the sign of(q− q̃) ·nt0, wherent0 is the normal of the simplext0.

We prove two propositions about the signed distance functionsdS(p) computed by the above algorithm.

Proposition 4.1.1. The sign of SDF dS(p) is correctly set for every far point p .

Proof: We prove this by contradiction. The sign ofdS(p) of the far pointp is the same as that of its closest near pointcp. If
p is outsideS, then its near cousincp is insideS. Let us follow the path fromp to cp that consists of three segments along thex,
y, andz axes. The last outside point on the path must be a near point and is closer top thancp. This contradicts the definition
thatcp is the closest near point top. The same arguments hold ifp is insideS.

Proposition 4.1.2. The error of dS(p) is not accumulative and is bounded by the same order as the grid cell sideδ .

Proof: Clearly the magnitude ofdS(p) is larger than the distance|d(p,cp)| from p to its near cousincp and less than
|d(p,cp)|+ |d(cp, c̃p)|. The distance|d(cp, c̃p)| from the near pointcp to the closest point ˜cp onS is in the order ofO(δ ). Thus
we have the following inequality,

|d(p,cp)| ≤ |dS(p)| ≤ |d(p,cp)|+ |d(cp, c̃p)|
= |d(p,cp)|+O(δ ).
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Therefore error betweendS(p) and its approximated(p,cp)+d(cp, c̃p) is bounded byO(δ ).

Since the computed SDF always achieves the correct signs andhas bounded errors for the SDF, the above algorithm is
very robust. It was also shown to be very efficient and works even for highly complicated protein surfaces. The running time
of each step of algorithm isO(N), linear to the number of grid pointsN, except for step (3). In the worst case, step (3) has
computational complexityO(s·Nn), wheres is the number of simplices in the surfaceSandNn is the number of near points.
However, the regular grid provides a natural decompositionof the space, and typically only a small subset of simplices need
to be examined to compute the SDF of a near pointq in step 3. On the average case, the complexity of step (3) isO(Nn),
proportional to the number of simplices inS, which makes the computation of the SDF efficient even for highly complicated
protein surfaces in our tests.

4.1.2 Visualization and Quantitative Analysis

(a) (b) (c)

Figure 4.5: The molecular surface and pockets of HIV-I protease (1HOS): (a) Protein surface with the ligand in the middle
tunnel; (b) Pocket function visualized using volume rendering on the top of the protein surface; (c) The largest pocket (tunnel)
shown as a green surface in the cartoon of the protein structure.

Representing the protein pockets implicitly as a volumetric pocket functionP(x) allows for various ways to visualize and
analyze the pocket structures quantitatively. subsection4.1.2 describes the visualizations of the protein pocket functions and
pocket envelops. subsection 4.1.2 discusses some analysesthat can be performed on the protein pocket function.

Visualization

Because the pocket functionP(x) is a 3D volumetric scalar function, we can visualize it usingvarious volume visualization
techniques, e.g. ray-cast or texture based volume rendering and isosurface rendering. As an example of visualization,Figure
4.5 displays the HIV-I protease (PDB ID: 1HOS), an importantprotein for the maturation of HIV-I virus. An ligand can bind
in the tunnel of the HIV-I protease, which also has a few more large pockets on its surface. Figure 4.5(a) shows the protein
surface colored by the residues and the ligand bound in its middle tunnel. The pocket functionP(x) of the HIV-1 protease
is computed by using algorithm in subsection 4.1.1. Figure 4.5(b) renders the pocket function using 3D volume rendering
together with the protein surface to illustrate the overalldistribution of the pocket regions. The pocket envelops areextract as
the level setP(x) = 0, of which each connected component is the bounding surfaceof a pocket. We are often interested in
the largest pockets, which may serve as active binding sitesof ligands. as the large pocket region of the function. The pocket
(tunnel) with the largest volume is extracted from the HIV-1protease pocket function, which is actually the middle tunnel that
binds the ligand. Figure 4.5(c) displays the bounding surface of the largest pocket of the HIV-1 protease, i.e. the ligand-binding
tunnel, together with the cartoon of the protein structure.The visualization proves that our pocket extraction algorithm correctly
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captured the main pocket of the protein.

Quantitative Analysis

In this subsection we discuss some analyses based on the pocket functionP(x). They demonstrate the benefits of using the
pocket function to represent the protein pockets.Signatures of Protein PocketsFirst we look at calculating quantitative
measures such as volumes and surfaces areas, i.e. signatures, of the pockets of a protein. They can be easily derived fromthe
pocket functionP(x). As mentioned earlier, the pocket envelops are extract as the level setP(x) = 0. Each connect contour of
the level set is the bounding surface of a pocket. This becomes just a problem of computing signatures of contours of a scalar
function, which were described as "contour spectrum" in [3]. Basically, quantitative measures like the volume and surface area
of each pocket can be computed by summing up the contributions from individual cells that belong completely or partiallyto
the pocket. If the 3D domain is decomposed into simplices, the contribution from each simplex to the volume or surface area
of the level setP(x) = 0 can be quickly evaluated with a B-spline function[3].

Additional geometric and shape properties can also be computed for protein pockets based on the pocket functionP(x),
for example curvatures distributions [17, 60], shape histograms [53, 40], coefficients of volumetric function expansions [39],
and shape context [4]. Those shape properties of protein pockets may be used for building a database of the proteins pocket
structures, and applied to the problem of ligand binding prediction [44].

Pocket Mouth In some applications we wish to find a pocket’s openings (mouths), the interface connecting the pocket to
the space outside the protein. The number of mouthsm of a pocket (or tunnel) classifies the type of the pocket (or tunnel):

• void if m= 0

• normal pocketif m= 1

• hole or simple tunnel (simple conector)if m= 2

• arbitrary tunnel (multiple connector)if m>= 3

The pocket functionP(x) can be used to help obtaining any pocket’s mouths. The bounding surfaces of a pocket, extracted as
a connect contour of the level setP(x) = 0, can be divided into the mouth patches and the patches that interface to the protein
surfaceS. According to our pocket extraction algorithm described insubsection 4.1.1 and illustrated in Figure 4.1(b), pockets
mouths are the patches on the backward marching frontF , which do not reach the original surfaceS. Based on equation 1.3,
we havedS(x) > P(x)+ ε on the pocket mouths, wheredS(x) is the SDF from the surfaceS. Therefore, in our algorithm the
pocket mouths are defined as the points satisfying the conditions:

P(x) = 0 and dS(x)> ε.

Residues Near a PocketGiven a protein pocket, we often need to know the set of amino acid residues surrounding it. The
information would help to identify the protein sequence motifs that are involved in protein binding and related to certain protein
functions. This can be achieved by applying the SDF algorithm mentioned above to the envelop of the protein pocket:

1. Extract the envelopE of the protein pocket being studied. Notice the level setP(x) = 0 may contain multiple connected
contours, which are the envelops of separate pockets on the protein. Here we only extract the envelop surrounding the
pocket under consideration, as discussed in subsection 4.1.2.

2. Compute the SDFdE(x) for the envelopE.

3. For each residueR, evaluatedE(xR) at its coordinatesxR. If dE(xR) is less than some given threshold, then the residueR
is considered to be near the pocket.
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Data Structures for the Pocket Function

Another advantage of representing protein pockets as a volumetric function is to allow to construct data structures, such as
Contour Trees (CT) and Multi-Resolution Attributed Dual Contour Trees (MACT), for the pocket functionP(x). These data
structures have a number of applications such as pocket selection and protein structure matching.

Contour Tree and Pocket SelectionContour tree (CT) is an affine-invariant data structure thatcaptures the topological
structures of the level sets of a volumetric functionF(x) [11]. Each node of the CT corresponds to a critical point of the function
and each arc corresponds to a contour class connecting two critical points. A contour class is a maximal set of continuous
contours which do not contain any critical points. If the CT is cut at the isovaluew, the number of connected contours of the
level setF(x) = w is equal to the number of intersubsections (cuts) to CT arcs.In the case of pocket functionP(x), the number
of cuts to its CT atP(x) = 0 gives the number of connected pocket envelops, i.e. the number of separate pockets.

The pocket extraction algorithm described in this paper works for general 3D surface models, e.g. the tunnels in the "8"
shape shown in Figure 4.2, and complex protein surfaces. Because protein surfaces are highly complicated, they usuallycontain
many small pockets and voids in addition to the major bindingpockets. Our algorithm is very sensitive. For a complicated
surface like the molecular surfaces computed from electrondensity functions, the level set of the pocket functionP(x) = 0 will
capture the large binding sites as well as small depressionsand voids on the surface. While it is good to have the capability
of obtaining the details of the protein shape, the large number of small pockets may make the pocket functionP(x) and its
corresponding CT quite complex. For example, the CT of the pocket functionP(x) for the "Bacteriochlorophyll A Protein
(4BCL)" is shown in Figure 4.6 (a). It is quite complex and contains 2,063 nodes (critical points). The level set atP(x) = 0
would contain a large number of individual contours, many ofwhich are very small and of little importance. In real applications,
we often want to focus on one or a few biologically important active/binding pockets which have enough size to hold the solvated
ligand.

(a) (b) (c) (d)

Figure 4.6: (a) The contour tree of the pocket function for the "Bacteriochlorophyll A Protein" (4BCL) (b), (c), and (d) are the
DCTs of the pocket function at three different resolutions of 16, 4, and 1 intervals.

The CT of the pocket functionP(x) can assist the selection of the most significant pockets fromthe level setP(x) = 0.
During the construction of the CT, each CT arc can be tagged with additional geometric attributes such as the volume and
surface area of the contour and a seed cell, from which the entire connect contour can be constructed by cell propagation [12].
Therefore the CT can be simplified by suppressing contours ofsmall geometrical measures. Furthermore, it can be appliedto
pick the most significant pockets. For instance, if we are only interested in the top three largest pockets, from the cut CTarcs
we select the three ones tagged with largest volumes and propagate from their seed cells to get the envelops of the three largest
pockets. Figure 4.5(c) shows the largest pocket of HIV-I protease, constructed by using the pocket function and its CT.

Protein Structure Matching Protein structure matching is important for classifying proteins into different families and
predicting the functions of new proteins. The volumetric pocket functionP(x) can be readily used to compare protein structures.

An efficient method of comparing protein structures is described in [69] by using the affine-invariant multi-resolution
attributed dual contour trees (MACT) of some volumetric shape functions, combined with additional geometric, topological,
and electrostatic potential properties. The shape function used in [69] was solvent accessibility of the protein. As weknow,
proteins perform their functions through docking/undocking with other proteins and binding/unbinding of ligands in their active
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pockets, satisfying the complementary shape and electrical properties. It might be more accurate to compare the protein pocket
structures than the overall protein shapes. This is especially useful for proteins whose their overall shapes are very similar but
functionally important active binding sites are different.

The MACT method can be applied to compare the pocket functions of different proteins. We summarize here the steps of
matching protein structures using the volumetric pocket functions [67]:

1. Compute the volumetric pocket functionP(x) for the protein.

2. Compute the contour tree (CT)[11] for the pocket functionP(x).

3. Construct the finest-level dual contour tree (DCT) [68] from the CT in the previous step.

4. Build the multi-resolution attributed dual contour tree(MACT) from the DCT by merging adjacent functional intervals.

5. Compare two protein structures by computing the similarity score of their MACTs.

Step 1 and 2 have been discussed in the upper subsections. Next we briefly describe the data structures and algorithms involved
in step 3 to 5.

Dual Contour Tree Although the contour tree (CT) captures the topological structures of the level sets of a function, it is not
practical to compare CT’s of the pocket functions because oftheir complexities, as shown in Figure 4.6(a). The dual contour
tree (DCT) is a simplified data structure constructed from the CT, which can then be compared to determine the similarities
among the protein structures [68, 69].

To construct the DCT, we partition a functional range[ f1, f2] ( f1 < f2) of the volumetric function into a number of intervals,
and cut the corresponding CT arcs into disjoint sets of connected segments [69]. Each disjoint set of connect segments has
functional values within an interval and represents a connected region in the 3D volume, which is called aninterval volume.
Each node of the DCT represents such an interval volume. The DCT is considered to be "dual" to the CT because a DCT node
corresponds to a disjoint set of CT arc segments. The complexity of the DCT can be controlled by choosing the functional
range[ f1, f2] and the number of intervals partitioned from it. Figure 4.6(b) shows the DCT of the pocket functionP(x) of the
protein 4BCL, constructed from the CT in Figure 4.6(a) by dividing the functional range[0,max(P(x))] into 16 intervals. For
each node of the DCT, geometric, topological and functionalproperties of the corresponding interval volume can be computed
for the purpose of matching. We refer to [68, 69] for details of constructing DCT and computing the volume and other attributes
of the DCT nodes.

Multi-resolution Attributed Dual Contour Tree (MACT) As mentioned above, the complexities of DCT’s are controlled
by the number of partitioned intervals, which is here referred as the resolution of the DCT. It is helpful for the matchingpurpose
to keep a set of DCT’s for a volumetric functions at differentresolutions and use the match of low-resolution DCT’s to guide
the match of high-resolution DCT’s.

This hierarchy of multi-resolution DCT’s for a given volumetric function is called a Multi-resolution Attributed DualCon-
tour Tree (MACT) [69]. The MACT can be constructed from the highest-resolution DCT by merging its adjacent functional
intervals recursively. Without loss of generality, we assume the highest-resolution DCTD0 hasN = 2k functional intervals.
Every two adjacent intervals are merged into one interval for the next lower-resolution DCTD1, which would then haveN/2
intervals. A noden in D1 is merged from a set of nodes (S) in D0. For each nodem∈ S⊂ D0, the noden is called the parent
of m andm is a child ofn. The merging process can be recursively applied to the lower-resolution DCTs until there is only a
single interval spanning the entire functional range[ f1, f2]. Figure 4.6 (c) and (d) show two levels of the MACT with four and
one intervals respectively, which are merged from the intervals of the DCT in Figure 4.6 (b). The complexity of the DCTs at
lower-resolutions are significantly reduced and the hierarchy makes it much easier to find the match between higher-resolution
DCT’s for the pocket functions.

Because protein surfaces are highly complicated, the compute pocket functions usually contain many small pockets and
voids, which reflect as small subtrees in DCT’s. On the other hand, biologically important active/binding pockets must have
enough size to hold the solvated ligands. Therefore the DCT’s are further simplified by pruning the nodes corresponding to
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the very small pockets whose volumes fall under a given threshold. The pruning process is started from the lowest-resolution
DCT in the MACT hierarchy. If a lower-resolution DCT node is pruned, all its child nodes should be removed as well in the
next higher-resolution DCT. The DCT’s in Figure 4.6 have been simplified by pruning. In the lowest-resolution DCT in Figure
4.6(d), only two nodes are left after pruning, which means only two pockets are considered significant. One of them contains
more than 94% of total pocket volume and actually representsthe large binding site in the middle of the "Bacteriochlorophyll
A Protein (4BCL)" (Figure 4.3).

Computing Similarity Scores of Protein Pockets Functions We now compare protein structures by matching the MACT’s
of their pocket functions. The matching process is performed in the same way as that in [69]. It starts from the lowest-resolution
to the highest-resolution of the MACT hierarchies. The geometrical, topological and functional attributes of DCT nodes are
used to compute the similarity between the matched nodes. The similarity score between two DCTs of the same resolution is
computed as the average of the scores of their matched node pairs, weighted by the volume of the nodes. Finally the similarity
score between the volumetric pocket functions is evaluatedas the average of the similarity scores of DCTs from all levelof the
MACT hierarchies.

(a) (b)

(c)

Figure 4.7: Comparison of pocket functions for the protein "Staphylococcal Nuclease" in the binding (PDB code: 1ATT, (c)
left) and unbinding (PDB code: 1KAA, (c) right) states.

The most significant difference here is that pocket functions are used instead of overall protein functions such as the solvent
accessibility used in [69]. This is based on the assumption that pockets are the most important features of protein structures,
and is particularly useful for studying the mutants of the same protein where their overall shapes are similar but have different
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pocket structures and bound ligands.

Figure 4.7 shows an example of of comparing the structures of"Staphylococcal Nuclease" in bound state (PDB code
1A2T) and its unbound state (PDB code 1KAA). "Staphylococcal Nuclease" is a protein for nucleic acid binding and binds
two ligands "S-(Thioethylhydroxy)Cystine"(CME) and "Thymidine-3’,5’-Diphosphate"(THP). The protein 1A2T and oneof
its bound ligand (THP) are shown in Figure 4.7 (a) while the other ligand is on the back side. Figure 4.7 (b) displays the pocket
function of 1ATT over its molecular surface with volume rendering. Due to the bound ligands, the pocket shapes of 1A2T
would be quite different from those of its unbound sibling (1KAA), although the overall their shapes remain very similar.

We computed the pocket functions and used the MACT algorithmdescribed above to compare the structures of 1A2T and
1KAA. The correspondences between the pockets of 1ATT and 1KAA are easily established by using the MACT hierarchy,
as illustrated in Figure 4.7 (c). It clearly shows the structural differences between pockets of the two proteins, whichare not
obvious by looking at the molecular surfaces directly. The pocket functions are very useful for studying the family of protein
mutants, for example the family of HIV protease and inhibitors bound to them.

4.1.3 Implementation and Examples

The pocket extraction algorithm and MACT protein matching algorithm have been implemented in C++ and made publicly
available. The pocket functionsP(x) are computed as described in subsection 4.1.1. The pocket algorithm described in this
paper is applicable to any model of protein surfaces, for example the simple union-of-ball model or the more sophisticated
solvent accessible surfaces. It may actually provide a way of comparing different models of protein surfaces. For the results
discussed below, we used the model of protein surfaces as thesmooth level sets of the electron density functionsE(x)), which
are computed as the summation of the Gaussian density kernels for all atoms contained in the corresponding proteins. As
mentioned earlier, the protein surface is extracted as the level setE(x) = 1.

Table 4.1: Computational time for some pocket extraction examples on a low-end laptop. T1, T2, and T3 are the time for
computingdS(x), dT(x), and pocket functions respectively.

data # of triangles T1(s) T2(s) T3(s) total (s)
"8" shape 1,536 2.1 5.45 0.33 7.88
4BCL 275,456 10.25 6.38 0.33 16.96
1C2B 268,876 9.92 5.63 0.45 16

The implementation is portable across multiple compute platforms and tested to be robust for various protein structures. It
is also efficient, being able to compute pocket functions forcomplicated proteins with thousands of atoms in seconds. Table
4.1 shows the computation time without optimization on a DELL Laptop with 1.6 GHz processor and 1GB memory for three
examples: the "8" shape, "Bacteriochlorophyll A Protein" (PDB ID: 4BCL) and "Hydrolase" (PDB ID: 1C2B). The "Hydrolase"
(1C2B) is a protein complex containing four similar subunits. The dimensions of the volumetric functions in the computation
were set to 128×128×128, which are more than sufficient for extracting pocket functions and subsequent visualizations and
quantitative analyses. The higher the dimensions, the smaller are the grid sizes and the more accurate are the SDF computations.
However higher dimensions also require more memory and longer computation time since the time of distance transform is
proportional to the number of grid points. Our experiments showed that increasing the dimensions would not change the
number of pockets or significantly alter their quantitativemeasurements. The dimensions of 128×128× 128 provide good
balance between accuracy and memory requirements for commodity PC’s. If the speed is very important, lower dimensions
such as 963 may also be used to achieve results sufficient for all applications discussed above.

The last column in Table 4.1 shows the total time of pocket extraction for the three examples : "8" shape is the simple
surface shown in Figure 4.2; 4BCL and 1C2B are two example protein surfaces. The second column shows the number of
triangles in the original surfaces.T1 is the time for computing the SDFdS(x) for the original surfaceS, T2 is the time for
extracting the shell surfaceT and computing the SDFdT(x), andT3 is the time for constructing the final pocket functionP(x)
and extracting the pocket envelops.T1 is longer for the 4BCL and 1C2B protein surfaces than the "8" shape because the 4BCL
and 1C2B data have more simplices (triangles) in their original surfaces.T2 andT3, which are proportional to the dimensions
of the sampling grid, are similar for all three data sets.
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(a) (b) (c)

Figure 4.8: Visualizations of the largest pocket extractedusing our algorithm for the "Bacteriochlorophyll A Protein" (4BCL).
(a) The pocket envelop (green surface) within the cartoon diagram of the protein; (b) The seven BCL ligands shown inside the
transparent pocket envelop; (c) The protein surface and residues near the pocket marked green [9].

Table 4.2: Pocket statistics of some sample proteins.
PDB # of Largest Ligand Rank
ID pockets pocket (3)
1SNC 1 948.7 THP 1
1HVI 1 1137.5 A77 1
2ACK 6 1448.5 EDR 5
2POR 1 13126.4 C8E 1
1ROB 1 1883.9 C2P 1
2NPX 1 7743.8 CYO, FAD & NAD 1
4BCL 2 9184.8 BCL×7 1
1GPD 5 16182.8 NAD 1
3EST 2 2747.8 - -
1ELA 4 1249.5 ISO 2
1FKF 1 975.5 FK5 1
11BG 1 5320.8 U2G×4 1

Compared to many other pocket extraction algorithms, e.g. CAST [47] and CASTp [9], the pocket functions computed in
our algorithm provide more flexible visualizations and powerful ways for quantitative analyses. Most importantly, theextracted
pockets are shown to be correct and overlap with the binding ligands very well. Figure 4.8 shows the result of pocket extraction
for the protein 4BCL. The envelop of the largest pocket is displayed as a green surface inside the cartoon diagram of the protein
in Figure 4.8 (a). The largest pocket almost perfectly encompass all seven BCL ligands of the protein, as illustrated in Figure
4.8 (b). Table 4.2 gives more examples to demonstrate the effectiveness of the algorithm. Those examples are selected without
any special consideration towards our algorithm, most of which are examples used in [9].

In Table 4.2, the third column shows the number of pockets extracted for each protein. To remove small pockets, we used
the MACT data structure discussed above in the implementation to prune geometrically insignificant nodes. We set a very
conservative threshold of 1%, which means a pocket would be discarded only if its volume is less than 1% of the total pocket
volume, because a pocket of such a small volume is too small tobe a binding site. For most proteins, the pockets with the
largest volumes often act as the ligand binding sites. The fourth column is the computed size of the largest pocket. The last two
columns contain the name of the bound ligands and the rank of the binding pocket among all pockets in terms of their sizes.

Figure 4.9 visualize the extracted pockets for the proteinslisted in 4.2. The proteins are visualized as cartoons to illustrate
their secondary structures, and ligands as sticks. The envelops of the binding pockets are rendered as transparent yellow surfaces
to show the ligands inside them, while other pocket envelopsare rendered as green opaque surfaces. For all the examples,we
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(1SNC) (1HVI) (2ACK) (2POR)

(1ROB) (2NPX) (4BCL) (1GPD)

(3EST) (1ELA) (1FKF) (11BG)

Figure 4.9: Visualizations of pockets for the proteins listed in Table 4.2
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can see that the extracted pockets fit very well with the shapes of the proteins. While the quantitative measures of the pockets
correlate with the results in the CASTp[9] reasonably well,they certainly don’t match exactly. This may be due to two major
reasons. First we used a more sophisticated model of proteinsurfaces in the implementation than union-of-ball used in the
CASTp. Second the algorithms may segment the pockets differently. For example "Porin" (2POR) has 45 pockets computed in
the CASTp compared to only one in our algorithm.

We believe our algorithm is quantitatively more accurate according to the visualizations. Our definition of pockets is
mathematically sound and the extracted pockets match the protein shapes and overlap well with the binding ligands as in Figure
4.9.

Furthermore, the CASTp algorithm has its limitations in finding shallow pockets (depressions) with large openings on
protein surfaces, but our pocket algorithm still works correctly in those cases. Figure 4.10 (a) shows a docking exampleof
a protein chain (PDB ID: 1YCC) on another protein (PDB ID: 1CCP) in a protein complex (PDB ID: 2PCC). The docking
interface has large but shallow pockets, which the CASTp[9]fails to extract. However, our algorithm successfully computes
the pockets on the docking interface, as shown in Figure 4.10(b) and (c). In Figure 4.10 (b), the extracted pocket function
is rendered with volume rendering and the top four pocket envelops are extracted from the pocket function and displayed as
green surfaces. We can see that the pockets on the docking interface are successfully calculated and the docked protein (1YCC)
interacts with two major pocket envelops on the substrate protein (1CCP), which are the largest and fourth largest computed
pockets respectively. Figure 4.10 (c) looks at the volume rendered pocket function and the two pocket envelops on the docking
interface from a direct angle. The pocket functions successfully computed by our algorithm may be applied to improve the
solutions to the docking problem, which tries to find the bestconfiguration of how a ligand docks on the substrate protein.

(a) (b) (c)

Figure 4.10: (a) Docking example with the protein chain 1YCC(red) on the protein 1CCP (yellow). (b) The pocket function of
the protein 1YCC is rendered with volume rendering and four largest pocket envelops are displayed as green surfaces. (c)The
volume rendered pocket function and the two pocket envelopson the docking interface.

4.2 Tunnels

Many applications in shape modeling require to identify thesalient features of a given shape. Some of them such as assembly
planning, feature tracking, animations, structure elucidation of bio-molecules, human-body modeling benefit from a semantic
annotation of the features. One such natural annotation is achieved by classifying the features as ‘tubular’ and ‘flat’.Obviously,
this annotation is ambiguous since the feature-space is a continuum resulting into features that cannot be simply classified as
tubular or flat. Nevertheless, many designed and organic shapes have pronounced features that are perceived to be tubular and
flat. We seek to identify these features using a topological method. The unstable manifolds induced by a shape distance function
identify some one- and two-dimensional subsets of the medial axis. The preimage of a function that maps the points on the
surface to the medial axis provides an association of the shape to these one- and two-dimensional subsets. The preimage of
the one-dimensional subset is called tubular whereas that of the two-dimensional subset is called flat. Our experimental result



138 CHAPTER 4. COMPLEMENTARY SPACE

shows that this classification can be effectively approximated for many datasets in practice.

Given a compact surfaceΣ smoothly embedded inR3, a distance functionhΣ can be assigned overR3 that assigns to each
point its distance toΣ.

hΣ : R
3→R, x 7→ inf

p∈Σ
‖x− p‖

In applications,Σ is often known via a finite set of sample pointsP of Σ. Therefore it is quite natural to approximate the function
hΣ by the function

hP : R
3→ R, x 7→min

p∈P
‖x− p‖

which assigns to each point inR3 the distance to the nearest sample point inP.

In this section, we start with a finite sampleP of Σ and identify the index 1 and index 2 saddle points ofhP from the Voronoi
diagram VorP and its dual Delaunay triangulation DelP of P. We then select only the saddle points of both indices which lie
on the interior medial axis ofΣ and compute their unstable manifolds. The unstable manifold of index 1 saddle points (U1)
are two dimensional whereas those of index 2 (U2) are one dimensional. Exact computations ofU1 is prone to numerical error.
See Section 4.3 for details about Voronoi diagram, Delaunaytriangulation, and definition, properties and computationof saddle
points. Then, the algorithm given below maps the points belonging toU1 andU2 back toΣ. The image ofU1 under the mapping
gives the flat regions ofΣ and that ofU2 gives its tubular regions.

4.2.1 Feature Annotation Algorithm

Mapping of Unstable Manifolds to Σ

There is a natural association between the medial axisMΣ andΣ via the mapφ : Σ→MΣ whereφ(x) is the center of the medial
ball touchingΣ at x. Following this map, any subsetA⊆MΣ can be associated withφ−1(A)⊆ Σ. Let A1 andA2 be the closure
of the unstable manifolds of index 2 and index 1 saddles inMΣ defined by the distance functionhΣ. Recall that, generically,
A1 is one-dimensional andA2 is two-dimensional. Ideally, we would like to identifyφ−1(A1) ⊆ Σ as tubular andφ−1(A2)⊆ Σ
as flat. As we have an approximation ofhΣ by hP, we compute these tubular and flat regions for the unstable manifolds in the
approximate medial axis which we denote also asMΣ for convenience.

We face a difficulty to compute an approximation of the preimage of φ from the approximate medial axisMΣ. We are
interested in computing an approximation of the preimage ofM′Σ = A1∪A2⊆MΣ under the mapφ .

Unfortunately, this requires an expensive computation to cover the entireM′Σ which often spans a substantial portion ofMΣ.
A naive approach is to take only a sample ofM′Σ, namely the Voronoi vertices, and then associate them toP, a sample ofΣ,
via the Voronoi-Delaunay duality. This also proves uselessbecauseM′Σ does not contain all the Voronoi vertices and therefore
many points inP cannot be covered by this Voronoi-Delaunay duality.

It turns out that the distance functionhP again proves to be useful to establish a correspondence betweenΣ andM′Σ. Recall
that, the stable manifold of a critical point is a collectionof points whose orbits terminate at that critical point. LetX andY
be the set of maxima inA1 ⊆ M′Σ andA2 ⊆ M′Σ respectively. Consider the stable manifolds of the maxima in X andY. The
points inP that are in the stable manifolds ofX are associated with the tubular regions and those in the stable manifolds of
Y are associated with the flat regions. If a point belongs to thestable manifolds of maxima inX as well as inY, we tag it
arbitrarily. These points belong to the regions where a tubular part meets a flat part. Subsequently, every triangle of the surface
reconstructed by TIGHT COCONE is tagged as flat or tubular if at least two of its vertices are already marked as flat or tubular
respectively.

Computation of stable manifold of maxima has been describedin [31] and its approximation was given in [19]. We follow
the approximate algorithm to compute the stable manifolds of the local maxima lying onM′Σ.

Figure 4.11 shows the setM′Σ of the molecule data 1IRK, and the set of maxima belonging to that set and identified as
linear or planar. The corresponding flat and tubular portions of the surface captured by the mapping via stable manifold of these
maxima - colored golden and cyan respectively - are shown in Figure 4.13. We collected the protein from Protein Data Bank
[5] and blurred the molecule at a resolution 8 angstrom. Further we took the vertex set of a suitable level set as the input to our
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Figure 4.11: One dimensional subset of the interior medial axis is drawn in red and the two dimensional subset of the medial
axis is drawn in green for the molecule data 1IRK. The right subfigure shows the selection of local maxima of the distance
function in those two parts, colored accordingly.

program. We verified the result with the existing literaturein structural biology and we have seen that the flat regions identified
by our algorithm correspond to theβ -sheets of the protein molecule.

Annotation Algorithm

The modules described in the previous sections and subsections can thus be combined to devise an algorithm for automatic
feature annotation ofΣ. We give the pseudo-code of this annotation algorithm here.

IDENTIFY_FLAT _AND_TUBULAR_REGIONS(P)
1 Compute VorP and DelP.
2 Compute the interior Medial AxisMΣ

by TIGHTCOCONE_AND_MA (P)
3 C1 = set of index 1 saddle points lying onMΣ and

C2 = set of index 2 saddle points lying onMΣ,
4 A1 = A2 = /0
5 for all c∈C2

6 A1 = A1∪ UM_INDEX_2(c)
7 for all c∈C1

8 A2 = A2∪ APPROX_UM_INDEX_1(c)
9 X = maxima inA1

10 Y = maxima inA2

11 ΣTubular = MAPPING_VIA _STABLE_MANIFOLD(A1)
12 ΣFlat = MAPPING_VIA _STABLE_MANIFOLD(A2)
13 returnΣTubular andΣFlat.

Figure 4.12: Pseudo-code of the feature annotation algorithm.
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4.2.2 Results

Implementation Issues

The algorithm works on the Voronoi-Delaunay diagram of the set of sample points lying on the surface. To robustly compute
the Delaunay triangulation and its dual Voronoi diagram forthe input set of points we use the library CGAL [13] which is
freely available.

Even in CGAL-framework, we sometimes face the degenerate case of five or more points being cospherical. This case has
to be handled with special care because only one Voronoi vertex is repeated and therefore the flow along the Voronoi edges
is not well-defined anymore. To deal with such situations, wemodify the algorithm slightly. At the start of the algorithmwe
collect the sets of tetrahedra which are cospherical. Whilecomputing the unstable manifold of index 2 saddle points, ifthe
polyline hits a Voronoi vertex whose dual is a member of one such cospherical cluster, the algorithm automatically advances
through the non-degenerate Voronoi edges which are dual to the triangles bounding the cospherical lump. This degeneracy
poses a more serious threat to the computation of unstable manifold of index 1 saddle points and at this stage, we do not extend
the manifold through any Voronoi edge whose dual Delaunay triangle is shared by two cospherical tetrahedra.

There are some parameters involved in the full feature annotation process. For surface reconstruction and medial axis
approximation we used the software [16]. The parameters forthese routines are described in [23], [25]. For noisy inputswe
replace TIGHT COCONE by ROBUST COCOCNEand the parameters for that step are again described in [24].The rest of the
algorithm requires only one parameterk which is the number of flat regions to be output.

Performance

Figure 4.13 shows the performance of the annotation algorithm on six datasets. The datasets have been chosen to represent
different domains this algorithm can possibly be applied in. PIN is a CAD dataset which has two tubular parts joined in the
middle through a flat portion. The algorithm can identify them correctly. Similarly the method can correctly identify the handle
as the tubular and the body as the flat region for the MUG dataset. In the second row we show the performance of our method
on two protein molecules obtained from Protein Data Bank [5]. We took the crystal structure of these two molecules (PDB ID
1CID and 1IRK) and blurred them with Gaussian kernel. We further took a level set which represents a molecular surface and
used the vertex set of that isosurface as the input to our algorithm. The flat features identified by our method correspond to the
β -sheets of the secondary structure of those two proteins. Inthe last row we show the result on two free form objects containing
both flat and tubular features. As we can see, the palm of the HAND has been detected as flat whereas the fingers have been
detected as tubular. Our method can also capture the major flat and tubular features of ALIEN.

We purposefully show the performance of the algorithm on ALIEN as it brings forth the limitations of our algorithm. We
see that a portion of the arm has been identified as flat. This isbecause the initial reconstruction phase could not separate the
beginning of the arm from the torso due to lack of sampling. Secondly, one of the feet could not be fully identified as flat by our
algorithm. This is because the approximate medial axis, that we started with, is not a close approximation of the true medial
axis in that region, again due to lack of sampling. Because ofthat, our method fails to collect sufficiently many index 1 saddle
points leading to incomplete identification of flat featuresin that region.

Figure 4.14 shows the performance of our method on noisy dataset HORSE. Instead of applying TIGHT COCONE, we first
mark the interior and exterior of the closed surface from itsnoisy point sample by ROBUST COCONE ([24]) and then obtain
the interior medial axis and proceed further with the unstable manifold computation and feature identification. Originally there
were some thin flat regions due to the unstable manifold of some index 1 saddle points near the hind legs which we filtered out
by thresholding in order to get a clean skeleton of the HORSE. In the rightmost picture we see some white triangles near the
ears. These triangles appear as the mapping via stable manifold misses some points on the surface in that portion.

Timings

The time and space complexity of the algorithm is dominated by the complexity of Delaunay triangulation. We report the
timings of the entire execution into four major steps
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Figure 4.13: Performance of the feature annotation algorithm. The models are (a) PIN, (b) MUG, (c) molecule 1CID (d)
molecule 1IRK, (e) HAND, (f) A LIEN

1. Step 1: Building the Voronoi-Delaunay diagram of the point set (Line 1 of Figure 4.12).

2. Step 2: Computation of interior medial axis. (Line 2 of Figure 4.12).

3. Step 3: Computation of unstable manifold of index 1 and index 2 saddle points lying on the interior medial axis. (Line
3-8 of Figure 4.12).

4. Step 4: Mapping the maxima in the planar and linear portionof the medial axis back to the surface. (Line 9-13 of Figure
4.12).

We built the code using CGAL [13] and gnu C++ libraries. The code is compiled at an optimization level−O2. We run the
experiments in a machine with INTEL XEON processor with 1GB RAM running at 1GHz cpuspeed. Table 4.3 reports the time
taken in the four steps of the algorithm for a number of datasets. It is clear from the breakup of timing that the first two steps
of building the Delaunay triangulation and then computing the interior medial axis are the two most expensive steps. Fornoisy
datasets, additionally ROBUST COCONE is used to obtain an initial in-out marking. This step is comparatively inexpensive. For
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Figure 4.14: Results on Noisy Data.

example, for NOISY HORSE(48,000 points) this step only adds 10 sec to the whole computation time which is approximately
100 sec.

# points Step 1 Step 2 Step 3 Step 4
object (sec.) (sec.) (sec.) (sec.)

1CID 5170 7.59 15.63 6.69 0.39
1IRK 13940 29.88 43.93 15.63 1

HEADLESS 16287 18.63 51.30 16.01 1.26
MAN

PIN 15530 15.73 41.4 21.53 0.92
CLUB 16864 20.54 47.3 19.83 1.24
MUG 27109 37.68 83.28 47.14 2.19
HAND 40573 53.48 120.16 40.67 2.69

P8 48046 33.46 136.59 39.97 3.22
1BVP 53392 148.18 159.52 62.19 3.53
ALIEN 78053 102.62 242.33 64.11 5.4

Table 4.3: Timings

4.3 Curation of Surface



4.3. CURATION OF SURFACE 143

Related Work

Pockets, Tunnels

Pocket Extraction

Several pocket extraction methods have been developed and published. Delaney [18] used cellular logic operations on grid
points in a spirit similar to our two-step marching algorithm, but its results were very rough approximations and difficult for
further visualizations and analyses. LIGSITE is a simple algorithm that scans along thex , y, andzaxes and the cubic diagonals
for areas that are enclosed on both sides by a protein [35], inorder to identify pockets. It would not be accurate if the pockets
are not along those predefined directions. Edelsbrunner et al. [27] computed pockets for molecular surfaces based on the
union-of-balls model by using Delaunay triangulations andalpha shapes. In their method, the Delaunay triangulationDB (and
its dual Voronoi diagram) are first constructed for the setB of all atomic centers[27]. A flow relation can then be defined for
two Delaunay tetrahedra,τ ∈ DB andσ ∈ DB, if they share a common plane and the dual Voronoi vertex ofτ lies on different
sides of the plane fromσ . If τ ≺ σ , τ is called a predecessor ofσ andσ a successor ofτ. A tetrahedron flows to infinity, if its
dual Voronoi vertex is outsideDB or its successor flows to infinity. The alpha-shapeAB⊂DB atα = 0 is the sub-simplex ofDB

contained in the union of balls. PocketsP are defined in[27] as the set of Delaunay tetrahedra that do not flow to infinity and
do not belong to the alpha-shapeAB, i.e.

P⊂ DB−AB.

The alpha-shape based algorithm was implemented and testedfor a number of sample proteins [47]. This method has the
shortcoming of being dependent on the union-of-balls modeland the pockets represented by alpha-shapes are usually not
smooth. The SURFNET method [34, 42] tries to detect the clefts on the protein surfaces by placing spheres between all pairs of
atoms and shrinking their sizes until they do not intersect any atoms. The sphere fitting process results in a number of separate
groups of interpenetrating spheres, corresponding to the cavities and clefts of the protein. However, a set of spheres do not
match well with the actual pocket shapes. Masuya and Doi described a method of computing protein cavities using digital
morphological operations [49]. They represented the surfaces and interior of the molecular surfaces as a set of discrete grid
pointsX. Given a probe sphere, represented also as a set of grid points P, the dilation and erosion operations ofX by P are
defined as

X⊕P =
⋃

xi∈X

⋃

p j∈P

{xi + p j}

X⊖P =
⋂

xi∈X

⋃

p j∈P

{xi + p j}

The closing operation ofX by P defined as a dilation followed by an erosion,X •P= (X⊕P)⊖P, is used to obtain a filled
moleculeX f . The set of grid points inX f −X are taken as the cavities. While the spirit of the dilation and erosion operations
is the most similar to that of the two-step marching algorithm in this paper, the algorithms and implementations are vastly
different. Our algorithm can much more accurately model themolecular surfaces. The dilation and erosion operations in[49]
depend critically on the radius of the probe sphereP. If the radius ofP is too large, the algorithm would miss important pockets
and tunnels on the molecular surface; if the radius ofP is too small, many small cavities would be generated from a large real
pocket. So it requires an "optimal" radius to be selected foreach protein individually. Our algorithm in this paper doesnot have
those limitations. The PASS (Putative Active Sites with Spheres) [10] is a geometric pocket extraction algorithm that uses small
probe spheres to fill the "buried" regions on the protein surfaces. A number of parameters such as the probe radius and "burial
count" are chosen a prior for this algorithm. The results areset of probe spheres represent the protein pockets. PocketFinder
[1] is not a geometrical method, but uses a volumetric function of the smoothed van der Waals potential of the protein. The
van der Waals potential is approximated as the sum of Lennard-Jones formula of all atoms and then smoothed using a simple
iterative averaging process. The bounding surfaces (pocket envelops) of the protein pockets are then computed as a level set
of the potential function. However, the parameters for the smoothing process and the isovalue of the level set are determined
ad hoc and the pocket surfaces do not match the geometrical shapes of the proteins very well. Q-SiteFinder [43] is another
energy-based method for predicting protein-ligand binding sites. Although it is different from the geometric algorithm in this
paper, the interaction energy computation described in [43] may be combined with our geometric algorithm to improve the
accuracy of predictions.
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Pockets Representation

It is advantageous to represent the pocket shapes with a 3D volumetric function, which allows further analyses of the shapes.
Complicated shapes are often captured via volumetric functions coupled to morphological operations on the functions.In
2D range images, Krishnapuram and Gupta [41] uses dilation and erosion operations to detect and classify edges; Gil and
Kimmel [33] discussed algorithms for computing one-dimensional dilation and erosion operators. In addition to the extraction
of polygonal surfaces from volumetric functions, 3D polygonal models are also converted into volumetric representations and
then modified, repaired and simplified using morphological operations [52, 29].

Shape Segmentation

Shape segmentation is a problem related to finding pockets inthe molecular surfaces, which has been studied using different
geometric and topological methods such as shock graphs [55], medial axes [45], skeletons [61], Reeb graphs [36], and others
[48, 37, 46]. It is applicable to consider the pocket extraction as the problem of segmenting the complementary space outside
the molecular surfaceS. A notable approach of shape segmentation is based on the Morse theory, which segments the domain
manifoldM into stable (unstable) manifolds [20] or Morse-Smale cells[28] of critical points of a Morse function. The Morse
function commonly used for shape segmentation is the distance functionh(x) to a set of discrete pointsP [20, 32, 27]:

h(x) = min
p∈P
‖x−p‖.

Here again the Delaunay triangulation (and the dual Voronoidecomposition) can be computed for the points inP. The critical
points ofh are the intersections of Delaunay elements with their Voronoi complements. The stable-manifolds of the critical
points of the distance function to a set of discrete points are called the flow complex in [32], and which is homotopy equivalent
to its alpha-shape [21]. The stable manifolds of maxima has the same dimension as the the manifoldM and give a segmentation
of M. However, a large number of points are necessary to sample complex surfaces and a large number of maxima and stable
manifolds would segment the space into many small pieces that have no direct correspondence to the pockets.

Identifying Tunnels

Because of the significance of the problem, quite a few work spanning various approaches have been reported in the literature.
To mention a few, we refer to the curvature based methods of [64] and [50, 51], the fuzzy clustering method of [38], the method
based on PCA of surface normals by [54], the hybrid variational surface approximation by [66] and the Reeb graph approach
of [57] and [65]. Remarkably the distance function overR

3 which is defined by the distance to the boundary of the shape has
not been fully used for feature annotation. In the context ofsurface reconstruction, topological structures induced by distance
functions have been analyzed by Edelsbrunner [26], Chaine [14] and Giesen and John [31]. Chazal and Lieutier [15] and Siddiqi
et al. [58] have used it for medial axis approximations. Dey,Giesen and Goswami used the topological structures inducedby
the distance function to segment a shape [19]. However, thiswork stops short of using the topological structures for feature
annotations. In this paper we complete this step.
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Relevant Mathematics

Voronoi-Delaunay Diagram ofP

[*Repeated from Chapter 2]

For a finite set of pointsP in R
3, the Voronoi cell ofp∈ P is

Vp = {x∈ R
3 : ∀q∈ P−{p}, ‖x− p‖ ≤ ‖x−q‖)}.

If the points are in general position, two Voronoi cells withnon-empty intersection meet along a planar, convex Voronoifacet,
three Voronoi cells with non-empty intersection meet alonga common Voronoi edge and four Voronoi cells with non-empty
intersection meet at a Voronoi vertex. A cell decompositionconsisting of theVoronoi objects, that is, Voronoi cells, facets,
edges and vertices is the Voronoi diagram VorP of the point setP.

The dual of VorP is the Delaunay diagram DelP of P which is a simplicial complex when the points are in general position.
The tetrahedra are dual to the Voronoi vertices, the triangles are dual to the Voronoi edges, the edges are dual to the Voronoi
facets and the vertices (sample points fromP) are dual to the Voronoi cells. We also refer to the Delaunay simplices asDelaunay
objects.

Induced Flow

The distance functionhP induces a flow at every pointx∈ R
3. This flow has been characterized earlier [31]. See also [26]. For

completeness we briefly mention it here.

Critical Points. The critical points ofhP are those points wherehP has no non-zero gradient along any direction. These are
the points inR3 which lie within the convex hull of its closest points fromP. It turns out that the critical points ofhP are the
intersection points of the Voronoi objects with their dual Delaunay objects.

• Maximaare the Voronoi vertices contained in their dual tetrahedra,

• Index 2 saddleslie at the intersection of Voronoi edges with their dual Delaunay triangles,

• Index 1 saddleslie at the intersection of Voronoi facets with their dual Delaunay edges, and

• Minimaare the sample points themselves as they are always contained in their Voronoi cells.

In this discrete setting, the index of a critical point is thedimension of the lowest dimensional Delaunay simplex that contains
the critical point.

Flow. For every pointx∈ R
3, let V(x) be the lowest dimensional Voronoi object that containsx andD(x) be its dual. Now

driver of x, denoted asd(x), is defined as

d(x) = argminy∈D(x)‖x− y‖

The direction of steepest ascent can be uniquely determinedby a unit vector in the direction ofx−d(x). The critical points
coincide with their drivers. Now one can assign a vectorv at everyx with a zero vector assigned at the critical points. The
resulting vector field is not necessarily continuous. Nevertheless, it induces aflow in R

3. This flow tells how a pointx moves in
R

3 along the steepest ascent ofhP and the corresponding path is known as theorbit of x. We can also define aninverted orbit
of x wherex moves in the direction of steepest descent.
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Stable and Unstable Manifolds. For a critical pointc its stable manifold is the set of points whose orbits end atc. The
unstable manifold of a critical pointc is the set of points whose inverted orbits end atc. The structure and computation of stable
manifolds of the critical points ofhP were described in [31]. They can be computed from the Delaunay triangulations of the
given point sets though they may not be subcomplexes of the Delaunay triangulations. For computational advantages theyare
also approximated by Delaunay subcomplexes as in [19].

As the Delaunay and Voronoi diagrams, the structures of stable and unstable manifolds have a duality. Interestingly, one
can compute the unstable manifolds and their approximations from the Voronoi diagrams. Here we state some of the facts about
the unstable manifolds of the critical points.

1. MAXIMA . The unstable manifold is the local maximum itself.

2. INDEX 2 SADDLES. The unstable manifold of an index 2 saddle point is a polyline starting at the saddle point and ending
at a maximum.

3. INDEX 1 SADDLES. The unstable manifold of an index 1 saddle point is a two dimensional surface patch which is
bounded by the unstable manifold of index 2 saddle points.

4. MINIMA . The unstable manifold of a local minimum is a three dimensional polytope bounded by the unstable manifold
of critical points with higher indices.

Flow on Voronoi Objects

Before we state the connection between the flow induced byhP and the Vor-Del diagram ofP, we would like to state some
facts about the relative position of Voronoi and Delaunay objects. These relative positions can describe the nature of flows in
the Voronoi objects. These facts were clearly explained in [26] for a more general setting of power distance.

Figure 4.15: Relative position of a Voronoi facetF with respect to its dual Delaunay edgepq. The left picture shows the
creation of an index 1 saddle point. The right picture shows the position of the driverd of F .

Fact 1. The unoriented normal to the supporting plane of a Voronoi facet is along its dual Delaunay edge and the plane passes
through the midpoint of the edge. The Delaunay edge, though,may or may not intersect the dual Voronoi face.

Figure 4.15 illustrates the two possibilities that may arise. The left figure corresponds to the situation that results in an
index 1 saddle point.

Fact 2. The supporting line of a Voronoi edge always intersects the plane of the dual Delaunay triangle at its circumcenter and
is along its unoriented normal. The Voronoi edge may or may not intersect the interior of the Delaunay triangle.
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Figure 4.16: Relative position of a Voronoi edgee with respect to its dual Delaunay trianglepqr. The blue circles denote the
two Voronoi vertices defininge. The driver ofe is markedd and the supporting plane of trianglepqr is drawn in cyan.

Figure 4.16 lists the four possible scenarios. The bottom right corresponds to the generation of an index 2 saddle point.

We have already seen that the critical points ofhP can be computed from VorP and DelP. Also, the driver of a pointx
comes from the Delaunay object dual to the Voronoi objectx lies in. In this context we would like to state the following lemma
which is key to the further computations.

Lemma 4.3.1. All interior points of a Voronoi object have the same driver.

This result can be easily proved by considering all the different cases regarding the dimension of the Voronoi object andits
position with respect to its dual Delaunay object.

By Lemma 4.3.1 and Facts 1 and 2 we can list the possible position of the drivers of the points lying in the interior of a
certain dimensional Voronoi object.

Position of Drivers

Voronoi Cell

For a Voronoi cellVp, the dual Delaunay object is a singleton set containing the sample pointp and therefore all pointsx in
the interior ofVp hasp as their driver.

Voronoi Facet

Consider a Voronoi facet in the intersection ofVp andVq. The dual Delaunay edge ispqand the midpoint ofpq is the driver
of all x lying in the interior of the Voronoi facet (Figure 4.15(right) ).

Voronoi Edge

Next, consider a Voronoi edge in the intersection ofVp,Vq,Vr . As Fact 2 and Figure 4.16 indicate, the infinite line segment
containing the Voronoi edge may or may not intersect the convex hull of p,q, r leading to two different possibilities
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Case 1.1In case of intersection, the circumcenter ofpqr is the driver. Such Voronoi edges will be termednon-transversal
edges as the flow is along the edge itself. The Voronoi edge hastwo Voronoi vertices as its endpoints. If both of them are
in the same half-space defined bypqr, the closer Voronoi vertex is calledsourceand the further one is calledterminusof
the Voronoi edge because the flow is directed from the closer to the further vertex. Figure 4.16 (top right) illustrates this
case.

Case 1.2If the Voronoi edge does not intersect the affine hull ofp,q,andr, the midpoint of the edge opposite to the largest
angle ofpqr is the driver. These Voronoi edges will be termed astransversal. If any pointx moving along its orbit hits
one such edge, the position of the driver implies that it willenter the Voronoi facet dual to the Delaunay edge opposite to
the largest angle inpqr. Such Voronoi facet will be termedacceptorfacets of thattransversalVoronoi edge. Figure 4.17
illustrates the situation.

Figure 4.17: Transversal Voronoi edgee is shown in red with three incident Voronoi facets. Flow direction is shown with
arrows. Flow from either ofF1 or F2 hitse and entersF3, the acceptor ofe.

Voronoi Vertex

The case of Voronoi vertex again requires the analysis of twodifferent cases. We assume, that it is outside its dual tetrahe-
dron because otherwise it is a local maximum and hence is its own driver. Letv be a Voronoi vertex with the dual tetrahedronσ
whose four neighbors areσi , i = 1. . .4. Further, let the corresponding shared triangles betweenσ andσi beti , i = 1. . .4 where
wi , i = 1, . . .4 is its opposite vertex inσ .

Case 2.1There is only one triangleti of σ for which the Voronoi vertexv and the opposite vertexwi lie in two different half-
spaces defined byti . Let ei be the Voronoi edge between the duals ofσ andσi . Then, the driver forv (dual toσ ) is same
as the driver ofei . In such cases,ei is termed as theoutgoingVoronoi edge ofv. See top row of Figure 4.18 for an
illustration.

Case 2.2There are two trianglesti , t j of σ for which the Voronoi vertexv and the opposite vertex (wi andwj ) lie in two different
half-spaces defined by the corresponding triangles. Letei ,ej be the Voronoi edges defined as in Case 2.1. Note, in this
case, bothei ,ej are theoutgoingVoronoi edges ofv. There are two possibilities that we need to consider further.

Case 2.2.1Bothei ,ej aretransversal: In this case theacceptors of both of them is dual to the Delaunay edgeti ∩ t j and
the corresponding driver is the midpoint ofti ∩ t j . See bottom-left subfigure of Figure 4.18.
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Case 2.2.2One ofei ,ej is transversal: The driver is same as that of the non-transversal Voronoi edge. See bottom-right
subfigure of Figure 4.18.

Figure 4.18: Possible driver positions of a Voronoi vertexv according to the cases 2.1 and 2.2.(1−2). The acceptor Voronoi
facet is shown in pink. The flow along a non-transversal Voronoi edge is shown with a double arrow. The driver is shown in
red circle.

In this context we state another lemma that is important for subsequent developments.

Lemma 4.3.2. Let F be an acceptor Voronoi Facet for the transversal Voronoi edges e1 = (v1,v2) . . .ek = (vk,vk+1) around it.

1. The Voronoi edges e1 . . .ek form a continuous chain around F.

2. The Voronoi vertices v2 . . .vk fall in the category 2.2.1. The Voronoi vertices v1 and vk+1 fall in the category 2.2.2.

3. F, e1 . . .ek, v2 . . .vk have same driver which is the midpoint of the Delaunay edge dual to F.

We omit the proofs of all of the above claims.

Computing Unstable Manifolds

Unstable Manifold of Index-2 Saddle Points

In this section we describe the structure and computation ofthe unstable manifolds of index 2 saddle points.

The unstable manifold of an index 2 saddle point is one dimensional. In our discrete setting it is a polyline with one endpoint
at the saddle point and the other endpoint at a local maximum.The polyline consists of segments that are either subsets ofnon-
transversal Voronoi edges or lie in the Voronoi facets. Due to the later case, the polyline may not be a subcomplex of VorP.

Let us consider an index 2 saddle point,c, at the intersection of a Delaunay trianglet with a Voronoi edgee. Let the
two tetrahedra sharingf beσ1,σ2. The edgee has the endpoints at the dual Voronoi vertices ofσ1 andσ2, denoted asv1,v2

respectively. The unstable manifoldU(c) of c, has two intervals - one fromc to v1 and the other fromc to v2. We look at the
structure of one of them, say the one fromc to v1, and the other one is similar.
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At any point on the subsegmentcv1, the flow is towardv1 from c. Once the flow reachesv1, the subsequent flow depends
on the driver ofv1. Instead of just looking atv1, we consider a generic step, where the flow reaches at a Voronoi vertexv and
we enumerate the possible situations that might occur depending on the position of driver ofv. If v is a local maximum, the
flow stops there, as the driver ofv is v itself. Otherwise there are two cases to consider.

• v falls into Case 2.1: Let the dual tetrahedron beσ and the driver ofv is same as that of the Voronoi edgee which is
between the dual ofσ and one of its neighbors, sayσ ′. If e is non-transversal, the flow will be along the Voronoi edgee
till it hits the Voronoi vertex at the other endpoint (dual toσ ′). Otherwise, the flow enters the acceptor Voronoi facetF
of e. Due to Lemma 4.3.2, the driver ofF is same as the driver ofe. Therefore the next piece of the unstable manifold
can be uniquely determined by the driver ofe, sayd and the Voronoi vertexv. It is the segment betweenv and the point
where the ray

−→
dv intersects a Voronoi edge ofF .

• v falls under Case 2.2.x: This situation is similar to the one described above. In caseof both of the Voronoi edges being
transversal(Case 2.2.1), the flow enters the acceptor Voronoi facet. In the other case (Case 2.2.2), the flow follows the
non-transversal Voronoi edge.

Some segments ofU(c) are not along the Voronoi edges. Wherever the flow encountersa transversal Voronoi edge, it seizes
to follow the Voronoi edge and enters a Voronoi facet which isacceptor for that Voronoi edge. This calls for the analysis of
the flow when it crosses an acceptor Voronoi facet and hits a Voronoi edge. We have already characterized the position of
the driver for a Voronoi edge and thereby classified those edges as either transversal or non-transversal. If the currentedge
intersected by the ray from the driver tov is a non-transversal edge, the flow will follow that Voronoi edge and hit a Voronoi
vertex. Otherwise, it will enter the acceptor Voronoi facetof the Voronoi edge again. There is a technical difficulty we need to
point out. Unless the acceptor for this Voronoi edge is different from the Voronoi facet the flow came from, we may encounter
a cycle. The following lemma saves us from this awkward situation.

Lemma 4.3.3. Let F be a Voronoi facet and let d be its driver. Let e be a Voronoi edge for which F is acceptor and x be any
point on e. Also assume the ray from d to x intersects a Voronoiedge e′. If e′ is transversal, the acceptor of e′ is different from
F.

Figure 4.19: Unstable manifoldU(c) of an index 2 saddle pointc. c is drawn with a cyan circle. The portion ofU(c) which is
a collection of Voronoi edges is drawn in green with intermediate Voronoi vertices drawn in blue. The pink circle is a Voronoi
vertex onU(c) where the flow enters a Voronoi facet. The portion ofU(c) which lies inside the Voronoi facets is drawn in
magenta. The transversal Voronoi edges intersected by thisportion ofU(c) are dashed.U(c) ends at a local maximum which
is drawn in red.

Figure 4.19 shows an example of the unstable manifold of an index 2 saddle point.

Following the above discussion on the structure ofU(c) we devise the algorithm to compute the unstable manifold of an
index 2 saddle pointc. We assume, the saddle pointc carries the information about the two neighboring tetrahedra σ1,σ2

and additionally we have access to DelP which is used to evaluate the utility routines like acceptor() , terminus() etc. The
pseudo-code of the algorithm is given in Figure 4.20.



4.3. CURATION OF SURFACE 151

UM_INDEX_2(c)
1 U1 = cv1 andU2 = cv2

2 v= v1

3 end(U1) = v1

4 while (v is not a maximum) do
5 if(v is not a Voronoi vertex)
6 e= Voronoi edge containingv
7 if(e is non-transversal)
8 end(U1) = terminus(e)
9 U1 =U1∪segment(v,end(U1)

10 v= terminus(e)
11 else
12 F = acceptor(e)
13 d = driver(F) = driver(e)

14 x=
−→
dv∩e′ 6= /0, e′ is a Voronoi edge ofF

15 end(U1) = x
16 U1 =U1∪segment(v,end(U1)
17 v= x
18 else
19 if(v falls under Case 2.1)
20 e= outgoingVoredge (v)
21 repeat steps 7-17.
22 else if(v falls under Case 2.2)
23 F = acceptor(v)
24 repeat steps 13-17.
25 endwhile
26 Similarly computeU2.
27 returnU1∪U2.

Figure 4.20: Pseudo-code for computation of unstable manifold of an index 2 saddle point.

Unstable Manifold of Index-1 Saddle Points

Unstable Manifold of index 1 saddle points are two dimensional. Due to hierarchical structure, they are bounded by the
unstable manifold of index 2 saddle points. In this section we first describe the structure of the unstable manifolds and then
describe an algorithm that computes an approximation of theunstable manifold of an index 1 saddle point.

Let us consider an index 1 saddle point,c. This point lies at the intersection of a Voronoi facetF and a Delaunay edge. For
any pointx∈ F \ c, the driver isc. For all suchx, if they are allowed to move in the direction of flow, they willmove radially
outward and hit the Voronoi edges boundingF . ThusF is in U(c). Now we analyze the flow when a point hits a Voronoi edge.

We have characterized the position of the drivers for a Voronoi edge and we have also seen that depending on the driver,
one can classify the Voronoi edges into two categories - transversal and non-transversal. For a non-transversal Voronoi edge,
the flow is along the Voronoi edge. Such Voronoi edges lie on the boundary ofU(c). On the other hand,U(c) grows via the
acceptor facets of transversal Voronoi edges. Depending onthe position of the driver, which by Lemma 4.3.2 is same for both
the edge and the acceptor facet, atruncated conedefines the extension ofU(c) into the acceptor Voronoi facet. Consider the
cone defined by the two rays emanating from the driver and passing through the endpoints of the transversal Voronoi edge.
The intersection of the acceptor facet with the cone defines the truncated cone. The truncated cone hits a continuous chain
of Voronoi edges in the acceptor facet. Some of them are completely contained in the truncated cone and some of them are
intersected by the two rays and hence are partially contained in it. This chain of edges defines the new boundary ofU(c)
through some of whichU(c) can be extended further recursively. Figure 4.21 shows an example truncated cone in a Voronoi
facetF by the driverd and the end Voronoi vertices of the transversal Voronoi edge(green).
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(a) (b)

Figure 4.21: (a) Truncated Cone. Accurate computation selects only the pink region from the yellow Voronoi facet as partof
unstable manifold of an index 1 saddle pointc (not shown). (b) Snapshot of approximate computation ofU(c) at a generic
stage.

To computeU(c) accurately, one therefore needs to compute the intersection of a ray and a line segment in three dimension.
Such computations are prone to numerical errors. Therefore, we rely on an approximation algorithm that computes a superset
of U(c). The algorithm works as follows.

Starting from the Voronoi facetF containingc, we maintain a list of Voronoi facets which are already inU(c) and a list
of active Voronoi edges which are transversal edges and lie on the boundary of the current approximation ofU(c). Through
these transversal edges we collect their acceptor facets and growU(c). Instead of computing the new set of active edges by an
expensive numerical calculation of ray-segment intersection, we collect all the transversal edges of this new acceptor Voronoi
facets. This way we growU(c) recursively till we have a set of Voronoi facets which are bounded by only a set of transversal
Voronoi edges.

Figure 4.21(b) illustrates an intermediate stage of this computation. The index 1 saddle pointc is contained in the blue
Voronoi facet. The yellow Voronoi facets are already inU(c). The red edges designate the static boundary as they are non-
transversal and the green edges designate the active boundary through which the pink facets are included inU(c) in the later
stage of the algorithm. Following is the pseudo-code for this algorithm. Given an index 1 saddle pointc it computes an
approximation ofU(c). We assumec also has information about the Voronoi facetF it is contained in.

APPROX_UM_INDEX_1(c)
1 U = F
2 B= Voronoi edges ofF
3 while (B 6= /0) do
4 e= pop(B)
5 if (e is transversal)
6 U =U ∪acceptor(e)
7 B= B∪unvisited edges of acceptor(e)
8 endwhile
9 returnU .

Figure 4.22: Pseudo-code for approximate computation of unstable manifold of an index 1 saddle point.

Classification of Medial Axis

In the previous two subsections we have described the structures of the unstable manifolds of an index 1 and index 2 saddle
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points. We have also given an accurate and an approximate algorithm to compute them. Our goal is to identify the unstable
manifolds near the medial axis ofΣ. Ultimately these manifolds are mapped back toΣ for the feature annotation. For this we first
compute a Voronoi subcomplex that approximates the medial axis MΣ and then identify different regions of this approximate
medial axis as the unstable manifolds computed by the two subroutines UM_INDEX_2 and APPROX_UM_INDEX_1.

Before we describe our approach, we briefly mention a recent result by Dey, Giesen, Ramos and Sadri [22] where they
proved that under sufficient sampling ofΣ by P, the critical points ofhP lie either close toΣ or close toMΣ. This motivates
our approach. Applying the same result, we filter out only theindex 1 and index 2 saddle points nearMΣ instead ofΣ. Further,
we consider only the components ofMΣ which lie in the interior of the solid bounded byΣ. For this purpose we use the
TIGHTCOCONE algorithm by Dey and Goswami [23]. The implementation of this algorithm is freely available in the public
domain [16] along with the software for medial axis approximations which is computed as a Voronoi subcomplex according
to the algorithm by Dey and Zhao [25]. For the purpose of reconstruction, any other reconstruction algorithm also could be
used [8, 2]. Applying TIGHTCOCONE followed by medial axis approximation we get the approximate interior medial axis of
Σ. We perform the critical point detection only within the Voronoi subcomplex that approximates this medial axis. Let us call
this set of index 1 saddle pointsC1 and that of index 2 saddle pointsC2. We then apply UM_INDEX_2(c) for all c∈C2 and
APPROX_UM_INDEX_1(c) for all c∈C1. U(c∈C1) is two dimensional andU(c∈C2) is one dimensional. Therefore, by
restricting the unstable manifold computation only withinMΣ we obtain two subsets ofMΣ. In the next section, we describe
how this classification can be mapped back toΣ for automatic identification of its flat and tubular regions.

Figure 4.23: Removal of small patches in the tubular region via starring. Magenta circles indicate the centroids of these patches,
green circles are the boundary vertices which connect a patch with a linear portion (red line) and cyan circle indicates where
two different patches join at a common vertex. Blue lines arethe replacements of these small patches obtained by the starring
process.

Because of sampling artifacts, sometimes the interior medial axis in the tubular regions have a few index 1 saddle points.
The unstable manifold of these saddle points need to be detected and approximated by lines. We partition the setC1 based on
the connectivity of their unstable manifolds via a common edge and every partition creates a patch which is the union of the
unstable manifolds of all the index 1 saddle points falling into that partition. We further assign animportancevalue based on
the area of the patch and sort the patches according to theirimportance. One could also employ other attributes like diameter,
width etc. to evaluate the importance. The small clusters are then detected either by a user-specified threshold value orby
simply selecting thek-smallest clusters wherek is also a user-supplied parameter. These insignificant planar regions are then
approximated by a set of straight lines emanating from the centroid of the patch to the boundary points which are connected to
either a polyline (green circles in Figure 4.23) or another patch (cyan circle in Figure 4.23). We call this processstarring.

The resulting one dimensional and two dimensional subsets of the interior medial axis is shown in Figure 4.24. Left column
shows the approximate medial axis computed by [25]. The right column shows the subset of medial axis captured byU(C2)
andU(C1).
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Figure 4.24: Results of Medial Axis classification. Top row shows the result for HEADLESS MAN. Two closeups have been
shown to highlight the planar clusters in the palm of the handand the feet. The closeup of hand has been rotated for visual
clarity. The middle row shows the result on HAND dataset and the bottom row shows the result on a molecule data1BVP.
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Chapter 6

Energetics

In [6], the Gibbs free energy of a system of an assemble of solutes with arbitrary shape and composition surrounded by a
dielectric solvent is expressed as

G= pV+
∫

γ(r)‖∇H (r)‖ dr +
∫

ρ(r)U(r) dr +
ε0

2

∫
‖∇φ(r)‖2ε(ε) dr . (0.1)

The first term is energy of creating a cavity in the solvent against the difference in bulk pressure between the liquid and vapor.
The second term is the energetic cost due to solvent arrangement close to the cavity surface. This interfacial energy penalty is
thought to be the main driving force for hydrophobic phenomena [3]. They assumeγ is a function of the local mean curvature
of the cavity interface. The third term is the total non-electrostatic solute-solvent interaction. It is represented as an isotropic
Lennard-Jones potential. The fourth term is the total electrostatic energy. The electrostatic potentialφ is evaluated by Poisson’s
equation.

In [20], they rewrite the Poinsson-Boltzmann (PB) equationinto the form of the Euler-Lagrange equation the solution of
which minimizes the total electrostatic free energy of the system:

Gele=

∫ (
ρ f φ − kTcb[2cosh(φ)−2]− 1

2
E ·D

)
dr , (0.2)

whereρ f is the charge density of the fixed charges (of the proteins or other macromolecules) andcb is the bulk salt concentra-
tion. Whenφ ≪ 1, the PB equation can be linearized, so the electrostatic free energy can be written as

Gele=

∫ (
ρ f φ − εκ2

8π
φ2− 1

2
E ·D

)
dr . (0.3)

In [18], they write the total potential of mean forceG(X) for the configurationX as

G(X) =Uu(X)+∆G(np)(X)+∆G(elec)(X), (0.4)

whereUu(X) is the intramolecular solute potential. The representation of the non-polar solvation contribution∆G(np)(X) can
be obtained from the scaled particle theory (SPT). To produce a cavity in a liquid,

∆G(np)(X) = pV+ γA, (0.5)

wherep is the isotropic pressure,V is the volume of the cavity,γ is a function of the surface tension of the solvent and the
curvature of the interface, andA is the area of the interface. The continuum electrostatic contribution can be expressed as a
surface integral

∆G(elec)(X) =
1
2

∫

Γ
∑
i

qi
σ(r)
|r − xi|

dr , (0.6)
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whereσ(r) is the surface charge density. This is because the solvent charge density is a sharply peaked function localized at
the solute-solvent interface. One can further rewrite (0.6) as

∆G(elec)(X) =
1
2

∫

Γ
∑
i, j

qiq j
σ(r : x j)

|r − xi|
dr

=
1
2 ∑

i, j

qiq jF(xi ,x j), (0.7)

whereσ(r : x j) is the surface charge induced atr by a unit solute charge located atx j . The geometry-dependent coupling
functionF(xi ,x j) has different approximations, for example FIESTA [22], IMS[5], ACE [19], and GB [23].

In the Weeks-Chandler-Anderson (WCA) model [26], the intermolecular potential is separated into two parts:

w(r) = u0(r)+u(r), (0.8)

whereu0(r) is the reference system pair potential which includes all the repulsive forces in the Lennard-Jones potential andu(r)
is the perturbation potential which includes all the attractive forces. So one can also writew(r) =Urep(r)+Uatt(r). Because the
non-polar free energy can be decomposed into the repulsive cavity hydration free energy and the solute-solvent van der Waals
dispersion interaction [16],

∆G(np)(X) = ∆Gcav+∆GvdW, (0.9)

in [28] they use the WCA decomposition scheme to represent∆Gcav and∆GvdW by the repulsive potentialUrep(r) and attractive
potentialUatt(r), respectively. Explicit solvent simulation has shown that∆Gcav is approximately proportional to the solvent
accessible area.Uatt(r) is obtained by summing the average van der Waals solute-solvent energyU i

att of each atom

Uatt =
M

∑
i=1

U i
att, (0.10)

where
U i

att =

∫

solvent
ρ̄ui

att(|r − xi|) dr . (0.11)

ρ̄ is the bulk density of the solvent,ui
att = −εi

(
σi+σs
|r−xi |

)6
, εi measures the depth of the attractive well at|r − xi | = σi +σs, σi

andσs are the radii of the solute atom and the solvent probe. The integration domain in (0.11) can be converted to a bounded
domain

U i
att =U i

att(isolated)− ρ̄
∫

solute\atomi

ui
att(|r − xi|) dr , (0.12)

where first term is the solute-solvent attractive van der Waals energy when the solute is composed solely of atomi. This can be
analytically obtained by integrating (0.11) for the singleatom solute model.

6.1 Hamiltonian, Lagrangian

6.2 Partial Charge Assignment

6.3 Lennard Jones Potential (vander Waals)

The Lennard-Jones (LJ) potential between moleculesA andB is given by the following expression.

LJ(A,B) = ∑
i∈A, j∈B

l j (i, j), l j (i, j) = ai j/r12
i j −bi j/r6

i j ,

wherer i j is the distance between atomsi ∈ A and j ∈ B, constantsai j andbi j depend on the type (e.g., C, H, O, etc.) of the two
atoms involved. One can evaluate the LJ potential among the atoms of a single moleculeA by settingB= A and considering
only non-bonded atom pairs.
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Observe that direct computation ofLJ(A,B) requiresO (MAMB) time, whereMA (resp. MB) is the number of atoms in
moleculeA (resp.B). However, since the terms in the summation diminish quickly with the increase ofr i j , one can evaluate
LJδ−(A,B) = ∑ i ∈ A, j ∈ B, r i j ≤ δ l j (i, j) as an approximation ofLJ(A,B), whereδ is a given distance cutoff.

SupposeMA > MB. Then one can evaluateLJδ−(A,B) in O ((MA+MB) logMB+m) time andO (MA+MB) space, wherem
is the total number of〈i ∈ A, j ∈ B〉 pairs within distanceδ . The trick is to use an octree [12] to store the atoms ofB, and then
use it to locate the atoms ofB within distanceδ from each atom ofA (see [4] for details). Use of a 3D grid instead of an octree
may result inΘ

(
MB

3
)

space usage in the worst case [4].

In the rest of this section we first outline our approach to evaluatingLJδ−(A,B) faster thanO ((MA+MB) logMB+m) time
while still usingO (MA+MB) space, followed by our approach to fast approximation ofLJ(A,B) to within a factor of 1+ ε of
the exact value for any givenε > 0.

6.3.1 Faster Evaluation ofLJ(A,B) with a Distance Cutoff

We store the atoms ofB in ourDynamic Packing Grid(DPG) [1] data structure instead of an octree. The DPG can maintain the
atoms of a molecule in space linear in the number of atoms, while allowing a range of spherical range queries and updates (i.e.,
insertion/deletion) very efficiently. An update takesO (1) time (w.h.p.1), while a range query returns all atoms within a given
distanceδ from any given atom center inO (k) time2 (w.h.p.), wherek is the number atoms returned. Therefore, all atoms of
B can be inserted into the DPG inO (MB) time (w.h.p.), and the total time required to find all atoms ofB within distanceδ of
the atoms ofA is O (MA+m). Hence,LJδ−(A,B) can be evaluated exactly inO (MA+MB+m) time (w.h.p.) andO (MA+MB)
space.

6.3.2 Fast(1+ ε)-Approximation of LJ(A,B)

Observe thatLJ(A,B) = LJδ−(A,B)+LJδ+(A,B), whereLJδ+(A,B) = ∑ i ∈ A, j ∈ B, r i j > δ l j (i, j). We outline below how to ob-
tain an error-bounded approximation ofLJ(A,B) through a fast approximation ofLJδ+(A,B) in addition to the exact evaluation
of LJδ−(A,B). More precisely, given any user-defined constantε > 0, we will approximateLJ(A,B) to within a(1+ ε) factor
of its exact value.

In the expression ofLJ(A,B), ai j andbi j are fixed for any fixed pair of atom types, and can be calculatedfrom the Amber
force field using well depthsµXY and equivalence contact distances of homogeneous pairsreqm,XY, whereX = atomType(i ∈A)
andY = atomType( j ∈ B)) [27, 14]. By definition,ai j /bi j = r6

eqm,XY/2 (see [14]). We assumeX,Y ∈ {C, H, N, O, P, S}.
Let MX denote the subset of atoms of typeX in moleculeM ∈ {A,B}. ThenLJ(A,B) = ∑X,Y∈{C, H, N, O, P, S}LJ(AX ,BY),

where,LJ(AX ,BY) = LJδ−XY
(AX,BY)+LJδ+

XY
(AX ,BY), for some constantδXY≥ 0 (to be defined later). We outline below how to

approximateLJ(AX ,BY) for a given pair〈X,Y〉. We evaluateLJδ−XY
(AX,BY) exactly, and approximateLJδ+

XY
(AX ,BY) to within

a factor of(1+ ε) of its exact value.

Let δXY ≥ (1/2+1/ε)1/6reqm,XY. If we approximate eachbi j /r6
i j with r i j > δXY to within a factor of 1+ ε/(2+ ε), simple

algebraic manipulations show|l j (i, j)| <
[
bi j /r6

i j

]
approx

< (1+ ε)|l j (i, j)|.

In order to approximateLJ(AX ,BY) as mentioned above, we construct two octreesTAX andTBY from the atoms inAX and
BY, respectively, and compute a(1+ ε)-approximation ofLJ(AX ,BY) by simultaneous recursive traversals ofTAX andTBY

starting from their root nodes. Suppose at some point we are at nodex of TAX and nodey of TBY . If both x andy are leaf
nodes, potential between the atoms contained inx (say,Mx) andy (say,My) is computed exactly. Otherwise ifx andy are
far enough (i.e., at leastδXY apart), and small enough3 the potential betweenMx andMy is approximated by assuming thatx
andy are single pseudo atoms centered at the center of gravity ofMx andMy, respectively, and taking|Mx||My|

(
bi j /r6

xy

)
as

1For an input of sizen, an event E occurs w.h.p. (with high probability) if, for anyα ≥ 1 andc independent ofn, Pr(E)≤ 1− c
nα .

2The actual complexities also depend on logw and log logw, respectively, wherew is the RAM word size (e.g., 32 or 64) of the machine, which is a constant
for a given machine.

3i.e.,rx,y+(rx+ ry)< (1+ ε/(2+ ε))
1
6 (rx,y− (rx+ ry)), where,rx (resp.ry) is the radius of the smallest ball centered at the atom centers ofx (resp.y) that

encloses all atom centers ofx (resp.y).
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Figure 6.1: Approximation of LJ potential in 2D using quadtrees [9] (i.e., 2D variant of octrees): In the leftmost figure the
bounding box of moleculeA (resp. B) represents the root node of the quadtree storingA (resp. B). The smallest boxes in
the middle and the rightmost figures represent quadtree nodes at levels 2 (i.e., children of the root) and 3, respectively. Let us
assume for simplicity that if two nodes of the two quadtrees do not intersect they are far enough so that the LJ potential between
their atoms can be approximated by treating them as pseudo-atoms. In the leftmost figure the two root nodes (nodesA andB)
intersect, and so we move to their children nodes in the middle figure. In the middle figure only nodesA2 andB3 intersect, and
so while the potential between the atoms of all other〈Ai ,B j〉 pairs can be approximated, we need to move to the children ofA2

andB3 in order to compute the potential between them (see the rightmost figure).

the approximated potential, whererxy is the distance between the centers of the two pseudo atoms. Otherwise we subdividex
and/ory (i.e., move to their children), and approximate the potential recursively. Figure 6.1 explains the approach in 2D. The
pseudocode is given in Figure 6.2.

APPROXLJ( x, y )

(Inputs are two octree nodesx ∈ TAX and y ∈ TBY , and the the output is a floating point numberV such thatU ≤ V ≤ (1+ ε) ·U , where U =

∑ i ∈Mx∧ j ∈My

(
ai j /r12

i j −bi j /r6
i j

)
. By CHILD (x) (resp. CHILD (y)) we denote the set of non-empty octree nodes obtained by subdividing nodex (resp.

y). We denote bybXY the value of the constantbi j for atom typesX andY, and byrx,y the distance between the centers ofx andy.)

1. if LEAF(x) ∧ LEAF(y) then return ∑i∈Mx∧ j∈My

(
ai j
r12
i j
− bi j

r6i j

)
{exact value}

2. else if rx,y− (rx+ ry)> δXY ∧ rx,y+(rx+ry)
rx,y−(rx+ry)

<
(
1+ ε

2+ε
) 1

6 then return − Mx·My·bXY

(rx,y−(rx+ry))6 {approximation}

3. else if LEAF(x) return ∑ cy∈ CHILD (y) APPROXLJ( x, cy ) {recursive approximation}

4. else if LEAF(y) return ∑ cx∈ CHILD (x) APPROXLJ( cx, y ) {recursive approximation}

5. else return ∑ cx∈ CHILD (x)∧cy∈ CHILD (y) APPROXLJ( cx, cy ) {recursive approximation}

APPROXLJ ENDS

Figure 6.2: Recursive approximation of∑i∈Mx∧ j∈My

(
ai j /r12

i j −bi j /r6
i j

)
to within a factor of 1+ ε. The initial call is

APPROXLJ( ROOT(TAX), ROOT(TBY) ) for the approximation of∑i∈AX∧ j∈BY

(
ai j /r12

i j −bi j /r6
i j

)
.

In order to obtain an upper bound on the time required for approximatingLJ(AX ,BY) we assume that the initial bounding
box of bothAX andBY have exactly the same size, and each non-root node of the two octrees has at least one sibling4. Then it

can be shown that each nodex∈TAX will be paired withO

(
1
ε3

)
nodes ofTBY of the same or larger size during recursive calls,

and vice versa. In order to see that this is indeed the case, suppose the diameter of the smallest ball containing nodex is d (i.e.,
equal to the length of the longest diagonal ofx.). Then a nodey∈ TBY of the same size will be paired withx for approximating
the potential by treating both nodes as pseudo atoms provided the (center-to-center) distancerx,y between them is in the range

[ε ′d, 2ε ′d), whereε ′ = (ε ′′+1)/(ε ′′−1), andε ′′ = (1+ ε/(2+ ε))1/6. Since the volume of nodey is Θ
(
d3
)
, there can be

4if not, we directly connect the node to its nearest ancestor that has at least two children.
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O

(
1
ε3

)
such nodes within that range. Also since each internal node of TBY is assumed to have at least two children, the number

of nodes ofTBY larger thany with which x can be paired as pseudo atom is also bounded byO

(
1

ε3

)
. Observing that there

areO (|AX|) (resp.O (|BY|)) nodes inTAX (resp.TBY ), and taking the construction times of the octrees into account, the total

running time of the algorithm for atom-type pair〈X,Y〉 is O

(
|AX| log|AX |+ |BY| log|BY|+ 1

ε3 (|AX|+ |BY|)
)

. Summing over

all possible pairs of atom types, the total running time for approximatingLJ(A,B) is O

((
1
ε3 + log(MA+MB)

)
(MA+MB)

)
.

However, assuming that the octrees are already constructedin a preprocessing step5, the running time of the algorithm is only

O

(
1
ε3 (MA+MB)

)
.

6.4 Coulombic

Long range Coulomb potential plays a role in forming stable complexes due to partially charged bio-molecules and solvent
atoms, and is given byQ = ∑i, j

qiq j
ε(r i j )r i j

. Assumingε(r i j ) = r i j , Q is also approximated as∑i, j qiq j/r2
i j , where pairwise

interactions fall off more sharply with distance.

We can obtain an approximationQ′ of Q using an algorithm similar to the 1+ ε approximation algorithm in Section
6.3. Since contributions due to positive and negative pairwise potentials tend to cancel out the algorithm does not guarantee a
multiplicative (i.e., 1+ ε) error bound. Instead the error bound can be obtained as follows. SupposeQ = QP −QN , where
QP (resp. QN ) is the sum of all positive (resp. negative) pairwise potentials in Q. Now if Q > 0, then simple algebraic
manipulations show thatQ− εQP ≤Q′ ≤Q+ εQP . Similarly, if Q < 0 the bound isQ− εQN ≤Q′ ≤Q+ εQN . We
cannot guarantee an error bound ifQ = 0.

6.5 Dispersion

The solute-solvent van der Waals interaction energy (also known asdispersion energy) is modeled as [7, 25]:Evdw(s-s)=

ρ0 ∑M
i=1
∫

exu(att)
i (xi , r)d3r , whereρ0 is the bulk density, andu(att)

i (xi , r) = 1
|r−xi |6

is the van der Waals dispersive component of

the interaction between atomi ∈ [1,M] and the solvent. ThusEvdw(s-s)= ρ0 ∑M
i=1
∫

ex
1

|r−xi |6
d3r .

The following discrete surface formulation of the equationabove is obtained by applying the divergence theorem and Gaus-
sian quadrature:Evdw(s-s)≈ ρ0

3 ∑M
i=1 ∑m

k=1wk
(rk−xi)·nk
|rk−xi |6

. If Ri is the Born radius of atomi calculated using ther6-approximation,

thenEvdw(s-s)≈ ρ0
4π
3 ∑M

i=1
1

R3
i
.

Therefore,Evdw(s-s)can be approximated inO
(
M logM+M/ε3

)
time andO (M) space usingm=O (M) quadrature points

and the technique described in Section 6.6.2 for the simultaneous approximation of Born radius of all atoms in a molecule,
whereε > 0 is the approximation parameter used for Born radius approximation. In fact,Evdw(s-s)can be approximated slightly
(a constant factor) faster than approximating all Born radii since we do not need to approximate the Born radius integralfor
each atom and instead we can simply compute the sum of those integrals. The simplified pseudocode is given in Figure 6.3.

The algorithm runs inO
(
M/ε3

)
time if the octrees are already available.

NFFT based Fast Summation.The inner summation in the discrete surface formation ofEvdw(s-s)can be written as:∑m
k=1wk

(rk−xi)·nk
|rk−xi |6

=

∑m
k=1

wkrk·nk
|rk−xi |6

−xi ∑m
k=1

wknx
k

|rk−xi |6
−yi ∑m

k=1
wkny

k
|rk−xi |6

−zi ∑m
k=1

wknz
k

|rk−xi |6
, where,xi = 〈xi ,yi ,zi〉 andnk = 〈nx

k,n
y
k,n

z
k〉. The summations on

the right hand side are of the common formG(xi) = ∑m
k=1ckg(xi− r k), i ∈ [1,M], with g(xi− r k) = 1/|xi− r k|6 and coefficients

ck = wkr k ·nk, wknx
k, wkn

y
k andwkn

z
k for the 1st, 2nd, 3rd and 4th summation, respectively. All such G(xi) for i ∈ [1,M] can be

5e.g., in rigid-body pairwise docking, where LJ potential iscomputed for numerious relative translations and orientations of the same two input molecules,
the octrees can be constructed only once, and the locations of the octree nodes can be transformed on-the-fly during potential approximation based on the
relative transformation of the two molecules.
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APPROX-DISPE( A, Q )

(For the given nodeA in the atoms octree and nodeQ in the integration/quadrature points octree approximateρ0
3 ∑a∈A ∑q∈Q wq

(pq−pa)·nq
|pq−pa|6

. By pa = 〈xa,ya,za〉 we

denote the center of an atoma, while bypq = 〈xq,yq,zq〉, wq andnq = 〈nxq,nyq,nzq〉 we denote the location of a quadrature pointq, weight assigned toq, and the
unit outward normal on the molecular surface atq, respectively. By〈xA,yA,zA〉 (resp.〈xQ,yQ,zQ〉) we denote the geometric center of the atoms (resp. integration
points) underA (resp.Q). By rA (resp.rQ) we denote the radius of the smallest ball centered at〈xA,yA,zA〉 (resp.〈xQ,yQ,zQ〉) that encloses all atom centers (resp.
integration points) underA (resp.Q). The distance between the geometric centers ofA andQ is given byrA,Q. We also assumẽnxQ = ∑q∈Q wqnxq. Similarly for
ñyQ andñzQ. By CHILD (A) (resp.CHILD (Q)) we denote the set of non-empty octree nodes obtained by subdividing nodeA (resp.Q), andMA (resp.mQ) denotes
the number of atoms (resp. integration points) under nodeA (resp.Q).)

1. if rA,Q− (rA+ rQ)> 0 ∧ rA,Q+(rA+rQ)
rA,Q−(rA+rQ)

> (1+ ε)
1
6 then {far enough to approximate}

return ρ0
3

MAmQ(ñxQ·(xA−xQ)+ñyQ·(yA−yQ)+ñzQ·(zA−zQ))
(rA,Q)6

2. else if LEAF(A) ∧ LEAF(Q) then {too close to approximate; compute exact value}

return ρ0
3 ∑a∈A ∑q∈Q

wq(nxq·(xa−xq)+nyq·(ya−yq)+nzq·(za−zq))
(ra,q)6

3. else if LEAF(A) then return ∑Q′∈CHILD(Q) APPROX-DISPE( A, Q′ ) {recurse on Q}

4. else if LEAF(Q) then return ∑A′∈CHILD(A) APPROX-DISPE( A′, Q ) {recurse on A}

5. else return ∑A′∈CHILD(A) ∑Q′∈CHILD(Q) APPROX-DISPE( A′, Q′ ) {recurse on A and Q}

APPROX-DISPE ENDS

Figure 6.3: Octree-based algorithm for approximating the dispersion energy. Given the atoms octreeTA and quadrature/integration
points octreeTQ, the dispersion energy can be approximated (controlled by agiven approximation parameterε > 0) by making calling
APPROX-DISPE( ROOT(TA ), ROOT(TQ) ).

simultaneously approximated using the NFFT based fast summation technique [15] inO
(
M+m+n3 logn

)
time , wheren3 is

the size of the NFFT grid. Hence,Evdw(s-s)can also be approximated within the same asymptotic time bound.

6.6 Generalized Born

In this section, we describe a method for fast computation ofthe GB solvation energy, along with the energy derivatives for
the solvation forces, based on a discrete and continuum model of the molecules (Figure 6.4). An efficient method of sampling
quadrature points on the nonlinear patch is given. We also show that the error of the Born radius calculation is controlled by
the size of the triangulation mesh and the regularity of the periodic function used in the fast summation algorithm. The time
complexity of the forces computation is reduced from the original O(MN+M2) to nearly linear timeO(N+M + n3 logn+
M logM), whereM is the number of atoms of a molecule,N is the number of integration points that we sample on the surface of
the molecule when we compute the Born radius for each atom, and n is a parameter introduced in the fast summation algorithm.
The fast summation method shows its advantage when it is applied to the Born radius calculations for macromolecules, where
there could be tens of thousands or millions of atoms, andN could be even larger. In the fast summation method, one only need
to choose a smalln which is much smaller thanM andN to get a good approximation, which makes the new fast summation
based GB method more efficient.

6.6.1 Fast solvation energy computation

Method

Similarly to what is done for other GB models, we use (??) as the electrostatic solvation energy function. Before wecom-
pute (??), we need to first compute the effective Born radiusRi for every atom which reflects the depth a charge buried inside
the molecule (Figure: 6.5). An atom buried deep in a moleculehas a larger Born radius, whereas an atom near the surface has
a smaller radius. Hence surfactant atoms have a stronger impact on the polarization. Given a discrete van der Waals (vdW)
atom model, as long as we knowRi for each atom, we can compute (??) by using the fast multipole method (FMM) [11] with
the time complexityO(M logM). However the Born radii computation is not easy and is very time-consuming. There are
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Figure 6.4: Top left: the discrete van der Waals surface model (436 atoms); top middle: the triangulation of the continuum
Gaussian surface model with 6004 triangles; top right: the regularized triangular mesh where the quality of the elements is
improved (making each as close as possible to an equilateraltriangles); bottom left: the continuum ASMS model generated
from the triangular mesh up right; bottom right: the molecular surface rendered according to the interaction with the solvent
where red means strong and blue means weak interaction.

various ways of computing the Born radius as summarized in [8]. These methods can be divided into two categories: volume
integration based methods and surface integration based methods. In general, the surface integration methods are moreefficient
than the volume integration methods due to the decreased dimension. So we adopt the surface integration method given in [10]
to compute the Born radius:

R−1
i =

1
4π

∫

Γ

(r − xi) ·n(r)
|r − xi|4

dS i= 1, . . . ,M, (6.13)

whereΓ is the molecule-solvent interface,xi is the center of atomi, andn(r) is the unit normal on the surface atr and we use
ASMS as the model ofΓ.

Figure 6.5: The effective Born radius reflects how deep a charge is buried inside the molecule. The Born radius of an atom
is small if the atom is close to the surface of the molecule, otherwise the Born radius is large therefore has weaker interaction
with the solvent.

Applying the Gaussian quadrature, We compute (6.13) numerically:

R−1
i =

1
4π

N

∑
k=1

wk
(r k− xi) ·n(r k)

|r k− xi|4
i = 1, . . . ,M, (6.14)

wherewk andr k are the Gaussian integration weights and nodes onΓ (Figure 6.6).r k are computed by mapping the Gaussian
nodes of a master triangle to the algebraic patch via the transformationT . Let r0

k andw0
k be one of the Gaussian nodes and
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(a) 1PPE (b) 1ANA (c) 1MAG

(d) 1CGI_l

Figure 6.6: Gaussian integration points on the surface of protein (a) 1PPE, (b) 1ANA, (c) 1MAG, and (d) 1CGI_l. The surfaces
are partitioned into 24244 triangular patches for (a), 28620 triangular patches for (b), 30624 triangular patches for (c), and
29108 triangular patches for (d). There are three Gaussian quadrature nodes per triangle. The nodes are then mapped ontothe
ASMS to form the red point cloud.

weights on the master triangle. Then the corresponding noder k and weightwk are r k = T (r0
k) andwk = w0

k|J(T )| where
|J(T )| is the Jacobian determinant ofT .

We formalize (6.14) in two steps. First we split it into two parts:

R−1
i =

1
4π

N

∑
k=1

wkr k ·n(r k)

|r k− xi|4
− 1

4π

N

∑
k=1

wkxi ·n(r k)

|r k− xi|4
. (6.15)

Then we split the second summation in (6.15) into three components:

N

∑
k=1

wkxi ·n(r k)

|r k− xi|4
= xi

N

∑
k=1

wknk
x

|r k− xi|4
+ yi

N

∑
k=1

wknk
y

|r k− xi|4
+ zi

N

∑
k=1

wknk
z

|r k− xi|4
. (6.16)

The first summation in (6.15) and the three summations in (6.16) without the coefficients in front are of the common form:

G(xi) =
N

∑
k=1

ckg(xi− r k) i = 1, . . . ,M, (6.17)

with the kernel functiong(x− r k) =
1

|x−rk|4
and the coefficientck = wkr k ·n(r k), wknk

x, wknk
y, wknk

z, respectively. (6.17) can be

efficiently computed by using the fast summation algorithm introduced in [15] with complexityO(M+N+n3 logn), wheren
is a parameter used in the fast summation algorithm.

Fast summation

The fast summation algorithm is published in [15]. For convenience, we discuss this algorithm in this section briefly. The fast
summation algorithm is often applied to compute the summations of the form
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G(xi) =
N

∑
k=1

ckg(xi− r k), i = 1, . . . ,M, (6.18)

where the kernel functiong is a fast decaying function. Cutting off the tail ofg, one can assume that the support ofg is bounded.
In our Born radii computation, since the distance betweenxi andr k is no less than the smallest radius of the atoms, there is no
singularity ing. Without loss of generality, we assumex− r k ∈Π := [− 1

2,
1
2]

3. After duplicatingg in the other intervals,g can
be extended to be a periodic function of period one inR

3 and this periodic function can be decomposed into the Fourier series:

g(x− r k) = ∑
ωωω∈I∞

gωωωe2π iωωω·(x−rk), (6.19)

whereI∞ := {(ω1,ω2,ω3) ∈ Z
3} andgω =

∫
Π g(x)e−2π iωωω·x dx. We approximate (6.19) by a truncated series:

g(x− r k)≈ ∑
ωωω∈In

gωωωe2π i(x−rk)·ωωω , (6.20)

whereIn := {(ω1,ω2,ω3) ∈ Z
3 :− n

2 ≤ ωi <
n
2}. We compute the Fourier coefficientsgω numerically by

gωωω =
1
n3 ∑

j∈In

g(
j
n
)e−2π iωωω ·j/n, ωωω ∈ In. (6.21)

by using the fast Fourier transform (FFT) algorithm with complexity O(n3 logn).

Plugging (6.20) into (6.18), we get

G(xi)≈
N

∑
k=1

ck

(

∑
ωωω∈In

gωωωe2π i(xi−rk).ωωω

)
= ∑

ωωω∈In

gωωω

(
N

∑
k=1

cke
−2π iωωω·rk

)
e2π iωωω·xi

= ∑
ωωω∈In

gωωωaωωωe2π iωωω·xi (6.22)

where

aωωω =
N

∑
k=1

cke
−2π iωωω·rk . (6.23)

(6.22) is computed by using the NFFT algorithm with complexity O(n3 logn+M) and (6.23) is computed by the NFFTT

algorithm with complexityO(n3 logn+N). Hence the total complexity of computing (6.18) isO(N+M+n3 logn), which is
significantly faster than the the trivialO(MN) summation method once the number of terms in the Fourier seriesn is much
smaller thanM andN. We explain the NFFT algorithm, the NFFTT algorithm, and the error computations in the Related Math
section at the end of the chapter.

6.6.2 Fast solvation energy computation using Oct-Trees

we first describe anO (M logM) algorithm for fast approximation of the Born radii of allM atoms in a molecule, followed by
anotherO (M logM) time algorithm for approximatingEpol from the approximated Born radii.

Born Radii

Let A be a set ofM atoms in a molecule, and letQ be a set ofm= O (M) Gauss quadrature points (denoted q-points) sampled
on the MS. For eachq ∈Q, let ñq = wqnq, wherenq is the outward unit normal on the MS at pointq, andwq is the weight
assigned toq.

Our approach is to use a near and far decomposition of the elements inA andQ. Hence, we build two octreesTA andTQ

for A andQ, respectively (see Figure 6.8).
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Figure 6.7: In our Born radius approximation algo-
rithm we construct two octrees: one for the atoms in
the molecule, and the other for the quadrature points.
Born radii of all atoms are approximated by simul-
taneous recursive traversal of both octrees. Here the
octrees are drawn as quadtrees [9] for simplicity.

Figure 6.8: In our Born radius approximation algo-
rithm we construct two octrees: one for the atoms in
the molecule, and the other for the quadrature points.
Born radii of all atoms are approximated by simul-
taneous recursive traversal of both octrees. Here the
octrees are drawn as quadtrees [9] for simplicity.

We traverseTA andTQ simultaneously starting at their root nodes, and collect the approximated integrals at appropriate
internal nodes ofTA and atoms ofA . Suppose at some point during this traversal we are at nodeA of TA and nodeQ of
TQ. Let rA (resp.rQ) be the radius6 of A (resp.Q). If A andQ are far enough, i.e., the distance between their centers is larger

than(rA+ rQ)
(1+ε)1/4+1

(1+ε)1/4−1
for some user-defined approximation parameterε > 0, then the contribution of all q-points inQ to

the Born radius integral of each atom inA can be approximated by treatingA (resp.Q) as a single pseudo atom (resp. pseudo
q-point) centered at the geometric center of the atoms (resp. q-points) under it, and assuming ˜nQ = ∑q∈Q ñq. This approximated
contribution is collected inA. If A andQ are not far enough but at least one of them is a nonleaf, we recurse using the children
of the nonleaf/nonleaves. If both are leaves then we computethe contribution exactly using the atoms underA and the q-points
underQ, and collect it in the respective atoms. Finally, we traverseTA top-down and add the collected partial integrals to each
atom from its ancestors and compute its Born radius from these accumulated values. The pseudocode is given in Figure 6.9.

The accuracy and running time of the algorithm depends on theapproximation parameterε > 0. The smaller the value of
ε is the more accurate the approximated Born radii are, and thelargerε is the faster the algorithm runs. The running time is
dominated by the time required for approximating the interactions between the atoms and the q-points through the simultaneous
traversal of the two octrees. The analysis of the running time is similar to the one given in Section 6.3 for approximatingLJ

potential, and can be shown to beO

(
M logm+mlogM+ 1

ε3 (M+m)
)

which reduces toO
(
M logM+M/ε3

)
for m= O (M).

Assuming the octrees are already available, the running time is onlyO
(
M/ε3

)
. The algorithm usesO (M) space.

Polarization Energy

Our algorithm is based on near and far decomposition of the given set of atoms using octrees. Consider a setA of M atoms
with Rmin andRmax being the minimum and the maximum of the Born radii inA , respectively. Now given an approximation
parameterε > 0, we divide the atoms intoMε = log1+ε (Rmax/Rmin) = O (logM) groups, and place each atoma with Born
radiusRa ∈ [Rmin(1+ ε)k,Rmin(1+ ε)k+1) in groupk∈ [0,Mε), and approximateRa with Rmin(1+ ε)k. We build an octreeTA

as in Section 6.6.2. For every nodeA∈ TA and 0≤ k < Mε , we precomputeqA[k] = ∑(a∈A) ∧ (a∈groupk)qa. We now traverse
TA simultaneously using two pointers both of which initially point to the root node ofTA . Suppose at some point during
this traversal the two pointers point to nodesU andV. We first check if bothU andV are leaves, and if so, we compute the
interaction between the two sets of atoms underU andV directly using actual charges, Born radii and inter-atomicdistances.
Otherwise if the two nodes are far enough from each other the interaction between the set of atoms under them is approximated
using the approximate Born radii described above and the sumof chargesqU and qV . If the two nodes are too close for
approximation, we recurse on the nonleaf node(s). The pseudocode is given in Figure 6.10.

As with most other algorithms in this paper the performance of this algorithm depends on the approximation parameterε
with smaller values resulting in better approximations andlarger values leading to better running times. The algorithm runs in

6i.e., rA = radius of the smallest ball centered at the geometric centerof the atom centers inA that encloses all atom centers ofA.



6.6. GENERALIZED BORN 173

APPROX-INTEGRALS( A, Q )

(For each atoma under the subtree rooted at the given nodeA in the atoms octree approximate∑q∈Q wq
(pq−pa)·nq
|pq−pa|4

. By pa = 〈xa,ya,za〉 we denote the center of an

atoma, while bypq = 〈xq,yq,zq〉, wq andnq = 〈nxq,nyq,nzq〉 we denote the location of a quadrature pointq, weight assigned toq, and the unit outward normal on
the molecular surface atq, respectively. By〈xA,yA,zA〉 (resp.〈xQ,yQ,zQ〉) we denote the geometric center of the atoms (resp. integration points) underA (resp.Q).
By rA (resp.rQ) we denote the radius of the smallest ball centered at〈xA,yA,zA〉 (resp.〈xQ,yQ,zQ〉) that encloses all atom centers (resp. integration points)underA
(resp.Q). The distance between the geometric centers ofA andQ is given byrA,Q. We also assumẽnxQ = ∑q∈Q wqnxq. Similarly for ñyQ andñzQ. Each atoma has
two fieldssa andca, and each nodeA in the atoms octree has fieldssA andcA, all of which are initialized to zero. The approximated sum is added tosA provided
A andQ are far enough in space so that the sum can be approximated reasonably well (controlled by an approximation parameterε > 0). Otherwise the sums are

computed recursively and added to thes field of appropriate descendants ofA. We also approximate a correction term∑q∈Q wq
(pq−pa)·nq
|pq−pa|7

and add it tocA or thec

field of the appropriate descendants ofA. By CHILD (A) (resp.CHILD (Q)) we denote the set of non-empty octree nodes obtained by subdividing nodeA (resp.Q).)

1. if rA,Q− (rA+ rQ)> 0 ∧ rA,Q+(rA+rQ)
rA,Q−(rA+rQ)

> (1+ ε)
1
4 then {far enough to approximate}

x∆ = xA−xQ, y∆ = yA−yQ, z∆ = zA−zQ

sA = sA+
ñxQ·x∆+ñyQ·y∆+ñzQ·z∆

(rA,Q)4
, cA = cA +

ñxQ·x∆+ñyQ·y∆+ñzQ·z∆
(rA,Q)7

2. else if LEAF(A) ∧ LEAF(Q) then {too close to approximate; compute exact value}
for each atoma∈ A do

for each quadrature pointq∈Q do

xδ = xa−xq, yδ = ya−yq, zδ = za−zq

sa = sa+
wq·(nxq·xδ +nyq·yδ +nzq·zδ )

(ra,q)4
, ca = ca+

wq·(nxq·xδ +nyq·yδ +nzq·zδ )
(ra,q)7

3. else if LEAF(A) then ∀Q′ ∈ CHILD(Q) : APPROX-INTEGRALS( A, Q′ ) {recurse on Q}

4. else if LEAF(Q) then ∀A′ ∈ CHILD(A) : A PPROX-INTEGRALS( A′, Q ) {recurse on A}

5. else ∀A′ ∈ CHILD(A) ∧ ∀Q′ ∈ CHILD(Q) : APPROX-INTEGRALS( A′, Q′ ) {recurse on A and Q}

APPROX-INTEGRALS ENDS

PUSH-INTEGRALS-TO-ATOMS( A, s, c )

(A is a node in the atoms octree,s= ∑A′∈ANCESTORS(A) sA′ andc= ∑A′∈ANCESTORS(A) cA′ . This function pushess+sA andc+cA to each descendant ofA. If A is a leaf
it computes the Born radius of each atoma∈ A usings+sA+sa andc+cA+ca.)

1. if LEAF(A) then ∀a∈ A : Ra = max





ra,
1

(
1− 1√

2

)
· sa+s+sA

4π +
( ca+c+cA

16π
) 1

4





{compute Born radii of A’s atoms}

2. else ∀A′ ∈ CHILD(A) : PUSH-INTEGRALS-TO-ATOMS( A′, s+sA, c+cA ) {push integrals to A’s descendants}

PUSH-INTEGRALS-TO-ATOMS ENDS

Figure 6.9:Octree-based algorithm for approximating Born radii. Given the atoms octreeTA and quadrature/integration points octreeTQ,
the Born radii of all atoms inTA can be approximated (controlled by a given approximation parameterε > 0) by making the following
sequence of function calls: APPROX-INTEGRALS( ROOT(TA ), ROOT(TQ) ), and PUSH-INTEGRALS-TO-ATOMS( ROOT(TA ), 0, 0 ).
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APPROX-Epol( U, V )

(For two given nodesU andV in the atoms octreeTA approximate the part ofEpol resulting from the interaction between the set of atoms under U andV. By
(xU ,yU ,zU ) we denote the geometric center of the atoms underU . By rU we denote the radius of the smallest ball centered at(xU ,yU ,zU ) that encloses all atom

centers underU . For any atomu∈U , its center, radius, charge and Born radius are given by(xu,yu,zu), ru, qu andRu, respectively. For 0≤ k<Mε = log1+ε

(
Rmax
Rmin

)
,

qU [k] = ∑(u∈U) ∧ (Ru∈[Rmin(1+ε)k,Rmin(1+ε)k+1)) qu, whereRmin andRmax are the minimum and the maximum Born radius among all atoms inA . By CHILD (A) (resp.

CHILD (Q)) we denote the set of non-empty octree nodes obtained by subdividing nodeA (resp.Q).)

1. if LEAF(U) ∧ LEAF(V) then return − τ
2 ∑(u∈U) ∧ (v∈V)

quqv√

r2uv+RuRve
−r2uv

4RuRv

{exact value}

2. else if rU,V > (rU + rV )
(
1+ 2

ε
)

then return − τ
2 ∑0≤i, j<Mε

qU [i]·qV [ j ]√√√√
r2UV+Rmin(1+ε)i+ j e

−r2UV
4Rmin(1+ε)i+ j

{approximate}

3. else if LEAF(U) then return ∑V′∈CHILD(V) APPROX-Epol( U, V ′ ) {recurse on V}

4. else if LEAF(V) then return ∑U ′∈CHILD(U) APPROX-Epol( U ′, V ) {recurse on U}

5. else return ∑(U ′∈CHILD(U)) ∧ (V′∈CHILD(V)) APPROX-Epol( U ′, V ′ ) {recurse on U and V}

APPROX-Epol ENDS

Figure 6.10:Octree-based algorithm for approximatingEpol from Born radii. Given the atoms octreeTA with all Born radii already
computed,Epol can be approximated (controlled by a given approximation parameterε > 0) by making the following function call:
APPROX-Epol( ROOT(TA ), ROOT(TA ) ).

O

(
1
ε3 ·M logM

)
time, and usesO (M) space.

6.7 Possion Boltzman
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Related Work

Generalized Born

Because the GB calculation is much faster than solving the PBequation, the GB model is widely used in the MD simulations.
Programs which implement the GB methods include CHARMM [13], Amber [2], Tinker [17], and Impact which is now part
of Schrodinger, Inc.’s FirstDiscovery program suite. Eventhough the GB computation is much faster than the PB model, the
computation of the Born radiusRi is still slow. During the MD simulation, the Born radii need to be frequently recomputed at
different time steps. Because this part of computation is too time-consuming, there are attempts to accelerate the MD simulation
by computing the Born radii at a larger time step. For example, in [24] in their test of a 3 ns GB simulation of a 10-base pair
DNA duplex, they change the time step of computing the Born radii and long-range electrostatic energy from 1 fs to 2 fs.
This reduces the time of carrying out the simulation from 13.84 hours to 7.16 hours. From this example we can see that the
calculation of the Born radii takes a large percentage of total computation time in the MD simulation. In the long dynamicruns,
this decrease in the frequency of evaluating the effective Born radii are not accurate enough to conserve energy which restricts
the MD simulation of the protein folding process to small time scale [21]. Hence it is demanding to calculate the Born radii
and the solvation energy accurately and efficiently.
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Relevant Mathematics

Gaussian surface, Triangular mesh and Algebraic spline molecular surface (ASMS)
See Chapters 2 and 3.

Oct-tree

Numerical Integration
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Chapter 7

Forces

Force field, used for molecular mechanics simulation, is a set of parameters and functions describing the potential energy of
a system atoms. The functions and parameters are derived from both experimental work and high-level quantum mechanical
calculations.

In CHARMM, the potential energy function has the form

E = ∑
bonds

Kb(b−b0)
2+∑

UB
KUB(S−S0)

2+ ∑
angle

Kθ (θ −θ0)
2

+ ∑
dihedrals

Kχ(1+ cos(nχ− δ ))+ ∑
impropers

Kimp(φ −φ0)
2

+ ∑
nonbond

εi j

[(
Rmini j

r i j

)12

−
(

Rmini j

r i j

)6
]
+

qiq j

εr i j
(0.1)

whereKb, KUB, Kθ , Kχ , andKimp are the bond, Urey-Bradley, angle, dihedral angle, and improper dihedral angle force con-
stants;b, S, θ , χ , andφ are the bond length, Urey-Bradleu 1,3-distance (the distance between atoms separated by two covalent
bonds), bond angle, dihedral angle, and improper torsion angle. The symbols with subscript zero represent the equilibrium
values.n is the multiplicity of the rotor (e.g., 3 for a methyl group) andδ is the phase angle. The above terms are referred to as
the internal parameters. The Coulomb and Lennard-Jones (LJ) terms are the external or nonbonded interactions.εi j is the LJ
well depth andRmini j is the mininum interaction radius. The dielectric constantε is 1 in the energy function. Different versions
of CHARMM have different optimization strategies for the parametersKb, KUB, Kθ , Kχ , Kimp, b0, S0, θ0, n, δ , φ0, qi , εi j , and
Rmini j . CHARMM 19 [?] treats polar hydrogens (i.e. H atoms on N and O) explicitly and hydrogens bonded to S and C are
treated as parts of the extended atom (e.g., CH3 is treated as a single atom), while CHARMM 22 [?] and CHARMM 27 [?]
include all the atoms explicitly. Comparing CHARMM 22 and CHARMM 27, the latter yields a better representation of the
equilibrium between the A and B forms of DNA and the A form of RNA.

The potential energy function of AMBER [?] has the form

E = ∑
bonds

Kb(b−b0)
2+ ∑

angle

Kθ (θ −θ0)
2+ ∑

dihedrals

Vn

2
(1+ cos(nφ − δ ))

+ ∑
nonbond

[
Ai j

r12
i j

− Bi j

r6
i j

+
qiq j

εr i j

]
(0.2)

The major difference between the energy function of CHARMM and AMBER force field is that AMBER omits the Urey-
Bradley terms. Amber 99 [?] is developed to minimize the number of torsion energies andextend the additive force field
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described by (0.2) to a nonadditive model by adding the polarization energy of the form

Epol =−
1
2 ∑

i
µiE

0
i (0.3)

µi = αiEi (0.4)

Ei = E0
i +∑

j 6=i

Ti j µ j (0.5)

E0
i = ∑

j 6=i

q j
r i j

r2
i j

(0.6)

Ti j =
2

r3
i j

(0.7)

The improvement of AMBER 03 is that it can deal with condense phase simulations of proteins [?].

The strategies to assign partial charges of CHARMM and AMBERare also different. For CHARMM, the partial atomic
charges are optimized by minimizing the interaction energies and geometries between a water molecule and the chemical groups
in a variety of orientation [?]. For AMBER, the partial charges are assigned using a restrained electrostatic potential fit (RESP)
model [?] which imposes symmetry on the hydrogens and constrains thecharge on the central iron. CHARMM force field is
optimized for molecular dynamics simulations with the TIP3P water model (explicit solvent) [?], while AMBER force field is
optimized for the model with continuum solvent [?]. According to [?], simulation with an explicit representation of solvent and
counterions, as well as periodic boundary conditions, havebeen the predominant method of applying MD simulation to nucleic
acid.

In Molecular dynamics (MD) simulations, atomic trajectories are computed by solving equations of motion numerically
using the force fields [?].

7.1 Energetic derivatives

7.2 Area, Volume Derivatives
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Relevant Mathematics

Ideals

Higher order quadratures

Commutative Algebra
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Structural Similarity
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Docking
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9.4 Re-Ranking
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Chapter 10

Molecular Machines

10.1 Virus

Viruses are one of the smallest parasitic nano-objects thatare agents of human disease [39]. They have no systems for translating
RNA, ATP generation, or protein, nucleic acid synthesis, and therefore need the subsystems of a host cell to sustain and replicate
[39]. It would be natural to classify these parasites according to their eukaryotic or prokaryotic cellular hosts (e.g.plant, animal,
bacteria, fungi, etc.), however there do exist viruses which have more than one sustaining host species [39]. Currently, viruses
are classified simultaneously via the host species(Algae, Archae, Bacteria, Fungi, Invetebrates, Mycoplasma, Plants, Protozoa,
Spiroplasma, Vetebrates), the host tissues that are infected, the method of virial transmission, the genetic organization of the
virus (single or double stranded, linear or circular, RNA orDNA), the protein arrangement of the protective closed coats
housing the genome (helical, icosahedral symmetric nucleo-capsids), and whether the virus capsids additionally havea further
outer envelope covering (the complete virion)[39]. Table 1summarizes a small yet diverse collection of viruses and virions [1].
The focus of this article is on the computational geometric modeling and visualization of the nucleo-capsid ultrastructure of
plant and animal viruses exhibiting the diversity and geometric elegance of the multiple protein arrangements. Additionally, one
computes a regression relationship between surface area v.s. enclosed volume for spherical viruses with icosahedral symmetric
protein arrangements. The computer modeling and quantitative techniques for virus capsid shells ultra-structure that we review
here are applicable for atomistic, high resolution (less than 4 Å) model data, as well as medium (5 Å to 15 Å) resolution map
data reconstructed from cryo-electron microscopy.

10.1.1 The Morphology of Virus Structures

Minimally viruses consist of a single nucleocapsid made of proteins for protecting their genome, as well as in facilitating
cell attachment and entry. The capsid proteins magically self-assemble, into often a helical or icosahedral symmetricshell
(henceforth referred to as capsid shells). There do exist several examples of capsid shells which do not exhibit any global
symmetry [1], however we focus on only the symmetric capsid shells in the remainder of this article.

Different virus morphologies that are known, (a small sampling included in Table 10.1) are distinguished by optional
additional outer capsid shells, the presence or lack of a surrounding envelope for these capsid shells (derived often from the
host cell’s organelle membranes), as well as additional proteins within these optional capsids and envelopes, that arenecessary
for the virus lifecycle. The complete package of proteins, nucleic acids and envelopes is often termed a virion.

The asymmetric structural subunit of a symmetric capsid shell may be further decomposable into simpler and smaller
protein structure units termed protomers. Protomers couldbe a single protein in monomeric form (example TMV), or form
homogeneous dimeric or trimeric structure units (example RDV). These structure units also often combine to form symmetric
clusters, called capsomers, and are predominantly distinguishable in visualizations at even medium and low resolution virus
structures. The capsomers and/or protomeric structure units pack to create the capsid shell in the form of either helical or
icosahedral symmetric arrangements.
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Name Family Host NA Symmetry Shell Modality
(T) (E?) (res in A)(pdbid)

Tobacco mosaic [8, 29] Tobamoviridae P sR (L) He 1(n) X(2.45) (1ei7)
Ebola [38] Filoviridae V sR (L) He 1(E) X(3) (1ebo)

Vaccinia [12] Poxviridae V dD (L) He 1(E) X(1.8) (1luz)
Rabies [25] Rhabdoviridae V sR(L) He 1(E) X(1.5) (1vyi)

Satellite tobacco necrosis [23] Tombusviridae P sR (L) Ic (1) 1(n) X(2.5) (2stv)
L-A (Saccharomyces cerevisiae) [27] Totiviridae F dR (L) Ic (1) 1(n) X(3.6) (1m1c)
Canine parvovirus-Fab complex [40] Parvoviridae V sD (L) Ic (1) 1(n) X(3.3) (2cas)

T1L reovirus core [32] Reoviridae V dR (L) Ic (1,1) 2(n) X(3.6) (1ej6)
T3D reovirus core [36] Reoviridae V dR (L) Ic (1,1) 2(n) X(2.5) (1muk)

P4 (Ustilago maydis) [21] Totiviridae P dR (L) Ic (1) 1(n) X(1.8) (1kp6)
Tomato bushy stunt [19] Tombusviridae P sR (L) Ic (3) 1(n) X(2.9) (2tbv)

Cowpea Chlorotic Mosaic [34] Bromoviridae P sR (L) Ic (3) 1(n) X(3.2) (1cwp)
Cucumber mosaic [34] Bromoviridae P sR (L) Ic (3) 1(n) X(3.2) (1f15)

Norwalk [31] Caliciviridae V sR (L) Ic (3) 1(n) X(3.4) (1ihm)
Rabbit hemorrhagic disease complex [30] Caliciviridae V sR (L) Ic (3) 1(n) X(2.5) (1khv)

Galleria mellonella denso[33] Parvoviridae I sD (L) Ic (1) 1(n) X(3.7) (1dnv)
Semiliki Forest [24] Togaviridae I,V sR Ic (4,1) 2(E) C(9) (1dyl)

Polyoma [11] Papovaviridae V dD (C) Ic (7D) 1(n) X(2.2) (1cn3)
Simian [35] Papovaviridae V dD (C) Ic (7D) 1(n) X(3.1) (1sva)

Papillomavirus Initiation Complex [15] Papovaviridae V dD (C) Ic (7D) 1(n) X(3.2) (1ksx)
Blue Tongue [16] Reoviridae V dR (L) Ic (1,13L) 2(n) X(3.5) (2btv)
Rice dwarf [28] Reoviridae P dR (L) Ic (1,13L) 2(n) X(3.5) (1uf2)

T1L reovirus virion [22] Reoviridae V dR (L) Ic (1,13L) 2(n) X(2.8) (1jmu)
Simian rotavirus (SA11-4F) TLP [17] Reoviridae V dR (L) Ic (1,13L) 2(n) X(2.38) (1lj2)

Rhesus rotavirus [13] Reoviridae V dR (L) Ic (1,13L) 2(n) X(1.4) (1kqr)
Reovirus [44] Reoviridae V dR (L) Ic(1,13L) 2(n) C(7.6)

Nudaurelia capensis w [18] Tetraviridae I sR (L) Ic (4) 1(n) X(2.8) (1ohf)
Herpes Simplex [9] Herpesviridae V dD (L) Ic (7L) 1(E) X(2.65) (1jma)
Chilo Iridescent [42] Iridoviridae I dD (C) Ic(147) 1(E) C(13)

Paramecium Bursaria Chlorella [42] Phycodnaviridae P dD (L) Ic(169D) 1(E) C(8)
HepBc (human liver) (nHBc) [41] Hepadnaviridae V dD (C) Ic(4) 1(E) X(3.3) (1qgt)

Table 10.1: Helical and Icosahedral Viruses and Viral subunit structures: (1) Name and structure reference are given insquare
brackets (2) Family nomencleature from the ICTV database (3) Host types are P for Plant, V for Vertebrate, I for Invertebrate,
F for Fungi (4) Virus Nucleic Acid (NA) type is single stranded RNA (sR) or DNA (sD), double stranded RNA (dR) or DNA
(dD) and linear (L) or circular (C) (5) Capsid symmetry is Helix (He) or Icosahedral (Ic) with the triangulation number ofeach
capsid shell in parenthesis (6) The number of capsid shells and whether enveloped (E) or not (n) (7) The acquisition modality
X-ray, feature resolution and PDB id in parenthesis.
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(a) (b) (c)

(d) (e) (f)

Figure 10.1: Organization of the Tobacco Mosaic Virus (1EI7) with its helical nucleo-capsid shown in (A), (B) and (C). (A)
and (B) are surface rendered, while (C) is volume rendered. The asymmetric protomeric structure unit is visualized in (C) as an
implicit solvation molecular surface colored by distance from the helix symmetry axis (D) with a transparent molecularsurface
and the protein backbone showing helix secondary structures. (E) molecular surface of protomer with the mean curvature
function with red showing positive mean curvature and greenwith negative mean curvature (F) Gaussian curvature function
on the protomer molecular surface, with green showing positive Gaussian curvature and the red signifying negative Gaussian
curvature, displayed on the molecular surface.

The subsequent sub-sections dwell on the geometry of the individual protomers, and capsomers, as part of a hierarchical
arrangement of symmetric capsid shells.

The Geometry of Helical Capsid Shells

Helical symmetry can be captured by a 4 x 4 matrix transformation H(a,θ ,L) parameterized bya = (ax,ay,az), a unit vector
along the helical axis, byθ , an angle in the plane of rotation, and by the pitchL, the axial rise for a complete circular turn.

If P is the center of any atom of the protomer, thenP′ is the transformed center, andP′ = H ∗P. Repeatedly applying this
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10.2: Organization of Rice Dwarf Virus (1UF2) with icosahedral capsid shells. (A) 2D texture based visualization of the
outer capsid shell showing a single sphere per non-hydrogenatom, and colored to distinguish individual proteins subunits (B)
the outer capsid shell shown as a smooth analytic molecular surface while the inner capsid surface is displayed using 2D texture
maps of a union of spheres and colored (C) shows the outer capsid (D) displays the inner capsid (E) shows the icosahedral
asymmetric structure unit of the outer unit (F) displays theicosahedral asymmetric structure unit of the inner unit (G)shows
the protein backbone of the structure unit shown in (E) and (H) shows the protein backbone of the structure unit show in (F).

a2
x(1− cosθ )+ cosθ axay(1− cosθ )−azsinθ axaz(1− cosθ )+aysinθ axLθ

2π
H(a,θ ,L) = axay(1− cosθ )−azsinθ a2

y(1− cosθ )+ cosθ ayaz(1− cosθ )−aysinθ ayLθ
2π

axaz(1− cosθ )+aysinθ ayaz(1− cosθ )−axsinθ a2
z(1− cosθ )+ cosθ azLθ

2π
0 0 0 1

transformation to all atoms in a protomer yields a helical stack of protomeric units. The desired length of the helical nucleo-
capsid shell is typically determined by the length of the enclosed nucleic acids. The capsid shell of the tobacco mosaic virus
(TMV) exhibits helical symmetry (Fig. 10.1, and 10.3), withthe asymmetric protein structure unit or the protomer consisting
of a single protein (pdb id 1EI7)

The Geometry of Icosahedral Capsid Shells

In numerous cases the virus structure is icosahedrally symmetric. The advantage over the helical symmetry structure isthe
efficient construction of a capsid of a given size using the smallest protein subunits. An icosahedron has 12 vertices, 20
equilateral triangular faces, and 30 edges, and exhibits 5:3:2 symmetry. A 5-fold symmetry axis passes through each vertex, a
3-fold symmetry axis through the center of each face, and a 2-fold axis through the midpoint of each edge (see Fig. 10.4).

A rotation transformation around an axisa= (ax,ay,az) by an angleθ is described by the 4x4 matrix
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Figure 10.3: Helical Symmetry Axis.

Figure 10.4: Icosahedral Transformations showing 5-fold and 3-fold Symmetry Axis.

a2
x(1− cosθ )+ cosθ axay(1− cosθ )−azsinθ axaz(1− cosθ )+aysinθ 0

R(a,φ) = axay(1− cosθ )−azsinθ a2
y(1− cosθ )+ cosθ ayaz(1− cosθ )−aysinθ 0

axaz(1− cosθ )+aysinθ ayaz(1− cosθ )−axsinθ a2
z(1− cosθ )+ cosθ 0

0 0 0 1

The vertices of a canonical icosahedron are given by(0,±1,±φ), (±1,±φ ,0), (0,±φ ,±1), whereφ = (1+
√

5)/2 is
the golden ratio. For a 5-fold symmetry transformation around the vertex(0,±1,±φ) the normalized axis of rotation isa=
(0,0.52573,0.85064) and the angle of rotation isθ = 2π

5 , yielding a five fold symmetry transformation matrix

Similarly, one is able to construct five fold symmetry transformation matrices for the other icosahedron vertices. Using the
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0.30902 -0.80902 0.5000 0
R(5− f old) = 0.80902 0.5000 0.30902 0

-0.5000 0.30902 0.80902 0
0 0 0 1

generic rotational transformation matrixR(a,φ), one is able to construct the three fold transformation matrices via the rotation
axis passes through the centroid of the triangular faces of the icosahedron and an angle of rotation ofθ = 2π

5 . Consider the
triangular face with corners at(0,1,φ), (1,φ ,0) and(0,φ ,1). The centroid is atφ/3,0,(2φ +1)/3 and the normalized axis of
rotation isa= (0.356822,0,0.934172) and the transformation matrix

0.30902 -0.80902 0.5000 0
R(5− f old) = 0.80902 -0.5000 -0.30902 0

0.5000 0.30902 0.80902 0
0 0 0 1

A polyhedron with faces that are all equilateral triangles is called a deltahedron. Deltahedra with icosahedral symmetry are
classified as icosadeltahedra. Any icosadeltahedron has 20T facets, whereT is the triangulation number given byT = p f2,
where,P = h2 + hk+ k2 for all pairs of integersh andk which do not have a common factor, andf is any integer [Caspar
and Klug 1962]. The possible values ofP are 1,3,7,13,19,21,31,37, . . .. In Fig. 10.5(A) we display triangles with different
triangulation numbers, for icosahedral virus structures.

With a fixed size asymmetric unit the greater the T number, thelarger the size of the virus capsid. Each triangular portion
of the icosahedral virus capsid is easily subdivided into its three asymmetric units, with each unit containing some combination
of protein structure units (protomers). In total an icosahedral virus capsid has 60T asymmetric units with numerous protein
structures inter-twined to form a spherical mosaic. In Fig.10.5 we see that when T=1, each vertex is at the center of a
pentagon, and the capsid proteins are in equivalent environments, i.e. five neighbors cluster at a common vertex. However,
for icosadeltahedra with larger triangulation numbers, e.g. T = 13, there are pentagons and hexagons in the capsid mosaic
(Fig. 10.5). Therefore, even though the capsid proteins (protomers) may be chemically identical, some cluster into a 5-fold
neighborhood and the others into a 6-fold neighborhood. Such locally symmetric clusterings of protomers are alternatively
termed capsomers. In these situations, the proteins are no longer global symmetrically equivalent, but only quasi-equivalent
[10].

10.1.2 Surface and Volumetric Modeling and Visualization

Atomistic Resolution Model Structures

Numerous schemes have been used to model and visualize bio-molecules and their properties [45, 2, 4, 20]. All these different
visual representation are often derived from an underlyinggeometric model constructed from the positions of atoms, bonds,
chains, and residues information deposited as part of an atomic resolution structure of the protein or nucleic acid in the Protein
Data Bank (PDB). Hence, structural models are designed to represent the primary (sequence), secondary (e.g.α-helices,
β -sheets), tertiary (eg.α−β barrels) sub-parts, and quaternary structures of the entire protein or nucleic acid.

An early approach to molecular modeling is to consider atomsas hard spheres, and their union as an attempt to capture shape
properties as well as spatial occupancy of the molecule. This is similar to our perception of surfaces and volume occupancy
of macroscopic objects. The top two pictures in Figure 10.2 shows hard-sphere model visualizations of the twin Rice Dwarf
capsid shells, with individual proteins colored differently. Solvated versions of these molecular surfaces have beenproposed
by Lee - Richards, Connolly, et al. for use in computational biochemistry and biophysics. Much of the preliminary work,
along with later extensions focused on finding fast methods of triangulating this molecular surface (or as sometimes referred
to as the solvent contact surface). Two prominent obstaclesin modeling are the correct handling of surface self-intersections
(singularities) and the high communication bandwidth needed when sending tessellated surfaces to the graphics hardware.
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(a) (b) (c)

(d) (e) (f)

Figure 10.5: Architecture of Icosahedral Viruses: (A) Caspar-Klug Triangulation Number (T) via a hexagonal lattice. Green
triangle has T =1 while yellow represents T = 13 (B) shows the asymmetric unit of an icosahedron, (C) asymmetric structure
units of the capsid shell (D) a single asymmetric structure unit (E) asymmetric unit colored by protein as well as showing
protein backbone. (F) a capsomere consisting of three proteins. (VIRUS PDB: 1GW8).

A more analytic and smooth description of molecular surfaces (without singularities) is provided by a suitable level set of
the electron density representation of the molecule. Isotropic Gaussian kernels have been traditionally used to describe atomic
electron density due to their ability to approximate electron orbitals. The electron density of a molecule withM atoms, centered
atx j , j ∈ 1, . . . ,M, can thus be written asFelec_dens(x) = ∑M

j=1 γ jK(x−x j) whereγ j andK are typically chosen from a quadratic
exponential description of atomic electron density

Atom(x) = e−
d
r2
((x−y)2−r2)

= ede−
d
r2
(x−y)2

= AKq(x− y)γelec_dens(x) = e−
d
r2
((x−x j )

2−r2)
= γ jK(x− x j)

The atomic electron density kernels are affected by the radius r of individual atoms and the decay parameterd. Smooth
and molecular surface models for individual proteins, structure units, as well as entire capsid shells can be easily constructed
as a fixed level set ofFelec_dens(x) = ∑M

j=1 γ jK(x− x j). An array of such structural molecular model visualizations are shown
as Figures 10.1-10.5 as well as Figure 10.6. Some of them use transparency on the solvated molecular surface and show the
protein back-bone structure (folded chains ofα-helices andbeta-sheets).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 10.6: Portions of Capsid Shells of Icosahedral Viruses showing a significant portion of the capsid which properlyin-
cludes the asymmetric subnit. Note the isosurface is selected to provide a good capsid surface approximation, while maintaining
topological equivalence to a sphere. This makes the surfacearea and enclosed volume computation directly amenable to the
calculations reported in the contour spectrum paper.
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Structure Elucidation from 3D Maps

Electron Microscopy (EM) and in particular single particlereconstruction using cryo-EM, has rapidly advanced over recent
years, such that many virus structures can be resolved routinely at low resolution (10-20 Å) and in some cases at sub-nanometer
(intermediate) resolution (7-10 Å) [6, 7].

Symmetries within the virus capsid shells are exploited both in the 3D map reconstructions from raw 2D EM images,
as well as in structure elucidation in the 3D map. In many cases, the 3D maps are of spherical viruses, with protein capsid
shells exhibiting icosahedral symmetry. In these cases, the global symmetry detection can be simplified to computing the
location of the 5-fold rotational symmetry axes, passing through the twelve vertices of the icosahedron, from which the3-
fold symmetry axes for the twenty icosahedron faces and the 2-fold symmetry axes for the thirty icosahedron edges can be
easily derived. However determining the local symmetries of the capsomers (structure units) is more complicated, as they
exhibit varied k-fold symmetry, and their detection requires a modified correlation based search algorithm [43]. Volumetric
segmentation methods are additionally utilized to partition, color and thereby obtain a clearer view into the macromolecules
architectural organization. Furthermore, electronically dissecting the local structure units from a 3D Map allows for further
structural interpretation (tertiary and secondary folds). Visualizations from the afore-mentioned local symmetry detection and
automatic segmentation, applied to a 3D volumetric Map of the Turnip Yellow Mosaic virus (pdbid 1AUY), are shown in Figure
10.7.

10.1.3 Quantitative Visualization

The geometric modeling of virus capsids and the individual virus structure units, can be further augmented by the computation
of several global and local shape metrics [5]. While integral, topological and combinatorial metrics capture global shape
properties, differential measures such as mean and Gaussian curvatures have also proved useful to an enhanced understanding
and quantitative visualization of macromolecular structures.

Integral Properties

Integral shape metrics include the area of the molecular capsid surface defining the capsid, the volume enclosed by closed
capsid shells, and the gradient integral on the molecular capsid surface. Given our smooth analytic level set definitionof
the molecular surface from Section 10.1.2,Felec_dens(x) = ∑M

j=1γ jK(x− x j) = const, for all the atoms that make up either an
individual structure unit, or the entire virus capsid, an efficient and accurate integration computation for these metrics is given
by the contour spectrum [[3]. The surface integrations can be performed by adaptively sampling the capsid surface usinga
technique known as contouring [3]. Contouring is often performed by first decomposing (meshing) the space surrounding the
capsid surface into either a rectilinear Cartesian grid mesh, a tetrahedral or a hexahedral mesh. For a tetrahedral mesh, the
surface area for the portion of the level set inside a tetrahedron can be represented by a quadratic polynomial B-spline [3].
Summing these B-splines over all of the tetrahedra containing the capsid surface yields the capsid surface area. The volume
enclosed by a closed capsid surface is determined by the definite integration of the surface area polynomial B-splines.

In Figure 10.8 we display the results of surface area and volume calculations, and a regression relationship between thetwo,
for a selection of spherical icosahedral capsids for virus structures summarized in Table 10.2. The analytic molecularsurfaces
were first computed, and then surface area and enclosed volume were estimated through B-spline evaluation as stated above.

Differential Properties

The gradient function of our smooth analytic capsid surfaceis simply▽Felec_dens(x) = ∑M
j=1 γ j ▽K(x− x j), the summation

of the vector of first derivatives of the atomic electron density function. This gradient function is non-zero everywhere on the
virus capsid surface (i.e. no singularity). The second derivatives of the molecular surface capture additional differential shape
properties and provide suitable metrics. Popular metrics are the magnitudes ofMean Curvature Hand theGaussian curvature
G. These are given directly asH = 1

2(kmin+ kmax) andG = kminkmax, and are respectively the average and the product of the
twin principal curvatures, namely,kmin andkmax, also sometimes known as the minimum and maximum curvaturesat a point
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Virus Surface Area Volume ln(Surface Area) ln(Volume)
Satellite tobacco necrosis 17401.22 24419.51 9.76 10.1

L-A (Saccharomyces cerevisiae) 99643.6 155223.15 11.51 11.95
Canine parvovirus-Fab complex 48482.09 66028.46 10.79 11.1

T1L reovirus core 412654.67 517093.8 12.93 13.16
T3D reovirus core 99627.14 161424.33 11.51 11.99

P4 (Ustilago maydis) 7362.92 11269.59 8.9 9.33
Tomato Bushy Stunt 69600.33 98169.33 11.15 11.49

Cowpea Chlorotic Mosaic 42523.74 56607.48 10.66 10.94
Cucumber Mosaic 43317.17 61885.43 10.68 11.03

Norwalk 116674.31 170940.17 11.67 12.05
Rabbit hemorrhagic disease 80585.54 121611.94 11.3 11.71

VLP-MAb-E3 complex
Galleria mellonella densovirus 33251.61 46216.49 10.41 10.74

Human Rhino 67337.7 99964.3 11.12 11.51
HepBc (human liver) (nHBc) 41669.23 65963.21 10.64 11.1

Nudaurelia capensis w 170957.88 278225.27 12.05 12.54
Semiliki Forest 47586.6 68392.18 10.77 11.13

Polyoma 104897.53 171532.31 11.56 12.05
Simian 177557.44 246603.02 12.09 12.42

Herpes Simplex Virus Glyco-Protein 29035.25 43098.51 10.28 10.67
Blue Tongue 590265.25 711692.59 13.29 13.48
Rice Dwarf 727228.58 820906.09 13.5 13.62

T1L reovirus virion 412654.67 517093.8 12.36 12.81
Simian rotavirus (SA11-4F) TLP 26451.69 35311.17 10.18 10.47

Rhesus rotavirus 15093.03 23469.18 9.62 10.06

Table 10.2: Icosahedral Viruses and Viral Components: Area(units are square Angstrom), Volume (units are cube Angstrom)
and Logarithm entries displayed below are showing pictorially in Figure 10.8
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(a) (b)

(c) (d)

(e) (f)

Figure 10.7: (PDB-ID = 1AUY. Size: 256̂3. Resolution: 4Å). (A) Gaussian blurred map (outside view)from the non-hydrogen
atom locations given in the PDB. (B) Gaussian blurred map (inside view). (C) Symmetry detected, including global and local
3-fold symmetry axes. (D) Segmented trimers (outside view), with randomly assigned colors. (E) Segmented trimers (inside
view). (F) One of the segmented trimers (left-bottom: outside view; right-top: inside view).
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(a)

(b)

Figure 10.8: (Area, Volume Relationship for Icosahedral Viruses given in Table 1. The area and volume units are Square
Angstrom and Cube Angstrom respectively.

on the surface. Again for our level set based analytic molecular surfaceFelec_dens(x) = const= f , the twin curvaturesH andK

can be evaluated asH = ∑ f 2
x ( fyy+ fzz)−2∑ fx fy fxy

2(∑ f 2
x )

1.5 andG=
2∑ fx fy( fxzfyz− fxy fzz)

(∑ f 2
x )

2 where∑ represents a cyclic summation overx, y and

z, and where additionallyfx, etc., denotes partial differentiation with respect to those variables.

Displaying the magnitude of the gradient function and its variation, as expressed by the mean and Gaussian curvature
functions over a molecular surface helps quantitatively visualize the bumpiness or lack thereof of an individual protomer, a
structure unit or the entire viral capsid. In Figure 10.1 thebottom two pictures display the mean and Gaussian curvature
functions of the Tobacco Mosaic virus asymmetric protomer surface, exhibiting and enhancing the bumpiness of the surface.
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Topological and Combinatorial Properties

Affine invariant topological structures of volumetric functions, such as our smooth analytic electron density function of Section
10.1.2, include the Morse complex [14, 26] and the contour tree (CT) [37]. Both the Morse complex and contour tree are related
to the critical points of the volumetric functionf , i.e., those points in the domainM where the function gradient vanishes. The
functional range off is the interval between the minimum and maximum values of thefunction f : [ fmin, fmax]. For a scalar
valuew∈ [ fmin, fmax], the level set of the fieldf at the valuew is the subset of pointsL(w)⊂M such thatf (x) = w,∀x ∈ L(w).

A level set may have several connected components, called contours. The topology of the level setL(w) changes only
at the critical points inM, whose corresponding functional values are called critical values. A contour class is a maximal
set of continuous contours which have the same topology and do not contain critical points. Without loss of generality, the
critical points are assumed to be non-degenerate, i.e. onlyisolated critical points. This assumption can be enforced by small
perturbations of the function values. If the critical points are non-degenerate, then the HessianH(a) at a critical pointa has
non-zero real eigenvalues. The index of the critical pointa is the number of negative eigenvalues ofH(a). For a 3D volumetric
function, there are four types of critical points: index 0 (minima), indices 1 and 2 (saddle points), and index 3 (maxima).

Figure 10.9: (The contour tree (upper left) and the contour spectrum (bottom) for the Human Rhinovirus serotype 2 (pdbid:
1 FPN).The red color in the spectrum curve is the graph of molecular surface area, while the blue and green curves are the
excluded and enclosed volume by the various level surfaces of the volumetric density map. The horizontal axis of the plot
above is map density, while the vertical axis is spectrum function value.

The contour tree (CT) was introduced by Kreveld et al. [37] to find the connected components of level sets for contour
generation. TheCT captures the topological changes of the level sets for the entire functional range[ fmin, fmax] of f ; each
node of the tree corresponds to a critical point and each arc corresponds to a contour class connecting two critical points. As
an example, the contour tree for a virus capsid is shown in Fig. 10.9. Each leaf node of theCT represents the creation or
deletion of a component at a local minimum or maximum and eachinterior node represents the joining and/or splitting of two
or more components or topology changes at the saddle points.A cut on an arc of the tree(v1,v2) Î T by an isovaluev1≤w≤ v2

represents a contour of the level setL(w). Therefore, the number of connected components for the level setL(w) is equal to
the number of cuts to theCT at the valuew. TheCT can be enhanced by tagging arcs with topological information such as
the Betti numbers of the corresponding contour classes [37]. Betti numbersβk, (k = 0,1, . . .) intuitively measure the number
of k-dimensional holes of a virus capsid surface or of any individual structure unit. Only the first three Betti numbersβ0,β1,β2

of a smooth surface are non-zero:β0 corresponds to the number of connected components;β1 corresponds to the number of
independent tunnels;β2 represents the number of voids enclosed by the surface. For example, a sphere has the Betti numbers
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(β0,β1,β2) = (1,0,1) while a torus has(β0,β1,β2) = (1,2,1). Betti number computations for virus capsid surfaces provide
useful topological and combinatorial structural information.

10.2 Ribosome
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Molecules

A.1 Internal Coordinates
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Figure A.1: A polypeptide chain with backbone dihedrals (ψ , φ , ω) and side-chain dihedrals (χ) shown.

Proteins have a naturally occurring backbone consisting of−NH−C(H)R−CO− sequences, where R is some functional
group defined for 20 different amino acids. These functionalgroups appear as side-chains connected to the backbone. As in all
organic molecules, each type of bond formed in a protein conforms to the characteristic bond length and bond angles for that
type. Hence, the conformation of a protein can be approximately defined by a set ofdihedral angles(or torsional angles) that
determine the orientation of different chemical groups along and around the backbone.

The following three dihedral angles determine the conformation of the backbone (see Figure A.1).

φi . This is the angle between the planesCi−1−Ni−Cαi andNi−Cαi −C′i , i.e., the angle of rotation (−180◦ ≤ φi <+180◦)
around theNi−Cαi bond. A positive change in theφi value occurs by counter-clockwise rotation of theCi−1−Ni−Cαi

plane around theNi−Cαi bond.

ψi . This is the angle of rotation (−180◦ ≤ ψi < +180◦) around theCαi −C′i bond, and is determined by the angle between
theNi−Cαi −C′i andCαi −C′i−Ni+1 planes.

213



214 APPENDIX A. MOLECULES

��
� �

! "#$%#&

''()*+

"",%-& ��
. �

!

'/')0+

12345 67 89:;< =>

?@
A
BC

?@
AD
E
BC

FGHIIJK

LMLNOPM LQRSM

TU

TU

V

W

X
TY

Figure A.2: A peptide plane with all bond lengths and bond angles shown [9].

ωi . This is the angle of rotation around the peptide bond (C′i−1−Ni), and is given by the dihedral angle between theCαi−1−
C′i−1−Ni andC′i−1−Ni −Cαi planes. The partial (40 %) double-bond character of the peptide bond and the steric
interactions between adjacent side-chains causes the amide group (Ni , Cαi , Hi , C′i−1, Oi−1 andCαi−1) to be almost planar
with the distance betweenCαi−1 andCαi as large as possible (see Figure A.1 for bond lengths and bondangles on this
plane). Therefore, almost alwaysωi ≈ 180◦ (for trans-peptides), orωi ≈ 0◦ (for cis-peptides).

More than than 99.9% of all residues (except proline) aretrans-peptides, and hence haveωi ≈ 180◦. Approximately 5%
of all proline peptide bonds haveωi ≈ 0◦.

The side chains change conformation through torsional changes in theχi angles.

χi . Depending on the amino acid type of the side chain there can beup to 4 such successive angles per side chain:χi,1, χi,2,
χi,3 andχi,4. However, forGlycineside chain which consists of only one hydrogen atom, andAlaninewhose side chain
is only a single methyl group, these angles are undefined. Forall other side chainsχi,1 is defined as the dihedral angle
between the planesN−Cα−Cβ andCα−Cβ −X, whereX is eitherCγ , orCγ1 (Val, Ile), Oγ (Ser),Oγ1 (Thr), orSγ (Cys).
All side chain dihedrals have values clustered near three conformers known asgauche+ or g+ (+60◦), transor t (180◦),
andgauche− or g− (−60◦).

Figure A.3 shows the side-chain dihedrals of all amino acidsexcept Glycine and Alanine. Table A.1 shows that about
90% of all side-chains in proteins can be completely described with three dihedral angles (i.e.,χ1,1, χ1,2 andχ1,3), and
only two dihedral angles (i.e.,χ1,1 andχ1,2) are necessary to completely specify more than two-thirds of them.

number of dihedrals (d) frequency (%)

d≤ 4 100.00
d≤ 3 89.48
d≤ 2 70.64
d≤ 1 23.46

Table A.1: Amino acid frequencies in proteins
based on the number of (side-chain) dihedrals
they have (based on data in [26]).
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Figure A.3: Side-chain dihedrals (χi,1, χi,2, χi,3, χi,4) are shown for 18 of the 20 amino acids. The remaining two, i.e., Glycine
(Gly) and Alanine (Ala), do not have any side-chain dihedrals. Adapted from [28].

A.2 LEG (Labelled Embedded Graph) Representations

TheLEG representation of a molecule is simply an annotated graph representation of the chemical structure of the molecule,
in which each node represents an atom and each edge a chemicalbond. Each atom may be annotated by its symbol and the
vdW radius, each edge may be annotated by the length of the corresponding chemical bond and possibly a dihedral angle, and
each pair of consecutive edges by a bond angle.

In Figure A.3 we show the chemical structures of various amino acids, and in Tables A.2, A.3 and A.4 we list all possible
vdW radii, bond lengths and bond angles, respectively, that appear in these chemical structures. Using these information,it is
straight-forward to construct the requiredLEG representations of the amino acids.

Since secondary structures (e.g.,α-helices andβ -sheets) are composed of primary structures (i.e., amino acids), theLEG
representation of secondary structures can also be constructed from the information in Figure A.3 and Tables A.2, A.3 and A.4.
However, the(φ ,ψ) dihedral angles of the residues inα-helices andβ -sheets lie in fairly restricted ranges:(−45◦,−60◦) for
α-helices,(−120◦,115◦) for parallelβ -sheets, and about(−140◦,135◦) for anti-parallelβ -sheets. The bond lengths and bond
angles may also change slightly.

We can use geometric properties ofα-helices andβ -sheets in order to extract them from theLEG representationL of the
given proteinP.

Extracting α-helices fromL. We traverseL along the peptide backbone ofP, and using the internal coordinates (i.e., bond
lengths, bond angles, dihedral angles, etc.), bond types and atom types specified inL, we detect and output all maximal
contiguous segments of this backbone (along with side chains) that satisfy the following properties ofα-helices.
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Figure A.4: A Lysine side-chain with side-chain dihedrals (χ1,1, χ1,2, χ1,3, χ1,4).

• The amino acids in anα-helix are arranged in a right-handed helical structure with each amino acid corresponding to a
100◦ turn in the helix and a 1.5 Å translation along the helical axis. Thus there are 13 atoms and 3.6 amino acid residues
per turn, and each turn is 5.4 Å wide (see Figure A.5).

• TheC=O group of residuei forms a hydrogen bond with theN-H group of residuei +4.

• Amino acid residues in anα-helix typically have dihedral anglesφ ≈−45◦ andψ ≈−60◦.

Extracting β -sheets fromL. We scan the peptide backbone ofP given in L, and detect and output all maximal contiguous
segments of this backbone (along with side chains) that satisfy the following properties ofβ -sheets.

• Eachβ -strand can be viewed as a helical structure with two residues per turn. The distance between two such consecutive
residues is 3.47 Å in anti-parallelβ -sheets and 3.25 Å in parallelβ -sheets.

• Unlike α-helices theC=O groups in the backbone of aβ -strand form hydrogen bonds with theN-H groups in the
backbone of adjacent strands.

– In parallelβ -sheets allN-termini of adjacent strands are oriented in the same direction (see Figure A.7(b)). If the
Cα atoms of residuesi and j of two different strands are adjacent, they do not hydrogen bond to each other, rather
rasiduei may form hydrogen bonds to residuesj−1 or j +1 of the other strand.

– In anti-parallelβ -sheets theN-terminus of one strand is adjacent to theC-terminus of the next strand (see Figure
A.7(a)). If a pair ofCα atoms from two successiveβ -strands are adjacent, then unlike in parallelβ -sheets they form
hydrogen bonds to each other’s flanking peptide groups.

• The(φ ,ψ) dihedrals are about(−120◦,115◦) in parallelβ -sheets, and about(−140◦,135◦) in anti-parallelβ -sheets.

• Unlike in α-helices, peptide carbonyl groups in successive residues point in alternating directions.
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Table A.2: List of van der Waals radii for 25 protein atoms [21].

Table A.3: Bond lengths in proteins [7].
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Table A.4: Bond angles in proteins [7].

A.3 FCC (Flexible Chain Complex) Representations

Complex biomolecules have a naturally occurring backbone,forming chains which flex through their torsion angles. Thisnerve
is biochemically well defined, and described by a labeled complex. Structural (shape) and functional properties of a biomolecule
can be described as a labeledsheatharound the centralnerve. This combined representation (Flexible Chain Complex, orFCC)
of a nerveand asheathdescribe a flexible biomolecule.

The nerve of the FCC.The chain complex consists of the following elements.

• Vertices: Atom or pseudo atom positions. Atom positions are obtainedtypically from the PDB files. For pseudo atoms,
we use the centers of a set of enclosing spheres which represent the finer level using some error norm like the Hausdorff
error.



A.3. FCC (FLEXIBLE CHAIN COMPLEX) REPRESENTATIONS 219

Figure A.5: Geometric structure of anα-helix [9].

Figure A.6: Geometric structure of aβ -sheet [9].
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Figure A.7: Two types ofβ -sheets: (a) anti-parallel, and (b) parallel [13].

Figure A.8: Flexible Chain Complex: Combined volume (through hardware accelerated 3D texture mapping based volume
rendering) and imposter rendering, showing the chain together with the high density volumetric regions formed by the functional
groups protruding outwards from the chain.

• Edges: Bonds or pseudo bonds. This is again from the PDB or from the hierarchical complex formed by clustering the
finer resolutions to a DAG.

• Faces: Residues, bases or pseudo structures.

These elements are labeled with the following attributes.

• Position, length, areas.

• Ranges for flexible angles, lengths.

• Sub structural markers.

• Field attributes.

We allow the molecules to flex around their torsion angles as it is widely accepted that bond angles and bond lengths do not
have much flexibility. In protein chains, theφ andψ angle variations are obtained and stored in the complex attributes. For
RNA, we have 8 different torsion angles along the backbone. The ranges for these atoms are obtained either from molecular
dynamics simulations or from NMR analysis for certain structures.
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(a) Atom level (b) Residue level with a low
Gdropo f f factor

(c) Residue level with a high
Gdropo f f factor

Figure A.9: LOD volume rendering of a large ribosomal subunit (1JJ2.pdb). The parameterGdropo f f controls the spread of the
density around a pseudo atom when blurring the chain complex

The sheath of the FCC.The surrounding volume, sub volumes and surfaces of a biomolecule are used to represent shape,
volumetric properties (like electrostatics, hydrophobicity) and surface properties (like curvatures). These representations enjoy
a dual implicit and explicit representation.

• Implicit volumetric representationIn this representation, we have a vector containing of (a). Aset of centers of expansion
points, (b) A parameter referred to as the blobbiness parameter which is useful to represent the van der Waals forces in
a continuous and hierarchical fashion, and (c), a set of radii. These parameters are necessary and sufficient to define the
electron density function of a molecule. For functions likehydrophobicity and electrostatics, charges at each centerof
expansion is required.

• Explicit volumetric representationThere are three representations which can be used for explicitly describing a volumetric
function.

– Simplicial representation: The data is described over a simplex like a surface grid at the vertices.

– Tensor product: An explicit grid is used to represent the functions. The size of such a representation can be very
large. Hence it is useful to develop compression based algorithms to represent and visualize such a representation.

– Multipole summations: Since our data set consists of a set of vertices and functions which are summations of
functions defined over this limited set, Multi-Pole type summations can be used efficiently to represent the data
sets.

A.3.1 Hierarchical Representation

Both the skeletal and the volumetric features are represented in a hierarchical fashion. We have a biochemical based static
hierarchy of the molecules, with atoms at the finest resolution. Groups of atoms are collapsed to form residues and residues
form secondary structures. Chains consist of a set of these secondary structures. A dynamic hierarchy, which could be more
useful for interactive dynamic level of detail rendering and manipulation is also performed as outlined in [1].

Once a flexible chain complex hierarchy is rebuilt due to dynamic changes in the molecule, the implicitly defined volumetric
and surface properties can be quickly updated. Explicit volumes can also be extracted in a hierarchical fashion.

When we have a hierarchical representation of a FCC skeleton, we implicitly have a hierarchical representation of the
surrounding differentiable sheath. In figure A.9, we show the large ribosomal subunit at three different levels of a hierarchy.
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A.3.2 Flexibility representation

The paper [38] describes how to store the flexibility information in a structure. More specifically, they describe existing and
new methods to obtain new atom positions when rotations are performed. Three schemes for storing and manipulating rotation
matrices are given below.

Simple rotations scheme.A tree is constructed from the molecule by taking any atom as the root, and bonds in the molecule
as bonds in the tree. Rings in a protein are simply taken as a single atom. When a torsional angle changes at a node, then all the
nodes below it are rotated to new positions. This rotation update involves a matrix multiplication. The update has to be from
the node to the leaves and numerical errors can occur due to manipulating positions of atoms down a chain for each rotation.

Consider a bondbi rotated by angleθi . Let v be a vector along the bond andT be the translation matrix formed by theith

atoms position. Then the update matrix is

T




v2
x +(1− v2

x)cosθi vxvy(1− cosθi)+ vzsinθi vzvx(1− cosθi)+ vysinθi 0
vxvy(1− cosθi)+ vzsinθi v2

y +(1− v2
y)cosθi vyvz(1− cosθi)− vxsinθi 0

vzvx(1− cosθi)− vysinθi vyvz(1− cosθi)+ vxsinθi v2
z +(1− v2

z)cosθi 0
0 0 0 1


T−1 (3.1)

A.3.3 Denavit-Hartenberg scheme

In this scheme, we again maintain a tree, with matrices and update from a root to the leaf. But now, the matrices no longer
need the information on the current position of the atom, butonly the rotations it underwent as a single matrix. Hence this is
numerically stable.

To construct the matrix, we first define a local frame at each node. The origin and the vectors are the node position and

• w the bond from the node to its parent

• u a vector perpendicular to the previous vector and the bond containing this atom and a child. This means that a frame is
to be defined for each child.

• v a vector perpendicular to the above two.

The matrix which takes a point from one frame defined at a node to the frame of the parent of that node is defined as




cosθi −sinθi 0 0
sinθicosφi−1 cosθicosφi−1 −sinφi−1 −l isinφi−1

sinθisinφi−1 cosθisinφi−1 cosφi−1 −l icosφi−1

0 0 0 1


 (3.2)

θi is the torsional angle of bondbi

φi−1 is the bond angle between bondsbi−1 andbi

Atomgroup scheme.This scheme eliminates the requirement for multiple framesand frames where the bond does not rotate.
It simply aggregates the tree into a new tree where sets of vertices ( atoms ) which do not have rotatable bonds are collapsed
into a new vertex. Here, we define the local frame as the atomgroup origin and the vectors

• wi as a vector along the bond to atomgroupi−1

• ui as any vector perpendicular towi

• vi as any vector perpendicular to the above two.
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Let the frames after and before rotation be[xi ,ui ,vi ,wi ] and [x′i ,u
′
i ,v
′
i ,w
′
i ]. In this case the transformation matrix, which

takes a point in framei to local frame ati−1 ( rotated byθ around the connecting bond ) is defined as the product



ui−1.u′i ui−1.v′i ui−1.wi ui−1.(xi− xi−1

vi−1.u′i vi−1.v′i vi−1.wi vi−1.(xi− xi−1

wi−1.u′i wi−1.v′i wi−1.wi wi−1.(xi− xi−1

0 0 0 1







cosθi −sinθi 0 0
sinθi cosθi 0 0

0 0 1 0
0 0 0 1


 (3.3)

The concatenation of such matrices until the root gives the global position of the atomgroup.

A.3.4 Flexibility analysis in molecules - creation of flexible models

One classification of flexibility analysis methods in the biomolecular area is given by [14] as

• Molecular dynamics

Molecular dynamics involves simulation of the protein in a solvent environment and saving the conformation state at reg-
ular time intervals. Since this simulation is often at very small time scales, ( pico or nano seconds ), large conformational
changes ( which occur over micro or milli seconds ) will not berecorded. Hence obtaining flexibility analysis through
molecular dynamics is limited. An adaptive solver is given in [17]. By allowing users to interact with the system, confor-
mational changes can be forced and observed [20], [32]. A multiple grid method for solving the electrostatics efficiently
[31]. Compact structural domains were computed in [12] using simple force calculations in a protein structure.

• Xray Crystallography and Nuclear Magnetic Resonance ( NMR )

Xray Crystallography is used to obtain high resolution images of proteins, upto the atomic level. Most structure in the
PDB are generated using this method.

NMR techniques have been used to obtain dynamic conformations of proteins. The basic idea behind NMR is that atoms
have an intrinsic property spin, which determines its behavior when exposed to magnetic fields. Different atoms are seen
to emit different frequencies of light, providing an image of the underlying protein as a signature. NMR imaging yields
lower resolution results than xray crystallography.

Given the large number of states which could be obtained frommolecular dynamics, NMR and xray crystallography,
the following methods generate certain important conformal states by reducing the number of degrees of freedom in the
protein.

• Comparison of conformal states

Protein dynamics give rise to a large number of conformations. Analyzing these conformations for any problem, including
flexible protein docking is not computationally feasible. Hence many methods are used to reduce these conformations to
a new basis, where the principal basis gave the large fluctuations efficiently. Many authors [35], have shown that the main
conformational changes of a protein is mostly captured by using only a few bases and projection vectors, [34]. Normal
mode analysis and principal component analysis are two methods to reduce the dimensionality of the problem.

Singular Value Decomposition (SVD) is commonly used to find basis vectors to reduce the dimensionality of a set of
vectors. An equivalent formulation using Principal Component Analysis (PCA) is also done. Consider the column vectors
of a matrix A as the zero mean weighted atomic displacement positions. Usually, this vector is also aligned with a given
conformation, so that the displacements are relative. The SVD of a matrix is

SVD(A) =U ∑VT (3.4)

U,V are orthonormal matrices
∑ is a diagonal matrix

The diagonal matrix has entries are all non negative and decreasing, called the sin-

gular values.

In this decomposition, the set of left column vectors ofU are the basis set forA, and the vectors inVT are the projections
along these basis vectors with magnitudes given by the singular values. Hence, we have an ordering on the influence of
the basis vectors for the matrix.



224 APPENDIX A. MOLECULES

To apply the PCA algorithm, a matrixA is defined with elementsai j as follows

ai j = ((xi− xi,avg)(x j − x j ,avg)) (3.5)

The eigenvector problemAW=Wζ is solved to get the axis vectors and the corresponding fluctuations in the eigenvectors
and eigenvalues [19].

In [10], a theorem relating the atom displacements to the frequencies of vibrations is presented. In this paper, the authors
prove that if a large molecule only flexes around a certain minimal energy state, approximated by a multidimensional
parabola, then the average displacements of the atom positions is the sum of the contributions from each normal mode,
which is proportional to the inverse square of the frequency[19]. For Normal Mode Analysis ( NMA ), the moment
matrix diagonalized is

A= kBTF−1 (3.6)

kB is the Boltzmann constant,
T is the absolute temperature,
F is a matrix of the second derivatives of the potential energyat a minimum point.

Successful modeling of the Chaperonin GroEL was performed using NMA in [22]. To avoid the computations on a large
matrix, [33] compute a blocked version of NMA by grouping residues.

Gaussian Network Models ( GNM ) are used in [18]. In this model, the correlation matrix is formed as

(3kT/γ[T−1]i j ) (3.7)

k is the boltzmann constant,
T is the absolute temperature,
γ is a harmonic potential,
T is a nearness matrix, called Kirchoff matrix

The kirchoff matrix inverse can only be approximated since its determinant is 0.

• Deriving flexibility through a single structure.

Non polar regions in protein tend to lie in the interior and this hydrophobic effect folds the protein. In [37], the authors
describe how to capture this information into rigid domainsof the protein. Their assumption is that rigid domains folded
by the hydrophobic effect behave as acompact unitduring conformational changes. To quantify this, they hierarchically
grouped residues in a protein to form a tree, using a coefficient of compactnessZ given by

Z =
accessible surface area of segment

surface area of sphere of equal volume
(3.8)

Static core or the backbone of molecules and their associated rigid domains were computed in [3] using two different
conformations of a given protein.α helices,β strands and loops were segmented. Similar pairs of segmentswere
clustered in a tree-like fashion using a rmsd calculation. Domains or compact units of a protein were also computed by
[30]. The heuristic they used was that the amount of internalcontact a domain had was larger than the amount of contact it
had with the rest of the protein. Hence by choosing suitable split planes along the sequence, they form compact sequences.
Extending this idea, a Monte Carlo sampling in internal coordinates using relevant torsion angles was performed in [23].
They obtained a set of low energy conformations for any givenprotein structure as a representation of its flexibility.
Using graph theoretical algorithms, [14] obtained flexibleand rigid domains in a protein.

A.4 Flexibility in RNA

Flexibility in RNA is given by three sets of angles

• The backbone torsion angles.
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(a) The six backbone torsion an-
gles for a RNA

(b) The torsion angles defined
along the sugar ring

(c) Nucleotides can rotate about
theχ torsion angle

Figure A.10: The torsion angles around which a RNA can flex.

Figure A.11: The backbone torsion angles are represented byjust two pseudo rotation anglesη andθ .

• The angles on the sugar ring, also defined by amplitude and a phase.

• An angle about which the residue can flex.

The angles are shown in figure A.10. Due to the large number of angles, people have studied and proposed various means
to reduce the conformational space.

A.4.1 Reduced conformation space

Due to the large number of angles defining the flexibility of nucleotides, it is useful to find fewer pseudo torsion angles to
represent the other angles.

Reduction to two angles.Duarte et al. have reduced the number of torsion angles necessary to describe an RNA molecule to
two, η andθ [5], [4]. Figure A.11 gives the relative positions of these angles and the specific atoms of the backbone involved.

η is the torsion angle resulting fromC4′i−1−Pi−C4′i −Pi+1. The atoms connectedPi −C4′i −Pi+1−C4′i+1 createθ [5].
In their most recent publication, Duarte et al. combined theη andθ data with position information to describe the overall
structure of the RNA molecule. Using PRIMOS [6] to create an "RNA worm" - a sequential description of the angle data -
allows for analysis of the structure on a nucleotide by nucleotide basis.

After all η andθ angles have been calculated from the PDB [8], NDB [2], and RNABASE [36] data, PRIMOS creates an
RNA worm file which gets deposited into a database. The two angles are plotted and a 3rd dimension, sequence, is added to the
graph to form a 3D representation of structure. See Figure A.12.
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Figure A.12: Example of 3D representation of RNA structure.Plotting the RNA chains using only two angles per residue in a
3D plot shows similar structures along theworms

Angle Bin 1 Bin 2 Bin 3 Bin 4
α 40 - 90 135 - 190 260 - 330 other
γ 35 - 75 150 - 200 260 - 320 other
δ 68 - 93 130 - 165 other
ζ 255 - 325 other

Table A.5: Classification of angles:discrete ranges of angles or "bins" as defined by Hershkovitz.

In this plot, A-helices (the most common form of RNA; represented in blue) travel in relatively straight lines, whereas the
motifs/other features of the RNA show large deviations fromthe straight line (shown in red).

To compare RNA worm representations, and thus conformational variations between molecules, it is necessary to find the
difference between theη andθ values in the two molecules. Simply put:

∆(η ,θ )i =
√
(ηA−ηB

i )
2+(θ A−θ B

i )
2 (4.9)

The larger the value of∆(η ,θ )i the more extreme the disparity between the two RNA fragments, chains, or molecules.

Further, Duarte et al. use this method to compare ribosomal complexes, search for existing motifs, identify new motifs,and
characterize two different types of the same motifs. To compare ribosomal complexes, Duarte et al use PRIMOS to calculate
differences in h and q when the ribosome is in different conformational states. For example, the conformational state ofthe
ribosome is altered during antibiotic binding or during different stages of translation. The same method can be used to compare
conformational states of ribosomes from different species.

To find existing motifs in RNA structures, they used PRIMOS tocreate another RNA worm database. From this database,
a fragment of RNA that contained the motif of interest was selected and compared to every other fragment of the same size
within the database and given a score according to equation 4.10.

∆(η ,θ ) = ∑n
i=1 ∆(η ,θ )i

n
(4.10)

The scores were sorted in increasing order. The smaller scores indicate a closer match.

Reduction to four angles and binning.Hershkovitz et al. [11] suggest a more complex, yet complementary, method to that of
Duarte [5]. This method involves calculating four torsion angles,α, γ, δ andζ , and binning these angles into allowable ranges.
"Binning" is a term used to describe the technique used by Hershkovitz to classify various RNA configurations into discrete
bins. For example, nucleotides in the A-form helix, the mostcommon conformation of RNA, have a bin number of 3111 where
each number represents which "bin", or range, the torsion angles belong to (i.e.α is in bin 3, or 260◦ - 320◦ andγ, δ andζ and
are in bin 1, or 35◦ - 75◦). See Table A.5.
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The bin number combination 3111 is then assigned an ASCII character, "a". All combinations of bin numbers are assigned
a unique ASCII character, enabling the entire RNA chain to bedescribed by a sequence of letters that represent the structure
of the molecule. Their goals were to recognize and catalogueall the RNA conformational states, eliminate any unnecessary
angle information, and to assess the validity of their binning model by comparing it to a torsion-matching model. The torsion-
matching method for RNA motif searching is a brute force method. So while it is highly accurate, it is computationally
expensive as it involves calculating all backbone angles including a ribopseudorotation phase angle, P, for each residue and
comparing each set of angles to all other sets of angles in themolecule.

After using the binning method for all RNA fragments and molecules in their database, Hershkovitz et al found 37 distinct
conformational states of RNA. Table A.13 lists the assignedbin numbers, the corresponding ASCII symbols, and the observed
frequency of these 37 conformational states.

Because this method allows the three dimensional structureof an RNA molecule to be displayed as a sequence of characters,
it facilitates motif searching. Without computational aides, one could see that a string of repeating letters (other than "a")
represents a possible motif.

Hershkovitz et al suggest an alternative to the Ramachandran plots traditionally used for representing angle distributions.
The tree diagram in figure A.14 is a natural progression from the four integer code, or bin. Here the widths of the line correspond
to the log of the number of residues in each bin.

A.4.2 Classification of RNA using clustering

Nucleotides from the large ribosomal subunit (1JJ2.pdb) were clustered into commonly occurring structures by Schneider et al.
[29]. They classified the non A-type nucleotides separately( 830 of them ). Eighteen distinct non A-type conformations and
fourteen A-type conformations were reported. They report that a large number of the RNA were very close ( in a RMSE sense
) to the clusters. The authors also say that their results agree with those from Murray et al. [24].

The steps used in obtaining the conformations were as follows.

• Separate the A-type from the non A-type nucleotides.

• Plot the histogram for the backbone (α,β ,γ,δ ,ε,ζ ) and the base (χ) angles.

– α andγ were seen to have tri-modal distributions.

– β has a wide gaussian with 180 as its center.

– ε has values greater than 180 due to the ring, and lacked a gaussian shape.

– delta also was constrained by the ring, and had a sharp bimodal distribution due to the C3’-endo and C2’-endo
ribose puckers.

– The baseχ angle was largely bimodal, due to the two main configuration of bases (anti and syn).

– There was a wide distribution ofζ .

• Plot 2D scatter plots for the following angle pairs : [α, ζ ], [β , ζ ], [ε, ζ ], [γ, α], [χ , ζ ] and [χ , δ ].

– The reason for choosing the above sets were not given.

– Clusters were found in the pairs [ζ , α], [α, γ] and [χ , δ ].

– The lack of clusters in other plots led to clustering of 3 tuples of angles.

• From the features and distributions seen in the 1D and 2D plots, the authors choose six 3D plots to base their clusters on
to classify the structure of nucleotides.

– The following six 3tuples were chosen for clustering: [ζi, αi+1, δi ], [ζi , αi+1, γi+1], [αi , γi , δi ], [ζi , αi+1, χi ], [ζi ,
αi+1, εi ] and [ζi , δi , χi ].

– The clusters in the 3D plots were assigned peaks and labeled.
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Figure A.13: Classification into 37 clusters through binning
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Figure A.14: This tree represents the case whereα is 1. There are three others; one for each possible value ofα.

– Each nucleotide was assigned the corresponding label from each plot, if any, or simply a ’-’.

• Each nucleotides 6 letter classification was clustered using lexicographic clustering. The authors do not mention why
this method was used.

• From this clustering, eighteen distinct non A-type conformations and fourteen A-type conformations were reported.

A.4.3 Division of RNA backbone bysuites

Murray et al. [24] identify several problems associated with the methods of Murthy [25], Hershkovitz [11], and Duarte [5].
While these methods are excellent at finding and comparing RNA motifs in a large nucleic acid sample, they oversimplify the
problem of determining RNA backbone structure. As a result,Murray et al. propose to analyze the folding structure of RNA
molecules on a more detailed level, correct the artifacts created in the data structures (sometimes caused by NMR or X-ray
crystallography), producelow-noise data distributions, and create a list of the resulting, distinct RNA backbone conformers.

The traditional nine angles of the RNA backbone and its bases(i.e. α,β ,γ,δ ,ε,ζ ,χ , and the 2 puckering angles of the
sugars) were reduced to six.χ was not included in the model. The two puckering angles were combined and represented as
δ , whereδ was bimodal - either C3’ endo or C2’ endo. This allowed the sixremaining angles two be divided into 2 sets of
3D distributions,α,β ,γ andδ ,ε,ζ . Dividing the RNA backbone intoheminucleotides, a term coined by Malathi and Yathinda
[27], in this manner provided some advantage to the traditional phosphate - phosphate division in that it reduced the dimension
of the problem and made visualization more feasible. In other words, two 3D plots can be created usingα,β ,γ data andδ ,ε,ζ
data respectively. See figure A.15

The methods of Murray et.al were fairly straightforward. They obtained the sequence and structure data samples from the
Protein Database and/or the Nucleic Acid Database. From these samples they calculated all the dihedral angles and added
hydrogens with REDUCE [15]. The backbone steric hindranceswere calculated with PROBE and CLASHLIST [16]. A
clash was noted when the overlap between two atoms was greater than 0.4Å. The angles, quality, resolution, base id, highest
crystallographic B factor, and d-e-z values were entered into excel. Images were created using the software PREKIN and
MAGE from the same authors. For each of the seven peaks created in theδ ,ε,ζ distributions, theα,β ,γ set was plotted.
Finally, a quality filter was applied to rule out nucleotideswith greater than 2.4Å resolution.

210 potential RNA conformers were determined from which 146had an acceptable (low) amount of steric hindrance. 42
conformers had actual cluster points from the data.
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Figure A.15: Division of angles into residue and "suite" data

Figure A.16: 3D visualization of clusters
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