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Chapter 1

Introduction

intro to computational algorithms and data structures fodeting of molecular models and macromolecular complesas f
PDB

Molecular Solvation Models and Minimal Surfaces

Molecular surfaces of proteins and other biomolecules,often modeled as smooth analytic interfaces separating the
molecule from solvent (an implicit solvation model).

These analytic solvation models are often of high genus avittyriad of interconnected tunnels and pockets with opening
(mouths). All these interfaces are biochemically significas pockets are often active sites for ligand binding oyeratic
reactions, and tunnels are often solvent ion conductanmeszo

In this talk, we present a general characterization of tlsebeation interfaces and approximately model them as piece
wise minimal surfaces, hamely, the solution of non-lindptéc or biharmonic partial differential Euler-Lagraagquations
obtained from the minimization of high-order energy funofils.
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Chapter 2

Spatial Occupancy

Molecules are commonly modeled as a collection of atomsessmted by spheres, with radii equal to their van der Wadls ra
Three types of surfaces are defined based on this repraésantat

Probe sphere

VDW Surface \_ 7 VDW Volume

SAS Reentrant patc
/ of SCS

Overlapping regions
SCS and VDW Surfaces

SAS Volume

Figure 2.1: Different molecular surfaces and regions aoavsifor a 3 atom model in 2D. The SAS is the locus of the center of
the rolling probe sphere. The VDW surface is the exposedruoigpheres representing atoms with their van der Waals radi
and contains the VDW volume. The lower side of the rollinglralefines the smooth SES which contains parts of the VDW
surface and reentrant patches. The region between the SNB@BES is defined as the SAS volume, and the region between
the SAS and the VDW volume is refered to as the SES volume.

van der Waals (VDW) surface.The surface of the set of spheres is known as/ireder Waals surface

Solvent Accessible Surface (SASProteins do not exist in isolation, but commonly found inuians, especially water. The
Solvent Accessible Surfa®@AS) is defined as the locus of the center of a solvent prabig, (@ water molecule) rolling along
the VDW surface of a molecule [57]. If water molecules are gled as spheres with radias 1.4 A, then the SAS of a given
molecule can be found by increasing the radius of each atdimainmolecule by 1.4 A, and taking the surface of the set of
inflated atoms.

Solvent Contact Surface (SCS)The VDW surface contains too many internal atoms and patehesh are not accessible by

the solvent, and the SAS contains regions that should bep@atby the solvent. Thus both these surfaces contributar¢e |
errors in biomolecular energy computation. In order to ogere this drawback, Richards [66] gave a definition for maliec
surface as a set of contact and reentrant patches. A prolEnsasphere, rolling over the atoms of a protein defines aregi

in which none of its points pass through. The boundary of thisme is continuous and defines a new molecular surface.
This surface is composed of convex patches where the prolobds the atom surfaces, concave spherical patches when the
probe touches more than 2 atoms simultaneously and tongédethes when the probe rolls between two atoms. This sudace
commonly known as th8olvent Contact Surfag€CS), orSolvent Excluded Surfa¢8ES), or_ee-Richard¢§LR) Surface, or
simply the Molecular Surface. The major drawback of SCS & tusps created by the self-intersection of the rollindpro
cause singularity during energy computation.
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convex spherical patch patch

concave
spherical patch

Figure 2.2: 3D image showing the decomposition of SCS inteetltifferent kinds of patches: convex spherical, toroshal
concave spherical.

Figure 2 shows the surfaces described above for a 3 atom éxamp 2D cross section, and Figure 2 shows the different
types of re-entrant patches on an SCS.

See Appendix A for further details about structure of bioacoles like proteins and RNA.

In Section 2.1 we introduce different ways to model the VDWSSand SCS surfaces of molecules. Sections 2.2 and 2.3
describe two different algorithms to produce such reprsiems. Section 2.4 and 2.5 presents techniques to maititai
surfaces under dynamic change of radii and atom movementsS&ction 2.6 discuss multiresolution models of molecules

2.1 Surface Representations

2.2 Molecular Surface using Voronoi-Cell Complexes
2.2.1 Atom Boundary Patch as a Trimmed NURBS

The representation we use for molecule (property) surfecadoundary representation. Two classes of informatieruaed:
(a) geometric description of each patch, (b) topologidatiens amongst the patches. We maintain the following siatectures
related to the molecule.

1. The weighted Voronoi diagram [4, 53] (power diagrampf the molecule atom centers (the weights are the squares of
the atoms radii).

2. Aregular triangulatiorZ (dual of the power diagram) of the same set of weighted paisiia [37].

3. ANURBS patch per molecule atom.

We have selected NURBS as basic modeling primitive [55]. &wor@ppropriate choice of parameterization we obtain
a single trimmed NURBS for each atom’s external surfacerdmrtton. Each such patch is the intersection of one sphere
(representing one atom) with the exterior of all its neigfiigp spheres. Consider the intersect®nR of a spherical surface
S= {x:||x—Xo|| = r} with the external of spheR= {x: ||x—x1|| > r'}. There always exists an halfspaze- {x: (x-1) < d}
such that:

SNR=SNnr.

For each atom we can reduce our patch representation probléra intersection of a sphere with a set of halfspaces. The
union of balls model [35] provides the equation of each Ipalé® intersecting one atdnmNote that, since we use a parametric

1Given the Voronoi complex of the weighted centers of the ke atoms, the halfspaces whose common intersection ajesehe Voronoi cell of the
atomB are those with whicls= dB must be intersected.
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representatio®= f(u,v), we need to compute the domain (u,v) space such th&t(D) = SN .

To have an efficient representation we want to obtain onlyMd&BS patch per atom. Moreover, since we will use this
formulation to achieve a representation of the surfacemandc in the radii of the atoms we need a formulation that snap
continuous modifications of the radii into continuous madifions of the domaib. This is not achieved with the classical
NURBS sphere representation as a rotational surface off @ihelk [65] since there are two points (north and south pofe
the sphere that are the image of two lines in the parameteaiiofsayu = 0, u = 1 if the interval of theu domain is|0, 1]).
This implies that when the boundary planernérosses one of the poles the corresponding trimming curtheeifu, v) domain
would have a discontinuous change in shape.

Without loss of generality we assume ti&as the unitary sphere. The parameterization we adopt isitenfing (see [13]):

2u
w+v2+1

2v

TRV 2.1)
wHvi—1
w+v2+1
This parameterization maps the (infinite) rectangular doma

X =

[_oov +°°] X [_007 +°°]

to the unitary sphere. Note that in practice we do not dedl ®aiit infinite domain since we do not represent an entire sphere
but only one spherical patch. In particular assume that wecansidering the intersectidsi of the unit spherés with the
halfspacez < d (with a rigid body transformation and a scaling we can alwagkice the first intersection to this case). We
determine a positive constansuch thatS* C f(I), wherel is the square domaip-1,+I] x [—1,+l]. In the parameter domain

this corresponds to the conditi@h C I. The minimum value of that satisfies such condition lis= 1/%%g. Regarding the

numerical stability of the method it is important to notettfea d = 0.999 we get = 44.710.... Even wherd is much larger
than a realistic value, we still deal with a small domain oegi

The next step is to determine the dom&in At this end we simply replace the parametric equations) (@ the of the
sphere to the variables in the Cartesian inequalitiy obtaining the Cartesian inequality definibg

wHvi—1 ) )

- < < .

u2+v2+1_d = W< (2.2)
Thus the domai is a disc with center in the origin and radiusNote that a variation ofl corresponds to a scaling Bf, that
can be performed by simply scaling its control polygon (cad8URBS representation is defined for the trimming curvBpf
For any additional cutting halfspace: ax+ by+ cz< d we have:

(c—d)u®+ (c—d)V?+ 2au+2bv— (c+d) <0 (2.3)
If the planeax+ by+ cz= d contains the singular point of the parameterizafos (0,0,1) thenc = d. In this case the
trimming curve is the straight line:

2au+2bv— (c+d)=0. (2.4)

The domairD must be intersected with the half-plare2+ 2bv— (c+d) < 0.
If c—d # 0 the trimming curve derived from (2.3) has Cartesian equati

b a?+b?+c?—d?
2 2

u+— % =
( +c—d) +( +c—d) (c—d)?
In general we note that all the trimming curves are circlesgbly with infinite radius) so that the regi@ncan be modeled as
progressive intersection/difference of a sequence ofesiraCorresponding to the cutting halfspacef normalized equation

ax+ by+cz< d, with a® + b + ¢?>=1, we have in parameter space a citClef center(z23, %) and radius—VCl:ddz. The region

defined by such circle (inside/outside) depends on the digmedermc—d. Forc—d < 0P = (0,0,1) is insiderr and hence
the points of the plane at infinity are included in the regiorresponding tar. That is7Tis mapped onto the outside ©f This
requiresC to be parameterized with a clockwise orientation. Symroalli c + d < 0 implies thatrr corresponds to the region
insideC and henc€ must be parameterized with a counterclockwise orientation

a (2.5)
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2.2.2 Solvent Accessible Surface

In this section we discuss the representation of the solvecessible surface of a molecule. Since we are represehtng
molecule with a union of ballsg, in the following, with some abuse of terminology, we willlcgg both the molecule or the
union of balls. Similarly each single b@lwill be called either a ball or an atom.

Assume we have a ball of radiusr (a solvent atom) free to move in space without intersectirggunion of balls% (a

molecule). We say tha@ is in alegal position if its interiorl% does not intersec®.

Definition 2.2.1. Thesolvent accessibleurface § of the union of balls% relative to a solvent atom B of radius r, is the locus
(envelope) of the centers of the spheres with radius r tatrtges.

(@ (b)

Figure 2.3: TheHIV-2 PROTEASKa) and one solvent accessible surface (b) for the same nielec

From [35, 36] we know tha%, is the boundary surface of the union of ba#® that has the same set of atomsZsut
with all the radii increased by (see figure 2.3). On the basis of this property we can achiegprasentation db; parametric
inr. Forr = 0 we obtain the van der Waals surface of the moledu#® Varying the value of we get the accessible surfaces
of different solvents.

LetV’' € ¥’ be the convex cell corresponding to the [l %'. V' is the intersection of a set &fhalfspacen N...N 7.
The the contribution oB to the boundary ofZ (the surfaces, for r = 0) is given bydBnmnN...N7k.

Now assume > 0 and consider the spheBéin %’ corresponding t® in 2. The contribution oB' to S, is computed by
intersectingB’ with the same set of halfspaces ..., m,.

To compute the trimming curves in the parameter sgace) of the NURBS patch representia N N... N 715, we
apply a mapping that transforn® into the unitary balB,. Under this mapping the variation oftorresponds to have a fixed
(unitary) radius balB,, intersected with a set of varying halfspaces. FormallyefiallB’ and one halfspace have equations:

B: X4y +Z2<R
m: ax+by+cz+d<0
we apply the coordinate transformatios RX,y = RY,z= RZ to mapB' to By:
By: X2+y?4+72<1
- a>(+b)/+cz’+%§0

The change of the radil&of B' to R+ r is hence mapped in normalized coordindtés/, Z) to the change of the parameter
% of the halfspacer to R%r. This means that the equation of the trimming circles carebeitten, including the parameter
as:

21 n2.4 2 d \2
a b ., a+b°+c—(gy)
(u+C_ ) +(v+c_ )= L) (2.6)
R+r R+r R+r
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/ 2_(g2 . . —
that is a circle of cente(ﬁ, 1ch) and radiuy = %. To maintain the description of the domdinwe have

to maintain a 2D dynamiFgrunioﬁﬂof balls that is equivalent t@imtain a weighted Voronoi diagram of moving points in the
plane [43, 6].

Note also that the coefficiedtof the plane equation is also functionrofin fact as the radius of each ball is increased by
r the Voronoi plane that separates two balls moves towardrttadler one. An example is shown in figure 2.4. The distances
I1,1> of the Voronoi planat from the centers of the two balls must be such that the povetautiies oft are equal, that is:

Moreover the sum of two distances is constant (the two batia/ gput do not move):
l1+1 =1
From these two equations we get fpiso:

2,02 2
2 2 2 2 “+r{—r3
IT—ri=0-l)"=r; = |1:72|

Whenr; changes to; + r andr, changes ta, + r we have:

rp—raz
2l

|g_=|1+

15 =1+

TN
; AE \(\,__/ ¥
"—
ot
\H-u.__

5 s
= S iRl 5 H ’
g " ! ¥
] ] “-‘___E__,—"”
L L :
- -y —es -
i
l ' L
[ S :.... .............................. -
]
I e e esmemssanaaann S -

Figure 2.4: As the radius of the two balls is increased by Mirenoi plane that separate them moves towards the smalller b

2.2.3 Rolling Ball Surface

In this section we extend the method to achieve an exact NURRB@sentation of the rolling ball surfaBeof a molecule#.
The goal is to achieve an intermediate stage toward to agtgin the solvent contact surfae defined in the next section.
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In Figure 2.5 is shown the Fullerene molecule along with telwvent contact surfaces corresponding to two differentesut
radii.

We assume to have a b8llof radiusr (the solvent molecule) which is free to roll along the unidballs % (the molecule).
The union of all the ball8 (moving tangentially toZ in all the possible directions) is a region whose outer expekstrictly
contains (ifr > 0) # and whose inner envelope is tangentddsee [9]).

@) (b) (c)

Figure 2.5: The Fullerene molecule (a) and two solvent arirstiarfaces (b),(c) corresponding to two different solvexii.

Definition 2.2.2. Therolling ball surface $ of the moleculez with respect to a ball B of radius r is the inner envelope of the
region described by B rolling o8 in all possible directions.

The close relationship between the solvent accessiblacigind the rolling ball surface is evident from this defamiti

Proposition 2.2.1. (Necessary Condition) If a point p lies on the rolling baliace $ then it lies also on the boundary of a
ball B with center on the solvent accessible surfage S

PROOF By Definition 2.2.2 wherp € S there exists a baB of radiusr such thatp € 0B, BN % # 0 andl% N% = 0. But if
the centenq of B does not belong t&, either
BN#=10

or .
BNB #0
O

Using the regular triangulatio¥’ associated with8’ we can define the set of patches composhgFirst, recall the
relationship betweed .7’ andd #':

e each vertex of 9.7’ corresponds to a spherical patchoa#’;
e each edge of .7’ corresponds to the intersection line between two adjaqdmrgcal patches al. %,
e each triangle of .7’ corresponds to the intersection point between three adjapberical patches &%’

We base the construction of the rolling ball surface on tipesperties. Using Connolly’s terminology [27] (as we witér
see that the solvent contact surface is a subset of thegdihil surface) we have (a) each vertesf 0.7’ corresponding to a
“convex” spherical patch i, (b) each edge of d.7 corresponding to a “saddle” toroidal patchSn and (c) each triangle
of 8.7’ corresponding to a “concave” spherical patctsin The definitions of these three kinds of patches are reparttu
following three sections.

“Convex” Spherical PatchesConsider the spherical patehwith radiusr + r; of 0.9’ associated with the vertex(see
figure 2.6). It represents a moving solvent ball that mangtaontact withd %8 at a pointp. The surface described by the point
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p is in turn a spherical patch of radiugpart ofd.%). It can be computed from the power diagranve®. Call B the ball (of
radiusrq) of Z with centerv. It contributes the patcBBNm N...N 1 (that is the Voronoi cell ofis mN...N 1K) to 0% .

The ballB contributes the patcBBNm N... N7, to &, wherers is parallel torg but nearer to. Without loss of generality we
assume to be the origin0,0,0) and g to be orthogonal to theaxis (with a rigid body transformation we can always achieve
this situation). The halfspaadg is x < d and the halfspacs is x < d where:

_dn
(r+ry)

We can so determine any halfspageorresponding tag and hencdBNmN...N Tk.

=

N

Figure 2.6: A solvent atom of radiusthat rolls on the molecule surfacg maintaining its center on the solvent accessible
surfaceZ’. Its point of contact with8 belongs to the solvent contact surf&ge

“Saddle” toroidal patches

A similar argument holds for saddle toroidal patches. Wéference to figure 2.7 we consider the edgsf 9.7’ with
extreme vertices; andv,. The edgee corresponds o8.%' to a (portion of) circlee of intersection between two adjacent balls
0B1NdBy. Thus, itis possible to roll a solvent ball, moving its cerdng the are.

If the edgee is not a facet of any triangle af.7”’ theneis an entire circle. The ball that rolls maintaining its eanine
describes a torus. We are interested in just a portion @E. Consider the plane of the Voronoi diagram on which lies.
Applying the procedure specified in the previous section @rafute two planes; andn by translatingT towardsvy andvy,
respectively. The intersection @ with the region withint, and @ generates two toroidal patches. The one nearest to the
torus axisviVz is the toroidal patclE* that belongs t& .

Figure 2.7: (Left) A solvent atorB of radiusr that rolls on the molecule surfac® maintaining its center on the solvent
accessible surfacg’ and two points of contact with two molecule atoms. The portid circle of dB that belongs to the

triangle with the three verticeg,v, center ofB, belongs to the rolling ball surfac®. (Middle) The toroidal NURBS patches
of the rolling ball surfac& of the caffeine molecule. (Right) The toroidal NURBS pa&b€&S shown together with the union
of balls.

If the edgee is the arc from point; to pointt, then the toroidal patch associated witlis the portion of the patcE*
intersected with two more halfspaces. Call1,Vv»,vs;v4) the halfspace that containg, v, vs in its boundary andy in its
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interior (with v, Vo, v3, vy affinely independent). The toroidal patch correspondirgito(see figure 2.7):

E* N 71(v, Vo, ta; t2) N TI(va, Vo, o5 1)

“concave” spherical patches

Figure 2.8: A solvent atom of radiugangent to the molecule surfagémaintaining its center on the solvent accessible surface
2’ and three points of contact with three molecule atoms. Thigooof dB inside the tetrahedron with verticegv,,v», center
of B, belongs to the rolling ball surfac®.

Finally, consider the trianglieof 0.7 with verticesvy, v,, andvs. It corresponds to the poihin .%'. In this case we have
a solvent atonB with no degrees of freedom (it cannot roll since its centdixisd int). The contribution oB to & is thus
given by:
OBN 11(v1, Vo,t; v3) N TT(Ve, V3, t; Vo) N TT(V2, V3, t; V).

Figure 2.9: Complete Connolly surface of a caffeine molecul

Figure 2.9 depicts a complete solvent contact surface (arsapof the rolling ball surface) of the caffeine moleculthw
the concave patches highlighted in purple.

2.2.4 Solvent contact surface

In this section we extend the method to achieve an exact NURRB®sentation of the solvent contact surf§¢éalso known
as the Connolly surface) of a molecu# The surface is defined as follows.

Definition 2.2.3. A point p belongs to theolvent contacsurface $ of the moleculeZ with respect to a solvent with atoms of
radius r iff:
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o there exists a legal ball Bof radius r that contains p in its boundary:

3B, |p € 3By and By N% = 0 2.7)
e there is no legal ball B of radius r that contains p in its interior:

B,NZ=0 =  p¢B (2.8)

The close relationship between the solvent contact sugadehe rolling ball surface becomes clear from this dediniti
Proposition 2.2.2. If a point p lies on the solvent accessible surfag¢h®n it lies also on the rolling ball surface .S
PROOFE The proof can immediately be derived from the comparisahedihition 2.2.2 with definition 2.2.3. Further, from this
follows that lemma 2.2.1 holds not only f&, but also fors. O

The problem that remains to be solved is the removal of (pteysself intersections that the rolling ball surface migave,
and that make it differ from the solvent contact surface alassification of the classes of self-intersection that otur
see [9], figl). This problem can be geometrically highlightgen with a set of two small balls along which a large radiobe
is rolled (see figure 2.10). In this case the blending surgt@med by a toroidal patch that is self-intersecting.

@
(@) (b)

Figure 2.10: (a) The rolling ball surface (in green) with alpe of radius 10 on two spheres (in red) of radius 1 is a self
intersecting surface. (b) The corresponding solvent abistarface has no self intersection.

To show the same problem for the concave patches at least shteeres are needed. Figure 2.11 shows three possible
configurations of the solvent contact surface for a set @feliralls. From the picture it is clear how complex the shapegea
(with sharp features, varying in genus and possibly diseoted) even for a simple configuration of three balls.

In the following sections we will show how the patches of thkimg ball surface can be trimmed to get the exact represen-
tation of the solvent contact surface. As for the previoseaae will report a brief sketch of the proof of correctness.

Convex PatchesThe convex patches of the solvent contact surface are gxaetlsame of the rolling ball surface. This
derives immediately from the following:

Proposition 2.2.3. The solvent contact surfacg & the molecule? is completely included within the region betwex® and
0%, whered %' is the corresponding solvent accessible surface.

Since& does not intersect the interior &f there is no nee to further trim the convex patches since taknl too %.
Toroidal PatchesFirst of all, we exclude the possibilities of two toroidaltglaes intersecting each other and of a toroidal
patch intersecting with a concave/convex patch.

Proposition 2.2.4. Given two toroidal patches,Tj (with i # j) their relative interiors are disjoint:
'Fi N 'sz 0
Proposition 2.2.5. Given a toroidal patch iTand a concave (convex) patch,@neir relative interiors are disjoint:

'Fi ﬁ(?ljZ(D
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@)

Q‘v

(b)

(©

Figure 2.11: Three possible configurations of the solventaxt surfaces and rolling ball surfaces for different iradlithe
solvent and molecule atoms. On the left the self-interagatlling ball surfaces are shown. On the right the corragpw
solvent contact surfaces are shown (without self-int¢ises).

R 2
-
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From the two previous lemmas we derive that one toroidaltpatm intersect only itself. This happens when it can be
constructed as rotational surface of an arc of circle ar@amales that intersect the arc (see figure 2.12). For eacratating
around an axi§intersectinga we must remove that portion aflying on the “wrong” side of. In this way we compute the arc
a (a disconnected subsetafwhose rotational surface arouhtlas no self intersection as in figure 2.10.

/ \ \'x ; / \

@) (b)

Figure 2.12: (a) The ararotating around the axéslescribes a self intersection portion of torus. (b) Theaarotating around
the axed describes portion of torus with no self intersection.

Trimming the Concave Patches
First of all, we exclude the possibility of a concave patdeiisecting either itself or a convex patch (we already kriwat t
it cannot intersect a toroidal patch).

Proposition 2.2.6. Given a concave patch @nd a convex patchCtheir relative interiors are disjoint:
CinCj=0
Proposition 2.2.7. One concave patch cannot intersect itself.

As show in Figure 2.11 two distinct concave patches cangetgreach other. Since each concave patchis a portion aksphe
we have to deal again with a sphere-sphere intersectiongmmolbience we can simply maintain the regular triangulaticthe
centers of the concave patches (in this case all the weightscual) so that we have all the relation of reciprocal seetion
between concave patches. It has been shown in section Ba thé intersection between each pair of spheres is mapykd t
insertion of an additional trimming circle in the domain spaTaking into account the intersections between paireotave
patches, we must add some trimming circles to the domainaasf eoncave patch to obtain the result of Figure 2.11.

2.3 Molecular Surface Computation using Adaptive Grids

An algorithm to compute the molecules SES and other relatefepties is presented, which provides an accurate surface
definition and efficient representation for operations nesgduring docking.

The algorithm uses an octree based subdivision scheme pdiselg improve the resolution of the representation nbar t
surface. The surface itself is approximated as a level ses@fned distance function computed based on values adsagtiee
gridpoints.

2.3.1 Signed Distance Function based Family of Surfaces

We define a volume functio® and use its contours to provide a family of molecular sudacgonsider the union of atoms
of the moleculeB. Inflate each atorb in this set by the probe radius (solvent radigys}o give the new complexB,,,. Let
its boundary bé g. Let ® define the signed distance functionld, such that the interior (closer to van der Waals) is given a
positive sign. Let all regions within the atom (see [84] fefiditions) be given a constant positive high valie

Observations and lemmas:

e Isosurfaces§ with isovalued : 0 <| < H form a family of surfaces.

e [ =S, as defined by Lee and Richards, is the SAS of the molecule.
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Figure 2.13: (a)The Molecular Surface defined as the cortbaidistance of, away from theSsas towards the atom centers.
(b)3 atoms showing different surfaces and regidhas dark blueVsag pink, Sses red,Vseg light blue, Sypw: yellow and
Wpw: green

S, is the SES.
e S_ - is the van der Waals surface.
e {x:0< d(x) < H} defines a volume exclusion function, which can be convertense in electrostatic computations.

e The region{x: —rp < ®(x) <rp} has a high probability for the presence of surface atoms sbtem docked to the
current one.

The above observations point to the obvious advantage#ig ssch a definition for our molecular structure represéna
for docking. Let us further examine some of them in detail.

s = Sis the SAS, and, is the SES: By definition of the SAS, it is the locus of the ceofeghe probe as it rolls over the
spherical atoms of the protein. But it should be noted thagttid based definition also includes holes, which may be vesho
if necessary. The SES surface is always defined by pointssgortbe. It is in fact the boundary of the region accessibéto
part of the probe radius. Hence, it is always at a constatdrtis ofr, away from the locus of the center. Therefore, our third
observation follows. Again, holes are included in our définiand need to be removed if required.

{x:0< d(x) < H} provides a volume exclusion function: Volume exclusiondiions are used in setting up dielectric
constant for electrostatic computations. The twin requésts of smoothness at the boundary and accuracy in modbing
SES are not met by many of the definitions in practise today.definition is provides a ‘sufficiently’ smooth function anad
the SES @ is smooth in the radial direction), and contains the SESiwith

Isosurfaces § with isovalues | : 0 < | < H form a family of surfaces

At the extremes isovalues, we have the SAS and the VDW sugfacel the SES lies in between them at an isovalug.of

Interface of docked ligand is in the region {x: —rp < ®(x) <rp}:

For good shape complementarity, as observed in docked esxaglatoms of the ligand must lie close to the surface of
the protein. The above ‘skin’ definition provides a functibrepresentation for such a region, as it defines the regierena
probe sphere is in touch with the protein.

2.3.2 Notations

Let the moleculeéM is represented as a collection of atoM@and each atom is represented using a cenmtand radius;. Let
the radius of the prove used for defining the Solvent acclessilsface (SAS) and Solvent excluded surface (SE$)be
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Figure 2.14: Quadtree, a 2D analog of Octree. The root repteghe largest square. Children of a node represent the fou
sub-squares of the parent square (nodes are ordered lgfhtp corresponding to sub-squares ordered clockwiséirajaat
top-left)

Let us consider a gri@ in which the molecule is embedded to have a maximum and mimigmid spacinghmax, hmin- Let,
| be the length of the maximum side the molecule. We assumgthat= 2Xhimin and! = Nhy,in. For each grid-cely € G, let
dist(g, p) be the shortest distance from an arbitrary p@itd any point org. See notes at the end of this chapter for details.
Also, letSypw represent the van der Waals surface of the moleculd/apg be the volume enclosed ISypw. Similarly,

we defineSSAs VSAsandSSES VSES

2.3.3 Adaptive grids octree

An octree is a spatial decomposition data structure for 3dsions. It is a special case okal tree withk = 8. The entire
volume (usually uniform cube) is represented by the roohefdctree. Every nodg of the octree has no children or exactly 8
children, corresponding to the 8 sub-cubes formed by hisgtiie cube represented hyalongX, Y andZ axes. If a node has
no children, then it is called a leaf. See Figure 2.14 for a 2&ngple.

Hence, instead of havin@(N®) grid-cells, we can only ncrease the resolution near regibristerest, namely near the
surface of the molecule and have a coarse-grained grid letsevjoutside the molecule and inside the VDW surface).

To facilitate the computation dises Sy/pw etc., the adaptive grids is defined as an augmented octreevelach cell
(node) and each gridpoint (corners of cells) contains satdéianal information as listed below.

e Grid-cells: The following are stored at each grid-cglE G-

— Whether it belongs t&/pw or Ssas
— A list of atoms,Aypw|VA € Asas: dist(g,ci) <r;
— Alist of atoms,AsadVA € Asas: dist(g,ci) < (ri+rp)

e Grid-points For each gridpoinp

— Whether it belongs t, pw, Vsasor lie outsidevVsas
— A list atoms,Bypw|VA; € Aypw : dist(p,ci) <
— Alist atoms,BsagVA; € Asas: dist(p,ci) < (ri+rp)

— A signed distance valué denoting the shortest distancepfrom theSsas
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2.3.4 Algorithm sketch

The algorithm iteratively classifies the grid-cells andigpibints and then computes the signed distance vaé)es (

e Initialization:

1. Create a grid with uniform grid-size fyax

Create corresponding octree.

Mark all cells as belonging to neith8ypw nor Ssas
Mark all gridpoints as outside ¥as

ok~ wDb

Assignd = —oo for all gridpoints.
e Insertion: For each atomd\ ¢ M

1. InsertA into G by locally updating pointp € G as belonging t&sasor Wpw. If p belongs tow pw, setd = .
e Refinement:

1. For each cely € G, determine whether it is a boundary cell.

2. For all boundary cells intersected by more than three st@ubdivide recursively and classify the subdivided
vertices and cells.

e Computing Ssgg For each gridcel € G classified a$,pw

1. For each poinp aroundg belonging tdVsas find the closest distana®of the pointp from theSsasboundary.

2. Use level sets of the signed distance function defined &y thalues. See Section 2.3.1 for details of the signed
disance function based family of surfaces.

Each step of the algorithm is explained in greater detathéfollowing sections.

2.3.5 Algorithm details
Vertex classification

For any gridpoinp, if dist(p,c;) < r; thenp is classified as belonging to tMgpw, and ifr; < dist(p,ci) < (ri +rp), thenp is
classified as belonging to thigas The listsBypw andBsasare also updated. Note that, vertices classifiedag, are fixed
while vertices markeWsascould become markéd, pw with the insertion of new atoms.

We use the method described by [3] for sphere-cube intéoseigists. The cost of this insertion is linear in the number o
atoms and cubic in the resolution of the griMh3,,..).

Cell classification

We examine the classification of the eight corners of eadiotd¢he grid. If some vertices are classified\4gw and others
are not, then mark the cell (and the vertices) as belongigyd@. Otherwise if some of the vertices are classifie¥/ggand
some other vertices are classified as outsiglg; mark the gridcell (and the vertices) as belongingéas Update the lists
Avpw andAsas This operation is linear in the number of cells of the gbidN — 1)3).

Adaptive subdivision of Sgas

Each boundary celi which contains more than three atoms contributing to it ldétided up to a user defined resolution. We
classify each subdivided vertex using the atomadpsof g, as belonging to the interior of thgasor not. Using a technique
similar to obtain boundary cells, we generate a list of firmuridary cells in the subdivided cells. The maximum cost iaf th
operation isO((N — 1)3(hmax/hmin)?), although the average case cost should be much smalleryathenboundary cells are
involved.
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Figure 2.15: An adaptive subdivision of the input grid. IistBD figure, we have subdivided quads with more than 1 SASpatc
as an example. In the figure, brown and greed lines define tinedaoy of atoms without and with solvent enlarged radiug Th
cells belonging tdssasare colored light green and the cells belonginggew are colored light brown. Gridpoints belonging
to Vovw andS, pw are colored red. Gridpoints belongingMgasandSsasare colored blue (these are used $& Sestimation).
Gridpoints belonging t&sas but outside o¥/sasare colored green
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Computing o

For each gridpoinp in VsasandSy pw, search all cells belonging ®asaroundp for the shortest distana®from p to theSsas
For cells with only one intersecting atom, the exact distainomp to the spherical patch @sasin that cell is computed (see
Section 2.3.6 for details). On the other hand, if a cell cimstanore than one atom (and is hence subdivided), we justleke
minimum distance from the center of all the subdivided aefl &is the distance of the spherical patch in the cqll.tdhe cost
of this search will vary as, the number of boundary van der Waals cells in the volume laa@c¢curacy desired (as provided
by Nmin).

2.3.6 Spherical Patch Intersection

Let us define a sphere as having a cemter {cy,cy,C;} and radius. Define a cube with pointay,..,ag. The following
computations are applied for each gridpaniff dist(a;,c) <r.

Intersection of sphere and face of cube

The intersection is always arc(s) of a circle. We will coresidnly a face parallel to the xy plane. Other cases shoulo\fol
similarly. The point of projection of to the plane containing the faceds= {cy,cy,z coordinate of face}. This point is
the center of the circular arc. The radius using Pythagbremrem is,/r2 — dist(p’, ¢)2. The intersection points on the edges,
if any, is now computed by intersecting this circle with threlcontaining the edge, and checking whether the pointsitién
the edge.

Shortest distance of point to a circular arc on the same plane

Lemma Given a circular arc with centef, radiusr and endpointg,, p, and a point on the same plane, ldy = dist(q,c),
d; = dist(q,p;) andd, = dist(q,p,). Then, the shortest distancegfo the arc is defined as follows-

e If the pointis inside the infinite sector defined by the arentthe shortest distance is +- d.

e Otherwise, the shortest distancemn(dy, dy).

Shortest distance of point to a spherical patch inside a cube

The spherical patch is bounded by circular arcs on the fatteeacube. Consider the circle a boundary arc is part of. The
centerc of the sphere and this circle will form an infinite cone. Hetioe collection of boundary arcs form a collection of
infinite cones.

Lemma The shortest distance of a pomto a spherical patch in a cube is:
e Pointis inside each of the infinite cones. The shortestnitgtés :r — dist(p, ¢).

e Otherwise, the shortest distance is the minimum of the shbdistances of the point to each of the bounding arcs.

2.3.7 Complexity

For M atoms (including® boundary atoms), smallest grid spacimggrid lengthN, VDW radiusr and solvent radiusy, the
timing complexity is

e SDF initialization:O(N?)
e Insertion of atomsO(M(@P)
e Boundary atom detection:

— Uniform grid traversalO(N3)

— Sphere traversaD(M(z(Lhrp)ﬁ)
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— Octree traversalO(log(N®)B) < O(log(N3)M)

e Patch voxel distance computaticdB({M (@)GC), C is cost(dist(patch, voxel))

e Isocontouring for visualizatior®(N3)

2.3.8 Self Intersections in Patch Complex Model

A patch complex (consisting of convex, concave and torgdéthes) can be derived using our adaptive grid structudt S&s
sphere intersection enumeration. But the patch complemasvk to have problems of bad intersections. According taem
3,4,5, 6 and 7 from Bajaj et al [15], there are only two pogsgdlf intersections that occur in the commonly used roltial
model:

e Atoroid can self intersect with itself (Figure 10(a) in [15]

e A concave patch can intersect with another in the case of a8 atodel (Figure 9 in [15]).

In figure 2.16, we show the surface computed when two atomgrasent, and moved close till they form a single surface
patch. In the case of surfaces computed from the rollingrpalliel, we would instead get a self intersecting toroidatipat
when the gap between the atoms becomes smaller than thetdiashthe probe radius. This can be computed by looking at
all pairs of intersecting SAS spheres, which is alreadymineour adaptive grids. To examine the intersection of twacawe
patches, we look at the three atoms model as shown in figure Adain, we get similar results compared to [15]. This case
occurs when there are three intersecting SAS atoms, andecanumerated by our grid.

Co 09

(a) The toroidal patch is disjoint and there is no self (b) As the atoms come closer, a well defined
intersection. toroidal patch is created.

Figure 2.16: The solvent excluded surfaces of two atomshwtiene closer.

(@) The 2 concave patches are disjoint and (b) As the atoms come closer, a well defined (c) At mutually closer distances,
there is no wrong intersection. patch, similar to the approximations in [15] the topology changes and the cen-
is created. ter hole disappears.

Figure 2.17: The solvent excluded surfaces of three atonvdome closer.

2.3.9 Operations Supported by the Adaptive Grid

1. Surface atoms detection
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Surface atoms are defined as those within a certain distaonethe Molecular Surface. To obtain these atoms, we
first compute the Molecular Surface. Next we search locattyiad each atom to find the distance of the atom from the
surface. This operation is linear in the number of atoms anicdn the resolution of the grid.

2. Population of skin region

We define the skin region of one molecule as the region behgnitgi the probe as it rolls on the surface, and defined as
Solvent Accessible Surface 2 Voluméspg). We define the skin implicitly as a set of spheres packingéigén. The
packing density is itself chosen to approximately equaptheking of the atoms belonging to the molecular surface. The
region is defined over a trilinear grid in which the molecdembedded. The grid spacihgs chosen to preserve the
features of the molecule. Assuming that the interatomitadise is~ 1, we can usé = 0.5. By finding the boundary
vertices of theSAS we can obtain potential centers for the skin spheres. Aipgadgorithm decides, based on the
packing density required, if a potential center should aimrén atom or not.

3. Area volume computations

We use primal contouring to define the surface and volumes arba under the surface is approximated by piece-
wise linear elements of the isocontour. The volume is apprated by the volume enclosed by that piecewise linear
approximation. This cost s linear in the size of the grid.

4. Curvature and normal computations

These differential properties are computed using a two gtepess. Initially, when we propagate the distance from
the Ssas we also store whether the nearest patch is the intersestione, two or more spheres. In each case, we
can analytically provide the answer to the curvatures. kanmmple, for a sphere with radiusthe Mean and Gaussian
curvatures are-1/r and 1/r? respectively. In the second step, we compute the derivsafioen the isocontour. At points
where the two vary significantly, we choose to keep the vataeiged by the differencing scheme as the signed-distance
algorithm used is only an approximation.

2.3.10 Sum of Gaussians (SoG) based approximation

The adaptive grid is also used to compute a sum of Gaussigexamation to the Molecular Surface. A base uniform
grid is used to compute the Fourier coefficients of the atomtess and the kernel function using a non-equispaced fastdfo
Transform. The summation is evaluated at points aroundutiace chosen from the adaptive grid. For details of thiswtigm,
kindly refer to the technical report [14]. The cost of thealthm, forM atoms,N output pointsn Fourier coefficients and a
accuracy requiremeistis:

Lemma For tensor product kernels with Fourier coefficielts the number of coefficientsneeded is at most:

in: (e |12
n=minA): 3 (Ku)2> AL — W(%)Z, whereV is the integral of the kernel fror-0.5..0.53.
welp

Lemma For tensor product kernels whose Fourier coefficients datast inversely with frequency, the number of
coefficientsn needed iD(MY/3£3/2),

Lemma The fourier coefficients of a Gaussian functier®* decay as the inverse of the frequenay

e _ .
Gy < maxﬁ, %Terf(\/lg), 637\/?2,4 2 Beﬁm‘ﬂ) L (w>2). The truncation of the Gaussian can be expressed as

e’ w’
convolution with a sync function in Fourier space. HenceRberier series coefficients of the truncated Gaussian immcan
be now written as[ \/ge*“ztz/Bsin(an)/(an—t)dt. We then bound the sync function with a polynomial and irdégby

parts to obtain the result.

2.3.11 Results

Region classification and construction of molecular surfaces
Before we provide timing, geometric and functional projgariand skin, surface regions, we present the results of our
classification and signed distance function on a 3 atom madigure ??. Using a relatively high resolution grid of 128wve
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classify grid points depending on the volume and surfaceit of, giving priorities of surface class over volumed &&S
class over other surfaces. The figure is a 2D cross sectionalfiane rendering of the classified volume.

The Solvent Excluded Surface
The solvent excluded surface is obtained as an isocontdlivaiue equal to probe radius. In figure 2.18, we show colored

visualizations of four different molecules.

(a) An acetylcholine esterase (1C2B.PDB). Itis shownin (b) The nicotinic acetylcholine
its tetramer form. Each unit, containing 4172 atoms each, receptor with over 14,000 atoms

is colored with a different color. (2BG9.PDB). It has 5 chains,
shown in different colors.

(c) The large ribosomal subunit (1JJ2.PDB) has almost (d) The tobacco mosaic virus, a helical virus
100,000 atoms. The main RNA chain (in brown) and (1EI7.PDB). The repeating subunits, each contain-
other chains are shown. ing 2806 atoms, are shown.

Figure 2.18: The solvent excluded surfaces of four differeolecules.

Family of surfaces

In figure 2.19, we show four different surfaces computed ftoenadaptive grid, at four different isovalues. The myogiob
molecule, 101m.pdb, is used as a test case. At a distancend §et the SAS surface, which is the union of spheres model,
with each atom represented as a sphere with radius equa suith of its radius and a probe radius. In this example, weaised
probe radius of 1.4A. As we go further away, we get a smootbrdedtion of the SAS surface to the SES surface, as shown in
the different figures. Since we are interested in the SES,ovmotlcompute further in practise, but in theory, higher &oes
will take us closer to the van der Waals surface. This exasipbevs the utility of our method as a volume exclusion functio
for computing electrostatics, which needs a smooth dectiye@ES boundary.
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(c) Intermediate surface at isovalue 1.1 (d) Atisovalue 1.4 (probe radius), we obtain the SES.

Figure 2.19: Our signed distance function based definitiefdg a family of surfaces which we can extract using a novel
adaptive grid based algorithm.

Timing

The cost of the algorithm depends on the depth of the adagtidethe resolution of the initial base grid and the size of
the molecule. In table 2.1, we provide the time taken to camfhe properties on the grid, including surfaces and deimgrk
volumetric regions for different molecules and grid siz&s.the number of atoms increase, the time taken increasethdu
fixed output grid size reduces the number of relevant searttigwithin the SAS and VDW regions. Hence there is no direct
correlation seen between the two. If the grid resolution marhosen depending on the molecule size, then the time would
increase monotonically with the number of atoms for moleswhith similar distribution of atoms (say for a set of glabul
proteins).

Surface atoms detection

The surface atoms of three proteins from the complexesiaintypic fab (liai.pdb), hemagglutinin (2vir.pdb) andts
white quail lysosyme (1bgl.pdb) are visualized in figured2 . Phe interior atoms are colored by the residue they belomdnile
the outer surface atoms all have an orange color. We shovo# ofithe three molecules to reveal the surface and interior
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PDB Id | Number of atomg time (64) | time (128)
3sgb 1912 11 85
1lbrc 2197 6 58
2ptc 2243 6 53
2kai 2267 7 74
tpi | 2313 6 54
1tab 2387 9 72
1ppf 2520 7 63
4cpa 2739 10 85
Imkw | 4844 8 60

Table 2.1: Times (in seconds) taken to compute the adaptigebgsed surfaces and volume regions for different ingréds
which are adaptively subdivided to a depth of 3.

(a) Hemagglutinin (b) Anti-Idiotypic Fab (c) Bob-white quail lysosyme

Figure 2.20: Surface atoms of three complexes shown in eraner the interior atoms which are colored by their resigpe.t

SAS? skin region construction

From the same above three complexes (liai,2vir and 1bglgxvact the second protein and compute the skin regions (see
figure 2.21) defined by the volume where the probe is presehtarching the molecule. This region is used later in docking
as it represents a volume where the interface atoms fromatidry protein have a high probability of being present.

2.4 Dynamic Update of Molecular Surface Under Change in Radli

We analyze the complexity of two main classes of updates/thlt a family of all the molecular surfaces obtained fofaliént
solvent radii: (1) updates that keep the Power Diagram figeddratic growing of the radius of the solvent ball); (2) afss
that modify the Power Diagram (linear growing of the radifithe solvent ball).

In both cases efficiency is achieved trough the introduatioa novel geometric construction. In case (1) we use a new
constructive approach to duality that generalizes thedstah“lifting” scheme [35], showing that the Power Diagraifnao
molecule (3D union of balls) constitutes a compact repriegiem of the collection of all the Power Diagrams of the tmimg
circles of all the patches in a molecular surface. In paldictne convex cell of the 3D Power Diagram relative to the Bal
is the dual of the 2D Power Diagram of the trimming circleBofAs a first approximation (with the bonus of being simpler
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(a) Immunoglobulin from influenza virus  (b) Idiotypic fab of virus neutralizing antibody (c) Hylel 5 Fab

Figure 2.21: Surface atoms of three complexes shown in erangr the interior atoms which are colored by their resigpe.t

and more efficient) we consider the molecular surfaces bbby disproportionally increasing the solvent radiushsa the
associated Power Diagram remains unchanged. We show howmieeep track of the topological changes that occur in the
trimming curves of the patches that form the molecular serfso that its boundary representation can be updated efficie
Furthermore, we compute and dynamically update an exactdaoy representation of the molecular surface so that tine sa
dynamic data structure is also suitable for molecular mindealperations such as those supporting synthetic drugd¢sb].

In the case (2) setting, where the 3D Power Diagram is subjetips, we use the same construction as in [41] based on
the definition of a 4D complex of convex polytopgswhose “horizontal” slices are all the possible 3D Power Daags of
the growing balls for any growth factar Hence we apply a simple hyperplane sweep algorithm to @bfnrmaintain the
dynamic Power Diagram of the linearly growing balls. Thughis case we compute exactly the offset of the union of bats (
that its topology can be precisely determined), even whegmjitires a change in the nearest neighbor (under powendesta
relations among the atoms corresponding to flips in the &®ocRegular Triangulation. More generally, for a set dfsba
in d-dimensional space this requires the construction of a ¢texf convex polytopes iiid + 1)-dimensional space whose
“horizontal” slices are all the possible Power Diagrams.

In Section 2.4.1 we introduce the fundamental equatiortddinan the basis of the presented approach for molecular thode
ing. For a more extensive discussion of the conditions untiéeh the present approach can be extended to a more geaseal ¢
unifying geometries other than spheres, the interestetereareferred to [18]. While for our purposes we deal with 3, the
results are easily extended to arbitrary dimension.

See Section 2.2.1 for a discussion on trimmed NURBS reptatsen of Molecular surfaces. And the Relavant Math Section
for details about power diagrams.

2.4.1 Preliminaries
Balls in 02 and Halfspaces in(J*

In this section we introduce the fundamental equationsftirat the basis of the presented approach for molecular rmadel
For a more extensive discussion of the conditions underiwtiie present approach can be extended to a more general case
unifying geometries other than spheres, the interestetereareferred to [18]. While for our purposes we deal with 3, the
results are easily extended to arbitrary dimension.

Consider in04 the implicit equation of the unit ball:

EE+&5+85+8-1<0. (4.9)
Its boundary has parametric equations which are:

2x; XX +x5—1

i=——>——>—, i=123
EI X%-i-x%-i-x%—f—l’ )& E

. . 4.10
T (4.10)
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The boundary of the ball (4.9) is the closure of the imag&®fn 04 under the mapping (4.10). The inverse map of (4.10)
is given by
_ &
1-&°
for (&1,&2,&3,&4) on the unit spheré? + &2+ 2+ &2 = 1. The point(0,0,0,1) in 0% is the image of the point at infinity of
03.

X i=1,2,3 (4.11)

Now consider the linear halfspace:
h: agt+aéy+ads+agés+aués <0, (4.12)
where not all of{a;, ap, a3, a4} are zero. Its pre-image i3, given by the mapping (4.10), is
b: a(+X3+x5+1)+a1 2 + a2 2%+ az 23+ (X +x3+x5—1) < 0. (4.13)

If a2+ a3+ a3+a3— a3 > 0 andag+as > 0, this is the ball of center (a1, 82,83) /(a0 +a4) and radiugaZ + a3 + a3 + a2 — a3)*/?/(ag+
ay). If & +a3+a3+a3 —a3 > 0 andag + a4 < 0, this is the union of the sphere of centefas, a,a3)/ (a0 + a4) and radius
(a—af—a5—aj—a3)/(—ao—au) and its exterior. Wheno + a4 = 0, this is a halfspace, and whefi+ a5+ a§+aj — a5 < 0
andag+ a4 # 0, this is a ball of imaginary radius, and contains no reah{soi

A fundamental relationship is that spheres that containiat§o;, ¢, c3) in 0% map to hyperplanes that pass through the
point (21, 2¢;, 23,65 + ¢5+¢5 — 1) /(¢ + c3+ ¢+ 1) in 0% This is a result of the relation

(I + 5+ 5+ 1)ao+ 2(Cray + Coap + C3ag) + (i + G5+ 53— L)ay =0 .

A consequence of this relationship is that a set of spherssimmthrough two distinct points ifi® correspond to a set
of hyperplanes il that contain a certain line. Since the actual points of sgetion in0J% are mapped to points dB, the
line in 0% must intersecB in two points. A set of spheres ii® which intersect at one point are mapped to into hyperplanes
whose line of intersection is tangentBo A set of spheres whose combined intersection is empty appeathto hyperplanes
whose line of intersection, if any, does not interdgcT his situation is illustrated fadl = 2 in Figure 2.22. Let be the line of
intersection of the boundariédy N dh” corresponding to two distinct intersecting bdllsandb”. We have thabb’ intersects
ab” if and only if| intersectdB, that is, if the distance fromto the originO is smaller than 1:

ob'Ndb’ =1or2points <= INB#0 <« dist(l,0)<1.

dim(b'Nb")=0 <= INB=1point <= dist(l,0)=1.

Figure 2.22: The intersection between the boundaries ofiisksb’, b’ in 02 corresponds to a linkintersecting the sphei

Similarly we can consider three distinct didksb”, andb™. If their intersection is a region bounded by three circalas,
one from each disk, then the three boundary circles correspmthree planegh’, dh”, anddh” that intersect in a poinp



32 CHAPTER 2. SPATIAL OCCUPANCY

Figure 2.23: The non-empty intersection, when bounded bsetleircular arcs, between three digksb”, andb” in 02,
corresponds to a poitcontained in the balB.

contained irB. This is illustrated in Figure 2.23. If the three circulaunadlaries intersect in one or two points, then the planes
intersect in a point 0@B (or possibly in a line that interseds).

b'Nb”Nb"” = region bounded by 3 arcs (or pointsk=- pcB (4.14)
dim (A0 Nab’ NIL") =0 <= pedB . (4.15)

Proof of equation (4.14).
Let the three circles béx —x)? + (y—Vi)2 =r?, i = 1,2,3. Then the three corresponding planes @re- x? + y? —
iz) — 281 — 2yi&+ (1— )(1-2 —yiz + riz)fs = 0. Their point of intersection, if unique and finite, is givby (&1,&>,&3) =

r
(Dl/D4, D2/D47 D3/D4), where

13—y 412 2y 1-X—yi4r?
Di=| —1-X5—y3+r13 -2y, 1-x5—y3+r5 |,
~1-x5—y3+r5 —2y3 1-xZ—y3+r13

—2xp —1-X—y2+4r2 1-x2—y24r?
Do=| 2% —1-x—y5+r12 1-x5—y5+15 |,
—2%3 —1-x3—y3+r13 1-xZ—y3+r3

-2 —2y1 —1-X2—y24r? -2 —21 1-x2—y2+4r?
D3=| -2 -2y, —1—x§—y§+r§ , Da=1] =20 -2y 1—x§—y§+r§
X3 —2y3 —1-X5—y5+r3 —2%3 —2y3 1-xZ—y5+r3

The condition that this point of intersection lies in theeiror of B is
D?+D%+D3-D5<0. (4.16)

If D4 = 0, then the point of intersection is at infinity, and the inality (4.16) cannot be satisfied. (Iff = D, = D3 = D4 =0,
then the three planes have a line in common which interé&ecisd it can be shown that the centers of the three circles are
collinear and the circles intersect in two points.)

The intersection of three disks is bounded by three circales exactly when each disk contains exactly one of the two
points of intersection of the other two circles. In order floe first two circles to intersect in two points, we need tinat t
distance between their centers is strictly betweer r + 2| andry + rz. This can be expressed algebraically as

Ar=[(x1—%2)+ (Y1 — ¥2)® — (11— 12)?][(x1 — X2)® + (Y1 — ¥2)* — (r1+12)?] <O . (4.17)
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Next, we need thag is between the distance frofxs, y3) to the two points of intersection of the first two circles. §bondition
turns out to be expressible as

X1 X2 X3
Vi Y2 Ya3 | Ai+AS
t 11 <0 (4.18)
(%1 —X2)2 + (Y1 — Y2)?]2 '
where
Ay = [(x2—x1)(%—X3)+ (Y2—Yy1)(Y2 — y3)]r?
+ [(x2 —X1) (X3 — X1) + (Y2 — Y1) (Y3 — y1)]r3
+ (%2 —x1)% + (Y2 — Y1)?][(Xa — X1) (X3 — X2) + (Y3 — Y1) (Y3 — Y2) — 3] .
Remarkably,
X1 X2 X3
DI +D3+D3-D3=|y1 Y2 Y3 | Ar+A.
1 1 1

Therefore, if the intersection of the three disks is bourlaethree circular arcs ((4.17) and (4.18) hold), then therggction
point of the three planes is withBi((4.16) holds). If the intersection point of the three plargea point withinB ((4.16) holds),
then (4.18) holds. Since (4.18) holds, we must haye< 0, so that (4.17) holds as well, and then the three circlesdntt
pairwise in two points, and each disk contains exactly orta@two points of intersection of the other two circles.

Convex Hulls and Boolean Combination of Balls

Consider the intersection ofballs or their complements, suchlagnb, NbzN---Nb,. We can map each of thg or b; to a
halfspacénin 09+ so that the computation of the intersection is reduced taxaeohull computation. Note that if all the balls
are complemented we get the complement of the union of bslils 85]. In general, for the computation of the topological
structure of a non-linear, non-convex, possibly discotegeegion in09, the intersection of inequalities of the type (4.13) is
reduced to the computation of the boundary of the convextpp8CP, intersection of halfspaces (4.12), and intersecting this
boundary with the unit sphere (4.9).

This mapping generalizes the “lifting” scheme [33] so thagin represent both the interior and the exterior of baltssm
that one can compute any boolean combination of balls idsi€pst their union. In the present formulation we also esgint
the balls by their implicit inequality (4.12) instead of j@scenter and a radius, so that one can deal with infinite satiberes
(note that such cases arise in practice in the computatitimahing curves).

An additional advantage of the present mapping with respebe “lifting” scheme is the compact representation otsal/
collections of curve arrangements in the special case ofdliection of trimming circles of patches that form a moliecu
surface. In fact, in this case we need only to observe thatdheex polytop&€P, that is dual to each arrangement of trimming
curves of each patch, is indeed the cell of that patch in tHarnsional Power Diagram. This implies we need not repitese
a separate polytope for each arrangement of trimming cweines the 3-dimensional Power Diagram contains them aké Th
advantage in storage comes from representing only onceommyr-idimensional face shared by more than one polytopes Thi
sharing of faces also provides savings in storage of expliacency information for each boundary curve of eachipatc

2.4.2 Maintaining the Molecular Surface Under Quadratic Growth

We call quadratic growth the scheme of growing balls whichgssthe Power Diagram unaltered and thus the topology of the
union of balls is given by the correspondiagshape. Under this growth of the balls we only need to mairites set of trimming
curves of each patch in the surface. In particular we neeffittemtly detect any topological change (new intersecibatween
curves, creation/deletion of connected components) t@irdn the trimming curves (circles and lines) in the donane.

This goal can be achieved by looking at each patch separ@tetiyally the computation can be performed in parallel for
all patches) and classifying the faces of its associateg@ueCP with respect to the relative ball at the current size. This is
achieved by using the relations stated in Section 2.4.1|ms\i&

e Each facet o€P that intersect®B corresponds to a circle that is effectively involved in teeaf trimming curves.
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Figure 2.24: (a) If the radii of two balls are incremented bg same amount, then their Voronoi separator moves towards
the smaller one. (b) If the squares of the radii of two balksiacremented by the same amount, then their Voronoi separat
remains the same.

e Each edge ofPthat intersect®gB corresponds to two circles that intersect each other.

This leads to the following algorithm for maintaining trinmg curves. For each fack of CP we determine its minimum
distancedy and its maximum distancdy from the origin (the center dB). This tells us when the circle associated with

is involved in the boundary of the trimming circles. We orgarthe ranges of all the faces in an Interval tree so that we ca
efficiently perform range queries, optimal in space and titiaile growing the balB we look at the faces P which range
[dm, dm] contains the current radiusof B to directly determine the topology of the trimming circl&ar example, if the range
of a facet ofCP containsf but none of its boundary edges implies that an entire ciraten$ a separate component in the
boundary of the trimming curves.

At the same time this tells us that in the growing process #hges ofdy, dy of the faces o€ P constitute the set of “event
points” at which the growth of produces some topological change in the trimming circlendé we can efficiently maintain
the dynamic arrangement of circles in the plane.

The topological structure of the molecule is given by the iRagTriangulation and its dual, the Power Diagram. We
examine the family of triangulations that yield the topdtad structure of the molecular surfaces (solvent contasbtvent
excluded surfaces) while the solvent radius grows.

The determination of the topological structure of such rooler surfaces is an important problem addressed by several
papers [30]. The family of shapes obtained from a weighiteshape [37, 35] is based on a quadratic growth of the radii of
the balls and therefore not directly related to the familgdzhon the growth of the solvent ball radius. In fact the funelatal
property on which ther-shape construction is based on is that for enyhe Power Diagram/Regular Triangulation remains
the same. This is achieved by growing each sphere by a diffaraount, namely the radius of each sphere is augmented by
a quantity such that the square of each radius is increaséiiebsame quantity (see Figure 2.24). This implies that snall
spheres are grown more than the larger ones. As a consednenoesulting surface does not reflect exactly the required
molecular surface (see Figure 2.25). When this level of@dpration (possibly incorrect both in geometry and in taupl) is
not satisfactory, one needs to resort to the method intredlircthe following section.
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Linear
Growth

Quadratic
Growth

Figure 2.25: The difference between a quadratic and a ligemawvth of the molecule for a given probe radius. The molecula
surface (top) is grown quadratically (middle left), hencaimtaining the topology of the set of patches, giving an epipnation

to the real molecular surface computed by linear growth ¢feidight). The topology differences can be seen in the weih
zero alpha shapes (bottom) from a different view point.

Figure 2.26: Examples of several topological changes is¢hef NURBS patches, while growing the probe radius linearl
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2.4.3 Maintaining the Molecular Surface under Linear Growth

The fundamental dynamic setting we consider is the caselobaldinear growth of all the atoms of a molecule, corresting
to a linear growth of the solvent atom radiusln this case the Voronoi Diagram (or more exactly Power Biag plane that
separates the two balls moves as a functionrelulting in topological changes of the triangulations emtthe set of NURBS
patches defining the molecular surface (see Figure 2.2@ctnas the radius of each ball is increased jthe Voronoi plane
that separates the two balls moves towards the smallefmalexample in Figure 2.24, the distantg$, of the Voronoi plane
T from the centers of the two balls must be such that the povetainties oft are equal, that is:

T-ri=13-r5
Moreover, the distance between the two balls is constaattb balls grow but do not move):
l1+1x=1
>From these two equations we obtain far
1212 =(1—11)2—r3=12412 - 241 —r3

- 12412 —r3
2l
Whenr; changes to; +r andr, changes ta, + r we have:

124 (rg+1)2—(rp+r)>?

= 2l
PR 2nr —r3—r2—2rox
- 2l
P43+ 2r(r—1p)
2l

In general, consider two balBy,B, (of radii r; andr, respectively) in09 and assume, without loss of generality, a
coordinate system with the origin in the centeBafand the center dB, on the positive part of the, axis (the center 0B, is
the point(l,0,...,0)). The hyperplane of the Power Diagram that sepafidsom B, has the equation:

12 4ri-r3 r2(r1—r2)

! X1 = i 5 (4.19)

which is linear inr. Hence this is also a hyperplane in tfte+ 1)-dimensional spacéxy,...,xq,r). Figure 2.27 shows the
1-dimensional case of two balls (segments) that grow qiadity (a) or linearly (b). In the first case the hyperplaridte
Power Diagram that separat®sfrom B, remains the same for all valuesrofin the second case, the hyperplane of the Power
Diagram that separat®; from B, moves linearly withr with a slope towards the center Bf.

This fundamental observation leads to the constructiohe@Power Diagram of a set of growing balls as the intersection
a hyperplane = constwith a complex# of convex polytopes in théd + 1)-dimensional spacéx, ..., X4, r). If the molecule
% is composed oh balls {By,...,B,} then the comple% is a collection ofn convex polytopegCi,...,Cy} one per ball.
In particular the celC; associated with the baB; is the intersection of all the halfspaces of points “neaterB; then toB;
(with j=1,...,i—1i+1,...,n). The boundary hyperplane of such halfspaces is given batamqu(4.19). Note that cell
Ci is defined as the intersection of all possihle 1 halfspaces since by linear growing many flips can occurénRbgular
Triangulation. A flip occurs when an edge connecting two @jitpovertices of a quadrilateral comprising two triangleshie
triangulation is replaced by the edge connecting the othewertices, as illustrated in Figure 2.28. The brute foqmgliaation
of the technique as described here requires the compuitioconvex hulls [22] in four-dimensional space, which leads to
anO(n3) time worst case complexity. For our purposes this is jusepiucessing step needed to construct the data structure
used for animating the molecular surface, so we do not réptine present paper the details of an efficient computaticnis
complex#’. Note however, thatin the case of a molecule in three dinoeséd = 3) we have to compute a set of 4-dimensional
convex hulls that can be computed more efficiently, in an aigpnsitive sense, by using the algorithm given in [21]. T&e
of this algorithm would indeed be beneficial because thealveumber of faces ¥’ is indeedO(n?). This is proved by a
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Figure 2.27: The 1-dimensional case of ball growth. The gatidlgrowth (a) keeps the Power Diagram hyperplane (a point
still. The linear growth (b) moves the Power Diagram hypamngllinearly withr.

technique introduced in [18] that generalizes the “liftisgheme for the computation of Power Diagrams [33] and mhes t
construction of the comple¥’ to a convex hull computation (intersection of halfspacas)rie dimension higher (that is in
dimensiond + 2). In the case of a molecule in three dimensions, this leatiset computation of the convex hull in dimension
five that can be computed optimally [22]@(n?) time. This is certainly optimal in odd dimension (and in parar in the case

of molecules wherd = 3) since a single Power Diagram (a#dcontains many of them) already has the same number of faces
as a(d + 1)-dimensional convex polytope.

In the previous section we introduced the construction ocbmmlex of convex polytope®” embedded in théd + 1)-
dimensional spacg, - . ., X4, ) whose “horizontal” slices (that is an intersection with typerplane = cons) are the Power
Diagrams of the ballsz with radii uniformly increased by. This data structure allows us to animate (update) effiighe
representation of a molecular surface (solvent accessitgelvent contact) with respect to a change in the solvetitisa

In particular we can achieve simple and efficient updatesieriPower diagram localized in regions where the topological
changes actually occur. In this way we can then in turn diregiply the method described in Section 2.4.2.

Being that the Power Diagram is the intersection of a hotalomyperplaneH : r = constwith the complex?, in the
dynamic setting the linear growth of the radii is simply a spw®f such horizontal hyperplankeisalong ther-axis. Hence the
“event points” at which we have to update the topologicalctire of the Power Diagram are the verticeofin particular to
compute these hyperplane sectiongoive apply the robust approach in [17] which is based on thesttadbove or “below”
classification of the vertices & with respect tdH. We sort the vertices of by theirr coordinates so that their classification
is obtained in logarithmic time by locating the current ltigalue ofH in such a sorted list of vertices. This approach is also
suitable for the dynamic growth setting in which we will bentiauously moving the hyperplart¢. In fact in such a scenario,
each time we cross a vertex @f, we will need to update only the cells incident to this vertdkoreover in general, if we
suddenly change our solvent radius from a valut a valuer,, we will be able to detect the vertices whaseoordinate is in
the rangdry,ry], change their above/below classification and consequeptigte all the incident faces BfnN €.

We reach the conclusion that when spheres grow linearlyestips can occur in the Regular Triangulation, unlike the
guadratic growth, so that the usuwelshape construction is invalid (see Figure 2.28).

2.4.4 Examples
Example 1

Here we choose a coordinate system so that two of the baksdeaters on thé&;-axis in[03. Specifically, consider three balls
B’, B”, andB"”. Choose a coordinate system so that their centers are tbagt@, 0,0), (112,0,0), and(l;3cos83,113sin3,0),
wherel1, andly3 are the distances between the cente® @ndB”, and between the centersBfandB”, respectively, ang
is the angle made by the three centers, \Bitlat the vertex. We can assume<@ < 1. Let the solvent ball have radius

We consider the two planes, 75 relative to two trimming curves;, c,. The position of the liné = . N 1, of intersection
is used to track the intersection betwegrandc, and to give their 2D NURBS representation.
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Figure 2.28: A simple case of a Regular Triangulation forehhthe topology changes in a simple linear growth of the mdiu
of the balls.

With the above coordinate system, the two planes have emsafsee Figure 2.29):

m . &SL=atrap (4.20)
T : (cosP)éi+(sinB)éz=az+ray (4.21)
where
121122 B
201 l12
2013 l13

in accordance with (4.19).

The image of the trimming curve is the intersection of theesjglal surfaces of the balB'(r) andB”(r), which we define
as the balls of radif; +r andr, +r centered at0,0,0) and (I12,0,0), respectively. The implicit equation of the spherical
surface ofB/'(r) is thenEf—l— 522+ 53? = (ry+r)?, and one finds that th& coordinate of the two points of intersection between
this sphere and the lifleis

g = +\/(ntr2-82-& (4.22)

The segment of the line= m N 75 within B'(r) then has the parametrization:

& = a+trap
& = ag+trag (4.23)
& = \/(r1+r)2—(a1+ra2)2—(a5+raﬁ)2u ,
—-1<u<l,
where
a az—ajcosP aq —apxcosP
5 = - = —

sinf3 % sinf3
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For brevity, these quantities which will appear frequeimlyhe sequel will be named as follows. Keep in mind that all of
theseb; are functions of.

b1 = ri+r

b, = ai+rax

b = az+ras

by, = as+rag

bs = \/b2-b3—b2

be = \/b2—Db3
by /b3 +12

To map the surface of the bal(r) to a plane, we use an inverse mapping similar to (4.11) bt fphere of radiug +r
instead of 1 and specificalty= 2:

= 31
ri+r—=&s

Yo = —2
ri+r—=&s

>From this one obtains the intersection poigt@ndqg; (see Figure 2.29(b); these points lie on a line through tiggrgrin the
(x1(r),x2(r)) parameter space as

b by
a= b1+ bs’ b1+ bs
) b by
9=\ b, —bs by —bs

and the trimming curve is an arc of the circle with center
by
=(—=,0
Yo (bz’ )

b
b, -

and radius

One next needs to find suitable break pompsndgs (see Figure 2.29). Ideally we want none of the ap@, z0s, 0507
to be close to 180 We can make sure that none of these arcs exceedsasZ0llows. Letgg be the midpoint of segmeniay,
and letqg be the intersection of the perpendicular bisectog@f; with the arcgzgs. Now chooseys andgs to be on the line
perpendicular t(m(g—dg that intersects thq?dg at a point 3/4 of the way fromg towardsgg. In the limiting case when; and
g7 coincide, which occurs whefy +r)? = (a; +raz)? + (as + rag)?, the three arcg;0s, gs0s, gsq7 are all 120, and they all
shrink as the arg; — gz — s — g7 shrinks.

In the x;xz-plane, Iinmﬁ7 has the equatiofas + rag)x— (a3 + raz)y = 0. We also have

q <b1b2 b1b4>
8= |\ 72 » T2
b7 " b7

(b babg  bs
o= (5 b br)

and
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>From this we get

B (4b1b§ — byb3 + 3babebr /80703 + 7302 + 61 bbeby
® = T a2 ’
by — 3ogy  Day/ 607D + 7302 + Bbababeby
402 4,2
_((Aoab% — babf + 3nsbeby | /80703 + 7302 + 601 bbeby
= T a2 ’

by — 3bgy  ay/ 80703 + 7302 + Bbrbabeby
az T '
We now determine, g4, andgg as the points of intersection of the tangents lines thrayghs, gs, andg;. We get

G — 7b2b3 + 4b2byb2 — 12bybgb3 — 7h2bb2 — Oub2b2 7h2b2 + 7h2b+ 52 + 9bZb2
4 4b;b2(oyb, — 30gb7) " 4b,b2(bybs — 30gby)

Also
Q@ = (1/d) (bﬂ?bfb%bﬁ + 7h3b; — 4b3b3b2 + 7b2h3b3bs + 4b2h3bsbsb + 7h2b3bs

— Ab2b3bsh? + 12b2bheh3 -+ 7byb3bab2 + 7hib3b3hZ — 4byb3b33 + 1301b3b4b3b?

— 12b;b2bshgbS + 9b1bZh2h? 4 12bb3bsbghS + 7bibsbs -+ 7b3b3hE + 1202b3beb?

+ 9b3bsbsbZb? — 1203b3b3 + 9b3bsbib?

+ (—4bfbbgb? — 8b1bababsh? + 4byb3h? — 4bbybZb?)cy],

by b3b02 + 7b1b3b2bE + 7byb3b3b2bE + 7bib3b3bs -+ 7babzb3bs + 12b2b,bEb3

+ 9b; b3bdb? + 7h?b3b3bsb — 1203h,b3b3 4 7b3b3b3b3 4 9b2h3bsbibs — 12b1h3bsbsbgb’

— 4byb3b3b? + 7hibabzbs — 4bTbzbsb? + 4bZb3bzbsb? 4 9y b3bgb? + 7bibibsb?

— 4b3bzb2b? + 4b1babzbgh3 — 4b3bzb2b? + 9bib3b2bgh? + 12b2b,b2bshS + 9bybzb2bgh3

+ 1203bbsbgb3 4 7b3b3b02 + 5b7b3bsbh? + 9b3bsbib? + 12b;babsb3bs -+ 9bzbsbib?

+ 7b3b3b2 + 7bibibs + 7b3bibZ + 7bibibd + 7b3b3b2 + 7b2bb3 + 12b3b3bsb3

+(—4b3bzbsb? — 4bdb,babZ — Abh,bghs + 41 b3bsh? — 4bibybsbihs — 4b3bzh? + 4b3hZb?)cy )
and

06 = d—12 (b2[4b§b3b5b$ — 9b3b,bsbZb? — 12b;b2bsbgb — 9b3bsbZb? + 7b3b3 + 12b2b3bebS

+ 9b;b3h2h2 — 7h?b2b3hs + 12b2h3beb — 12b2b303 + 12b1h3bsbeb? — 4b2h3bsbsb?

+ 130303hyb3b3 4 7b3b3b; — 7b3bzbs — 4b3b3ih2 — 4byh3b3h? — 7bjbsbd

— 7b3b3b3 + 7hyb3b3b2 + 7byb3bsb2

+ (4b3bpbyb3 + 4bbb3b? — 8bybobybsh? — 4bb3b3)cy],

— 7byb3b3bé — 7bib3b2b3 — 7hybZbzb2b3 4 7h2b3bb2 + 7b3b3bEbE — 12b7bsb3b3

— 9byb2bib + 7b?b2bzbsh? + 12b3bsbEh3 — 7b3b3b2bE + 9bZh3bsbZh? — 12b1h3hsbsbsh®
+ 4by b3bab? + 7bTb3bibs — 4bTh3bsb? + 4bZb3bibsb? — 9b;b3beb? + 7h2bibsb?

+ 4b3b3b2b? — 4b;b3bib2b? + 4b3bzbZb? — 9b;b3b2bZh? — 12b2hybZbsb — 9b;bzbZbZh3
+ 1203bybsbgh3 — 7b3bZbbE + 5b7b3bsbh? + 9b3bsbib? + 12b1babsb3bs -+ 9bzbsbib?

— 7b3bgbZ + 7bibibs — 7b3bibZ — 7hib3be + 7hib3b3 4 7h2b3bd — 126203 bsb3
+(4b3bZh? — Abib,bab3 -+ 4by bobshgh? + 4bib,bsh? — AbZb,bghs — 4bib3bsb? — 4b3b3b%)cy)
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where

c1 = /6033 + 7bZb2 + Bbybabehy
di = bZ(by+ bs)[(—bybsbs — b3bs — bsbd)cy

+ b2babgbs — bybybi + bibybsb3 — 3b1bybsbgby 4 302030607 — 3b2b3by]
d = b3(by— bs)[(bababs — bsbs — bsb)cy

+ b2bybybs + bybabi — bybobsb3 — 3b1bobsbeby — 3b2b3beby 4 3bb3by]

We now need rational parametrizations of the circular arbg parametrization for aigy — g — gz is provided by

_1)2 _ 2
(1-t)gs+2((1-t)wap +t°h o<t<1.
(1—t)24+2t(1—t)wy +t2

(X1, X%2) =

for a particular value for the weighi;, which turns out to be the cosine of half the anglg qogs, or cox1qode. This can be
computed as
- (01— o) - (42— Co)
|62 — ol | /|2 — T
Analogous parametrizations hold for amgs— g4 — s andgs — ds — 9y-

(a) (b) (c)

Figure 2.29: (a)&1,&2) section of the(é1,&2,&3) space. The circle is a cross section of Willr) of radiusr; +r. Linel,
which is parallel to th€3 axis, is the intersection of the plangsandrs, which in turn are the Voronoi planes separati(y)
andB"(r) and separatin®'(r) andB"”(r). (b) control points of the trimming curve that is part of theundary oft/(r) for
Example 1. (c) the same control points in Example 2.

Example 2

Here we place the balls iii® so that the line through the endpoints of a trimming arc iselrto thex;-axis inx;x,-space. Con-
sider three ballg8’, B”, andB”’. Choose a coordinate system so that their centers are tbad® 0, 0), (I;,cosa, —l1,sina,0),
and(l;3co9B — a),lizsin( — a),0) wherel;, andly3 are the distances between the centerB'aindB”, and between the
centers o8’ andB", respectivelyf is the angle made by the three centers, Witht the vertex (6< 8 < m), and

(ag+ray) — (ag +rap) cosB
(a1 +rap)sinf

a=tan?!

With this definition we have that is the angle between the ray through the cente& ahdB”, and thef;-axis, and

cosq — b, sinf3
(b3 —2bybzcosB + b3)1/2
sing = bg — bycos

(b2 — 2bybzcosB +b2)1/2 -
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Note thata is a function ofr. This coordinate system is chosen so that the Voronoi pldefsed below intersect at ti§g-axis.
Let the solvent ball have radius We consider the two planes, o relative to two trimming curvesy, c,. The position of

the linel = N 7B of intersection is used to track the intersection betwgemdc, and to give their 2D NURBS representation.
With the above coordinate system, the two planes have emsati

m : (cosa)é;—(sina)& =a; +rap (4.24)
™ : [cogB—a)lé+[sinB—a)lé=az+ras (4.25)

where theg; are the same as in Example 1:

12,+12—r13 r—ra
201 l12
2 12 2
2013 l13

in accordance with (4.19).

The image of the trimming curve is the intersection of theesfalal surfaces of the balB(r) andB”(r), which we define
as the balls of radii; + r andr, + r centered at0,0,0) and(l12cosa, —l12sina, 0), respectively. The implicit equation of the
spherical surface d¥'(r) is thenEf + 522 + 53? = (r1 +r)?, and one finds that th& coordinate of the two points of intersection
between this sphere and the linis

g = +\/(ntr2-82-& (4.26)
The segment of the line= r N 1@ within B'(r) then has the parametrization:
& = (a1+rap)/cosa
& =0 (4.27)
& = \/(r1+r)2— (a1 +rap)2/cofau ,
—-1<u<l1.

To map the surface of the bal(r) to a plane, we use an inverse mapping similar to (4.11) bt fphere of radiug +r
instead of 1 and specificalty= 2:

W8
ri+r—2=&s
ri+r—=&s

>From this one obtains the intersection poigisindqy (see Figure 2.29(c)) in thiex (r),x2(r)) parameter space as

by cosa — /b?cofa — b3 o

1= b )
bicosa + y/bZcog a — b3
a7 = by 0

and the trimming curve is an arc of the circle with center

[ bicosa _blsina
Co = b, by
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and radius
bs
b, °

In the x1x2-plane, Iineq‘l_q} is just thex;-axis, and Iinaig_dg is x1 = by cosa /b,. We also have
b1 cosa
Os = < ! b ,0>
2

~ (bicosa _blsina+b6
Qo = by by .

and

>From this we find that the break poirgsandgs are

([ bicosa (70 — b2 sir? a + 6bybg sina ) /2 _ 3bysina +bs
% = b 4b, "2 b

. (blcosa (68— bfsir? a + Bbubesina)'/?  3bysina + b5>
5 = - .

b, 4b, ! b,

We now determine, g4, andgg as the points of intersection of the tangents lines thrayghs, gs, andg;. We get

bjcosa  bysina 4h?
Qa = . + -
b2 b2 bz(blslna — 3b6)
Also
_ (bicosa 3bZ(by sina + be) _ bysina N b2(cp — 4c1)
G = by bz[bl(Cz — Cl) sina + 3b601] ’ b, bz[bl(CZ — Cl) sina + 3b601]
and
([ bicosa 3bZ(by sina + beg) _ bysina N b2(c, — 4c1)
9% = by bz[bl(Cz — Cl) sina + 3b601] ’ b, bz[bl(CZ — Cl) sina + 3b601]
where

¢t = y/bicofa—b3

/703 — b2sir? o + by sina .

C2

2.5 Maintaining Union of Balls Under Atom Movements

We describe theacking grid data structurg7, 8] for maintaining a sel of balls in 3-space efficiently under the following set
of queries and updates. B/= (c,r) we denote a ball withcenterand radius.

Queries.

e INTERSECT c, r ): Return all balls inM that intersect the given bal = (c,r). The given ball may or may not belong
to the seM.

e RANGE( p, 0 ): Return all balls inM with centers within distancé of point p. We assume thal is at most a constant
multiple of the radius of the largest ball M.

e ExPOSED ¢, r ): Returngrueif the ballB = (c,r) contributes to the outer boundary of the union of the ballglirThe
given ball must belong t.
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TIME COMPLEXITY

ASSUMING ASSUMING
OPERATIONS tq = 0 (loglogw), tg= ﬁ(|0§|1 logn),
ty = O (logw) tu:ﬁ(%>

RANGE( p, 8 ) | INTERSECT(C, I ) | EXPOSED(C, I') & (loglogw) w.h.p)) | & (loglogn) (w.h.p.)

(6= 0 (rmaY)
SURFACE( ) O (#balls on surface(worst-case)
ADD(c, )| REMOVE(C, I ) | MOVE( ¢y, Cp, T) 0 (logw) (w.h.p.) ﬁ(%) (w.h.p.)

ASSUMPTIONS (i) RAM with w-bit Words, (ii) Collection ofn Balls,
and(iii ) rmax= ¢ (minimum distance between two balls

Table 2.2: Time complexities of the operations supportethbypacking grid data structure.

e SURFACE( ): Returns the outer boundary of the union of the ballMinIf there are multiple disjoint outer boundary
surfaces defined by, the routine returns any one of them.

Updates.

e ADD(C, r): Add a new balB = (c,r) to the setM.
e REMOVE( c, r ): Remove the baB = (c,r) from M.

e MOVE( ¢y, Cp, I ): Move the ball with centec; and radius to a new centec;.

We assume that at all times during the lifetime of the datzcsre the following holds.

Assumption 2.5.1. If rmax is the radius of the largest ball in M, andyg, is the minimum Euclidean distance between the
centers of any two balls in M, themsx= & (dnmin)-

In general, a ball in a collection afballs in 3-space can interse®{n) other balls in the worst case, and it has been shown
in [25] that the boundary defined by the union of these baltsdhworst-case combinatorial complexity@(nz). However,
if M is a “union of balls” representation of the atoms in a molectthen assumption 2.5.1 holds naturally [49, 76], and as
proved in [49], in that case, both complexities improve bgetdr ofn. The following theorem states the consequences of the
assumption.

Theorem 2.5.1. (Theorem 2.1 in [49], slightly modified) Let M {By,...,Bn} be a collection of n balls in 3-space with radii
f1,...,rn and centers at G...,Cn. Let fmax=max {ri} and let gnn = min; {d(ci,cj)}, where dc;,cj) is the Euclidean
distance between and g. Also letdM = {Bq,..., 0B} be the collection of spheres such tiddg; is the boundary surface of
Bi. If rmax= & (dmin) (i.e., Assumption 2.5.1 holds), then:

(i) Each B € M intersects at mo216- (rrm,v</d,mn)3 = (1) other balls in M.

(i) The maximum combinatorial complexity of the boundary ofitien of the balls in M isZ’ ((rmax/dmm)3 . n)
=0 (n).
PrROOFE Similar to the proof of Theorem 2.1 in [49]. O

Therefore, as Theorem 2.5.1 suggests, for intersectionegugnd boundary construction, one should be able to handle
more efficiently if assumption 2.5.1 holds. The efficiencyaf data structure, too, partly depends on this assumption.
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2.5.1 Preliminaries

Before we describe our data structure we present severaltiafs in order to simplify the exposition.

Definition 2.5.1(r-grid and grid-cell) An r-grid is an axis-parallel infinite grid structure in 3-space costsig of cells of size
rxrxr(r €R)with theroot(i.e., the corner with the smallest x, y, z coordinates) & ohthe cells coinciding with origin of
the (Cartesian) coordinate axes. The grid cell that hasatst at Cartesian coordinatdsr, br,cr) (where ab, c € Z) is referred
to as the(a, b, c,r)-cell or simply as thé€a, b, c)-cell when r is clear from the context.

Definition 2.5.2(grid-line). The(b,c,r)-line (where
b,c € Z) in an r-grid consists of al(x,y,zr)-cells with y and z fixed to b and c, respectively. When r isrdlean the context
the (b, c,r)-line will simply be called théb, c)-line.

Observe that each cell on tkie, c, r)-line can be identified with a unique integer, e.g., the delhdexa € Z on the given
line corresponds to th@, b, c, r)-cell in ther-grid.

Definition 2.5.3(grid-plane) The(c,r)-plane(where cc Z) in an r-grid consists of allx,y,z r)-cells with z fixed to c. The
(c,r)-plane will be referred to as the c-plane when r is clear frdre tontext.

The(c,r)-planecan be decomposed into an infinite number of lines each filsie with a unique integer. For example,
indexb € Z uniquely identifies théb, c,r)-line on the given plane. Also each grid-plane in thgrid can be identified with a
unique integer, e.g., thi, r)-plane is identified bg. The proof of the following lemma is straight-forward.

Lemma 2.5.1. Let M= {B;,...,Bn} be a collection of n balls in 3-space with radii,t..,r, and centers atg...,c,. Let
Fmax = Max {ri} and let ghin = min; {d(ci,c,-)}, where dc,c;j) is the Euclidean distance betwegrand G. Suppose M is
stored in the2rmax-grid G. Then

(i) Ifrmax= € (dmin) (i.e., Assumption 2.5.1 holds) then each grid-cell in G am#tthe centers of at mo&4- (rmax/dmin)3 =
0 (1) balls in M.

(i) Each ball in M intersects at most 8 grid-cells in G.

(iii ) For a given ball Be M with center in grid-cell C, the center of each ball interseg B lies either in C or in one of the
26 grid-cells adjacent to C.

(iv) The number ofion-emptyi.e., containing the center of at least one ball in M) griells in G is at most n, and the same
bound holds for grid-lines and grid-planes.

At the heart of our data structure is a fully dynamic one digiemal integer range reporting data structure for word RAM
described in [62]. The data structure in [62] maintains aSset integers under updates (i.e., insertions and deleti@rs)
answers queries of the form: reportany or all pointSima given interval. The following theorem summarizes thégenance
bounds of the data structure which are of interest to us.

Theorem 2.5.2. (proved in [62]) On a RAM with w-bit words the fully dynamiceodimensional integer range reporting
problem can be solved in linear space, and w.h.p. bounds(af) and ¢ (tq+ k) on update time and query time, respectively,
where k is the number of items reported, and

(i) tu= 0 (logw) and = ¢ (loglogw) using the data structure in [62]; and
(if) ty= 0 (logn/loglogn) and t, = & (loglogn) using the data structure in [62] for small w and a fusion trde] for large
w.
The data structure can be augmented to store satellitemiafion of size/ (1) with each integer without degrading its
asymptotic performance bounds. Therefore, it supportéofl@mving three functions:
1. INSERT( i, s): Insert an integeirwith satellite informatiors.
2. DELETE( i ): Delete integer from the data structure.

3. QUERY(I, h): Return the set of al{ i, s) tuples withi € [I, h] stored in the data structure.
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2.5.2 Description (Layout) of the Packing Grid Data Structue

We are now in a position to present our data structure.REG be the data structure. We represent the entire 3-space as a
2rmax-grid (see Definition 2.5.1), and maintain the non-emptg-grianes (see Definition 2.5.3), grid-lines (see Definifdn 2)

and grid-cells (see Definition 2.5.1) BPG. A grid component (i.e., cell, line or plane) is non-empti fontains the center of

at least one ball iM. The data structure can be described hierarchically. Iahase structure with 5 levels: 4 internal levels
(levels 3, 2, 1 and 0) and an external level of leaves (see&®@30). The description of each level follows.

@ grid
/\ (level 3)

g g @ planes

/\ /\ (level 2)
lines

AN TAT A A
i - o O W, WY = N Pt cells

AALATTA T [ veso
ST WSO S G S W TV U W WS G- W N Y. S — ba lis

(leaves )

Figure 2.30: Hierarchical structure of DPG

The Leaf Level “Ball” Data Structure ( DPG_1). The data structure stores the certet (cy, cy,C;) and the radius of the
given ballB. It also includes a Boolean flaaxposedvhich is set tarue if B contributes to the outer boundary of the union of
the balls inM, andfalseotherwise. If another baB’ intersects, it does so on a circle which divides the boundaByof B into
two parts: one part is buried insid@ and hence cannot contribute to the union boundary, and bee part is exposed w.rig’
and hence might appear on the union boundary. The circutensiections of all balls intersectifgdefine a 2D arrangement
A on dB which according to Theorem 2.5.1 h&§1) combinatorial complexity. A face oA is exposed, i.e., contributes to
the union boundary, provided it is not buried inside any ptyel. Observe that if at least one other ball inters&tandA
has an exposed fade then each edge df separated from another exposed fadé which belongs to the arrangemeiitof

a ball intersectind. We store all exposed faces (if any)Afin a setF of size (1), and with each facé we store pointers
to the data structures @f (1) other balls that share edges wittand also the identifier of the corresponding face on each ball
Observe that iB does not intersect any other balls tHemvill contain only a single face and no pointers to any othdisba

The Level 0 “Grid-Cell” Data Structure ( DPGg). The “grid-cell” data structure stores the root (see Defini2.5.1)(a, b, c)

of the grid-cell it corresponds to. A grid-cell can contdie tenters of at mogt (1) balls inM (see Lemma 2.5.1). Pointers to
data structures of all such balls are stored in &s#tsize ¢’ (1). Since we create “grid-cell” data structures only for nonpgy
grid-cells, there will be at most (and possibly« n) such data structures, wherés the current number of balls M.

The Level 1 “Grid-Line” Data Structure ( DPG1). We create a “grid-line” data structure fofla, ¢)-line provided it contains

at least one non-empty grid-cell. The data structure stheesalues ob andc. Each(a, b, c)-cell lying on this line is identified
with the unique integea, and the identifier of each such non-empty grid-cell is stdnean integer range search data structure
RRas described in Section 2.5.1 (see Theorem 2.5.2). We audriio store the pointer to the corresponding “grid-cell”
data structure with each identifier it stores. The total nends “grid-line” data structure created is upper boundechltaynd
possibly much less tham
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The Level 2 “Grid-Plane” Data Structure (DPG). A “grid-plane” data structure is created focalane provided it contains
at least one non-empty grid-line. Similar to the “grid-lirtata structure it identifies each non-emglyc)-line lying on the
c-plane with the unique integéx, and stores the identifiers in a range reporting data streBRdescribed in Section 2.5.1. A
pointer to the corresponding “grid-line” data structuraliso stored with each identifier. The data structure als@sto The
total number of “grid-plane” data structures created caeroeech, and will possibly be much less than

The Level 3 “Grid” Data Structure ( DPG3). This data structure maintains the non-empty grid-planagb®f ma-grid in
an integer range reporting data structie (see Section 2.5.1). Ea@hplane is identified by the unique integgrand each
such integer stored iRRis also accompanied by a pointer to the corresponding ‘gladie” data structure. The “grid” data
structure also storessaurface-roopointer which points to the “Ball” data structure of an aréiy exposed ball i,

We have the following lemma on the space usage of the dattsteu

Lemma 2.5.2. Let M be a collection of n balls as defined in Theorem 2.5.1,lah8issumption 2.5.1 holds. Then the packing
grid data structure storing M useg (n) space.

PROOF The space usage of the data structure is dominated by tice sjgsad by the range reporting data structures, the
grid-cells and the “ball” data structures. Since the ramg®rting data structures use linear space (see Theore®) arfl total
number of non-empty grid components (i.e., planes, linescatis) is& (n) (see Lemma 2.5.1), total space used by all such
data structures i&’ (n). The grid cells contain pointers to “ball” data structurasd since no two grid-cells point to the same
“ball” data structure, total space used by all grid-cellal® ¢ (n). Each “ball” data structure contains the arrangerdeand

the face decompositiof of the exposed (if any) faces of the ball. The total space e@éa store all such arrangements and

decompositions i€’ ((rmax/dmin)3 . n) (see Theorem 2.5.1) which reducesddn) under Assumption 2.5.1. Thus the total
space used by the data structur&ign). O

2.5.3 Queries and Updates

The queries and updates supported by the data structurmplenented as follows.
Queries.

(1) RANGE( p, & ): Let p=(px, py, Pz). We perform the following steps.

i. Level 3 Range Query We invoke the function
QUERY( I, h) of the range reporting data structR&k underDPGg3 (i.e., the level 3 “grid” data structure) with=
[(pz—9)/(2rmax) ] andh = [ (pz+9)/(2rmax)|. This query returns a s& of tuples, where each tuplec, P. ) € S
refers to a non-emptg-plane with a pointeP. to its level 2 “grid-plane” data structure.

ii. Level 2 Range Query For each( ¢, P; ) € S, we call the range query function under the correspondingl [2 data
structure withl = | (py—&')/(2rmax)| @andh = | (py+&')/(2rmax) |, where(8')? = 82 — (c— p,)® if c— p, < &, and
0’ = rmax Otherwise. This query returns a s&t; of triples, where each tripléb, ¢, R, ) € S; ¢ refers to a non-empty
(b, c)-line with a pointerR, ¢ to its level 1 “grid-line” data structure. We obtain the Sgby merging allS,  sets.

iii. Level 1 Range Query Foreach(b, ¢, R,¢ ) € S, we call the integer range query function under the cornedjmy level
1 “grid-line” data structure with = | (px— 8”)/(2rmax) ] andh = | (px+ 8")/(2rmax) |, where(8")2 = 52 — (b— py)? —
(c— pz)2 if 62> (b— py)2 +(c— pz)z, andd” = rmax0therwise. This query returns a 8, ¢ of quadruples, where each
quadruples a, b, ¢, Papc ) € Spc refers to a non-emptya, b, ¢ )-cell with a pointerP, ¢ to its level 0 “grid-cell”
data structure. We obtain the Stby merging allSp, ¢ sets.

iv. Ball Collection: Foreach(a, b, ¢, P,pc ) € So, we collect from the level O data structure of the corresfioggda, b, ¢ )-
cell each ball whose center lies within distardcéom p. We collect the pointer to the leaf level “ball” data struetwf
each such ball in a s& and return this set.

The correctness of the function follows trivially since itagies a region in 3-space which includes the region covieyed
a ball of radiusd centered ap. It is straight-forward to see that the function makes attm@érb ([0/rmax] + 1)2) calls to
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Figure 2.31:Top row: Level 3 Range Query. (a) Query region defined by the spheradifisd at pointp inside the level 3
grid, (b) The level 3 grid as a collection of level 2 grid-pée (¢) and (d) Range reporting query returns the set of ngotye
grid-planes within the query regioiMiddle row: Level 2 Range Query. (a) On each grid-plane, query regiogfined by a
circular slice of the sphere of radidsat pointp, (b), (c) and (d) Range reporting query on such a grid-platgns the set of
non-empty grid-lines within the query regioBottom row: Level 1 Range Query. (a) and (b) Query region in each grieikn
defined as an interval, (c) and (d) For each grid-line, raegenting query returns the set of non-empty grid-cells

a range reporting data structure, and collects balls fromcat & (%rp ([0/rmax] + 1)3) grid-cells. Using Lemma 2.5.1 and

Theorem 2.5.2, we conclude that w.h.p. the function terteman & ((5/rmax)2-tq+ ((d+ rmax)/dmin)3) time. Assuming
Fmax= € (dmin) (i.€., Assumption 2.5.1) anfl= € (rmax), the complexity reduces t@ (t5) (w.h.p.).

(2) INTERSECT( ¢, 1 ): LetB= (c,r) be the given ball. We perform the following two steps.

i. Ball Collection: We call RANGE( ¢, r +rmax ) and collect the output in s&which contains pointers to the data structure
of each ball inM with its center within distance+ rmax fromc.

ii. ldentifying Intersecting Balls: From Swe remove the data structure of each ball that does not @dtBs and return
the resulting (possibly reduced) set.

We know from elementary geometry that two balls of ragi@ndr, cannot intersect unless their centers lie within distance
r1+ ro of each other. Therefore, stéj) correctly identifies all balls that can possibly intersBecand stef(ii) completes the
identification. Stegi) takes
0 (tq+ (rmax/dmm)s) time w.h.p., and stefii) terminates i ((rmax/dmm)s) time in the worst case. Therefore, under As-

sumption 2.5.1 w.h.p. this function runsdn(ty) time.

(3) EXPOSED( ¢, r ): LetB=(c,r) be the given ball. We locat®’s data structure by calling &NGE( ¢, 0 ), and return
the value stored in itexposedield. Clearly, the function takeg (tq+ (rmax/dmm)s) time (w.h.p.) which reduces t6' (tq)
(w.h.p.) under Assumption 2.5.1.
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(4) SURFACE( ): Thesurface-rootpointer under the level 3 “grid” data structure points to thell” data structure of a
ball B on the union boundary d¥l. We scan the sdt of exposed faces d8, and using the pointers to other exposed balls
stored inF we perform a depth-first traversal of all exposed ballMimnd return the exposed faces on each such ballmL_et
be the number of balls contributing to the union boundariofThen according to Theorem 2.5.1 the depth-first searctstake

0 ((rmax/dmin)3 . m) time in the worst case which reducesd@m) under Assumption 2.5.1.
Updates.

(1) AbD(c, r): Letc= (cx,Cy,C;) and letc, = {Zf—{axJ , whereu € {x,y,z}. We perform the following steps.

m;

i. If M #£0, letG be the grid data structure, otherwise create and initi@izAdd input ball toM.

ii. Query the range reporting data struct@dRRto locate the data structuRefor the c,-plane. IfP does not exist create
and initializeP, and insert}, along with a pointer td into G.RR

iii. QueryPRRand locate the data structurdor the (), c,)-line. If L does not exist then create and initializeand insert
cg, along with a pointer td into PRR

iv. Locate the data structufefor the(c;,cg,,c’z)—cell by queryingL.RR Create and initializ€ if it does not already exist,
and insert} and a pointer t&€ into L.RR

v. Create and initialize a data structidor the input ball and add it to the s&tS.

vi. Call INTERSECT c, r ) and find the set of the “ball” data structures of all balls that intersect theut ball. Create the
arrangemenB.A using the balls id. The new ball may partly or fully bury some of the balls it irgects, and hence
we need to update the arrangemBhA, the se®’.F and the flagd’.exposedf eachB’ € I. The seB.F is created and
B.exposeds initialized using the information in the updated dataistures inl . If the surface-roofpointer was pointing
to a ball inl that got completely buried by the new ball, we update it toptn B instead.

Observe that the introduction of a new ball may affect théasgrexposure of only the balls it intersects (i.e., bury atah
of them partly or completely), and no other balls. Hence,updates performed in stepi) (in addition to those in earlier
steps) are sufficient to maintain the correctness of theeedéta structure. Stegyg and(v) take &' (1) time in the worst case,
and w.h.p. each of stefgs), (iii ) and(iv) takes& (ty +ty) time. Finding the intersecting balls in stéy) takes

o (tq + (rmax/dmin)3) time w.h.p., according to Theorem 2.5.1 creating and upddtie arrangements and faces will take

i ((rmax/dmin)3 x (rmax/dmin)s) =0 ((I’max/dmin)G) time (w.h.p.). Thus the AD function terminates in
1% (tq +ty+ (rmax/dmin)e) time w.h.p., which reduces 0 (t,) (w.h.p.) assumingmax= & (dmin) (i.e., Assumption 2.5.1).

(2) REMOVE ( ¢, r ): This function is symmetric to the BD function, and has exactly the same asymptotic time complex-
ity. Hence, we do not describe it here.

(3) MOVE( ¢1, Cy, 1 ): This function is implemented in the obvious way by calliRgMOVE ( ¢1, r ) followed by
ADD( cp, 1 ). It has the same asymptotic complexity as the two functitose.

Therefore, we have the following theorem.

Theorem 2.5.3.Let M be a collection of n balls in 3-space as defined in Thed@dnd, and let Assumption 2.5.1 holds. Lett
and t, be as defined in Theorem 2.5.2. Then the packing grid datatsteistoring M on a word RAM:

(i) uses/ (n) space;
(i) supports updates (i.e., insertion/deletion/movementziB in & (t,) time w.h.p.;

(ii ) reports all balls intersecting a given ball or withifX (rmax) distance from a given point i (tq) time w.h.p., wherenay
is the radius of the largest ball in M; and
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(iv) reports whether a given ball is exposed or buriediifity) time w.h.p., and returns the entire outer union boundary of M
in &'(m) worst-case time, where m is the number of balls on the boyndar

In Table 2.2 we list the time complexities of the operatiomgmorted by our data structure.

2.5.4 Molecular Surface Maintenace Using DPG

In this section, we briefly describe applications of the iaglkyrid data structure for efficient maintenance of molacaurfaces.

Maintaining van der Waals Surface of Molecules
For dynamic maintenance of the van der Waals surface of aculeleve can use the packing grid data structure directlyhEac
atom is treated as a ball with a radius equal to the van derd/¥adlus of the atom (see [19] for a list of van der Waals radius
of different atoms).

Maintaining Lee-Richards (SCS/SES) Surface
We can use the packing grid data structure for the efficienhtmaance of the Lee-Richards surface of a molecule under
insertion/deletion/movement of atoms. The performanagnde given in Table 2.2 remain unchanged. We maintain two
packing grid data structureBPG andDPG’. The DPG data structure keeps track of the patches on the Lee-Riskarthce,
andDPG'’ is used for detecting intersections among concave patches

Before adding an atom OPG, we increase its radius, wherers is the radius of the rolling solvent atom. TB¥G data
structure keeps track of all solvent exposed atoms, i.eatais that contribute to the outer boundary of the uniorheté
enlarged atoms. Theorem 2.5.1 implies that each atddPi@ contributes/ (1) patches to the Lee-Richards surface, and the
insertion/deletion/movement of an atom results in locangdes of only?’ (1) patches. We can modifpPG to always keep
track of where two or three of the solvent exposed atomssatty and once we know the atoms contributing to a patch we can
easily compute the patch ifi (1) time [10].

The Lee-Richards surface can self-intersect in two wdysa toroidal patch can intersect itself, afid) two different
concave patches may intersect [10]. The self-intersestifrioroidal patches can be easily detected fidRG. In order to
detect the intersections among concave patches, we nmathtacenters of all current concave patcheBR(G’, and use the
INTERSECTquery to find the concave patch (if any) that intersects angbamcave patch.

2.6 Clustering and Decimation of Molecular Surfaces

In this section we discuss a multiresolution represemntaditheme for molecular shapes using the object’s skeletaitste
(i.e. zero-shape). This scheme is coupled with error egstisntaat takes into account the actual boundary surfaceeathpe.
The boundary representation is derived from the topoldgittacture underlying the representation of the molechlzy
(see Figure 2.40). Specifically, we consider the followihgee different boundary surface models: the Solvent Adicless
Surface (SAS), the Lee-Richards Solvent Contact Surfaakttee molecular skin. These three surfaces all have an lyirtdgr
topological structure based on the regular (weighted Delgutriangulation and power diagram of the input set ofsalh
case of actual molecules the input is a set of atoms eachseqtesl as a ball with its van der Waals radius. The correspgnd
weighted-point representation is the center of the atomciested with a weight equal to the square of the van der Wadlis's.
See section 2.2.1 for details about this representation.

A particular kind of vertex clustering as is used as deciomfirimitive. The clustering replaces two balls (atomshwit
one. The weight of the new ball is chosen in order to presesugescovering relation between the coarse and fine levels of
resolution. This covering property is important to guaegd conservative estimate of the location where the madiesland
can be used in several application domains such as collilgtattion and ray casting. The Delaunay property is presiafter
the clustering by applying a sequence of flips in the triaatjomh.

For fast traversal, the multiresolution data structurate using this ball clustering primitive is a Directed Aby&raph
(DAG) of nodes, where each node represents a clusteringtipeand the edges denote dependencies between nodes. A cut
in this graph is a collection of edges which intersect alhpdtom the root to the leaves once and only once. Any such cut
represents a valid multi-resolution approximation of thedel [29, 58]. A more adaptive and space-efficient model izrast
of binary trees storing the cluster ball as the parent ofwwereplaced balls. This model depends on run-time updattseof
triangulation (flips), but supports a much larger space afjiide triangulations due to the reduced number of depeaeien
The hierarchy is built bottom up by a sequence of decimatiages until a maximum error tolerance is reached or thereare
more balls to be removed.
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A B

Figure 2.32: Scaffolding model. PoimsB,C, D, E, in the plane = 0, are the atom centers, and are the vertices of a Delaunay
triangulation. Point®, Q, R, in the planez = 1, are the vertices of the corresponding Voronoi diagram.

Several error norms are used to evaluate the quality of aaptag level of detail including support for the estimatioin
conservative bounds of the exact Hausdorff distance. Whéedecimation scheme, the hierarchical structure andrtioe e
estimates are defined in any dimension, we show practicaltsefer a 2D implementation.

2.6.1 Preliminary- Mixed Cell Complex

The mixed cell complex consists of the weighted Delaunaygulation, or regular triangulation (see the Related Nbsittion
for definitions), at the lowest level, say the plane 0, and the corresponding weighted Voronoi diagram, or paliggram,
at the highest level, sa~= 1. Then each vertex of the power diagram is connected by digments to the three vertices of the
triangle to which it corresponds in the regular triangwlati(see Figure 2.32). Thus tetrahedra are formed by thistagotion;
one example is tetrahedréBC Furthermore, two points connected by an edge in the povegralin are connected to two
triangles that share an edge in the regular triangulatitiusnother set of tetrahedra is formed by the four endpofritgo
such corresponding edges. For examplandQ are connected to trianglgsABC and AACE, and the edgeBQ andAC form
tetrahedroPQAC

For any value ofz between 0 and 1 we can take a cross section of the structureedefbove and obtain intermediate
tessellation of the space into convex cells. In each nonetilptwe have a portion of a quadratic surface (curve) thatiman
C! continuity with the patches defined in the neighboring tilElse whole surface is called tmeolecular skirand is used as a
representation for molecular boundaries.

At each level we can connect appropriate segments with #epbr a molecular skin to represent the molecular surface
at varying degrees of resolution. Figure 2.33 shows the paliagram and regular triangulation at= 1/3 andz = 2/3,
respectively.

2.6.2 Decimation of Molecular Shapes

In this subsection we focus on the problem of decimating mdé shapes. We consider the problem from the viewpoint of
decimating the set of weighted points that induces the nutdeshape (the centers of the atoms) rather then decimsdimg
triangulation of its boundary. This approach has two maivaathges: (i) one has to deal with a set of smaller cardyjnalit
because a high quality representation of the boundary weugjdire a dense sampling with many points per atom, (ii) #mees
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© (d)

Figure 2.33: (a) Power diagram and (b) regular triangutetis the cross section of the mixed cellzat 1/3, and (c) power
diagram and (d) regular triangulationzat 2/3.
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multiresolution data structure induces a hierarchicatesgntation for several types of molecular shapes (e.g., S&S or
skin) instead of having a distinct multiresolution reprgsgéion for each of them. Roughly speaking the goal of detinga
a molecular shape is to produceearsebut simplerrepresentation of the original model that is too large far #vailable
computational resources.

Definition 2.6.1. (Coarsening) Given a model M (molecular shape) of cardinality k (numbfdralls) anycoarse representa-
tion M" of M (written M = M) is a model of cardinality’k< k and such that: g M = pe M’.

We say thatM’ is a coarsening d¥1. For example Figure 2.34(a-d) shows three coarse repetgeTeM;, Mo, M3 of the
molecular shap¥ in Figure 2.40. The four representations are in the follgnilationshipMz = My = My = M
More generally it is easy to show that:

Property 1. The relation “-" is transitive.

The transitive property of &" suggests a simple and efficient way to build a multiresolutiepresentation of a molecular
model by successive application of local coarsening priast
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(e) My =M (f) Mz =M, (9) M3 = M (h) Mg = M3 i) Mg =M

Figure 2.34:Top: Coarsening relationships between three representddosid,, M3 of the molecular shape in Figure 2.40.
Bottom: Coarsening relationships between four representaliinkl,, M3, M4 of a second molecular shapk

Vertex Clustering

General decimation schemes like edge-contraction do esepve the Delaunay property which is the basis for all ouemn
lar models. The known schemes like [28] for decimation thetrgntee the Delaunay property while building a multiresoh
hierarchy also do not seem appropriate in our case. Thiscause we do not use the triangulation as a direct shape repre-
sentation of the molecular body. The triangulation is iadtaesed to describe the skeletal structure of the molecuémcél
in the decimation process we have to take into account meaue ttie modifications that occur in the triangulation itsk t
modifications that are induced to the corresponding moteakiape (union of balls, SAS, SCS, ...).

Let py = (u,Wy), pv = (V,Wy) be two weighted verticese = (u,V) is a part of the zero shape ifu—v|? —wy —w, <0
(see [34] for the complete condition). This means that the Ialls representing, and p, overlap, and therefore they are
good candidates for clustering. In order not to be depenalettie radius of the atoms, we actually use the Euclideaartist
between the vertices to represent priority for clusteribignce, we are looking on all atoms which overlap and cluster t
closest ones first.
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Clustering is done by removing the two vertices from theniglation and inserting a new one. We choose the weight
and position of the new vertex such that its ball will encldse two replaced vertices balls. The fact is, that if we cleoms
ball which ise greater than the enclosing ball, and correct to preservgudaetriangulation, then the two old vertices will be
redundant and will not need to be remo%ed/e use two variation of the Vertex Clustering primitive deding on the tradeoff
between efficiency and accuracy.

Definition 2.6.2. (Coarse Representation Ball)Let M= {b; }‘:0 be the set of balls representing the original atoms of a given
molecular shape, and let M- M. Then b is acoarse representatiafi M’ if for each § € M*, b b;.

LVC (Local Vertex Clustering) is the simpler and more effitigersion of vertex clustering (see Figure 2.35(a)):

Definition 2.6.3. (LVC). Let by, b, be be a coarse representation of Ml,, (M; C M). The Local Vertex Clustering (LVC)
coarse representation of MU M, is a single ball b of radius r such that:

b:mrin{b:b> b1 Uby} .

Figure 2.35a shows the case where the tmlisc,d,eandf are in the following relatione = LVC{a,b}, f = LVC{c,d}
andg = LVC{e, f}. Itis easy to see that tH8/C can be computed in constant time. In particular considertalts by, b, of
radiiry,ro and which centersy, c; have distance = ||c; — ¢;||. The ballb = LVC{b;,b,} has radius and centec given by:

r_d+r1—i-r2 et -l
N 2 ’ 2 2d

(c1—cy).
A more tight coarsening procedure is based on the followingtering scheme (see Figure 2.35(b)):

Definition 2.6.4. (MVC). Let by,b, be be a coarse representation of M, (Mj C M). The Minimum Vertex Clustering
(MVC) coarse representation of;\M M is a single ball b of radius r such that:

b:mrin{b:b> M1 UMz} .

Clearly, the computation of the MVC coarsening is more espathan the LVC. We determine the MVC using the Smallest
Enclosing Ball Library by Dave White [79] which implementstoptimal algorithm by Emo Welzl [78] generalized from the
case of a set of points to the case of a set of balls.

< D
a0 \

(@) (b)

50

Figure 2.35: Two cascaded step of Vertex Clustering coargen(a) Local Vertex Clustering (LVC). (b) Minimal Vertex
Clustering (MVC).

2Note that the points do not always become redundant in treegbat a flip will remove them from the triangulation. Theg eedundant only in the sense
the points of their ball are also points of at least one otladl hence their removal would not alter the molecular bddglf (the set of boundary points does
not change and the set of interior points remains the same).
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2.6.3 Multiresolution Hierarchy

Construction
The basic decimation operation used for building the h@@mais vertex clustering of edges which lie on the zero-shape

Definition 2.6.5. (independent clustering) Let & = (vo,V1),e, = (Up,U1) be two edges in the triangulation. ang,u, the
two new vertices introduced if g8, were clustered. eand g can beindependently clusteratland only ifVi, v; £ u;.

The construction algorithm proceeds by creating conseelgivels of coarser approximations of the triangulatioacte
level is constructed by using a priority queue (heap) for zbm-shape edges according to the error norm used (see Sec-
tion 2.6.4). For fast traversal, The decimation operatamscollected in a DAG similar to [28]. This structure re@githat
only non-dependent vertices be clustered in each level.

Definition 2.6.6. (Dependent Vertex)A vertex v is consideredependenat level k if one of the following is true:
1) v has been clustered at any levet k.
2) v has been introduced (as a cluster of two others) at level k
3) v is a neighbor of u, where u satisfies either 1 or 2 above.

In order to gain larger adaptiveness in the space of possiblggulations, and reduce considerably the storage size,
scheme introduces a cluster-forest of binary trees insiéde DAG. Each node in this forest represents a new balleapdhent
of the two balls being clustered. The triangulation is updaturing runtime while traversing the trees and insentergbving
balls. In this scheme, a vertex is considered dependentfohbatisfies the first two conditions of the above definitibence
the number of dependencies are much smaller and the spaossibie triangulations is larger.

In both hierarchies, to guarantee a broad structure, edgsile the zero-shape are considered if a predefined minimum
percent of the vertices are not removed (very rare in practién outline of the algorithm for building the hierarchyds
follows:

t T be the triangulation
t Z be the zero-shape
t H be a min heap of zero edges
op until coarse enough:
Insert all Z edges to H
while H is not enpty do:
renove mninmal e=(uyv) fromH
check that u and v
are non-dependent
cluster uand vto w:
renove u fromT and correct
renove v fromT and correct
insert wto T and correct
update Z
update H

le
le
le
lo

The supporting structures for this algorithm are the tridation, the zero-shape, and the heap of zero edges. Aftér ea
decimation step, the triangulation is changed, which ieduecchange in the zero shape. Some zero edges could be gbne, an
new zero edges can be created. This means the heap needptiabedafter each decimation step. Also, in order to maintai
an independent set in each level, vertices are marked asdepgand in the case of the DAG, also their neighbors).

2.6.4 Error Estimates

While we use the zero-shape to guide the decimation proitdssimportant to have a bound on the geometric error while
decimating, and during traversal of the hierarchy. The figsé of error metric that we consider is just the length ofdtige. In
order not to be dependent on the radii of the atoms, we agtusdl the Euclidean distance between the vertices to reyiribse
priority. Hence, we are looking at all atoms which overlad aluster the closest ones first. However, since we are stemtén

the union of balls and not the actual zero shape, the secomdmaetric we use involves the difference in area betweeméne

ball and the two old balls. The larger this area is the momdyikhe shape will change drastically if this clusteringsed. The

last error metric actually computes the exact Hausdorfhdize between the boundary of the two old balls and the new one
The Hausdorff distance function is defined as:
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Definition 2.6.7. (One Way Hausdorff Distance) Given two molecular shapes;MM, and a point-point distance function
(norm) d(p,q), the one-way Hausdorff distancéy , M>) is the maximum of the minimum point-point distance funatignq)
forall pin M1 and g in M:

h(Mz, M) = max{ mind(p,q);} .

Definition 2.6.8. (Hausdorff Distance) The Hausdorff distance between two molecular shap@s;tHM,) is the maximum
between the two one-way Hausdorff distance functions:

H(M1,Mz) = max{h(M1,Mz), h(Mz,M1)} .
By definition 2.6.1 of the relation>" we have immediately that:
Property 2. M; is a coarse representation of \Nf and only if the one-way Hausdorff distance of wom M, is zero:
M1 = My < h(M2,M1) = 0.

Property 3. If M1 is a coarse representation of Mthen the Hausdorff distance between &hd M, is equal to the one-way
Hausdorff distance of Mfrom M:

My > Mo =H (Ml, Mz) = h(Ml, Mz) .

We determine a conservative estimate of the Hausdorffriistd (M;, M») by computing the one-way Hausdorff distance
between two adjacent levels in a Local Vertex Clustering stefollows.

(@) (b)

Figure 2.36: The one-way Hausdorff distance betweeamndb; Ub, is determined at the poiptof intersubsection betweeibs
and the Voronoi separator betwegnandb,. (a) Configuration ob; by # 0 wherel > 0 (note that in such 2D subsection of
the balls, the Voronoi separator has a secondary closed mside the two circles that is not of our interest). (b) Cgufation
for by by, = 0 wherel < 0.

Consider two balld;, b, of radii r1,r, > 0 and whose centers, ¢, are distancéicy; — c;|| =r1+r2 — 2| apart (see Fig-
ure 2.36). We assume that neith®rC b, nor by C by, which impliesl < min{ry,r2} or | > max{r,r>}. Without loss of
generality we place the centers of the two circles aroundbtigin along thex axis so that their centers have coordinates
c1 = (—r1+1,0)andc, = (r,—1,0). The LVC ballbs then has center = (r, —r1,0) and radius, +r, — . The pointp where
we can evaluate the distankb; Uby, b3) is the intersubsection between the boundarlgzofnd the Voronoi separator bi
andbs,. Itis hence given by the solution of the following system:

(x—r2+r1)2+y2: (r1+r2—l)2

(Xx+ri—D2+y?—r=

V(X=r2+1)2+y2 -1,
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This has a closed form solution that can be readily deriveahfr

(rl+r2—2l)2x2
+2(rp—r2)[(r1— 1%+ (r2— 1)?x
— (2[‘1 — I)(2r2 — I)(rl — I’z)2 =0

y =[x+ 2(ra—rq)x
+(rpr2—1)2—(ri—rz)2%2.

Error of MVC  Using the Minimal Vertex Clustering decimation we can aghia tighter encapsulation between each level
of resolution and the input model. This makes it more diftitmicompute the error bound as we cannot simply accumulate th
error bounds from level to level. This is because each lev&lsolution contains the input model but not the immedietieler
approximation. This means that we have to compare eachttibl aurrent level of approximation with the contained il

the finest level of resolution, requiring the evaluationta error function at several vertices of the actual Voroiagchm (the

real Voronoi diagram and not the Power diagram) and at tleednbsection between the Voronoi diagram and the cluster ba
Fortunately it can be shown (see Appendix 2.6.6 for dettils) the square root of the norm of the Power distance candsk us
as an upper bound of the actual Euclidean distance so thatnvese the Power diagram in place of the real Voronoi diagram.
This makes such computation viable in practice because wetbacompute the Power diagram and hence this error estimate
does not substantially increase the complexity of the cdatjmn.

2.6.5 Analysis
Hierarchy Construction.

We first consider the case of LVC where the entire hierarchyoisstructed by a sequence of vertex insertion steps. Each
insertion can make at least two vertices in the previousl lefreesolution redundant or irrelevant. Redundant mearg th
are removed from the triangulation by the flipping sequenoelevant means they do not contribute to the boundary ef th
molecular shape any more and hence are not considered inltbwihg decimation steps. Therefore, the complexity & th
molecular shape decreases by at least one ball per decmsédip so that for an initial shape baseddralls, the hierarchy is
constructed with a sequence of less tindtV/C steps. In other words the complexity of constructingithigial fine resolution
mesh and the complexity of constructing the entire hienaerk the same. W is the dimension of the embedding space, then
the complexity isO(nlogn+ nl9/2}) (or O(nlogn+ nl%/2ly if appropriate randomization applies) [38] since it is atsinthe
triangulation time for 8 points. Note that the logarithmic factor introduced by tlséng a priority queue in the decimation
does not increase the overall complexity. If MVC decimatiused the only difference is that instead of just inserdingrtex,
each decimation step involves the insertion of one ball haedeémoval of two, which means a factor of three is added.

Traversal

As mentioned previously we consider two possible optioa¥:ekplicit storage in the hierarchy of the sequence of fli@s p
formed during the decimation or (b) reduction of the hiehgro a tree of balls.

In the first case the storage sized&n'9/2)) (which reduces to expect&@n[9/21) in the randomized case), this being the
order of the total number af-simplices in the triangulation as well as the total numHbelip operations performed during the
construction of the hierarchy. In the second case, thegtosize remains linear in any dimension, since it is only aradd
tree of 2h nodes in the worst case.

The complexity of the traversal needed to transform the rfresh one cut of the hierarchy to another is proportional ® th
number of flips it takes to perform the transition, which isgortional to the number of simplices that are being reglac¢he
initial and final triangulations. In particular K d-simplices are being created in the new cut then the transitne isO(k).

The constant that is hidden in tl¥k) depends on the kind of hierarchy that is used. For a full DAS3esentation the constant

is very small since the new triangulation is just read from EBFAG. In the case of a tree hierarchy the constant is largeesin
each flip operation involves the determination of Delaunayditions that are equivalent to computation(df+- 1) x (d+ 1)
determinants. Using for example Gaussian eliminationterdeterminant evaluation, it would make the overall coxiple
O(d3k). Note that in this case the space of possible adaptive trlatigns corresponding to cuts of the tree hierarchy is much
larger than in the case of the DAG hierarchy because one isanstrained by neighboring dependencies between the pre-
recorded sequences of flips.
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2.6.6 Examples

The method was tested on both artificial shapes and 2D piajsobf real molecules (see Figure 2.37). The hierarchiés bu
would be different mainly in the order of decimation steps] differences would be mostly local in nature. As can be geen
the examples, the desired behavior of preserving as mucbssiiye the structure of the shape while decimating is met.

8‘{ ¢ .
’~ o= < 9 TN
et 33

(a) 315 (b) 149 © 71 (d) 45 (e) 24 ) 15

(a) 303 (b) 144 (c) 73

(a) 79 (b) 45 (©) 31 (d) 25 (e) 16 5

P N e //"77‘\\‘ re T ke S
! 5 i Y | :
A | s N o /
- \\\ P “ / p

(a) 318 (b) 80 () 33 (d) 21 (e) 15 K

e

(a) 318 (b) 147 () 83 (d) 37 () 14 ® 5

Figure 2.37: Multiresolution molecular shapes. The imagsv the boundary of the union of balls and the zeshape. The
numbers denote the number of balls in each resolution. Re®%/ark artificial examples demonstrating how the topoldgica
structure is followed during decimation. The asymmetryha spirals shape is a result of the pair-wise clustering. Réw
and 5 are two different parallel projections of the graniititiolecule. There is a large amount of overlapping ballstdube
projection, which accounts for the rapid drop in the numbdradls at the first stages of decimation with small error.
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Related Work

Union of Balls using Voronoi-Cell Complexes

Several different approaches have been developed to acthimsvefficiency for molecular surface computations [27, 70
72, 75, 77]. Other work on surface representations featimesise of metaballs, molecular surfaces, and blobby models
[1, 20, 80, 31, 44, 47, 52, 60, 63, 64, 81, 82, 83].

In previous work on dynamic triangulations the focus hasbmestly on the simpler Delaunay/Voronoi structures (un-
weighted case) [6, 53, 24, 43, 48, 2, 67, 68]. Little has bemreddn the more general case of dynamic Regular Triangula-
tion/Power Diagrams and for dimensions greater than tworelgher, the kinds of dynamic operations developed are lysual
just the insertion/deletion of a single point. Such locagigtions become inefficient when we need to perform even pleim
but global modification.

Molecular Surface Computation using Adaptive Grids

Since Richards introduced the SES definition, a number dinigeies have been devised to compute the surface, bott stati
and dynamic, implicit and explicit. Connolly introducedawalgorithms to compute the surface. First, a dot based ricater
surface construction and second, an enumeration of thégmtbat make up the analytical surface (See [27], [26] agad hi
PhD thesis). In [77], the authors describe a distance fangirid for computing surfaces of varying probe radii. Outada
structure contains approaches similar to their idea. A ramobalgorithms were presented using the intersectiornrinéion
given by voronoi diagrams and the alpha shapes introducdtteisbrunner [37], including parallel algorithms in [75ida
triangulation scheme in [1]. Fast computations of SES isiilesd in [71] and [70], using Reduced sets, which contaaistg
where the probe is in contact with three atoms, and faces @gelseconnecting such points. Non Uniform Rational BSplines
( NURBSs ) descriptions for the patches of the molecular s@gaare given in [11], [10] and [12]. You and Bashford in [84]
defined a grid based algorithm to compute a set of volume eltsweéhich make up the Solvent Accessible Region.

Maintaining Union of Balls Under Atom Movements

Though a number of techniques have been devised for the statstruction of molecular surfaces (e.g., [27, 26, 777371,

71, 70, 84, 46, 11, 10, 85, 16]), not much work has been donesmhborhood data structures for the dynamic maintenance
of molecular surfaces as needed in MD. In [12] Bajaj et al. siaered limited dynamic maintenance of molecular surfaces
based on Non Uniform Rational BSplines ( NURBS ) descriitor the patches. Eyal and Halperin [39, 40] presented an
algorithm based on dynamic graph connectivity that updaesnion of balls molecular surface after a conformatichahge

in o (Iog2 n) amortized time per affected (by this change) atom.

Clustering and Decimation of Molecular Surfaces

Using multiresolution models for molecules can substéptimprove rendering speed and interactive response nat@slec-
ular interaction tools. Similar improvements in perforroamvould be achieved when a set of balls is used as an apprexima
representation of a generic object either for modeling éafetlls [47, 64], blobby models [83]) or for collision detiea [52].
Direct application of previous approaches for the deciamatind multiresolution representation of the surfaces siebras
[71, 56] can have serious embedding and self-intersectiobl@ms and are specific to the surface definition. A possible
lution if this problem has been addressed in [74] but limitedhe case of the boundary surface of tetrahedral meshes. Ou
multiresolution scheme updates the underlying structéitheomolecule, maintaining at any level of detail a regutartgu-
lation of the current weighted point-set. In this way we @&ifly track the topology of the molecular body at any adepti
level of resolution. Moreover this guarantees correct eddivey in all resolutions and creates an approximation frdricivthe
surface boundary can be computed in any of the previous shem

There are many approaches for creating multiresolutioresgmtations of geometric data for graphics and visu#ia b9,
59, 54]. They vary in both the simplification scheme like e&ntemoval [28], edge contraction [50], triangle contracti45],
vertex clustering [73], wavelet analysis [32], and alsdhi@ structure used to organize the levels of detail (eitheveat order
or a using a DAG).

Maintaining the regular triangulation at all resolutiomndess out the possibility of using decimation techniquee édge
or triangle contraction, which do not guarantee the (weighDelaunay property. Other known decimation schemesctrat
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guarantee this property such as vertex removal, do not spenogriate in this case since they do not preserve the mielecu
features as a subset of the whole triangulation. Technighih preserve features in the triangulation by taggingsijgeedges

or vertices [23] are more suitable for preserving specifigesdr regions. We are more interested in applying the deicima
on a subset of the triangulation while this subset can chduogeg the decimation.

Sphere trees have also been used in [51] for the purposet@bitision detection. In this work, Sphere hierarchiestardt
around a given object either by replacing special octremnsgr by placing balls on the medial-axis surfaces appnaked
using voronoi edges of some point sampling of the object. Gdmic approach of building the hierarchy by clustering gair
of balls for collision detection [52] is similar to ours. Hewer in this scheme the simplification process does not eptiat
underlying triangulation and hence does not track the wgioal changes induced by the decimation process. This rilake
the scheme unable to cluster balls that get in contact otdy sdme simplification steps.
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Relevant Mathematics

Voronoi-Delaunay Diagram

For a finite set of point® in R3, the Voronoi cell ofp € P is
Vo= {xeR®:vge P—{p}, [x—p| < x—al)}.

If the points are in general position, two Voronoi cells withn-empty intersection meet along a planar, convex Vortauait,
three Voronoi cells with non-empty intersection meet alangbmmon Voronoi edge and four Voronoi cells with non-empty
intersection meet at a Voronoi vertex. A cell decompositionsisting of the/oronoi objectsthat is, Voronoi cells, facets,
edges and vertices is the Voronoi diagram Raf the point seP.

The dual of VoiP is the Delaunay diagram DRlof P which is a simplicial complex when the points are in geneasifion.
The tetrahedra are dual to the Voronoi vertices, the triemglte dual to the Voronoi edges, the edges are dual to th@dioro
facets and the vertices (sample points fienare dual to the Voronoi cells. We also refer to the Delaumaypkces aDelaunay
objects

Euclidean vs Power distance.

For MVC the choice of using the Power distance in place of thelilean distance is motivated by the the efficiency and
simplicity of the construction of the power diagram togetéh the fact that the power distance can be proven to be perup
bound of the Euclidean distance.

P(p, B)

(@) (b)

Figure 2.38: Relationship between the Euclidean dist&{geB) between the poinp and the balB and their Power distance
P(p,B), (a) Configuration fod > r. (b) Configuration fod < r.

Consider a poinp at distancel from the centec a ballB of radiusr as in Figure 2.38. We define:

E(paB):|d_r|7 P(po)_ |d2_r2|'

Then we have the following chain of inequalities (whewndd are positive numbers):

0 < 4dr(d—r)? = 4d% — 8d?r? + 4dr®
(d—r)* = d*—4d% +6d%r?—4dr3+r*
< d*—2dH2 4t = (d? - r?)?

E(p,B)=|d—r[<y/|d>—r?|=P(p,B).
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In conclusion we have that for any given bBland pointp, the functionP(p,B) provides an upper bound on the distance
E(p,b):
E(p,B) <P(p.B), (6.28)

with equality holding only when =, i. e. the point is on the surface of the ball (and in trivides\whera orr is zero).
For a collection oh ballsZ = {By,...,Bn} the distance functions are extended as follows:

E(p,#) = min |di —ri (6.29)

1<i<n

P(p.#) = | min d? —r? (6.30)

The problem in comparing(p, #) with P(p, %) is that they may achieve their minimum for different valuéslmecause in
general the Power diagram is not coincident with the Voral@gram. Figure 2.6.6 shows an example of comparison betwee
the Voronoi diagram of two circles (in red) with the corresding Power diagram (in blue). In this example the minimum
distance of the poinp from the set# = {By,B5} is achieved at= 1 for P(p, %) and at = 2 for E(p, #):

In general for a given poinp we callip,ig the two indices such that:
P(pﬂ@) = P(pa Bip)
E(pa%) = E(pv BiE) .
From equations (6.29) and (6.28) we have that:

E(pv%) = E(pv BiE) < E(pv BiP)
< P(paBlp):P(pv‘%)

E(p,{Bq1,Bgo})

ﬁ {B1, B2})
55 }) y

/ 2

.
V]

(@) (b)

Figure 2.39: Power diagram (in blue) and Voronoi diagranré€if) of two circles. (a) Case of nonintersecting circle3 Qhase
of intersecting circles.
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@) (b) © (d) (e) ®

Figure 2.40: The combinatorial and geometric structuretedging a molecular shape: (a) The collection of balls (féed
points). (b) Power diagram of a set of the points. (¢) Regulangulation. (d) Thex-shape (witha = 0) of the points. (e)
Partitioning of the molecular body induced by the power dhag (f) The boundary of the molecular body.

Power Diagram

Given a weighted poir® = (p,wp) wherep € IR" andw € IR, thepower distancérom a pointx € IR" to P is defined as

T(X) =1/ IIp— X[~ wp ,

where||p— x]| is the ordinary Euclidean distance betwgeandx.
In molecule context, we define the weight of an aBwith center atp and radius to bewg = r2. Thepower distancef

xtoBis
m(X) =/[[p—X[2—r2.

Given a sef R} of weighted vertices (each vertex has a weighassociated with it), the Power Diagram is a tiling of the
space into convex regions where ftietile is the set of points nearest to the verRexin the power distance metric [4]. The
power diagram is similar to the Voronoi diagram using the podistance instead of Euclidean distance.

The weighted Voronoi cell of a ball in a moleculeZ is the set of points in space whose weighted distan8d¢dess than
or equal to their weighted distance to any other ball4ri36]:

Vg = {x€ R?|mg(x) < 1(X) VC € B} .

Thepower diagranof a molecule is the union of the weighted Voronoi cells foeleaf its atoms (Figure 2.40(b)).

Regular Triangulation

Theregular triangulation or weighted Delaunay triangulatiqiis the dual (face adjacency graph) of the power diagrarhagis
the Delaunay triangulation is the dual shape of the Vororagm. Vertices in the triangulation are connected if anlg d
their corresponding weighted Voronoi cells have a commoa {&igure 2.40(c)). This implies that two vertices are amtad
if and only if they have a nearest neighbor relation measiwrpdwer distance metric

Given a set oh 2D points with weights, it has been shown [38], that theiutagtriangulation can be computed@inlogn)
time, by incrementally inserting new points to the existingngulation and correcting it using edge flips.

Weighted Alpha Shapes

A simplexsin the regular triangulation of R} belongs to ther-shape of B} only if the orthogonal center of (the weighted
point orthogonal to the vertices af)is smaller tharo (see [34] for the complete condition). The alpha shape whrete0,
called the zero-shape, is the topological structure of mués [41]. For example, an edge- (u,v) is a part of the zero-shape
only if |ju—v||>—w, —w, < 0, which means that the two balls centerediandv intersect (Figure 2.40(d)).
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Adaptive grid, Oct-tree and k-d tree

B-splines and B-patches

A-splines and A-patches
An A-patch of degrea over the tetrahedroj@; d.950;] is defined by

Gn(x,Y,2) :=Fn(a) = Fa(01,02,03,04) = 0, (6.31)
where
Fn(01,02,03,04) = Z a”-k| Bir}k| (01,02,03,04), (6.32)
i+j+k+l=n
B" L O B
ijki (01, 02,03,04) = Tl 1050304,

and(x,y,2)" and(az,az,a3,a4)" are related by

_ [0 92 05 0s || @ | (6.33)

P N< X

Control points computation for trimmed NURBS patches

In this appendix we explain the computation of the NURBS mmrgoints. The approach we take is to compute the control
points once for all molecule atoms. That is each atom will dygresented by its specific domdnin (u,v) space and the
same set of normalized control points that represent theamynsphere with center in the origin. Then we apply an affine
transformation to map the unitary sphere to the positioaridly the atom. To have a unique base set of control pointsi{dgfi

a portion of the normalized sphere) that can represent amy ate need to be sure that for each li&ih % there is at least a
neighbor balB, that intersect8 for the smallest portion. This is because we wish to comfpgeobntrol points of a portion of
sphere which is a (bounded) rectangular domain and a minisuparset of any domaib of any atom.

Fortunately this condition is satisfied for all moleculesr Example in the ball and stick representation used in R34,

61] a bond (stick) is drawn between to atoms of ragir; if the distance between the centers of the two atoms is less than
0.6(r1+r2). Since in a molecule there is at least one bond per atom wethat/®r each atom there is at least a neighbor atom

for whichr < 0.6(r1+r2). If we also consider that minimum atom size in a moleculeiis&Land the maximum is.28,& we
have that each atom is intersected by a neighbor atom foast (85477% of its radius. This means that, with reference to
equation (2.2) we can always assume to hve0.84523 that id < 3.45288299571568. For this fixed valuelofe apply a
change of polynomial basis to get the coordindtey, z) of one quarter of the control points (and relative weighgs in the
table below.

The other control points are just computed mirroring th@gee with respect to the andy axis. The knots vectors are
u:[-1-1-100111v:[-1-1-100111.
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Figure 2.41: Control point computation
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Chapter 3

Smooth Surfaces

The computation of electrostatic solvation energy (alssvkmas polarization energy) for biomolecules plays an irtgrarole
in the molecular dynamics simulation [63], the analysistabgity in protein structure prediction [110], and the t@io-ligand
binding energy calculation [66]. The explicit model of tredv@nt provides the most rigorous solvation energy catoutd87].
However, due to the large amount of solvent molecules, mfdsieccomputation time is spent on the trajectories of thees!
molecules, which severely increases the computation ¢dsisanethod [96]. An alternative method is to representibigent
implicitly as a dielectric continuum [102], then the eledtatic potential is known by solving the Poisson-BoltzméRB)
equations [26][80]. A more efficient method is to approxietite PB electrostatic solvation energy by the generalizad B
(GB) model [111][28][72], which computes the electrostadlvation energpGelec as

T el
Gpol = 5 qlq] 2 9 (01)

2 2
217 1 + RR; expl~ e )

NI=

wheret = E—lp — i &p is the solute (low) dielectric constarsty is the solvent (high) dielectric constauy, is the atomic

charge of atom, rj; is the distance between atdrand j, F is an empirical factor (could be 4 [111] or 8 [72]), aRdis the
effective Born radius of atorn The effective Born radius reflects how deep an atom is bumiéite molecule and consequently
determines the importance to the polarization. The fortraref the effective Born radii is derived in [55]:

Ri71 1 /r(r_xi)'n(r) ds (02)

T 4n [r —xi|*

wherel is the molecular surface of the solute,is the center of atom andn(r) is the unit normal of the surface at
The details of the derivation of (6.13) and a fast evaluasityorithm based on the fast Fourier transform (FFT) for 3pi%
discussed in [20]. Since the numerical integrations aredorthe molecular surfaée an accurate and analytic representation
of I' is needed.

Three well-known molecular surfaces are shown in Figurar82D. The van der Waals surface (VWS) is the union of a
set of spheres with atomic van der Waals radii. The solvergsgible surface (SAS) is the union of augmented van derswWaal
spheres with each radius enlarged by the solvent probesddarmally taken as 1.4 ) [69]. The solvent excluded surface
(SES, also called molecular surface or Connolly surfactjddoundary of the union of all possible solvent probesdbatot
intersect with the interior of the VWS [40][93]. As describim [40], the SES consists of the convex spherical patchéshwh
are parts of the VWS as well, the toroidal pathces and theas@nspherical patches, which are generated by the probiegrol
along the intersections of neighboring atoms. The VWS caaseoverestimation of the electrostatic solvation enextpyie
the SAS leads to an underestimation [72]. The SES is the nwostate when it is applied in the energetic calculation and
therefore it is most often used to model the molecular saerfatowever the SES still has one significant drawback: it@iost
cusps when the rolling probe self-intersects, which maygeaingularity in the Born radii and the force calculations.

In the energetic computation, knowing the patch complexéseomolecular surface is not enough. For convenience, an
analytical representation of the molecular surface is ed@hd the singularity should also be avoided.
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Water Probe
* (14 4)

Figure 3.1: Three molecular surfaces are shown for two aiarhgo dimension. The boundary of the union of balls (pink)
with the van der Waals radii is the VWS. The SAS (purple) isuh@&n of augmented van der Waals spheres with each radius
enlarged by the radius of a solvent probe (light blue). Th& 8B&e blue curve) is boundary of all possible solvent prabat

do not intersect with the interior of the VWS.

3.1 Implicit Solvation Surface from volumetric Density Maps (Radial Basis Splines,
C'nf)

We extract an implicit solvation surface (molecular suefies a level set (isocontour) of the volumetric electrorsdgmaps
[15]. The implicit solvation surface is chosen to be a goodragimation of the Lee-Richards molecular surface [69] by
choosing an appropriate weighting parameter of the sunemafi Gaussian kernel functions.

3.1.1 Gaussian Density Map

The molecular surface has been approximated in the pass$298] by an isocontour:
N g (Xl g
M:={xeR%:G(x)=1}  with G(x)= Ze ( i >, (1.3)
i=

where (¥, r;) are the center and radius of tiite atom in the biomolecule, arig] < 0 is called the ‘decay rate’, which controls
the rate of decay of each atom’s Gaussian kernel. NotéBhraust be negative to ensure that the density function goesrto z
as|| x—x; || goes to infinity. In order to make the distance betwieandM, as uniform as possible, we take= B; /r2, where
C < Ois a given constant. No®(x) becomes

- S C([Ix—x[[2~r?)
G(x,C) = Zle . (1.4)
i=

In the following for the molecular surfadd (Ci) = {x € R®: G(x,G;) = 1}, we consideC = Cy,...,C. As shown in Fig.
3.2, the different effects d and constanB;(= B) are shown for a two-sphere system, one is centered at () v@iftOradius
of 1.0, the other one is at (2.8, 0, 0) with radius of 2.0. It barobserved that

Table 1: C (1/Angstrorf) /B; (constant) and Implicit Solvation Models in Fig. 3.2
Red Green | Magenta| Blue

Fig.3.2(a)| C=-0.125| C=-0.25| C=-05| C=-1.0
Fig.3.2(b)| Bi=-0.125| Bj=-0.25| Bij=-0.5 | Bj=-1.0

e Cleads to more uniform inflation tha®).
e Small balls have more inflation than big ones.

e Large error occurs around the intersection region, andrtioe eeduces gradually away from it.
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(a) (b)

Figure 3.2: Implicit Solvation models by choosing variousnQa) and B in (b). Yellow balls are two input atoms. The
correspondence between CiBlues and these models are shown in Table 1.

e LargerC andB; lead to greater inflation. For the same C &dalue, e.g., -0.1298; tends to introduce more inflation.
¢ Inflation of the molecular surfaces distorts the polar sidveenergies and hence to be seriously avoided.

Fig. 3.3 shows implicit solvation models of Ribosome 309mPared with Fig. 3.3(a), proteins inflate much more seripusl
in Fig. 3.3(e). rRNA in Fig. 3.3(c) and (f) looks similar, bpitoteins in Fig. 3.3(f) look a little more inflated than Fig3@®).
rRNA in Fig. 3.3(d) and (g) looks similar too, but proteinsHig. 3.3(g) are close to proteins in Fig. 3.3(c).

3.1.2 Multi-Level Gaussian Density Map

In order to reduce the inflation caused by Gaussian summasiovell as to model molecular surfaces with varying resotuti
on the implicit solvation surface, we introduce a multige@aussian map. First, we introduce some notation as showiyi

3.4. LetNg = {Néo), S ,NO”)} denote the index set of all the atoms V\Mél) = {i}. Supposé&\, is grouped into several subsets

M) {_190.. mo - :
N,”,i=1,2,---,ng, such that UN(I) — No. N{') ﬂ N](.J) —0 (1.5)
i=1 1<iz#j<nm
The seiN; .= {Nf) ™, whose elementg,are also sets, may be further grouped imte sobsetblg), i=12---,m,such that
UNY =N, N ) N = (1.6)
i=1 1<i#j<n

The collection of{NS)}i’E1 is denoted byN,. This hierarchical grouping process could be repeatedaktimes according to

the molecular complex considered. In practice, two or tliterations suffice. By using these SNS) and a given sequence
{p«} of pwith px > 0, thek-level Gaussian map are defined recursively as

G =Y G, NN,
K 0)
NeN,
where 0-level Gaussian map is defined by Eqn. €.4 (.0) or
2

GN(()i)(X) =K(lIx=x[)/K(ri), Kx =e™.

The atom group format depends on what kind of structure wh teisnodel and mesh. For a protein, atoms may be grouped
by residues, meaning that atoms in the same residue ardield&sto one group. Then the residues are grouped accotding
their neighborhood along the protein backbone.
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(e) B=-0.03125 () B=-0.125 (9)B=-0.5
Figure 3.3: Implicit solvation models of Thermus Thermdpsismall Ribosome 30S (1J5E) crystal subunit for variousssa
sian kernel parameters. The pink color shows 16S rRNA ancktihaining colors are proteins.

N:.I:l = ‘INE:::l- N.:ua- N.:: I‘ N'm = {N.::- N(um- NI::I }

M
35 M, 2 level Surface

Level Two BEmor B

M = O_level Surface

Mo 1_level Surface

Lewel One BError
dHI'l:l

Bo_ 3
NI. _-{N':,N?.N':::'} {N-JIJ Nclrz:ﬂxln}

H

Figure 3.4: The definition of multi-level surfaces.
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(a) low resolution (b) residue-level resolution (c) atoteieel resolution

Figure 3.5: Implicit solvation models of Haloarcula Marisrtui large Ribosome 50S (1JJ2) crystal subunit.pg@ay 0.03125;
(b) p1 = 0.125; (c)p1 = 0.5. p2 = 1.0. The light yellow and the pink color show 5S and 23S rRigpectively, the remaining
colors are proteins.

For each k-level Gaussian M& (x), a k-level surface is defined by
k

MN&I) —

This surface encloses the surfadg for N € NS). Hence, all theselki) define a hierarchical surface family. We call the surface
My as the child oMNm, andMNm the parent oMy. The enclosing relation of this hierarchical surface fgrslstrict, meaning
k k

)

that the minimal distance froiy to MNU> is greater than zero for any € NS . We further define the B-surface by for all
k

N e NS) as

S =Bd( U {xeR*:Gn() <1},
‘ Neny

where Bd() denotes the boundary of a regioiiRth Note thalSN(i> is enclosed strictly bMNa)-
k k

The purpose of introducing a multi-level Gaussian map isddrass the structure of molecules at a certain level. For
instance, at the residue level of a protein, we dealt withheasidue as one unit and therefore the protein is considered
the residue level resolution. The sub-structures of thielues(atoms), are not individually identifiable. Similargt the next
higher level, a group of residues is dealt as one unit anetber the protein is considered at an even coarser featsokiten.
The goal of addressing certain level structure and un-adirg the higher level ones is achieved by the properly seteof
the parametepy in the multi-level Gaussian map. Basically, largrrshould be chosen to address kakevel structure and a
smallerpg_; is used to un-address tlle— 1)-level structures.

Considering three levels of structures, including the atothe residue and the next level of grouping, we can coostru
a three level Gaussian map with givpn p2 and ps. To address the second level structure, we need to chmplseger and
p2 smaller, whilep; has less influence than the second level structure. Quiém d@ftalso suffices to consider only a two-
level Gaussian map instead of three: level one is at the ipragsidue level, while level two is at a coarser resolutievel.
Henceforth in this paper, we provide details for only twedkeGaussian maps.

In computing implicit solvation molecular surfaces, vaisanodels are constructed by choosing diffeqgngé (0,«) and
p2 € (0,) in the Gaussian map. To make the constructed model corrdgpancertain levelp; and p; need to be selected
properly. For a fixed level, the structure at this level skdaé distinguishable. For instance, at the residue levelintividual
residues should be observed, while atoms may not be dissimea clearly. Fig. 3.5 shows constructed models of Rib@som
50S at low resolution, residue and atomic level resolutions
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3.1.3 Approximation Computation

In order to obtain a good approximation to the molecularamgffrom the multi-level Gaussian map, we bound the error at

each level. To bound the approximation for the first level,nged to compute the minimal distance frfn, N € Nf) to its

parent surfacMN<i On the other hand, in order to have an error controlled agpration of the second level surface, we need
1
to compute the maximal error fromMy, N € Né) to its parent surfacM . Hence, we need to consider the error computation

for both levels of surfaces. The error computations aredasa p0|nt prolectlon algorithm.
Given the surfacdy, a pointg ¢ My and a unit directiom, the point projection algorithm in the following computes a
nearby intersection poirg of the lineg+tn (t € (—oo,)) with the surfacéy.

Algorithm 3.1.3.1 (Point Projection).

1. Compute an intervdé,b] fort, on whichGy(q+tn) — 1 changes sign once. This is achieved by a linear search step
in a certain rang@A, B]. If (OGn(q))"n[Gn(q) — 1] < 0, search im direction, otherwise in-n direction. If such an
interval could not be found, the project point does not exisl return a failure signal. After the interval is deterndine
setty = 252 andk = 0.

2. Computey ., by the Newton iteration method

Gn(q+1tn)

OGN (G + ) (2.7)

tr1 =tk —

If ti1 ¢ (a,b), replacey..1 by 252.
3. Replace the intervéd, b] by [a,tx. 1] if Gn(q+tn) — 1 changes sign ovéa,ty 1], and replacéa,b] by [ty 1,b] otherwise.

4. If b—a| < € (¢ is a given error tolerance, we usually take it tolfe*), stop the iteration ang = q+t, 1n is the
projection point, otherwise, skt= k+ 1 and go back to step 2.

We specify the searching ranffe B] in step 1 of the algorithm to ble-4, 4], since the atom diameters are around 4. Errors
beyond that are not considered here. If the projection gxiken the projection poirg of point g on the surfacéy in the
directionn is denoted byRy,, (g, n).

Minimal Error of Level One Surface

Now we assumd& = 1, then the child surfaces are atoms. Net {j} € Nl), the minimal error fromMy = Sy to MN<.
defined by

dv:= min —Xj||—rj, jE€N.
N= <i)N||p ill=ri, i
i,
Letg=X;+rj Hp X H , thenqgis on the spher&y andpis the projection ofj to the surface/l i in the spherical normal direction
n(q). Thatis,p= Pu (i)( ,n(q)). Hence in order to computly, we need to computéy (i)( ,n(g)) for g € .
N

1 .
Next we conS|der the computation of the minimal distancenfhdy to M ), where N € Ni). First we assume that each

atom (sphere) is uniformly sampled withvertices. This sampling is achleved by translating a tridatgd unit sphere to each

of the atomic centers and re-scaling it to the atom’s van deal\ladius. We obtain the unit sphere triangulation fron6]11

For each verteg on the triangulated atom surfabt, Py i (g,n(q)) is computed using theoint projectioralgorithm, where
N

n(q) is the spherical normal a

Algorithm 3.1.3.2 (Minimal Error computatioi.
Setdy = 4. for each triangle vertex € Sy NSy, do{ computeRy, (9,n(q)), and then compute

d = min{ch, [P, (.n(@) — x| 7).

f Py, (0,0(0)) € M. 49
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}

Table 2 shows the minimal error of our level one surface fesédue and a chain from Ribosome 30S, wieghké) is defined
ase(M) := max dy. It can be observed that the error decreasegsiasreases. The algorithm for computing minimal error
1

can also be used to compute the maximal error by changingithtormax in (1.8). Maximal errors for Ribosome 30s are also
listed in Table 2 for differenp; (see the second row).

Table 2: Minimal Error and Maximal Error of First Level Sucts of Ribosome 30S (1J5E) (Angstrom)

[ 0.25 0.5 1.0 2.0 4.0 8.0 16.0
Min Error (atomic) | 8.338e-02 | 2.829e-03| 6.287e-06| < 10° <10° <10° <10°
Max Error (atomic) | 1.634e+00| 8.656e-01| 4.121e-01| 2.038e-01| 8.893e-02| 3.940e-02| 1.842e-02

Maximal Error of Level Two Surface
The maximal error fronMy to MN“)' N e Né” is defined as
2

dN = M max M Hq_P’\/lN(i)(qvn)”a
e N,FMNg)(CI-,”)G SO >

whereq € My, By i (g,n) is the normal direction projection afto the surface«/IN<i). This error is computed as follows. Let
N2 2

N1 € NS). Algorithm 3.1.3.3 (Maximal Error computatioh

Sethl =0.
for eachN € N; do{
for each triangle vertegf € Sy NSy, do{

computedj := Puy, (d,n(q)), and
CompUté)MN(i) (q7 n(q)) if q € MNl,N
and then cozmpute
d, = max{ch,, [Py, (0.1(0)) — P, (6 n(@)]
) - - 2
’f H\/‘Néi) (q1 n(q)) € MNéi),Nl'
}
}
Again, the projection pointg = Ry, (q,n(q)) andPRy i (6,n(§)) are computed by the point projection algorithm, where
N.
the searching rangé, BJ is set to bg0, 4], since we knovszNm enclosingMy and we are not interested in the errors that are
2

larger than 4.

The first row of Table 3 shows the maximal errors of the secewdll(residue level) surfaces for ribosome 30s, where
is chosento be .8, p, =0.250.5,1.0,--- ,16. The second row lists the maximal errors of the second (ke level) surfaces
for the samep; andp,. The results show that the errors decrease approximatelyiasar rate ap, increases.

Table 3: Maximal Error of Second Level Surfaces of Riboso®® @LISE) (Angstrom)

P2 0.25 0.5 1.0 2.0 4.0 8.0 16.0
Max Error (residue)| 3.923e+00| 2.124e+00| 6.832e-01| 3.240e-01| 1.550e-01| 7.794e-02| 3.278e-02
Max Error (low) 9.899e+00| 7.695e+00| 8.045e-01| 2.365e-01| 1.390e-01] 6.113e-02| 2.653e-02

3.1.4 Good Approximations of Molecular Surfaces

We have discussed that it is often sufficient to consider alewel Gaussian map to approximate molecular surfacesddieas
certain structureq; is taken to be a small value to blur the higher level detailss chosen to be larger to enhance the feature
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of the current level structure. As we have shown in the lastiae, a smallep; leads to a larger error for the level one surface,
and a largem, leads to a smaller error for the second level surface. Thexebur strategy for obtaining a tight enclosing
surface approximation is to remove the level one error andrigjithe error of the second level.

(a) (b)

Figure 3.6: The left picture shows the inflation effect by @eussian map. The right one shows the tight enclosure ofsatom
The centers of the five atoms gre2,0,0), (2,0,0), (0,—1,0), (0,1,0) and(0,0,0). The corresponding radii are® 0.9, 11,

1.3 and 13. The parametep in the Gaussian map is chosen to bé.0rhe tight approximation on the right figure is obtained
by shrinking the five radii into 5644, 072525, 060476, 104567 and M@ respectively. The unit is Angstrom.

The main idea to obtain a tight level one enclosing surMﬁ@ is to reduce the radii of the atoms, such twi) touches
1 1

the original atoms (see Fig. 3.6). Suppg@MN(i) is the nearest point to thieth atom,j € N(i), and the distance fromto the
atom isdj. Then we have '

g [K([ly =11 /K (r)]P =+ [K([ly =) /K (rj)] P = 1. (1.9)
leN;” I1#]

whereK(x) = e*. Now we adjust the radius; to fj, such that the new nearest points on thej-th sphere. Since the

dominating part of (1.9) is the second term of the left hadeé sive therefore requirg Satisfying
0L <rj, (1.120)

K(rj+dj)/K(rj) = K(rj) /K (Fj). (1.11)

From this we obtain

K(rj+dj) K(rj+dj)

-k K(ry)? | K0)® ¢ RangéK),
. 0, otherwise

whereK ~! denotes the inverse function i§{x), RangéK) := {y € R:y = K(x), x& (0,)}. Based on this analysis, we build
the following iterative algorithm for computing.”

Algorithm 3.1.4.1 (Sphere Shrinking
Fori=1,2,--- ,ng do the following steps

1. set = 0,1 =rj,d = e, vj N

2. Compute the minimal distandé“), vije Nf) from thej-th atom to the iso-surface defined by the multi-level Gaurssi
mapG'l, () =5 _ o [K(Ix=xj[[)/K(r}")]P, using Algorithm 4.2.
1 1
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3. Compute

_q [k KK (r!)
r}'*l) K [ Krj+d)) |’ K(rj+dl) € RangeK),
0, otherwise
4. If max |dJ(|> _ dj(l+1>| < & (we takes = 10%), terminate thé loop andrj('+l> are the required results. Otherwise, set
1

| =1+ 1 and go back to step 2.

Remark: The conditionm € Rang¢K) may lead to some of the atoms located in the interior of thesmdé to become
i

untouchable. Figure 3.6 shows that the circle at the orgyimot touched.
The experiments show the sphere shrinking algorithm cgeseat a linear rate. Table 4 lists the em@gx: maxjeNm |d§')|
1

for 20 amino acids wittp; = 0.4.

K(rj)K ()
r

Table 4: Errorse,(%gxfor 20 amino acids ang; = 0.4

ALA ARG ASN ASP CYS GLN GLU GLY HSD ILE
5.13e-01 | 6.97e-01| 5.99e-01| 6.23e-01 | 5.36e-01 | 6.26e-01| 7.06e-01| 4.34e-01| 7.36e-01| 6.00e-01
6.22e-02 | 1.37e-01| 2.66e-01| 6.75e-02 | 5.86e-02 | 1.16e-01| 7.78e-02| 5.33e-02 | 7.20e-02 | 5.62e-02
2.80e-03 | 3.79e-02| 5.83e-02 | 1.50e-03 | 6.82e-04 | 1.76e-03 | 4.57e-04| 1.90e-02 | 1.45e-02 | 2.73e-03
5.76e-04 | 2.30e-02 | 1.83e-04 | 4.93e-04 | 1.81e-04 | 4.51e-04 | 1.38e-04 | 8.62e-05| 5.30e-03 | 5.60e-04
1.30e-04 | 6.95e-04 | 6.06e-05| 1.64e-04| 4.97e-05| 1.74e-04| 4.26e-05| 6.31e-06 | 2.20e-03 | 1.25e-04
3.14e-05| 2.18e-04 | 2.22e-05| 5.59e-05| 1.39e-05| 7.84e-05| 1.32e-05| 7.16e-07 | 9.94e-04 | 3.11e-05

| O BN O] —

=
(=)

LEU LYS MET PHE PRO SER THR TRP TYR VAL
8.48e-01 | 8.62e-01| 6.08e-01| 6.14e-01| 7.98e-01| 9.63e-01| 1.06e-00| 6.01e-01| 6.10e-01| 7.07e-01
6.51e-02 | 3.96e-01| 1.13e-01| 8.94e-02| 2.06e-03 | 8.81e-02| 3.06e-02| 9.17e-02| 6.03e-02| 2.86e-02
5.72e-03 | 1.54e-03| 7.78e-03 | 6.50e-03 | 3.62e-04 | 5.28e-04| 6.63e-03 | 1.49e-02| 4.25e-02 | 5.76e-03
1.27e-03| 5.18e-04| 2.25e-03 | 1.90e-03| 9.12e-05| 1.19e-04 | 1.68e-03 | 6.42e-03 | 1.69e-03| 1.36e-03
3.03e-04 | 1.77e-04| 6.77e-04| 7.13e-04 | 2.35e-05| 2.66e-05| 4.67e-04 | 2.90e-03| 6.93e-04 | 3.56e-04
7.52e-05| 6.23e-05| 2.09e-04 | 3.02e-04 | 6.26e-06 | 5.88e-06 | 1.36e-04 | 1.56e-03| 3.52e-04 | 9.78e-05

| O | N Of —

=
(=)

Fig. 3.7 shows multi-resolution implicit solvation suréaapproximations of an ASN-THR-TYR peptide with varigus
andp,. Fig. 3.7(a) shows an atomic level model, Fig. 3~7¢aare residue level models. It can be observed that wherathe s
p; is selected, smallgy, leads to fatter surfaces. Compared with Fig. 3.7(g), Fig(fBis more tight.

Fig. 3.8 shows multi-resolution implicit solvation suréaapproximation of Ribosome 30S. Fig. 3.8(a) is a low levedlaip
the pink color shows 16S rRNA and the remaining colors aréeprs. One protein (Chain B) is separated from the whole
structure. The residue level model can be constructed bgtaef) smallp; and largep, as shown in Fig. 3.8(b), and the atomic
level model is constructed by selecting lafgeand smallp, as shown in Fig. 3.8(c).

3.2 Mixed-Voronoi-Del complexes((ll)

3.3 Algebraic Shell SplinesCY)
3.3.1 Algorithm Sketch

There are four main steps in our algebraic spline moleculgase (ASMS) construction algorithm: (1) construct artidhi
triangular mesh of the SES; (2) build a prism scaffold sundbng the triangulation; (3) define a piecewise polynomidhw
certain continuity; (4) extract the 0-contour of the pietsmapolynomial. We are going the explain each step in deiaié
following and discuss how to make use the parametrizatith@ASMS in the numerical integration.

3.3.2 Initial triangulation of the MS

So far a lot of work has been done on the triangulation of th8 8Eits approximation [35][2][67][122][17]. The ASMS
generation could be applied to any of these triangulatidnsour current research we use the triangulation generateal b
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@) (b) © (d)

Figure 3.7:Different effects of changing, and tight/non-tight approximations for an ASN-THR-TYR fidp which consists of 49 atoms.
The surface (b), (c) and (d) are the same as outer surface} (f @nd (g) respectively. The inner surface of (e), () &) is the hard sphere
model of three residues. (a) shows the atomic level appratkim of the hard sphere model, whgre= 5.0, p, = 1.0; (b), (e), (c) and (f)
show the tight approximation of the residue level with= 0.4. But differentp, are used. We choog® = 2.0 for (b) p» = 0.5 for (c). It
could be observed that largps leads to closer approximation. (d) and (g) show non-tigipraximations using the sanm® andp; as (c)
and (f). Comparing with (f), even larger error is observe(gin

(b)

Figure 3.8: Multi-resolution models of Ribosome 30S. (a) - Ribosome 3@%he low level withp; = 0.0625, p, = 1.0 in multi-level
Gaussian map. Ribosome 30S contains 22 chains and eachmofgipainted in a different color. The pink color shows 16S ARNhd the
remaining colors are proteins. The blue box shows one prd¢t@hain B). (b) - Chain B at the residue level wiph = 0.4, pp = 5.0. It
consists of 234 residues. (c) - Chain B at the atomic levei pjt= 5.0, p> = 1.0. It consists of 1900 atoms.
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program in the software TexMol [17][7] as the initial. Fesiof the molecular surface are well preserved in thisdudation.
We then decimate the mesh [21] to obtain a coarser one.

3.3.3 Implicit/parametric patches generation

Given the triangulation mesh, let [vjv;vi] be one of the triangles whevg, vj, vy are the vertices of the triangle. Suppose the
unit normals of the surface at the vertices are also knonmyte as, (I =1,]j,k). Letv;(A) =v, + An,. First we define a
prism (Figure 3.9Djjk :={p: p =byVi(A) +bovj(A) +bavk(A), A € lij}, where(by, by, bs) are the barycentric coordinates
of points in[vjvjvy], andljj is a maximal open interval containing 0 and for an¥ ij, Vi(A ), vj(A), vk(A) are not collinear
andnj, nj, ng point to the same side of the plaRg(A) := {p: p =b1vi(A) +bavj(A) +bavi(A)}.

Figure 3.9: A prisnD;j constructed based on the triangeyjvy|.

Next we define a function in the Benstein-Bezier (BB) basksrdhe prisnD;jy:
F (b, b, b3, A) = Ek biji (A)Bfj (b1, b2, bg), (3.12)
i+j+k=n

WhereB{}k(bl,bz,bg) is the Bezier basis

n!

i kK
iljIk! b1bzbs.

Bl (b1, b2, b3) =

003

b102 b012

\F b210 [7120 V.f

Figure 3.10: The control coefficients of the cubic Bezierida$functionF.

We approximate the molecular surface by the zero contoér, afenoted a$. In order to makes smooth, the degree of
the Bezier basia should be no less than 3. For simplicity, here we considecdéise oin = 3. The control coefficients;ji (A )
should be properly defined such ti&it continuous. In Figure 3.10 we show the relationship ofcinatrol coefficients and the
points of the triangle when = 3. Next we are going to discuss these coefficients are defined.

SinceSpasses through the verticas vj, vi, we define

b300 = bozo = Pooz = A. (3.13)

To obtainC! continuity at the vertices, we requibg;o— bzgo = %DF(vi) -(Vj(A) —vi(A)), whereF (v;) = n;. Therefore
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boto=A + 21 (vj(A) ~Vi(A)). (3.14)

b120, b201, b102, b021, b012 are defined similarly.
To obtain theC! continuity at the midpoints of the edgesDfwe defineb;11 by using the side-vertex scheme [85]:

bi11= Wlb(lll)l-l- Wzb(121>1+ W3b(l?1>1’ (3.15)
where b2
W = 1K . =123 i4j+k
b3b3 + b?b3 + b?b2

Next we are going to defi 11)1, b<121)1 andbﬁ)1 such that th€?* continuity is obtained at the midpoint of the edgex, vivk
andviv;. Consider the edgav; for instant. Recall that any poipt= (X,y,2) in Djjx can be represented by

(%¥,2)" =b1vi(A) +bavj(A) +bavi(A). (3.16)
Therefore differentiating both sides of (3.16) with redfdec, y andz, respectively, yields
dby  dby A
x> o (Vi(A) = v(A))T
I3 = f’ﬁ_t;l 05_byz 2 (Vi(A) = vk(A )T , (3.17)
by db  gA (b1n; + bznj + bgnk)T
0z 0z 0z
wherels is a 3x 3 unit matrix. Denote
(Vi(A) = v(A))T
T:= (Vi(A) =vi(A))T : (3.18)
(blni + bznj + b3nk)T

and letA=vj(A) —vi(A), B=V;j(A) — vk(A) andC = byn; + byn; + bsn, thenT = (ABC)T.
From (3.17) we have

oby  dby  gA

1 2 — T 1=

gy gy o) =——(BxC,CxA AxB). (3.19)
oby 0B, o) det(T)

9z 0z 0z
According to (3.12), at the midpoint efvj, (b1, bz, bs) = (3,3,0), we have

oF
b1 (Vi(A) —w(A )T i 3 (bp10— b111)
£ | = [ m-wm | ()« dbizo b
o (ni+nj)T/2 :

By (3.15), at(by, by, bs) = (1,3,0) we havebys; = b{Y),. Therefore the gradient &4, 3,0) is

oF OF OF ;
Oby’ by’ 9A

Nj + Nj 1 3 3
Skl Zde(_l_)[g(bzm—b(ll)l)BxC—i— 3(b120— b{3)C x A+ Ax B (3.20)

OF =T X

Define vectors
di(A) =vj(A)—Vi(A) =B—A,
da(by,b2,b3) = binj +bonj +bang =C,
ds(bg,bo,b3,A) =d1 xd, =BXxC+CxA. (3.21)
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Let

(=]
~—~—

C:C(%,%, , (3.22)

da(A) = da( ,%,O,/\):Bxc—i—ch. (3.23)

NI =

Let OF = OF(3,2,0). In order to haveC! continuity at(3, 3,0), we should hav&lF - ds(A) = 0. Therefore, by (3.20)
and (3.23), we have

b(g) _ ds(A )T (3b210B x ¢+ 3b1oc X A+ Ax B)
t 3/|d3(A)]]2

(3.24)

Similarly, we may deﬁnda)(lll)l and b(lzfl.

Now the functionF (by,by,bs, A) is well defined. The next step is to extract the zero levelSseBiven the barycentric
coordinategby, by, bs) of a pointin the triangléviv;vy], we find the correspondimgby solving the equatioR (b1, by, b3, A) =
0 for A and this could be done by the Newton’s method. Then we mayhgetdrresponding point ddas

(%Y, 27 =byvi(A) +bavj(A) +bavi(A). (3.25)

3.3.4 Smoothness

Theorem 3.3.1. The ASMS S is¥at the vertices of T and the midpoints of the edges of T.
Theorem 3.3.2.S is C everywhere if every edgev; of T satisfiesy; - (vi —vj) =n;j- (vj—Vi).
Theorem 3.3.3.S is C everywhere if the unit normals at the vertices of T are theesam

Proofs of the theorems are shown in [124].

3.3.5 Parametrization and quadrature

In this section, we would like to show how the ASMS is appliedhe computation of (6.13). Since we use the ASMS to

represent the molecular surface, nbw: S. Let f = %(r—) We decompose the entire surf&@mto patcheqS;} with S

being the AMSM generated over trianglethen we have
/ f(x)ds=Y [ f(x)ds (3.26)
S ] S

For any pointx = (X,y,2) on Sj, by the inverse map of (3.25), one can uniquely Rdp a point in trianglej and get its
baricentric coordinate@s, by, bz) with bs = 1 —b; — b,. Thereforex, y, zcan be represented in terms(bf, by):

X=X(by,bz,),  y=y(by,b2),  z=2zby,by)
Replacing(x,y,z) with (b1, b1, bs) in (3.26) and letting
g(bg,bz) = f(x(b1,b2),y(b1,b2),2(by,bz)),
we get
[ fx)ds= [ glby,b2)VEG—F2 dbud, (3.27)
Si Oj

where
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L, 0X o oy . oz .,

E_(abl) (abl) (abl) I
_oxox oy oy 0z 0z
" 0bydby, by dby,  dbg by’
L, OX o, 0y, 07,

C=Gn,) * (ap,) (6,

We then apply the Gaussian quadrature to (3.27):

. n
g(by,bp) VEG—F2 dbydby ~ 5 Weg(b, 5) VEG— F2|yy by, (3.28)
a =1 '
where(bk, b, b%) andW are the Gaussian integration nodes and weights on the legng

3.3.6 Error of the ASMS model

In order to show the error @8 to the true surfac&, we do a test on some typical surfaces (Table L)} {(x,y,2) : z=
f(x,y), (x,¥) € [0,1]?} which are considered as the true surfaces. We generateguriion mesh over the true surface with
the maximum edge lengthbeing 01. Based on the mesh, we construct the ASMS m&dédihe error ofSto § is defined

as ma%%, wherep € S, q € &, andp andg have the saméby, by, b3) volume coordinates but differeatcoordinates. We

sample(p, q) on the surfaces and compute the maximum relative error.

Table 3.1: Relative error and Convergence

Function(x,y) € [0,1]? max{ ”ﬂ;ﬁ”} C

z=0 0 0
z2=x2+y? 2.450030e-05 1.010636e-2
z=x3+y3 1.063699e-04| 2.610113e-2
7— e 4[(x-052+(y-05) 5.286856e-07|  6.288604e-5
z2=1.25+ % 2.555683e-04  4.58608e-2
z=tanh(9y — 9x) 1.196519e-04| 1.896754e-1
z=\/1-x2—y2 8.614969e-05 1.744051e-1h%)
z=[(2—/1—y2)2—x?Y/2 | 1.418242e-05| 1.748754e-02

For the point paip(by, b2, bz, Ap) andqg(by, bz, b3,Aq) defined above, we prove that their Euclidean distance isdediby
the difference of theiA coordinates.

Lemma 3.3.1. The error of the approximation poimtto the true point is bounded byAp — Aq|.
PROOF

[P —all < ba[[Vi(Ap) = Vi(Ag)[| + D2[|Vj(Ap) — Vj(Aqg)|| + bs|[Vk(Ap) — Vk(Aq)|
< |Ap — Aql(bal[ni] +b2[n; | + ba[n]|)
= [Ap—Aq|
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To study the rate of converges $to S, we gradually refine the initial mesh. Since the error is lamechby|A, — Ag|, we
compute the ratio of the maximum differenceXyf and Aq to h, h?, h3, and so forth. A decreases, we check if the ratio
converges or not, which allows us to know the highest rat®n¥ergence 06to §. For most of the test functions in Table 3.1,
we observe thaB converges t& as fast a®©(h®). We also observe that for the case /1 — x2 — y2, the rate of convergence

reache®(h*). We show the limit of the ratié"%,‘ ash | 0, denoted a€, in Table 3.1. Hence we draw the following claim:

Claim: Lethbe the maximum side length of triangulation méstp be the point on the ASMS) be the corresponding point
on the true surface, thgnconverges tq at the rate oD(h%). i.e. There exists a constatsuch that|p — q|| < Ch®.

=

is
=
b

4600 Triangles 9216 Triangles 18434 Triangles

Figure 3.11: The top row is the triangulation of the SES ot@ro1MLO with different number of triangles. The bottom row
is the ASMS generated from the above corresponding triatigul.

We generated the ASMS for the real proteins based on diffesiza of meshes (Figure 3.11) and show the error of the
ASMS to the SES of three proteins: 1GCQ (843 atoms), 1MLO {1&6ms), and 1KKL (1276 atoms) in Table 3.2. Here
the SES is modeled as a level set of the summation of fast oer&aussian functions. The ASMS is generated from the
triangulation of the SES at different resolution. The nundfdriangles of the initial meshes are listed in Table 3.Be®rror

Emax is defined as the one-way Hausdorff distance from the ASMBe®ES:Enax= max_ min ||p—q||. As we see in the
peASMS qeSES

table, the errors are small and decrease rapidly as thalimiingulation becomes dense.

3.3.7 Application to the biomolecular energetic computatn

We apply the ASMS model to the GB electrostatic solvatiorrgymeomputations of the example proteins 1HIA (693 atoms),
1CGI (852 atoms), and 1PPE (436 atoms). The ASMS mo8éts the proteins are generated based on the initial mesh
with different number of triangles (Table 3.3). We show th8MS of the example molecules generated from the decimated
triangulations in Figure 6.4 and Figure 3.13. As a comparisee compute the polarization ener@y,for both the ASMS

and the piecewise linear (PL) surfaces and show the enesgjtseand the timing in Table 3.3. For all the computations, a
4-point Gaussian quadrature rule over a triangle [43] igldsethe numerical integration in (3.28) when computing Boen
radii. The running time contains the time cost of computimg integration nodes over the surfaces, computing the Bxfin r
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Table 3.2: Error of ASMS to the SES

1GCQ 1MLO 1KKL
No. of As Emax No. of As Emax No. of As Emax
16,312 | 0.266069|| 18,400 | 0.233949| 19,968 | 0.260418
32,624 | 0.142149| 36,864 | 0.142380| 39,544 | 0.134689
65,456 | 0.082550| 73,736 | 0.083895| 79,096 | 0.085855

and evaluatingsy. If we consider the energy computed from the dense mesh asadecas we see from the table, Bgy
computed from the coarse PL model has a large error, howewrérd coarse ASMS model, it is very close to the dense mesh
result but with less time. On the other hand, to get a enegyltref the same accuracy, fewer number of triangles areateed
for the ASMS model than the PL model. For example, for thegnolCGl, theGpo computed from the ASMS with 3674
triangles is -1394.227 kcal/mol. However to get a similaute 8712 triangles are needed for the piecewise lineareinod
Therefore the ASMS model is much more efficient in the en@geimputation than trivial piecewise linear models.

Table 3.3: electrostatic solvation energy and timing

Protein| No. of Gpol (kcal/mol) Timing (s)
ID Triangles PL AS PL AS
29108 | -1371.741894 -1343.1496| 39.64 | 40.31
1CGlI 8712 | -1399.194841 -1346.2230| 12.94| 12.64
3674 | -1678.444735 -1394.2270| 7.40 | 6.11
27480 | -1361.226603 -1340.6384| 30.23| 31.18
1HIA 7770 | -1389.017538 -1347.8067| 9.43 | 9.93
3510 | -1571.890827 -1388.4665 5.21 | 5.21
24244 | -835.563905| -825.3252| 17.27| 18.26
1PPE 6004 -852.713039| -828.2158| 5.09 | 5.39
2748 -933.956234| -845.5085| 2.74 | 3.27

3.4 Variational B-spline Surfaces C?)

3.4.1 Geometric Flow for Molecular Surface Construction

Given a non-negative functiofn(x) over a domairQ € R3, we generate a molecular surfaceén Q, such that the energy
functional

E(I’):/I_f(x)dx—i—/\/rh(x,n)dx (4.29)

is minimal, wherex andn are the surface point and surface normal, respectita@yn) is another given non-negative function
overR® x R3 which is used for regularizing the molecular surface. HereO is a constant. From minimizing energy functional
(4.29), the partial differential equation (PDE) in the leget form is obtained as the Euler Lagrange equation [22jtheérmore
an evolutionary PDE equation is obtained as an iteratineg(tlependent) geometric flow approximation to the PDE.

Given a molecular representation (i.e., PDB) which coasi$ta sequence of atoms with centéxs}” ; and radii{r; }j" ;
(see Fig. 3.14(a)), we construct molecular surfaces whittinmize the general energy functional (4.29). In [25], wéese
f(x) = g(x)? andh(x,n) = 1 with

gx)=1 S e*Ci(HX*XinfF-Z) F—rtr
= — 1 R | — I b’
2,

wherery, is the probe radius, which usually is ]Aé(the radius of water). The constafit> 0, which is also called the Gaussian
decay rate, is determined so tlygk) = 0 is an approximation of the solvent accessible surfacenvitlyiven tolerance. We
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(b) (d)

Figure 3.12: Molecular models of a protein(1HIA). (a) is T&temic model. (b) is the initial dense mesh of the SES (27480
triangles). (c) is the decimated mesh of the SES model (#tattgles). (d) is the ASMS (7770 patches) generated from (c)

()

Figure 3.13: The top row are the models of 1CGI and the bottmmare the models of 1PPE. (a) and (d) are the atomic
structures of the proteins. (b) and (e) are the decimataaigtilar meshes of the proteins with 8712 triangles and 6@btes,
respectively. (c) and (f) are the ASMS models generated ftgrand (e), respectively.
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(@) (b) (©)

Figure 3.14: Molecular Surfaces of Protein (PDB Id: 6PT4).the van der Waals surface. (b) shows 6&ismooth implicit
B-spline molecular surface. (c) shows the tight enclosfite@implicit B-spline molecular surface superimposedwtite van
der Waals surface.

(d) (e) ®

Figure 3.15: Resolution adaptive molecular surfaces oEthélycoprotein (PDB Id: 10KE) of the envelope of the Dengue
virus. (a) the van der Waals surface. (b) @rimplicit B-spline molecular surface of 10KE at Foresolution (Residues 1-52,
133-193 and 281-296 are colored red. Residues 53-132 and8®are colored yellow. Residues 297-394 are colored blue.
The coloring method is based on [84]). (c) @frimplicit B-spline molecular surface complexed with a ligefgreen) at 16\
resolution. (d) (e) and (f) are a zoomed view of the boxedipostin (a), (b) and (c) respectively (only one of the two boxe
are shown in each case as they are identical).

chooseCj as 5~ '”2 . The second term of (4.29) is used to regularize the corntstlsurface, wherg is a small number. In the
examples prowded in the following, we chookseas Q01. To further eliminate depression and smooth out highwturas, we
select functiorn(x,n) = ||0g(x)||? in this paper and demonstrate its efficiency by comparing & humber of prior analytic
surfaces [18, 123]. Minimizing energy functional (4.29) fieis choice oh(x, n) yields the following Euler-Lagrange equation

Og >+ZQ(DQ)TD<P+/\[D(HDQHZ)]TDfp:0
1Dl 1Dl

Thus the corresponding level-set formulation of the evoluequation (see [118] for derivation details or [47]) is

<gZ+A||Dg||2>div(

0 O
% _ (@+A|og| >duv<

at [ ||) 106l +29(0g) "D+ A [0(|0g1*)] " Ogp (4.30)
= H(@)+L(0y),
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where

(¢) = (& + A [Og| ) dlv (”E—m 100l L(0g) = 20(0g)T g+ A[0( g P O

This evolution equation is solved by our higher-order lesel methods [25]. The first order tednid¢g) is computed using
an upwind scheme over a finer grid, and the higher order té(ip) is computed using a spline presentation defined on a
coarser grid. Ifg is a signed distance function and a steady solution of eqgu#4.30), then the iso-surfage= —ry is an
approximation of molecular surface (see Fig. 3.14(b)).

We suppose that equation (4.30) is solved in a bounding boxadeQ which is uniformly partitioned with verticeGg =
{Xijk}injk:O' Let G| be the set of vertices of the grid which is generated by bisabdivisionGy uniformly | times. Letp be
a piecewise trilinear level set function defined on a @jdwith | = 0 or 1 or 2, andp be the cubic spline approximation of
@ over gridGg. Without loss of generality, we take= 1 for simplicity. Thus the main algorithm in [22] can be rapsd as
follows.

Algorithm 1. Smooth molecular surface construction
1. Computgy(x) over the gridG;.

2. Compute an initialp (= @) by taking@(x) = g(x) and then update it using a reinitialization step, such fhap|| = 1.
Let 0 be the initial closed level set surfaceg@fwith interior 2 c R3.

3. Updatep by solving equation (4.30) for one time step using a finitéedénce method.
4. Reinitialize, convertg to @, and then return to the previous step if the stopping cdteis not satisfied.
5. Generate a level set surfape: ®(x) = —rp}, which is the required approximation of the smooth molecsiaface.

In the following subsections, we summarize the main issudisd implementation of the above algorithm.

Level set evolution

Equation (4.30) is solved in a thin shell of the moving sugféa accelerate computation and reduce errors. We firshlimii
¢° to be the signed distance functionld, if necessary, reinitialization step can be done first (sdsgbsection 3.4.1). Then
we define a thin shell arourid by

N®={xe G :[¢°(x)| < 7},
where# is the thickness of the shell should be evaluated first. Tegmenumerical oscillations at the boundary of the thin
shell, we should introduce a cut-off functiofx) in (4.30) as

% =C(@)[H(9) +L(Og)]

ot ’ (4.31)
{ @(x,0) = ¢°(x),

onNO for one time step and get(x). The time step is chosen such that the interface moves lesstie grid sizéx. At each

grid pointxij in the thin shelN°, compute®(xijk) = c(¢°(xijk)) [H (P°(xijk)) + L(O@°(xijK)]. Let

T=min {AX,AX/ max |v0(xijk)|}.

Xijk EN
Then updates® by the explicit Euler scheme
@ (xijk) = @°(xijk) + TV (Xijk ), Xijk € N°.

Sinceg! is no longer a signed distance function, a reinitializagtep is required to get a negt and a new thin sheN™.
The process fromp? to @' described above is repeated to get a sequé@®en- of ¢, and a sequence of thin shefN™} -0,
until the following termination conditions

max [V'(xijk)| <& andm<M
XijkGNm
are satisfied. We choose= 0.001.M is a given upper bound of the iteration number, we chdésen, wheren® is the number
of grid points inG,.
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The construction of an initial surface

The construction of an initial surface is pivotal to the leset methods. If the initial surface is near to the final mai surface,
a few evolution steps are enough. In our variational mokecsurface construction, we ugéx) = 0 as an initial surfacg®. To

further speed the computation, we use a local fast computafithe Gaussian functicer Clx—xil>~F7 jn g(x) aroundy;. For

details on fast Gaussian summation, refer to [18, 23].

Adaptive reinitialization

In general, it is impossible to prevent the evolving levélfaaction ¢(x) from deviating away from a signed distance function.
Flat or steep regions could develop around the interfac&ngdurther computation and level set determination highlc-
curate. Hence a reinitialization step to reset the levefis®ttion ¢ to be a signed distance function is usually necessary. This
problem has been carefully studied in [90]. The main idea solve a Hamilton-Jacobi equation. We omit the details hacke
refer the reader to [22].

3.4.2 lllustrative Examples

In this subsection, we provide implementation details gésal applications of the methods. Our variational molacaurface
algorithm has been implemented in our molecular visuatimasoftware package TexMol [8]. We now present illustrativ
examples of variational molecular surfaces, such as reatilution molecular models and hierarchical macromobgattuc-
ture surfaces. Quantitative comparative surface analyiflisGaussian and adaptive grid molecular surfaces methedalso
described.

v
&

%

g\;
(@) (b)

Figure 3.16: Adaptive Resolutid® Smooth Implicit B-spline Molecular Surfaces. (a) yellogs$eand green antenna at about
5 Aresolution, and the blue body at aboutAﬁesqutlon of 1HZH (PDB Id). (b) adaptive resolution witlygteand antenna at
about 10A resolution, and the body at aboufFesolution.
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Adaptive resolutions of molecular surface models

To capture molecular features, such as pockets and turomedéscan model molecular surfaces with varying and adaptive
resolution. Our variational molecular surface method fmtes an approach to achieve this. Since the initial surfacni
approximation surface, one can select a spatially adagéeay rateC to capture the initial surface at adaptive resolution. In
Fig. 3.15, we show such an example of a ligand-binding pockiéte dengue virus (DV) envelope (E) Glycoprotein. Fig.63.1
shows another example, where different portions of the outde surface of a monomer of the intact human Immunoglobuli
B12 (PDB Id 1HZH) are shown at different resolutions.

@) (b)

(d) (e) (f)

Figure 3.17: Hierarchic&?-Smooth Implicit B-Spline Molecular Surface Models of thevElope of the Dengue Virus Figure.
(a) Two chains of the monomeric envelope glycoprotein. (thir&e-fold envelope and the van der Waal of the other paheof t
envelope. (PDB Id: 1K4R) (c) 1 five-fold envelope and the van\Waal of the remain part of the envelope. (PDB Id: 1K4R).
(d) the smooth implicit B-Spline molecular surface of twaits of the monomeric envelope glycoprotein colored us@#g. [
(e) similar to (b) using the coloring of (d). (f) similar to)(bsing the coloring of (d).

Hierarchical molecular surface segmentation of large maas-molecular complexes

Large biomolecular complexes, such as ribosomes and giaresassemblies of multiple proteins and nucleic acids anérts
to thousands of structural/functional biomolecular sutsurHierarchical molecular surface segmentation withiigiishable
coloring is extremely useful in achieving better underditag of the structural organization of such assemblieseier present
one example of a hierarchical structure organization ohtloéecular surface of the icosahedral envelope of the DeNgus
in Fig. 3.17. Where figure (a) is the molecular surface of tivains. Figure (b) is a molecular surface of a three-fold pfitte
envelope with the other parts as van der Waals surfacesteHiglis a molecular surface of a five-fold part of the envelajth
the other parts as van der Waals surfaces. In figure (d), mialesurfaces of different residues groups are coloreeéefttly.
The other two figures are similar to (b) and (c) separately.
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Comparative examples

In this subsubsection, we compare @frsmooth B-spline molecular surface with molecular surfapsserated by level sets
of Gaussian functions [123] and molecular surfaces geeetat adaptive grid methods [18]. We also compare the diffaze
between different regularization terms in the generatioradational molecular surfaces, in particular with resyte [22, 25].

@) (b) (©) (d)
Figure 3.18: Comparison of Three Different Molecular Socef#odels (PDB Id: 1FSS). (a) the Gaussian molecular surface
(b) molecular surface by the adaptive grid method with tliledince between this surface and the surface of (a), displas
a color mapped function on surface. (c) @frmolecular surface and the difference between this surfadére surface of (a),
again displayed as color mapped function on surface. (tigisolor bar of the difference.

Fig. 3.18 shows this comparison for Acetylcholinesterasamexed with Fasciculin-11, having 1FSS as its PDB Id. The

— 39 [ lIx=xi||12—(r})2
molecular surface using Gaussian functions is definefikoy R3 : g(x) = 1}, whereg(x) = 5, e HZ[H e ]. In figure

(a), we show Gaussian molecular surface. Figures (b) argh@my the results of the adaptive grid method and our variatio
method. The differences between the Gaussian moleculfacsuwith the surfaces generated by the adaptive grid method
and our variational method are also respectively plottecbésr mapped functions on the Gaussian surfaces. For tWacas

S, S, we calculated the difference by the following simple metho

Diff (x,S2) = min{dist{x,y),y € S}, x € S,

where distx,y) is the Euclidean distance of two points. Then we displayediifference by a color mapped function defined
on the initial surfacé&;. In this example, we select Gaussian surfacgamnd adaptive grid surface and our variational surface
asS;. In Fig. 3.19, an illustrative example is given for the Adpge Carbamoyltransferase (PDB Id 4AT1). We show our
molecular surface in figure (a). Similar to the above exampkedepict in figure (b) the difference between our varialon
molecular surface and the Gaussian surf&és the molecular surface produced by our variational metSadilarly in figure

(c), we show the difference between the adaptive grid médecurface with our molecular surface. From these figures, w
can see that the variational molecular surface is diffdiremt the Gaussian and adaptive grid surface.

To better quantitate this difference, in Table 3.4 and T&ole we compare the results of area and volume computation
using our variational method, and that of Gaussian, of adagrid molecular surfaces. The results of Gaussian mtdecu
surfaces and adaptive grid molecular surfaces are impletdém TexMol. Since the surfaces produced by Gaussianifursct
often yield artifacts such as narrow depressions or turaredsfurthermore are quite inflated [9] (see Fig. 3.18 and)3the
surface area is enlarged and the enclosed volume is snidlleresult shows that our method gives larger volumes to €aus
molecular surfaces but much smaller surfaces areas. Thaysar free from the topological surface artifacts. Commgarésults
with the adaptive grid method, we find that both the surfaeasand volumes of our method are larger.

On comparison between different regularization terms

In this paper, we use another regularization term to deeraawanted surface depression or narrow tunnel artifacthen
molecular surface. Compared with the regularization teemsged in [25], while no obvious visual differences can besoled,

we show example of the molecular surfaces with our differegtlarization term in Fig. 3.20. Figures (a) and (d) are the
variational molecular surface enclosing the van der Waattase. Figures (b) and (e) are the mean curvature and Gaussi
curvature plots of the functional with area as regular@aterm. Figures (c) and (f) are the mean curvature and Gaussi
curvature plots of the functional with the new regulariaatierm used in this paper.
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(a) (b)

(©)
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(d)

Figure 3.19: Comparison of Three Different Molecular Soefodels of the Aspartate Carbamoyltransferase (PDB Id14A
(a) our B-spline molecular surface. (b) Gaussian moleaudiace with difference with (a) shown a color mapped fuorctn
surface. (c) molecular surface using an adaptive grid wiith igsolution 128 and with difference with (a) shown as a color

mapped function on surface. (d) is the color bar.

Molecule |PDBId] A1 | A2 | A3
Acetylcholinesterase Fasciculin 1FSS | 25638.6 | 20233.6 | 20335.6
Fas.2 Mouse Acetylcholinesterase Comp|esMAH | 16920.2 | 17061.0 | 17121.8
Glutamine Synthetase 2GLS | 262196.6| 172746.3| 158346.8
Aspartate Carbamoyltransferase 4AT1 | 45059.5| 32608.0 | 32300.5
HIV Capsid C 1A80 | 11294.4| 7015.9 6334.3
GroEL-GroES Complex 1AON | 404391.4| 283704.5| 204322.9
Quinoprotein Methylamine Dehydrogenase2BBK | 63868.9 | 25349.6 | 21396.8
Scapharca Inaequivalvis 2Z8A | 22827.4| 11228.7 | 9997.8

Table 3.4: Surface area of different proteins computedgugiree different methods. Al is computed for Gaussian nuddec
surface. A2 is computed for adaptive grid molecular surfé&is computed for the molecular surface using our methods.

Molecule |[PDBId| Vi | V2 | V3

Acetylcholinesterase Fasciculin 1FSS | 94653.5| 78017.2 | 84453.0
Fas.2 Mouse Acetylcholinesterase ComplestMAH | 116586.9| 113528.9| 119776.8
Glutamine Synthetase 2GLS | 48724.5| 46250.6 | 42617.0
Aspartate Carbamoyltransferase 4AT1 | 96081.7 | 90061.6 | 97158.3
HIV Capsid C 1A80 | 22997.3| 21801.2 | 24718.3
GroEL-GroES Complex 1AON | 43316.1 | 38817.6 | 30928.9
Quinoprotein Methylamine Dehydrogenase2BBK | 130205.1| 133399.8| 144046.2
Scapharca Inaequivalvis 2Z8A | 44518.0 | 45002.0 | 50330.7

Table 3.5: Molecular volume of different proteins computeihg three different methods. V1 is computed via Gaussian
molecular surface. V2 is computed for adaptive grid methafiase. V3 is computed for the molecular surface using our

methods.

3.5 Meshing of Molecular Interfaces

In this subsection, we describe an approach to generatéyqgtraingular/tetrahedral meshes for complicated bicnalar
structures directly from the PDB format data, conformingtgood implicit solvation surface approximation. Theretaree

main steps in our mesh generation process:

1. Implicit Solvation Surface Construction — A smooth ingfilisolvation model is constructed to approximate the Lee-
Richards molecular surface by using weighted Gaussianojsictatomic kernel functions and a two-level clustering

techniques. See subsection 3.1 for details

2. Mesh Generation — A modified dual contouring method is useetract triangular and interior/exterior tetrahedral
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(d)
Figure 3.20: Feature Preserving Adaptive Resolution MdbecSurfaces of the Nicotonic AcetylCholine Receptor Birot
2BG9. (a) (d) our molecular surface enclosing the the vanidels surface. (b) and (c) are the mean curvature plots of the
variational molecular surface generated by the minimad aegularization and the gradient magnitude squares nezatian
functional. (e) and (f) are the respective Gaussian cureatiots.

meshes, conforming to the implicit solvation surface. Thaladontouring method [120, 121] is selected for mesh gen-
eration as it tends to yield meshes with better aspect ratiorder to generate exterior meshes described by biopdlysic

applications [108, 109, 119], we add a sphere or box outhie@tplicit solvation surface, and create an outer boundary
Our extracted tetrahedral mesh is spatially adaptive grchats to preserve molecular surface features while maingi

the number of elements.

3. Quality Improvement — Geometric flows are used to imprbeequality of extracted triangular and tetrahedral meshes.

The generated tetrahedral meshes of the monomeric anth&zitamouse acetylcholinesterase (mAChE) [31, 32] have
been successfully used in solving the steady-state Smmlgtti equation using the finite element method [108, 109].119

3.5.1 Mesh Generation

There are two main methods for contouring scalar fields, @rcontouring [77] and dual contouring [61]. Both of them can
be extended to tetrahedral mesh generation. The dual aamgouethod [120, 121] is often the method of choice as it $eod
yield meshes with better aspect ratio.

Triangular Meshing

Dual contouring [61] uses an octree data structure, and/aeslthose edges that have endpoints lying on differens sifle
the isosurface, callesign change edgedhe mesh adaptivity is determined during a top-down octoeestruction. Each sign
change edge is shared by either four (uniform case) or tla@@pfive case) cells, and one minimizer point is calculéted
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Figure 3.21: The analysis domain of exterior meshes. (&) is the geometric center of the molecule, suppose the circum
sphere of the biomolecule has the radius.oThe box represents the volumetric data, a&4lis the maximum sphere inside
the box, the radius igp(ro > r). ‘S’ is an outer sphere with the radius af(r; = (20~ 40)r). (b) - the diffusion domain is
the interval volume between the molecular surface and tker gphereS;’, here we choose; = 5r for visualization. (c) - the
outer boundary is a cubic box.

each of them by minimizing a predefined Quadratic Error FondiQEF) [54]:

QEFX =Y [ni- (x—pi)]?, (5.32)

wherep;, n; represent the position and unit normal vectors of the intesection point respectively. For each sign change edge,
a quad or triangle is constructed by connecting the minirsiz€hese quads and triangles provide a ‘dual’ approximaifo
the isosurface.

A recursive cell subdivision process was used to presers&rilimear topology [121] of the isosurface. During celbsiit
vision, the function value at each newly inserted grid poent be exactly calculated since we know the volumetric fonct
(Eqn. (1.4)). Additionally, we can generate a more accuraagular mesh by projecting each generated minimizertamito
the isosurface (Eqn. (1.3)).

Tetrahedral Meshing

The dual contouring method has already been extended tacex¢trahedral meshes from volumetric scalar fields [120].1
The cells containing the isosurface are called boundaly,@aid the interior cells are those cells whose eight \vestare inside
the isosurface. In the tetrahedral mesh extraction proedishe boundary cells and the interior cells need to beyaeal in

the octree data structure. There are two kinds of edges indzoy cells, one is a sign change edge, the other is an interio
edge. Interior cells only have interior edges. In [120, 12iferior edges and interior faces in boundary cells ardt deth

in a special way, and the volume inside boundary cells isetralized. For interior cells, we only need to split theno i
tetrahedra.

Adding an Outer Boundary In biological diffusion systems, we need to analyze thetebstatic potential field which
is faraway from the molecular surface [60, 71]. Assume thatradius of the circum-sphere of a biomolecule.isThe
computational model can be approximated by a field from asr@phereS; with the radius of20 ~ 40)r to the molecular
surface. Therefore the exterior mesh is defined as the tatralization of the interval volume between the moleculafase
and the outer sphe® (Fig. 3.21(b)). Sometimes the outer boundary is chosen todubic box as shown in Fig. 3.21(c).

First we add a spher& with the radius ofrg (whererg >r andrg =2"/2 = 2"-1) outside the molecular surface, and
generate meshes between the molecular surface and thesphemeS,. Then we extend the tetrahedral meshes from the
sphereS, to the outer bounding sphef&. For each data point inside the molecular surface, we kegptiginal function
value. While for each data point outside the molecular serfave reset the function value as the smaller onk(»f — a and
the shortest distance from the grid point to the splSgr&qn. (5.33) shows the newly constructed functi¢x) which provides
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a grid-based volumetric data containing the biomoleculéiase and an outer sphesg
min([x—xol| —ro, f(x) —a), iff(x) <a,|x—xol <ro,
9(x) = q IIx—xol[—ro, iff(x) < a,|[x—xll = ro, (5.33)
f(x)—a, if f(x) > a,

wherexg are coordinates of the molecular geometric center. Thealsewr = 0.5 for volumetric data generated from the
characteristic function, anal = 1.0 for volumetric data generated from the summation ofSSim kernels.

The molecular surface and the outer spHg&rean be extracted as an isosurface at the isoval8g0) = {x|/g(x) = 0}. All
the grid points inside the interval volunig0) = {x|g(x) < 0} have negative function values, and all the grid points deti
have positive values.
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Figure 3.22: 2D triangulation. (a) Old scheme, (b) New saheBiue and yellow triangles are generated for sign changesd
and interior edges respectively. The red curve represeatnblecular surface, and the green points represent nzieipoints.

Mesh Extraction

Here we introduce a different scheme from the algorithmemted in [120, 121], in which we do not distinguish boundary
cells and interior cells when we analyze edges. We only dengwo kinds of edges - sign change edges and interior edges.
For each boundary cell, we can obtain a minimizer point byimizing its Quadratic Error Function. For each interiorlcel
we set the middle point of the cell as its minimizer point..F3g22(b) shows a simple 2D example. In 2D, there are two cells
sharing each edge, and two minimizer points are obtained.e&ch sign change edge, the two minimizers and the interior
vertex of this edge construct a triangle (blue trianglesy. éach interior edge, each minimizer point and this edgstcoct a
triangle (yellow triangles). In 3D as shown in Fig. 3.23,réhare three or four cells sharing each edge. Thereforehtke for
four) minimizers and the interior vertex of the sign changgesconstruct one (or two) tetrahedron, while the threedar)f
minimizers and the interior edge construct two (or founakeedra.

Compared with the algorithm presented in [120, 121] as shiowkig. 3.22(a), Fig. 3.22(b) generates the same surface
meshes, and tends to generate more regular interior mesthelsatter aspect ratio, but a few more elements for interédls.
Fig. 3.22(b) can be easily extended to large volume decoitipas For arbitrary large volume data, it is difficult to irog
all the data into memory at the same time. So we first dividddtge volume data into some small subvolumes, then mesh
each subvolume separately. For those sign change edgestaridriedges lying on the interfaces between subvolumes, w
analyze them separately. Finally, the generated meshesaaged together to obtain the desired mesh. The mesh aidajstiv
controlled by the structural properties of biomoleculebe Extracted tetrahedral mesh is finer around the molecuttacs,
and gradually gets coarser from the molecular surface ovdrtds the outer spher&. Furthermore, we generate the finest
mesh around the active site, such as the cavity in the monoarat tetrameric mAChE shown in Fig.3.294@), and a coarse
mesh everywhere else.

Mesh Extension

We have generated meshes between the biomolecular sunidteseouter sphei®), the next step is to construct tetrahedral
meshes gradually from the sph&gto the bounding spher® (Fig. 3.21). The spher§, consists of triangles, so we extend
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(c) [

Figure 3.23: Sign change edges and interior edges are adailyZBD tetrahedralization. (a)(b) - sign change edge (e r
edge); (c)(d) - interior edge (the red edge). The green galidts represent minimizer points, and the red solid paoeypsesent
the interior vertex of the sign change edge.

V0 V v2

u u2

ul ul

(a) ’ ®) (c)

Figure 3.24: (a) - one triangle in the sph&g(blue) is extended steps until arriving at the sphe& (red); (b) and (c) - a
prism is decomposed into three tetrahedra in two differextsy
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each triangle radially as shown in Fig. 3.24 and a prism isiakt for each extending step. The prism can be divided into
three tetrahedra. The extension step lerigtian be calculated by Eqn. (5.34). It is better for the sp&gtte be triangulated
uniformly since the step length is fixed for each extensiep.st

2(I’1 — I’o)

(5.34)

wheren is the step number. In Figure 3.24, suppage;u; is a triangle on spher§, andup, ui, Uy are the unique index
numbers of the three vertices, where< ug andu; < up. For one extension stepgu; Uy is extended tagvyv,, and the two
triangles construct a prism, which can be decomposed inée ttetrahedra. In order to avoid the diagonal conflict pobla
different decomposition method (Fig. 3.24(b)) is chosen based on the index number of the three vertiteg.< uy, then
we choose Fig. 3.24(b) to split the prism into three tetratield u, < Up, then Fig. 3.24(c) is selected

Assume there amatriangles on the sphef, which is extended steps to arrive at the sphese mprisms or 3ntetrahedra
are generated in each extending step, and a totatwft8trahedra are constructed in the extension process. foherd is
better to keep a coarse and uniform triangular mesh on thersgh

3.5.2 Quality Improvement
There are two sub-steps in mesh quality improvement:

1. Denoising and improving the aspect ratio of the surfacemgsurface vertex adjustment in the normal and the tangent
directions).

2. Improving the aspect ratio of the volumetric mesh (vea#jistment inside the volume).

We use geometric partial differential equations (PDEsyadbe the first step. Geometric PDEs, such as the mean ctavatu
flow, the surface diffusion flow and Willmore flow, have beetemmsively used in surface and imaging processing [117,.116]
Here we choose surface diffusion flow to smooth the mole@uaiace because of its volume preserving, and furtherntore i
approximates spheres accurately (quadratic precision).

%( = AH (X)n(X) + V(X) T(x), (5.35)

whereH is the mean curvature, is the unit surface normal vector(x) is the velocity in the tangent direction(x), andA is

the Laplace-Beltrami operatdk,= (aa—xzz, j—yzz, 5—222).

Egn. (5.35) is solved over a triangular mesh with vertite$ by discretizing each of its terms. In temporal spaﬁéis

nl_yn . . . . . .
approximated by the Euler scherﬁer—x', wherert is time step-lengthx is the approximating solution &t= nr, x,-n+1 is the

approximating solution dt= (n+1)t, andxiO = x; serves as the initial value. Discretizing schemeg¥andH in the spatial
space are given in [116], we do not go to detail here. Fustbeil (x) is approximated by

(M) =X = O T M) — XN, (5.36)

wherem(x!") is defined as the mass center of all the surface trianglegenttox. A mass centelP of a regiorV is defined by
finding p € V, such thatf,, || y— p [|> do = min, whereV could be a piece of surface or a volumeRiA. For our surface mesh
caseV consists of triangles around vertgk Then we could derive that

M0q) = X2 Y KA+ A1) /AG) (5.37)
JEN()
whereN(i) is the index set of the one ring vertex neighborgbfA | is the area of the triangle'™]_X]]. A(x") is the total of
triangle areas.
Usually, people use the geometric center [116], instealdenfrtass center, however we observed that the mass center work
better for biomolecules. The discretization leads to atwesdefinite linear system, and the approximate solutioohbtained

by solving this linear system.
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Figure 3.25: The surface comparison before/after quatifyovement. The left column shows the original surface oASM-
THR-TYR peptide, and the right column shows the surface afiesh regularization. The top row shows the smooth shading
surfaces, and the bottom row shows snapshots of the meshes.

After the molecular surface is regularized, the next step i prove the volumetric mesh by relocating each interastax
to the mass center of its surrounding tetrahedra. d.dte an interior vertexp; be one of its neighboring vertices, then the
mass center of all tetrahedra aroymds computed byn(p;) = %pi + 4_\14 ¥ j Vij pj, whereVij is the volume summation of all the
tetrahedra around the edy®p;], V; is the volume summation of the tetrahedra around the vextekhis is similar in spirit to
the multi-linear centroid smoothing scheme [14].

Fig. 3.25 shows the difference of the mesh before and afteqtiality improvement steps. The left column shows the
original iso-surface of an ASN-THR-TYR peptide, and thehtigolumn shows the results after mesh regularization. It is
obvious that after quality improvement, the surface meshdse regular and has better aspect ratio (twice the ratioadfdle
radius to circumcircle radius).

The left picture in Fig.3.28 shows the improvement of thesaspatio, and Fig.3.263.27 show the improvement in mesh
regularization. We can see that noises are removed anddeatre preserved since the surface diffusion flow presenrese
and spherical geometry. The surface error is restrictebinviialf of the grid size for the binary data from the chareste
function, and almost zero for the data from Gaussian dems#@p since we have projected each boundary vertex onto the
isosurface.
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AVERS,,
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Figure 3.26: Comparison of MAChE (9308 vertices, 1861 2glies) before and after surface mesh regularization. (@yial;
(b) - after mesh regularization.

Figure 3.27: Comparison of Ribosome 30S (13428 vertice852&iangles) before and after surface mesh regularizatieft
- original; Right - after mesh regularization.

In [121], the edge contraction and linear averaging methasl wsed to improve the quality of tetra meshes with the edge-
ratio (the longest edge length over the shortest edge lagthJoe-Liu parameter%& 3x (|V|)% / So<i<j<3l8j |2, where|V|
denotes the volume; represents the edge connecting vereandv;) as metrics. The goal is to improve the worst parameters
in each iteration. Here we still use the same edge contrastibeme, but relocate each interior vertex to its mass icage.
(5.37)) since it can minimize the energy defined earljgr(y — p ||> do). From the right picture in Fig. 3.28, we can see that
the worst Joe-Liu parameter is improved significantly adjgality improvement. Fig. 3.29 and 3.31 show interior teteshes
of mMAChE and Ribosome 30S.
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Figure 3.28: The histogram of the aspect-ratio and Joe-aiampeter.

3.5.3 Results and Conclusion

Monomeric mMAChE: The extracted tetrahedral meshes of the monomer as showg.irBR29 have been used in the finite
element analysis of the steady-state Smoluchowski equé@i8SE) for diffusion rate constant calculations [108[9lL(Note
the adaptive meshes around the narrow gorge region (the aitit in mAChE is at the bottom of this gorge).

Figure 3.29: Interior and exterior tetrahedral meshes afioneeric mMAChE. The left two pictures conform to the SAS with
inflation o = 2, and the right two pictures conform to the surface congtdiérom Gaussian summation withh = 0.25,

p2 = 1.0. From left to right: (65147 vertices, 323442 tets), (1X16&rtices, 656823 tets), (103680 vertices, 509597 tet$) an
(138967 vertices, 707284 tets). The color shows electiostaotential (leftmost) and residues (the right two).

Tetrameric mMAChE: We also generated adaptive tetrahedral meshes for thdcdudigesterase in tetrameric form, with
two different arrangement of the monomers. Each monomerhaactive site accessible though a long narrow gorge (20
Angstrom), so there are a total of four gorges. Fig. 3.30 shibv@ two crystal structures. In the first crystal structime,
gorges are partially blocked, while the other two are comebfeaccessible to solvent. In the second one, all the fougemp
are open. Each of the adaptive meshes have finer trianglesdtioe region of the four gorges. These meshes are alsorused i
calculating the diffusion rate constant [119].

Ribosome: Ribosomes are macromolecular complexes responsibleddrahslation of mMRNA into proteins. These com-
plexes consist of two subunits: the larger 50S and the sn3l§, both of the subunits are composed of rRNA and protein
constituents. Atomic level, residue-level and low resolutstructure models were constructed from density mapsasrs
in Fig. 3.3 and 3.5. The constructed exterior meshes argyhesed for the finite element solution of the Possion-Boltama
equation [27]. Fig. 3.31 show interior and exterior mesHah® Ribosome 30S/50S.

We have developed a quality molecular meshing approachkttjifsom PDB molecular structural data, with adaptivity
at prescribed active sites on the molecular surface. Ouergésd meshes continue to being used in several boundéey/fin
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Figure 3.30: Interior and exterior tetrahedral meshestoditeeric mMAChE p; = 0.5, p, = 1.0. The left two pictures show the
1st crystal structure 1C20 (133078 vertices, 670950 tats) the right two pictures show the 2nd one 1C2B, (10646 3oessit
551074 tets). Gorges are shown in red boxes.

Figure 3.31: Interior and exterior tetrahedral meshes bbBime 30S, low resolutiop; = 0.03125,p, = 1.0. From left to
right; (33612 vertices, 163327 tets), (37613 vertices AB®aets) and (40255 vertices, 201724 tets). The pink cblows 16S
rRNA and other colors show proteins.
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element biophysics simulations [108, 109] [119].

3.6 Multi-resolution Surfaces

Exploratory visualization of large molecules and evendardgiomolecular complexes (LBCs) is useful in understagdire
structure of the entity in question and visually inspechitschemical properties. Although, advancement in corpgitaphics
has made this exploration possible, it is still extremelymoey intensive and far from being real-time when it comes to
visualization of large macromolecules and molecular cexgd at high resolution. As the resolution of the represientés
varied, different features of the molecules are discemahbt high resolutions, near the 1 and 2 A range, one can disish
atoms from each other, showing a very high detailed map ofrtbiecule. At this atomistic resolution, biologists candstu
the active sites in detail. Active sites, or activity sitelsaxe different proteins bind and interact, or small molesyligands)
dock with proteins are often studied by molecular biolagatthis fine resolution. For example, during the oxy-deaxgess

in the hemoglobin molecule and the binding/dissociatiothef oxygen ion with the Iron ion, the activity site is the m@yi
surrounding the heme group of atoms containing the Ironama, hence the area of interest and activity is necessarily be
visualized there at atomistic detail(resolution), while test of the atoms of the protein scaffolding the heme dosilchptured

at coarser resolutions. In figure 3.32, we show an examplaiffrtultiresolution visualization of the hemoglobin malezwith

the region surrounding one of the active sites depicted aea fesolution. At lower resolutions, between 5 to 10 A, selcoy
structures become more apparent in volumetric maps. Irgadama of large structures like icosahedral viruses, cagtat
very low resolutions show the arrangement of protein cagssran their genomic enclosing shell. When scientists Idok a
each capsomer in a higher resolution, the arrangement tipsp then the structures in the proteins and finally thenato
arrangements become apparent. In figure 3.33, we show tlge [Ribosomal Subunit at two different resolutions, brirggin
out different sets of features independently. Hence wetssestudying large biomolecular complex (LBC) structuremlves
visualization at multiple levels of resolution.

3.6.1 Interactive Exploratory Visualization

This program takes an ASCII formatted file containing theteecoordinates commonly referred to as the PDB (Proteia Dat
Bank). Each atom’s type gives it a unique radius. The useatsmselect to color the resulting adaptive meshes by ptieper
like the chain number etc. The interface allows the user émghk the resolution inside and outside thver and the isovalues.
A set of three axis, aligned with the global x, y and z axesqiead red, green and blue for the positive axes) are used ko bot
move and resize thever. A wireframe of a cube is rendered to show the outline ofrthver. These geometry are rendered
with no depth in OpenGL to always keep them on top (In figurd 3w have added depth to thaverto show the reader the
actual position). Knobs at the end of the axes are used twerd® inner region. The traditional user interface tramsédions
like translation, zoom and rotation are provided.

On loading a PDB file, an adaptive surface is extracted witidher in a default position, the outer region at low resolution
5A and the inner region at atomic resolution and more dersstypled. Ul widgets are provided for the user to change all of
the above parameters.

Autonomous Movement ofRover

We also generate a trajectory for tlowerto move autonomously by tracing a path within the pocketpr@kesions) and tunnels
(through holes) on the molecular surface that we identify.this purpose, we realy heavily on the critical points &f dlistance
function imposed by the molecular surface. The distancetfonhs assigns every pointits distance to the surfac When
Sis known only via a discrete representation, for examplet @fspointsP, one approximatelss by hp where at every point
x € R3, the function value ohp gives the distance to the nearest sample poitP. The critical points ofp are of four types
- maxima, index-1 saddle, index-2 saddle, minima and alt fgpes of critical points can be detected along with theili¢es
by using Voronoi and Delaunay diagram®f107].

To automate the movement of thaver, we first detect the pockets and tunnels of the moleculaasarfA pocket is a
depression on the surface with narrower mouth and a tunreethisough hole on the surface that contributes to the genus of
the surface. In order to detect these topological featwessluster the maxima and index 2 saddle points lying extésithe
surface and compute their stable manifolds. For detaileetgorithm, see [9].
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(a) The entire hemoglobin molecule is represented at a €oars (b) TheRoveris moved to a region of interest, which is resolved
resolution, showing the main globular chains. at a higher resolution.

(c) A zoom into theRovershowing smooth adaptive surfaces. (d) The wireframe rendering shows crack free isocontouring

Figure 3.32: A single resolution image of the hemoglobinecale hides important active site details. We provide thex us
with a roverto dynamically compute regions of interest with higher heSon using a combination of novel fast summation
algorithms and smooth dual contouring techniques.
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(a) A lower resolution model showing the different RNA chain (b) The Ribosome is rendered at higher resolution, showéag n
and proteins in different colors. The tertiary and globaliciure atomic details. While this is useful to study a small portiie
of the molecule is apparent at this resolution. an active site, this destroys all global information in thge.

Figure 3.33: Comparison between details revealed by highamresolution molecular surfaces.

Once these features are detected, the task is to build atoajehrough these features so that theer can follow the
path. To build one such path, we restrict our computatioy within each pocket or tunnel and collect the index 1 andxnde
2 saddle points lying inside these features. We then contpeatenstable manifold of the saddle points. The unstablédfoidn
of an index 2 saddle pointlg) is one dimensional, where as the unstable manifold of thexrl saddle poinfU;) is two
dimensional. Computation of these structures has beemibleddn detail in [57]. TheJ;s are further starred to remove the
tiny, thin patches along the path and a clean one dimenspmiginear trajectory is created. We can this trajectdryThe
distance function is then sampled ®mat close enough intervals in order to estimate the dimessibtheroverat every sample
point onT. The dimension of theoveris then set to the maximum distanxe function value withingheket/tunnel. Figure
3.35 shows the performance of the feature (pocket and tuiteitfication along with the trajectories of th@ver computed
inside them.

3.6.2 Multiresolution Molecular Surfaces

Let us consider an LBC witM atoms centered af, and radiirj,0 < i < M. Since we are dealing with proteins and RNA, we
can simplify our problem by assuming that the radii come fasmall discrete set, so each set can be computed separately
and summed up (the fast summation algorithms do not condifferent radii for the kernels). Let the roving cube break
this set into two disjoint setgoyt, Vin With Moyt, Min : Mout + Min = M atoms each. We allow three different kinds of dynamic
updates. First, the resolution of the inner and outer fonstifout, fin), controlled by changing the paramet@s: and fin.

The isovalues in each regioisgout, iSGn) can be changed, showing the skin (molecular surface atlisexl) and the backbone
(regions of higher density). The user is also allowed to rélaendataset, visualizing regions in higher resolution gishe
Rover. In figure 3.36, we show the main steps in our algorithm. Th@eeactions require maintaining a set of active atoms in
theRover, dynamically updating the new function and a smooth adesiocontouring algorithm.

Atom set query

To speed up the query of particles lying in and out of the soilhwme we construct of a range tree on the input centers [65]. A
range tree is a®(log(M)) method (for arM atom system) for determining a subset of the input whichifiegle any given
range. We consider the construction of the range to be preegsing and is not included in the actual computation. @nyev
repositioning of the sub-volume, we have to query the rarggeto obtain the subset of centers inside the sub-volumésand
complement set (centers that are outside the sub-volumaté tlat this is two range queries and not one. The complexity
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Figure 3.34: Theoverin action.
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Figure 3.35: Top row: The surface of gramicidin D ion charisahown (transparent) with the detected tunnel insidddyel
body and red mouths). The subfigure in the right pannel shbevpath detected via the unstable manifolds of index 1 and 2
saddle points falling inside the tunnel. Bottom row: The ewollar surface of mouse Acetylcholinesterase (mAchE)asvsh
(transparent) with the pocket (green) identified. The adite of this molecule resides inside the gorge encloseddéopacket.
A closeup of the triangulation is shown in the left corner #melpath detected inside the pocket is shown in the rightezorn

for the range query given a bound@log(M + k))) for some constark. Range tree also carries the storage overhead of
O(MlogM).

Fast density function update

For interactive visualization of dynamically updatdverand resolution, isovalue parameters, we need algorithmstpute
the functionsfyy and fi, efficiently. When théRovercube is moved, a new volunig, needs to be computed for isosurfacing.
This is probably the most common update operation perfodunedg interaction. We provide precomputation based dtlgois

to speed up this update.

Direct summationif we haveN output points and/l Gaussians, then we can compute the sum at all the points iMP(N
time and O(M+N) memory. If the rate of decay of the Gaussidrigh, then we can use a truncated Gaussian and update only
around it. Consider a width of for a truncated Gaussian. Using local summations, we getguatation cost oMw?. For
grids (whereN is large, typically 128to 256), and slow decay Gaussians, this operation can be expensive

Fast summation algorithms The Gaussian function summation can be expressed as a ataxolThis allows the functions
fout, fin to be quickly computed with a change Bfut, Bin using the Fourier transform. There are fast Gaussian suimmat
algorithms including general multi-pole methods. We falithe method outlined in [91],[16] to compute both the fuoos.
The cost of updating the function in tfiRoveris seen to vary aMlogM for M atoms influencing the inner function. In the
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Figure 3.36: A block diagram showing the system impleméotat

case of LBCs where a large number of atoms are representesiimaller subgrid, this dependence on the number of atoms
will be a bottleneck to the update process. In [16] the suritma'ﬂ; approximated as a sum of locally defined functigrsich

as bsplines or truncated Gaussians (see also [92}) = G® Z 5(x C)~QP® z Kix—i)0(|x—i]) whereg s a locally

supported functiork is a the set of coefficients fap. |, is a cub|c set of |nd|ces{{| j k}:i,j,ke —n/2..n/2—1}. Their
algorithm use©(n®logn-+Mm?+N3logN) time andO(n®+ N2+ M) memory, wherais taken to be the same orderfand
controls the error withm for this precomputation. The truncated function has sutpgiosize 2n+ 1. Using this higher order
grid, a simple convolution withp is used to computd,. Thus, for grids with low atom density, a range tree is useabt@ain
atoms within the newover and the function computed. For grids with high atom density,switch to using a precomputed
higher order grid. A convolution witkp with the correct subset éfgives usfi,. This step is independent bf, but requires the
precomputation of the coefficierits

Updatefo.: The Fourier transform of the new Gaussian can be done acallytiThe cost is in multiplying the two set of
frequencies@Q(NS,)) and performing an inverse Fourier transfol@(KS,;logNoyt)). We also need to isocontour the outer and
boundary regions.

Updatefin: For the range tree partitioning method, we obtain the lisitofms within theRoverin O(M logM) time and
perform a fast summation in approximat€@yMi, + Nfr”, logNin) time [16]. The higher order grid update is more expensive. We
would need to precompute the coefficiektagain everywhere, and then perform the convolutiop @fith a subset to update
fin.

Roverupdate:The currenf3i, gives us the width of the truncated kernels. Using the raregedata structure, we query for
the set of atoms influencing thiever and perform a fast summation to updde The mesh needs to be recomputed. If the
movement of the rover was small we can reuse the previoustpate fi, and its corresponding isosurface. The movement of
theroveralso allows us to perform any well known caching algorithrstiare frequently visited active sites in high resolution
in our cache.

Smooth adaptive isocontouring

We use dual contouring [62] as our surface extraction algori Dual contouring uses the dual map of the primal contauri
(Marching Cube) and normal tagging (Hermite Data) to exttiae iso-contour. We choose this method primarily becadise o
it avoids the degenerate cases of primary contouring whexeks are introduced. Our algorithm differs from that of Ju e
el [62] in the minimizer computation. Instead of Hermitealahd QEF minimizer, we compute a vertex terrbéhoulder
point[76] that closely approximates the true contour. In figuB8¥3we show how the bishoulder point is a better minimizer for
smooth functions (If we were to perform isocontouring ofesit§ with sharp edges, we would not use this technique). 4 ope
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(a) The traditional QEF minimizer forces sharp edges intinef
tion, leading to unrealistic isosurfaces for the smootictede smooth contours.
density function of molecules.

Figure 3.37: The hemoglobin molecule (PDB:1A00) is renderging the traditional QEF minimizer and our bishouldenpoi
based dual contouring algorithm. We see that our method feasinooth realistic isosurfaces.

and Brodlie [76] detailed in their reports the mathematieakoning behind bishoulder point’s accuracy. We retargdgmeral
principle of dual contouring in generating quads. The athor traverses each cell recursively. Upon locating a |eafenthat
contains iso-contour, we check tegn-change edgesf the cell. Consider the interval defined by the functiorueal of an
edge’s endpoints. If the iso-value is within that intenthEn the edge is a sign-change edge. For example, in Figs&¢a3,
AB, AC, and AD are sign-change edges. We refer to a sign-aghadge as beinghinimalwhen it is an edge of the smallest
cell neighboring itself. In Figure 3.38(a), AB is the minihsggn-change edge. If the edge is not minimal, then it is &g If
the sign-change edge is minimal, then a quad is createdecting the four bishoulder points of the four cells neiglibgthe
sign-change edge.

Our dual contouring algorithm uses an octree as its surfaraaion data structure. The octree is a recursive susidivi
of space into variable-sized cells. Its structure is inh#lyesimilar to that of a uniform cell division in MC. We can ghoit
its subdivision structure to produce adaptive cells. Thia simple matter of subdividing cells that borders the sulbrae.
Figure 3.38(b) illustrates the use of adaptive cell cortsion with octree.

3.6.3 Examples and Timings

We have implemented the algorithm for tReverusing standard C++ and QT (www.trolltech.com). All the expents were
done on an AMD Opteron 246. We looked at different size mdessuanging from the hemoglobin (PDB:1A00) which has
approximately 4000 atoms, to the Ribosomal subunits (PI&EEIPDB:1JJ2) which have around 100,000 atoms and the Human
Rhinovirus Virus, which has over a million atoms.

In figures 3.39 and 3.40, we show both the methods of mullinéisa our algorithm provides. First, the site of interast i
the molecule is smoothed using a sharper kernel than thefrést molecule to differentiate it and provide higher datathat
region. Next, we use our smooth, adaptive dual contouriggrahm to extract an adaptive mesh which provides highideta
at the region of interest and lower resolution elsewherees€hwo parameters, the kernel decay rate and the isocongour
mesh refinement can be controlled by the user to obtain fe&#ased functions and visualizations. In figure 3.39, theehem
is the active site of the molecule and the region of interence, the atoms of the heme are smoothed using a gaussian at
a 1A resolution while the rest of the molecule was blurred arser resolution of 3A. Also, by allowing the user to provide
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Figure 3.38: (a) is a 2D analog for the sign-changed edges @) example of adaptive cell construction with octree.

a cube around the heme, the adaptive isocontouring algokitas used to extract a higher resolution mesh around theeacti
site. In figure 3.40, we use the same two multiresolutionni@ples to show the trimer, a unit of symmetry of the icosahledr
Human Rhinovirus. The Large and small Ribosomal subunésesponsible in part for the creation of proteins and widely
studied. The main active sites are called as the A,P and & Jiteere is also the formation of the cavities and exit tusimethe
bound complex. It is a rich complex with various featureduding small proteins helping its activity. In figure 3.41ewee
that increasing the resolution in tfoverand changing properties like the grid spacing and colorshdp user focus on the
regions of interest. The smoothness of the dual contousinggiintained even though there is a sharp increase in batluties

and sampling density, as shown in figure 3.42. Timing resuitbthe number of quads generated in the adaptive isocamgour
are presented in table 3.6.3.
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&

(a) The heme of the myoglobin is colored (b) The atomic resolution is able to (c) The wiréfﬁarﬁenﬁesh of the iso-
differently using an additional color func- clearly distinguish the ring of atoms com- contour.
tion summation. The function around the posing the heme structure.

heme is extracted at higher resolution.

Figure 3.39: The myoglobin molecule showing the heme atirectWe used a kernel with sharp decay rate, modeling theatom
structure for the heme where the oxy-deoxygenation takeeplA coarser rate of decay was used for the rest of the melecu
as the active site is of primary interest for the end user.régmn around the heme was extracted at a higher resolutiog an
adaptive isocontouring algorithm. To maintain the reqaifieatures, fewer frequencies were required for most of thkecule

as compared with the heme.

(@) The virus with one capsid (b) A zoomed view to present the (c) The wireframe mesh of the
shown in higher resolution. smooth isocontour. adaptive isocontour.

Figure 3.40: The Human Rhinovirus, an icosahedral viru®{LIPDB) showing a trimer (a symmetry unit) in higher resolut
The trimer was smoothed using a sharper gaussian than thef the virus. Also, an adaptive isocontouring technique wa
employed to extract a higher resolution mesh in a cube auintathe trimer.

Related Work

Implicit Solvation Surface from volumetric Density Maps (Radial Basis SplinesC'nf)

There are three different yet often used molecular inted88], the van der Waals surface (VWS), the solvent-adiess
surface (SAS) and the solvent-excluded surface (SES) [A4gmetimes called the Lee-Richards surface [69]. The SHiseor
Lee-Richards surface is by far the molecular surface ofaghfuir solvation energy calculations [60, 71], and is thdazer for
our meshing approximations.

According to the properties of molecular structures, LaugjBorouchaki used a combined advancing front and genethliz
Delaunay approach to mesh molecular surfaces [68]. Algmstwere developed for sampling and triangulating a smooth
surface with correct topology [3]. Skin surfaces, introedidy Edelsbrunner in [44], have a rich combinational stmecaind
provide a smooth alternative to the Lee-Richard’s surfdtigeng et. al [36] maintained an approximating triangutatb a
deforming skin surface. Bajaj et. al [10] give NURB approateion of Lee-Richards molecular surfaces as well as ptesen
methods to maintain molecular surfaces for varying solvedii [13]. Compressed volumetric representation of malisc
surfaces is given in [6]. Simplex subdivision schemes asziue generate tetrahedral meshes for molecular strucitures
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PDB | Number of | Coarse Volume Fine Volume Polygonization Number of
ID particles Summation Summation Time Quads
(secs) (secs/atoms)
Coarse Volume Resolution: 84 Subvolume Resolution: 52
1A00 | 4770 0.94 0.32/470 0.72 73181
1J5E | 51743 0.94 0.66/10997 0.68 43092
13J2 | 90418 0.93 0.63/10426 0.66 49176
Coarse Volume Resolution: 128 | Subvolume Resolution® 104
1A00 | 4770 2.95 3.09/474 4.32 313421
1J5E | 51743 3.68 2.95/11180 3.82 216307
13J2 | 90418 3.02 2.95/10598 3.54 251904
Coarse Volume Resolution: 256 | Subvolume Resolution?206
1A00 | 4770 10.81 25.79/474 28.76 1257644
1J5E | 51743 10.89 27.97/11180 29.04 926541
13J2 | 90418 10.35 26.32/10598 23.55 1074166

Table 3.6: This table shows the timing results of our methallitests are performed on AMD Opteron 246 with 16GB of
memory. The subvolume is sampliig0%)3 = 6.4% of the entire input domain. In the third set of results, eefgrm the
surface extraction at very high resolutions, where the lstiomhain in theRoveris sampled at 206

(@) The Small Ribosomal Sub- (b) Theroveris used to visualize (c) The Large Ribosomal Sub-
unit at a single resolution. a region of interest at higher res- unit at a single resolution.
olution.

(d) An active site is extracted at
higher resolution showing atomic
details. The rest of the molecule
still presents the global features.

Figure 3.41: We present global and local views in the Ribad@ubunits and contrast it with using a single overall nesoh.
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Figure 3.42: Close up images of an active site in the Smalbgbimal subunit, showing the smooth adaptive dual contour.

solving the Poisson-Boltzmann equation [60]. Gaussiantfans have been used to construct density maps [29, 58, 83],1
from which implicit solvation models are approximated agsmcontour [58, 71, 52]. However, it still remains a chadjerio
generate quality and adaptive triangular and tetrahedeahes for arbitrary molecular structures.

Algebraic Shell Splines C1)

One way to generate an analytical representation of theaulgés to define an analytical volumetric density functito,
example, the summation of Gaussian functions [59], Ferimadswitching function [73], or piecewise polynomials [7and
approximate the SES by an iso-contour of the density funcfi@chniques of fast extracting an iso-contour of smoothéde
functions are developed in [5][19]. However the error of glemerated isosurface could be large and result in inaccaresrgy
computation. A NURBS representation for the SES is preseintgl1]. Although it provides a parametric approximation t
the SES, it does not solve the singularity problem. Edetsteu[45] defines another paradigm of a smooth surface ezferr
to asskinwhich is based on the Voronoi, Delaunay, and Alpha complekesfinite set of weighed points. Thekin model
has good geometric properties such as it is free of singuland it can be decomposed into a collection of quadratichyzet
Triangulation schemes based on #kénmodel are provided in [34][35]. However when applied to thergetic computation,
the skintriangulation which in fact is a linear approximation to tBES has to be very dense to gain accuracy, which causes
oversampling on the surface and hence makes the computatipsiow.

Meshing of Molecular Interfaces

Mesh Generation: As reviewed in [89, 112], octree-based, advancing fronttand Delaunay like techniques were used for
triangular and tetrahedral mesh generation. The octrémigee recursively subdivides the cube containing thetigpometry

until the desired resolution is reached [104]. Advancirapfrmethods start from a boundary and move a meshed front from
the boundary towards empty space within the domain [50, D&Jaunay refinement is used to refine triangles or tetrahedra
locally by inserting new nodes to maintain the Delaunayeddhn (‘empty circumsphere’) [38]. Sliver Exudation [37hw
used to eliminate slivers (bad aspect ratio). Shewchuk][46es the problem of enforcing boundary conformity by oe
constrained Delaunay triangulations (CDT).

The predominant algorithm for isosurface extraction fromume data is Marching Cubes (MC) [77], which computes
a local triangulation within each cube to approximate tlesusface by using a case table of edge intersections. MC was
extended to extract tetrahedral meshes between two iseesrf51]. A different and systematic algorithm was proddee
interval volume tetrahedralization [86]. By combining fureNets [56] and the extended Marching Cubes algorithrh [64
octree based dual contouring [61] generates adaptivenesdiution isosurfaces with preservation of sharp featufée dual
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contouring method has also been extended to extract adagii quality tetrahedral meshes from volumetric imaging da
[120, 121].

Quality Improvement: Algorithms for mesh quality improvement can be classifigd three categories [112, 89]: local
coarsening/refinement by inserting/deleting points, lloemeshing by face/edge swapping and mesh smoothing bgataig
vertices.

Laplacian smoothing relocates vertex position at the @e=odthe nodes (vertices) incident to it [48]. Instead obcaking
vertices based on a heuristic algorithm, the optimizatexhhique measures the quality of the surrounding elemends t
node and attempts to optimize it. The optimization-basedathing yields better results, nevertheless it is more Bspe
than Laplacian smoothing. Therefore, a combined Lapl#0ptimization-based approach was recommended [33, 4%. Th
Laplacian operator was discretized over triangular mef3#s and geometric flows have been used in surface and imgagin
processing [101, 117]. Physically-based simulations aeslio reposition nodes [74]. Anisotropic meshes are obddfirom
bubble placement and equilibrium [106]. Mesh regular@atvas discussed in [88, 115].

Multi-resolution Surfaces

The electron density and shape are used in a similar senke literature with respect to molecular surface modelingerg
have been many definitions for the molecular surface of bleoutes.

Molecular surface visualization Many smooth models of the molecular surface have been pedpascluding explicit
rolling ball blend models and implicit Gaussian models. Huvent Accessible Surface (SAS) [70] is defined as the locus
of the center of the probe when it is in touch with the moleaurid not intersecting it. The Solvent Excluded Surface (SES)
[94] provides a smooth contour of the molecular surfaces the surface which envelopes the region not accessiblesto th
solvent. Later analytical expressions for the patcheshvimiake up the surface were given in [42] and [39]. A generdaser
description for a set of points is given in [46]. Non Unifornatidnal BSplines (NURBS) descriptions for the patches ef th
molecular surfaces are given in [12] and [24]. A triangwatbased on a similar idea of using weighted Voronoi and Delgu
triangulations is given in [4]. Fast computations of the S&8escribed in [99] and [97]. In [100], the authors descebe
algorithm to update the triangulation if only a part of thelemale changes positions. Using Gaussians around the atioters

to represent the van der Waals region of influence, many eaitlepresented molecular surfaces as isocontours of thds fie
[30], [58]. A similar function was used at the interface todebvarying probe radii by [113]. Fast computation of the NRfR
representation when the probe radius changes was givedjin[2ie to its computational efficiency, the gaussian fuorcts
being used more frequently even in docking algorithms [95].

Resolution of density maps The electron density of an atom at a poinis represented as a Gaussian functidfx) =

bog?
Lz 1), wherec,r are the center and radius of the atom. If we consider theifumetlue of 1, we see that it is satisfied at
the surface of the sphere(|x — ¢| =r). Using this model, the electron density of a LBC withatoms ak is just a summation
2
. M-1 (Xl . .
of Gaussiansf(x)= Y e . Herep is a parameter used to control the rate of decay of the Gauastknown as the
i=0
blobbinesf the Gaussian [30], [58]. Isosurfaces of this functionhvifovalue 1 are extracted using traditional isosurfacing
methods like primal/dual marching cubes. In [$BE —2.3, f(x) = 1 is provided as a good approximation to the Molecular
Surface. This is used as tlaomic resolutionres) model’s parameter. Through correspondence with Or @laiu’s group
from from Baylor College of Medicine, Houston USA, and frorvBN [79], we also have the following parameters for the
Gaussians: The Gaussian is weighted by the number of etsatréor theit" atom. The resolution is taken as the distance in

M-1
A where the Gaussian function decays to either 0.5 or 1/eeoptak. Hencef(x) = 5 1ie @ ¢l a= ':;%227 ora=-5.
iZ0

Another commonly used definition is method is in the Fourtﬂndin:ﬁ(e*a%)(k) = e*"zkz/a, a= %7 ora= gz

Adaptive isocontouring Marching Cubes (MC) has been a widely used uniform grid istmaring algorithm [78]. By
storing only the cells containing an iso-contour, uniforatadgrids are converted adaptively into octrees [103]. Gdpost-
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processing are performed in which cells meeting certateriai are merged, producing an adaptive contour. Westerragal.
described an octree-based extraction method [114] thaheathe cracks produced by traditional MC by limiting diffiece

of levels between neighboring cells to two and by applyingemid averaging scheme to cover the cracks with additional
polygons. Dual contouring reported in [62] describes a metihat contours on the dual graph of MC, producing crack free
isosurfaces.

Multiresolution modeling There have been various algorithms used in multiresolutiodeling in research areas both in
and outside of molecular modeling. A good survey of existaxhniques are presented in [53].
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Relevant Mathematics

Partial Differential Equations

Fast Summations and Fourier Transforms
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Chapter 4

Complementary Space

Molecular surfaces are solvent contact interfaces betweestrongly covalent bonded atoms of the molecule and thie io
solvent environment which is mostly water. Molecular soefoften contain a number of pockets, holes and intercoeshec
tunnels with many openings (mouths), aka molecular featiureontact with the solvent. Several of these moleculaufea
are biochemically significant as pockets are often actitesdor ligand binding or enzymatic reactions[7], and tusree
often solvent ion conductance zones [63]. Since pocketslestor tunnels share similar surface feature visavis ty@nings
(mouths), we shall sometimes refer to these molecular featollectively as generalized pockets or pockets.

The surface of a protein can be represented as a closed cosytazeS in R3 and the closed interid¥ as the region
bounded bys. It is important to correctly identify the main biophysidahtures ofSin the protein surfaces, i.e. "pockets"”, so
that they can be used for quantitatively analyzing the Inigdiffinities of ligands and other biochemical reactionadging the
shapes and other biochemical properties of protein potiestsnany potential applications in biomedical researctexample
screening potential drug molecules in computational desigh.

4.1 Mouths and Pockets

The surface of a protein can be represented as a closed cbsopiaceSin R and the closed interidf as the region bounded
by S. It is important to correctly identify the main biophysidaktures ofS in the protein surfaces, i.e. "pockets", so that
they can be used for quantitatively analyzing the bindiriopiéies of ligands and other biochemical reactions. Stogythe
shapes and other biochemical properties of protein potiestsnany potential applications in biomedical researctexample
screening potential drug molecules in computational desigh.

In this subsection, we present a simple and fast geomegrarittim for extracting pockets of any closed compact smooth
surface, particularly complicated molecular surfacesrofgins. This algorithm employs a two-step level-set maugimethod,
first outward from the original protein surfagand then backward from a topological simple enclosingl she¢sulted from
the first marching. The backward marching step would movétire back to the original surfacg except the "pocket” regions
onS. Thus the pockets are defined as the regions ou&siahel not reached by the backward propagation, as illustiatéidure
4.1.

The result of this marching algorithm is computed a®a/8lumetric ‘pocket functioh P(x), whereP(x) > 0 if X is inside
the pocket regions c8andP(x) < 0 if xis outside. This volumetric representation of pockets g eenvenient, since it allows
us to compute the pocket bounding surfaces as a levBlz¢t= 0, quantify shape attributes of the pockets , and visuatiemt
with volume and surface visualization techniques.

This pocket extraction algorithm is a geometrical methatkpendent of any particular model of the protein surface. It
works for any representation of protein surfaces, as lorigefinal protein surface is described as a closed compdecsuit
constructs a smooth representation of the pockets as a gtfierpocket functiorP(x), from which the pocket envelops can be
extracted as the level sBtx) = 0. The extracted envelops match very well with the geomstrapes of the protein pockets,
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Figure 4.1: (a) Outward propagation frddto the shellT. (b) Backward propagation frofh to the final frontF. Pockets are
extracted as the yellow shaded regions betweandsS.

as demonstrated by the examples in the later subsection?d@uet extraction and feature analysis algorithm is alsarty
generalizable to many other classes of free-form surfaces.

4.1.1 Pocket Extraction Algorithm

We present in subsection 4.1.1 our pocket extraction dlyariwhich applies a two-step marching approach to comphge t
pocket functiorP(x). subsection 4.1.1 describes our method of computing sidistahce function (SDF) that is central to the
pocket extraction algorithm in subsection 4.1.1.

Pocket Extraction

In Figure 4.1, we first use a simple 2D example to illustratelthsic ideas of our pocket extraction algorithm, i.e. the-$tep
surface marching method. Consider the closed compact&8fthe green inner curve in Figure 4.1 in 2D space. The two-step
marching method consists of a outward propagation (fillp sted a backward propagation (removal) step, in order t@eitr
pockets orS.

The first marching step starts from the original surf&@nd moves outwards at a constant speed to fill all pocketdsyoi
and depressions on the surface. As shown in Figure 4.1@Jfrdnt propagates outward from the surf&® a final shell
surfaceT. The propagation front would change its shape and topologyd the marching. For example, the topology of the
intermediate fronR (dashed line) in Figure 4.1(a) is different from b@&landT. Eventually the topology of the front would
become the same as that of a simple sphere. The outward mgustioips at the final shell surfade which is far enough
away fromSwith a distancd such thafT has the same topology as a simple sphere and its topologydwatichange any
more by further outward propagation. The exact value of thechiing distancefrom Sto T is not significant in the following
computations of the pocket function, as long as it is suffitjelarge to ensure that is a simple shell. For a protein, we typical
choosd to be as least twice the largest dimension of the protein.

The second marching step starts from the shdllackward towards the original surfa@and moves at a constant speed,
in order to reveal the pockets & The marching distance of the second step is selected teelsathe asin the first step, so
that the backward propagation front would not penet&dad stops when it reach&sHowever, notice the outward marching
in the first step is irreversible and the final front of the setmarching cannot extend into the depressed regionsdakefs,
on the surfaces. Therefore in our algorithmpocketsare defined as the regions between the final fflomtf the backward
marching, dashed line in Figure 4.1(b), and the origindlea@S. In the simple 2D example in Figure 4.1, the pocket region is
illustrates as a shaded (yellow) area. This definition tivelly captures the main geometric characteristics ofginopockets.
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Next we need to develop a mathematical representation qictbleet regions.

Starting from the initial surfacg, the propagation front of the first outward marching step eso®ong its outer normal
directions at a speedx). The marching fronR(t) at timet can be determined according to the level set method [56R{t¢
is the zero level set of a functiap(x,t) satisfying the evolution equation:

@+Vv|vel=0
with initial condition @(x,t = 0) = d(x), whered(x) is the signed distance function (SDF) fr@&ndefined as
001 = min[[x -yl (1.1)

The SDRJ(X) is positive/negative whexis outside/inside the surfaGand the marching frorR(t) is the level setp(x,t) = 0.
If the speedr= 1 is constant, as we would assume in our two-step marchimgitiigh, the marching fror(t) at time(distance)
t is simply the level set

d(x) =t. (1.2)

We will discuss an efficient algorithm to compute the signédathce functions (SDF) of a closed compact surface in
subsection 4.1.1, based on the fast distance transformlyisgpthe SDF algorithm, we present here the main algoritim o
computing a volumetripocket function Px) to represent the pockets on the protein surfaas follows:

1. Compute the SDF for SSompute the signed distance functidsix) from the original surfac&, whereds(x) > 0 if x is
outsideSandds(x) < 0 if X is inside.

2. Extract the Shell Surface TExtract the shell surfack as the level sads(x) =t, where the distande> 0 is large enough
so thatT has the same topology as a simple sphere. As mentionedrgtréieexact value df is not significant in the
algorithm.

3. Compute the SDF for TCompute the signed distance functidn(x) from the surfacel’, where the sign oflr (x) is
inverted, i.edt(x) > 0 if xis insideT anddr (x) < O if xis outsideT .

4. Construct the Pocket Function#): The volumetric pocket functioR(x) is constructed as:
P(x) = min(dg(x),dt(x) —t) — &, (1.3)

whereds(x) anddy (x) are the SDFs computed in step 1 and 3. Notice that(daifx),dr (x) —t) > 0 only for points
outside the surfacBand not reached by backward marching from the shellle. points in the pockets. A small positive
values is introduced to account for the size of solvent atoms, wisidiipically set to a value between 1 and 1.5 A. The
bounding surfaces of pockets (pocket envelops) then carttected as the level sB{x) = 0.

5. Smooth the Pocket Functior{B: AlthoughP(x) constructed in the previous step matches well with geomfgatures
of the pockets on the surfa&eit can be noisy because of the small bumpinesS.dn order to remove small noises and
focus on the main features of the pockets, we apply a smap#tép to the pocket functid?(x). In our implementation,
one step of bilateral filtering [62] is applied to smo&tfx).

This pocket extraction algorithm is simple, flexible, antbust. Figure 4.2 shows a successful extraction of two tunnel
in an "8" shape. It works for any closed compact surfacé&3rspace. Particularly it can be used for any molecular surface
models: union of balls, solvent accessible surface, orazostof electron density functions.

In order to show the effectiveness of our algorithm, we ranigselect the "Bacteriochlorophyll Containing ProteiRB
ID: 4BCL) from the protein data bank (PDB) [6]. This proteiasha very complex molecular surface and contains one large
binding site in the middle and small dents on its surface hasva in Figure 4.3(a). The pocket functi®fx) of the protein
(4BCL) is computed using the algorithm described in thisssakion. To better reveal the geometric relations betwken t
extracted pockets and the protein surface, we look at a 2B sfithe data. Figure 4.3(b) shows a slice of the protein 4BCL
as a color-map of its SD#g(x). The cross-subsection of the protein surface is displayé&tdgure 4.3(b) as white curves, on
which the SDFds(x) = 0. The large tunnel in the middle of the protein is clearlyhlis, with several additional small surface
dents and internal voids.
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(@) (b)

() (d)

Figure 4.2: (a) The original gray surface of the "8" shapethedinal shell surface (clipped) in dark red. (b) The "8" shapd
its tunnel envelops shown in green. (c) Volume renderingpefdocket functiofP(x) of the "8" shape. (d) Another view of the
tunnel envelops extracted as a level sePX).
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Figure 4.3(c) shows the color-mapped slice of the pocksttfan P(x) and the cross-subsection of the pocket envelop as
white curves. The cross-subsections of the protein sudadethe pocket envelop are finally superimposed in Figur@i}.3
We can see that our pocket extraction algorithm has almeofqily located all pockets and holes in the molecular sigrfand
how well they match with the geometric features on the proseirface. The pocket openings are extracted and displayed a
yellow line segments, where the two separate openings aflmtdnnel are clearly visible.

Figure 4.3: Pocket extraction example for the "Bacterioahpphyll Containing Protein" (PDB ID: 4BCL). (a) The pratei
surface and the big tunnel in the middle. (b) A cross-sulimect the protein surface shown as white curves on a slicaef t
color-mapped protein SDF. (c) A cross-subsection of the&kgbenvelop is shown as curves on the slice of the color-ndhppe
pocket function. (d) The pocket envelop in (c) is superingabsnto the protein surface in (b), and they match perfectly.

Signed Distance Functions

Efficient and stable computation of signed distance funst{@DF)d(x) from a surface plays a central role in the pocket extrac-
tion algorithm described in subsection 4.1.1. A number oF&yorithms were developed in recent years. In this sulmsect
we present a method of computing the Si{i) based on fast distance transforms [30]. Other stable SOffidighs may also

be applied, like SDF algorithms running on GPU [59] for begterformance.

Given a 2D/3D binary image as input, the distance transfaicutates the shortest distance from each pixel (voxehéo t
nearest non-zero pixels (voxels). The distance transfanmputation is very efficient and can be done in time lineahto t
number of pixels (voxels). We extend the distance transamtompute SDF for any closed compact surface.

Considering a closed compact surf&&embedded in a regular grid, we define a grid pgirets anear point highlighted
in Figure 4.4(a) for a 2D example, if at least a cell contaynrintersectsS. Otherwisep is defined as #ar point. The signed
distance functiomls(x) to the surfac&is computed as follows:

1. Construct a binary imadg by setting the values of near points to 1 and far points to 0.

2. Compute the distance transform for the binary imiaggés the result of the distance transform, the value of a neitp
is now 0 and the value of a far point is the distance to the stasear point. Furthermore, the closest near pojrto
each far poinp is recordedc; is called thenear cousirof p. The time for this step is linear in the number of grid points.

3. For each near poirj, compute the shortest distandg(q) from q to the surfaceS and set the sign ofis(q) posi-
tive/negative ifg is outside/insidé&, and record the poirtt 6n Sthat is nearest tq. So now we have the SDF for the near
points, and will compute the SDF for the far points in the regp.

4. The SDFdg(p) of a far pointp has the same sign as that of its near cousiriThe magnitude ofls(p) is approximated
as|p — Cp|, wherecy € Sis the point orS nearest ta, recorded in step 3.

We now explain more details of the step 3 in the above SDF ifgor Without loss of generality, we assume the surface
is decomposed into simplices, e.g. triangles in 3D, and thmal vectors of all its vertices always point towards theswle of
S. We need to compute the shortest distance from a near gtirts, and determine whether a near pairis outside or inside
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ouT

(@) (b)

Figure 4.4: (a) A 2D example of SDF computation, all near tsoin the grid are highlighted in orange. (b) A 2D example of
determining whether near points are inside/outside thiasaiB. For the pointy;, its nearest pointl;”€ Sis within a single
simplex and it is simply determined by the dot-product ruBut the nearest,"c S of gy is on the corner shared by two
simplices. A ray (the dashed line) is cast frgpto find the nearest intersecting simplex.

S. First, we calculate the poilgt€ Snearest tay, which is done by examining the triangles close to the pgirNext we need
to decide whetheq is outside/insidéS. In R3, the nearest poirg € Sof g may be inside a triangle, on a triangle edge, or on a
triangle vertex.

¢ If § belongs to only a trianglec S, i.e. gis within the interior oft, thenq is outsideSif (q— §) - n; > 0, wheren; is the
normal vector of the triangle But this simple dot-product rule fails @ i3 a shared point of two or more simplices, i.e.
g is on acorner or edge &

e If §is on a edge of corner @, we use a ray-shooting method to find the closest simplex /e cast a rayr, from
g through an interior point of a simplex containingafid compute the intersubsection points betwgand all other
simplices sharing the same A 2D example is illustrated in Figure 4.4(b). The first simply intersected byRy is
chosen and the sign df(q) is set as the sign dfj— §) - ny,, whereny, is the normal of the simplet.

We prove two propositions about the signed distance funstig(p) computed by the above algorithm.
Proposition 4.1.1. The sign of SDF g p) is correctly set for every far point p .
Proof: We prove this by contradiction. The signa{(p) of the far pointp is the same as that of its closest near pojntf
p is outsideS, then its near cousity, is insideS. Let us follow the path fronp to ¢, that consists of three segments alongxhe

y, andz axes. The last outside point on the path must be a near pairisatoser top thancy. This contradicts the definition
thatcy is the closest near point {m The same arguments holdgfis insideS.

Proposition 4.1.2. The error of &(p) is not accumulative and is bounded by the same order as tdecgli sided.
Proof: Clearly the magnitude odis(p) is larger than the distande(p,cp)| from p to its near cousirc, and less than

|d(p,cp)| + |d(cp,Cp)|. The distanced(cp, €p)| from the near point,, to the closest point,on Sis in the order of0(d). Thus
we have the following inequality,

IN

|ds(p)| < [d(p,cp)| +[d(Cp, Cp)|
= |d(p,Cp)[+0O(I).

[d(p, cp)
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Therefore error betweets(p) and its approximatd(p, cp) +d(cp, Cp) is bounded byD(d).

Since the computed SDF always achieves the correct signsasbdounded errors for the SDF, the above algorithm is
very robust. It was also shown to be very efficient and worlender highly complicated protein surfaces. The runningstim
of each step of algorithm i©(N), linear to the number of grid points, except for step (3). In the worst case, step (3) has
computational complexit®(s- Ny), wheres is the number of simplices in the surfaBandN, is the number of near points.
However, the regular grid provides a natural decomposiifoihe space, and typically only a small subset of simplicssch
to be examined to compute the SDF of a near pqiit step 3. On the average case, the complexity of step (G(I),
proportional to the number of simplices & which makes the computation of the SDF efficient even fohlyigomplicated
protein surfaces in our tests.

4.1.2 Visualization and Quantitative Analysis

@) (b) (c)

Figure 4.5: The molecular surface and pockets of HIV-I paeee(1HOS): (a) Protein surface with the ligand in the middle
tunnel; (b) Pocket function visualized using volume reimtgon the top of the protein surface; (¢) The largest podiketr{el)
shown as a green surface in the cartoon of the protein steictu

Representing the protein pockets implicitly as a volunasgincket functiorP(x) allows for various ways to visualize and
analyze the pocket structures quantitatively. subseditr? describes the visualizations of the protein pockettions and
pocket envelops. subsection 4.1.2 discusses some antigsean be performed on the protein pocket function.

Visualization

Because the pocket functid?(x) is a 3D volumetric scalar function, we can visualize it usiiagious volume visualization
techniques, e.g. ray-cast or texture based volume rerglarid isosurface rendering. As an example of visualizatiigyre

4.5 displays the HIV-I protease (PDB ID: 1HOS), an imporfarttein for the maturation of HIV-I virus. An ligand can bind
in the tunnel of the HIV-I protease, which also has a few margé pockets on its surface. Figure 4.5(a) shows the protein
surface colored by the residues and the ligand bound in iilimitunnel. The pocket functid(x) of the HIV-1 protease

is computed by using algorithm in subsection 4.1.1. FiguBbj renders the pocket function using 3D volume rendering
together with the protein surface to illustrate the ovedatribution of the pocket regions. The pocket envelopseateact as
the level setP(x) = 0, of which each connected component is the bounding sudbeaepocket. We are often interested in
the largest pockets, which may serve as active binding sftégands. as the large pocket region of the function. Thekpd
(tunnel) with the largest volume is extracted from the Hiyrbtease pocket function, which is actually the middle einhat
binds the ligand. Figure 4.5(c) displays the bounding serfzf the largest pocket of the HIV-1 protease, i.e. the lighimding
tunnel, together with the cartoon of the protein structiitee visualization proves that our pocket extraction atiomicorrectly
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captured the main pocket of the protein.

Quantitative Analysis

In this subsection we discuss some analyses based on thetgonktionP(x). They demonstrate the benefits of using the
pocket function to represent the protein pocke®&gnatures of Protein PocketsFirst we look at calculating quantitative
measures such as volumes and surfaces areas, i.e. signhafute pockets of a protein. They can be easily derived fimn
pocket functiorP(x). As mentioned earlier, the pocket envelops are extracteaketlel seP(x) = 0. Each connect contour of
the level set is the bounding surface of a pocket. This besqust a problem of computing signatures of contours of aascal
function, which were described as "contour spectrum" in Bsically, quantitative measures like the volume andamerirea

of each pocket can be computed by summing up the contritsiffom individual cells that belong completely or partiatity
the pocket. If the 3D domain is decomposed into simplicesctintribution from each simplex to the volume or surfacaare
of the level seP(x) = 0 can be quickly evaluated with a B-spline function[3].

Additional geometric and shape properties can also be ctadgdar protein pockets based on the pocket funckgx),
for example curvatures distributions [17, 60], shape kistms [53, 40], coefficients of volumetric function expams [39],
and shape context [4]. Those shape properties of proteike®may be used for building a database of the proteins pocke
structures, and applied to the problem of ligand bindingljutéeon [44].

Pocket Mouth In some applications we wish to find a pocket’s openings (lmguthe interface connecting the pocket to
the space outside the protein. The number of momtb§a pocket (or tunnel) classifies the type of the pocket (on&l):

e voidif m=0
e normal pocketf m=1
e hole or simple tunnel (simple conectdfrm= 2

e arbitrary tunnel (multiple connectoij m >=3

The pocket functioriP(x) can be used to help obtaining any pocket’s mouths. The bagrailirfaces of a pocket, extracted as
a connect contour of the level $8¢x) = 0, can be divided into the mouth patches and the patchegttieafzice to the protein
surfaceS. According to our pocket extraction algorithm describedubsection 4.1.1 and illustrated in Figure 4.1(b), pockets
mouths are the patches on the backward marching ffomthich do not reach the original surfae Based on equation 1.3,
we haveds(x) > P(x) + € on the pocket mouths, whedg(x) is the SDF from the surfac& Therefore, in our algorithm the
pocket mouths are defined as the points satisfying the dondit

Px)=0 and dg(x)> €.

Residues Near a PockeGiven a protein pocket, we often need to know the set of amiirasidues surrounding it. The
information would help to identify the protein sequenceifsdhat are involved in protein binding and related to derfaotein
functions. This can be achieved by applying the SDF algarithentioned above to the envelop of the protein pocket:

1. Extract the envelof of the protein pocket being studied. Notice the level&et) = 0 may contain multiple connected
contours, which are the envelops of separate pockets orrthein Here we only extract the envelop surrounding the
pocket under consideration, as discussed in subsecticgh 4.1

2. Compute the SDBg(x) for the enveloE.

3. For each residuR, evaluatede (xRr) at its coordinatesg. If dg(xgr) is less than some given threshold, then the resRiue
is considered to be near the pocket.
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Data Structures for the Pocket Function

Another advantage of representing protein pockets as anaihic function is to allow to construct data structureghsas
Contour Trees (CT) and Multi-Resolution Attributed Dualr@aur Trees (MACT), for the pocket functidi(x). These data
structures have a number of applications such as pocketisel@nd protein structure matching.

Contour Tree and Pocket SelectionContour tree (CT) is an affine-invariant data structure tzgatures the topological
structures of the level sets of a volumetric functiofx) [11]. Each node of the CT corresponds to a critical point efftimction
and each arc corresponds to a contour class connecting tii@lcpoints. A contour class is a maximal set of continuous
contours which do not contain any critical points. If the GTcut at the isovalue, the number of connected contours of the
level setF (x) = wis equal to the number of intersubsections (cuts) to CT &ndhe case of pocket functid?(x), the number
of cuts to its CT aP(x) = 0 gives the number of connected pocket envelops, i.e. thdauaf separate pockets.

The pocket extraction algorithm described in this paperkador general 3D surface models, e.g. the tunnels in the "8"
shape shown in Figure 4.2, and complex protein surfacesaudegrotein surfaces are highly complicated, they usoatiyain
many small pockets and voids in addition to the major bingingkets. Our algorithm is very sensitive. For a complicated
surface like the molecular surfaces computed from eleasmsity functions, the level set of the pocket functiR{x) = 0 will
capture the large binding sites as well as small depressiotisoids on the surface. While it is good to have the capgbili
of obtaining the details of the protein shape, the large remolb small pockets may make the pocket functi®(x) and its
corresponding CT quite complex. For example, the CT of thekebfunctionP(x) for the "Bacteriochlorophyll A Protein
(4BCL)" is shown in Figure 4.6 (a). It is quite complex and tons 2,063 nodes (critical points). The level sePat) = 0
would contain a large number of individual contours, mamybich are very small and of little importance. In real apations,
we often want to focus on one or a few biologically importasihae/binding pockets which have enough size to hold thesset
ligand.

o o

(a) (b) (© (d)

Figure 4.6: (a) The contour tree of the pocket function fer'tBacteriochlorophyll A Protein" (4BCL) (b), (c), and (deathe
DCTs of the pocket function at three different resolutioh$®, 4, and 1 intervals.

The CT of the pocket functioR(x) can assist the selection of the most significant pockets ftwrevel setP(x) = 0.
During the construction of the CT, each CT arc can be taggéd additional geometric attributes such as the volume and
surface area of the contour and a seed cell, from which theeetnnect contour can be constructed by cell propagati?h [
Therefore the CT can be simplified by suppressing contoussnafl geometrical measures. Furthermore, it can be apfgied
pick the most significant pockets. For instance, if we arg arterested in the top three largest pockets, from the cuarcs
we select the three ones tagged with largest volumes anagat@from their seed cells to get the envelops of the thrgeda
pockets. Figure 4.5(c) shows the largest pocket of HIV-tgase, constructed by using the pocket function and its CT.

Protein Structure Matching Protein structure matching is important for classifyingteins into different families and
predicting the functions of new proteins. The volumetricloet functionP(x) can be readily used to compare protein structures.

An efficient method of comparing protein structures is dibgdt in [69] by using the affine-invariant multi-resolution
attributed dual contour trees (MACT) of some volumetricphéunctions, combined with additional geometric, topaag
and electrostatic potential properties. The shape funcised in [69] was solvent accessibility of the protein. Askmew,
proteins perform their functions through docking/undogkivith other proteins and binding/unbinding of liganddiait active
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pockets, satisfying the complementary shape and elelgbrioperties. It might be more accurate to compare the prqecket
structures than the overall protein shapes. This is edpeaseful for proteins whose their overall shapes are vanjlar but
functionally important active binding sites are different

The MACT method can be applied to compare the pocket fungtidrifferent proteins. We summarize here the steps of
matching protein structures using the volumetric pockatfions [67]:

. Compute the volumetric pocket functi®x) for the protein.

. Compute the contour tree (CT)[11] for the pocket functgn).

1

2

3. Construct the finest-level dual contour tree (DCT) [68hfrthe CT in the previous step.

4. Build the multi-resolution attributed dual contour t(&&ACT) from the DCT by merging adjacent functional intersal
5

. Compare two protein structures by computing the sintylagore of their MACTSs.

Step 1 and 2 have been discussed in the upper subsectiortsv®briefly describe the data structures and algorithmdwedb
in step 3to 5.

Dual Contour Tree Although the contour tree (CT) captures the topologicaldtrres of the level sets of a function, it is not
practical to compare CT's of the pocket functions becaugbeif complexities, as shown in Figure 4.6(a). The dual cont
tree (DCT) is a simplified data structure constructed froem@T, which can then be compared to determine the similaritie
among the protein structures [68, 69].

To construct the DCT, we partition a functional raidge f,] (f1 < f2) of the volumetric function into a number of intervals,
and cut the corresponding CT arcs into disjoint sets of cot@aesegments [69]. Each disjoint set of connect segmessts ha
functional values within an interval and represents a cotatkregion in the 3D volume, which is called iwerval volume
Each node of the DCT represents such an interval volume. ThEiBconsidered to be "dual” to the CT because a DCT node
corresponds to a disjoint set of CT arc segments. The coiitplefikthe DCT can be controlled by choosing the functional
rangelf1, f2] and the number of intervals partitioned from it. Figure B)&hows the DCT of the pocket functi®{x) of the
protein 4BCL, constructed from the CT in Figure 4.6(a) byidiivg the functional rang, max(P(x))] into 16 intervals. For
each node of the DCT, geometric, topological and functipnaperties of the corresponding interval volume can be ageth
for the purpose of matching. We refer to [68, 69] for detaflsanstructing DCT and computing the volume and other aitab
of the DCT nodes.

Multi-resolution Attributed Dual Contour Tree (MACT) As mentioned above, the complexities of DCT's are contcblle
by the number of partitioned intervals, which is here refdms the resolution of the DCT. It is helpful for the matchinigpose
to keep a set of DCT'’s for a volumetric functions at differeggolutions and use the match of low-resolution DCT'’s talgui
the match of high-resolution DCT's.

This hierarchy of multi-resolution DCT’s for a given volutrie function is called a Multi-resolution Attributed Du@&lon-
tour Tree (MACT) [69]. The MACT can be constructed from thghest-resolution DCT by merging its adjacent functional
intervals recursively. Without loss of generality, we asstthe highest-resolution DC%, hasN = 2* functional intervals.
Every two adjacent intervals are merged into one intervattfe next lower-resolution DC¥;, which would then havél/2
intervals. A noden in 23 is merged from a set of nodeS)(in Z. For each noden € SC %, the noden is called the parent
of mandmis a child ofn. The merging process can be recursively applied to the logsolution DCTs until there is only a
single interval spanning the entire functional raffie f,]. Figure 4.6 (c) and (d) show two levels of the MACT with foudan
one intervals respectively, which are merged from the vtisrof the DCT in Figure 4.6 (b). The complexity of the DCTs at
lower-resolutions are significantly reduced and the hamamakes it much easier to find the match between highehataso
DCT’s for the pocket functions.

Because protein surfaces are highly complicated, the cemmcket functions usually contain many small pockets and
voids, which reflect as small subtrees in DCT’s. On the otfzerdh biologically important active/binding pockets muavé
enough size to hold the solvated ligands. Therefore the B@fé further simplified by pruning the nodes corresponding t



4.1. MOUTHS AND POCKETS 133

the very small pockets whose volumes fall under a given tiolels The pruning process is started from the lowest-reésolu
DCT in the MACT hierarchy. If a lower-resolution DCT node isiped, all its child nodes should be removed as well in the
next higher-resolution DCT. The DCT's in Figure 4.6 haverbsienplified by pruning. In the lowest-resolution DCT in Figu
4.6(d), only two nodes are left after pruning, which meany tmo pockets are considered significant. One of them caostai
more than 94% of total pocket volume and actually repregéettarge binding site in the middle of the "Bacteriochldrglb

A Protein (4BCL)" (Figure 4.3).

Computing Similarity Scores of Protein Pockets Functions We now compare protein structures by matching the MACT'’s
of their pocket functions. The matching process is perfarinéhe same way as thatin [69]. It starts from the lowesblgsn

to the highest-resolution of the MACT hierarchies. The getioal, topological and functional attributes of DCT nedee
used to compute the similarity between the matched nodes sifiilarity score between two DCTs of the same resolution is
computed as the average of the scores of their matched nadeweighted by the volume of the nodes. Finally the sinitijar
score between the volumetric pocket functions is evaluasdtie average of the similarity scores of DCTs from all Ief¢he
MACT hierarchies.

(©)

Figure 4.7: Comparison of pocket functions for the proteStaphylococcal Nuclease" in the binding (PDB code: 1ATT, (c
left) and unbinding (PDB code: 1KAA, (c) right) states.

The most significant difference here is that pocket funatiae used instead of overall protein functions such as therso
accessibility used in [69]. This is based on the assumphiahpockets are the most important features of protein tsiress,
and is particularly useful for studying the mutants of theeagrotein where their overall shapes are similar but hafferdnt
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pocket structures and bound ligands.

Figure 4.7 shows an example of of comparing the structuré$tafphylococcal Nuclease" in bound state (PDB code
1A2T) and its unbound state (PDB code 1KAA). "Staphylocbbhzclease"” is a protein for nucleic acid binding and binds
two ligands "S-(Thioethylhydroxy)Cystine"(CME) and "Timdine-3',5’-Diphosphate”(THP). The protein 1A2T and aofe
its bound ligand (THP) are shown in Figure 4.7 (a) while theeotigand is on the back side. Figure 4.7 (b) displays thé&gboc
function of 1ATT over its molecular surface with volume remnithg. Due to the bound ligands, the pocket shapes of 1A2T
would be quite different from those of its unbound sibling(AlA), although the overall their shapes remain very similar

We computed the pocket functions and used the MACT algoritketribed above to compare the structures of 1A2T and
1KAA. The correspondences between the pockets of 1ATT aniAL&re easily established by using the MACT hierarchy,
as illustrated in Figure 4.7 (c). It clearly shows the stouat differences between pockets of the two proteins, whighnot
obvious by looking at the molecular surfaces directly. Theket functions are very useful for studying the family obain
mutants, for example the family of HIV protease and inhitstoound to them.

4.1.3 Implementation and Examples

The pocket extraction algorithm and MACT protein matchitgpathm have been implemented in C++ and made publicly
available. The pocket functior¥x) are computed as described in subsection 4.1.1. The podagithin described in this
paper is applicable to any model of protein surfaces, fomgta the simple union-of-ball model or the more sophistdat
solvent accessible surfaces. It may actually provide a viapmparing different models of protein surfaces. For thaults
discussed below, we used the model of protein surfaces asitbeth level sets of the electron density functi&(s)), which

are computed as the summation of the Gaussian density keoredll atoms contained in the corresponding proteins. As
mentioned earlier, the protein surface is extracted astred sete(x) = 1.

Table 4.1: Computational time for some pocket extractioanggles on a low-end laptop. T1, T2, and T3 are the time for
computingds(x), dr (x), and pocket functions respectively.

data #of triangles Ti(s) To(s) Ts(s) total(s)
"8" shape 1,536 21 545 0.33 7.88
4BCL 275,456 10.25 6.38 0.33 16.96
1C2B 268,876 9.92 563 045 16

The implementation is portable across multiple computtqnias and tested to be robust for various protein strustute
is also efficient, being able to compute pocket functionscfamplicated proteins with thousands of atoms in secondsleTa
4.1 shows the computation time without optimization on a RElaptop with 1.6 GHz processor and 1GB memory for three
examples: the "8" shape, "Bacteriochlorophyll A ProtelPD@ ID: 4BCL) and "Hydrolase" (PDB ID: 1C2B). The "Hydroldse
(1C2B) is a protein complex containing four similar subanithe dimensions of the volumetric functions in the comtiora
were set to 12& 128x 128, which are more than sufficient for extracting pocketfions and subsequent visualizations and
guantitative analyses. The higher the dimensions, thelenzaie the grid sizes and the more accurate are the SDF catigng.
However higher dimensions also require more memory andeloagmputation time since the time of distance transform is
proportional to the number of grid points. Our experimeritsvged that increasing the dimensions would not change the
number of pockets or significantly alter their quantitatimeasurements. The dimensions of 22828x 128 provide good
balance between accuracy and memory requirements for cdiynRC'’s. If the speed is very important, lower dimensions
such as 98may also be used to achieve results sufficient for all apjidioa discussed above.

The last column in Table 4.1 shows the total time of pocketaetion for the three examples : "8" shape is the simple
surface shown in Figure 4.2; 4BCL and 1C2B are two exampléepraurfaces. The second column shows the number of
triangles in the original surfacedl is the time for computing the SDés(x) for the original surfaces, T is the time for
extracting the shell surface and computing the SDé&rt(x), andTs is the time for constructing the final pocket functiB(x)
and extracting the pocket envelofs.is longer for the 4BCL and 1C2B protein surfaces than the hélpg because the 4BCL
and 1C2B data have more simplices (triangles) in their nagsurfacesT, andTs, which are proportional to the dimensions
of the sampling grid, are similar for all three data sets.
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(@) (b) ()

Figure 4.8: Visualizations of the largest pocket extractsitig our algorithm for the "Bacteriochlorophyll A Prote{@BCL).
(a) The pocket envelop (green surface) within the cartoagrdim of the protein; (b) The seven BCL ligands shown indide t
transparent pocket envelop; (c) The protein surface andues near the pocket marked green [9].

Table 4.2: Pocket statistics of some sample proteins.

PDB # of Largest Ligand Rank
ID pockets  pocket3)

1SNC 1 948.7 THP 1
1HVI 1 1137.5 A77 1
2ACK 6 1448.5 EDR 5
2POR 1 13126.4 C8E 1
1ROB 1 1883.9 C2pP 1
2NPX 1 7743.8 CYO,FAD & NAD 1
4BCL 2 9184.8 BClx7 1
1GPD 5 16182.8 NAD 1
3EST 2 2747.8 - -
1ELA 4 1249.5 ISO 2
1FKF 1 975.5 FK5 1
11BG 1 5320.8 U2G4 1

Compared to many other pocket extraction algorithms, eAST[47] and CASTp [9], the pocket functions computed in
our algorithm provide more flexible visualizations and pdwkwvays for quantitative analyses. Most importantly, éx¢racted
pockets are shown to be correct and overlap with the bindyagtls very well. Figure 4.8 shows the result of pocket etiba
for the protein 4BCL. The envelop of the largest pocket ipldiged as a green surface inside the cartoon diagram of theiipr
in Figure 4.8 (a). The largest pocket almost perfectly ergass all seven BCL ligands of the protein, as illustratediguie
4.8 (b). Table 4.2 gives more examples to demonstrate teeteféness of the algorithm. Those examples are selectaduti
any special consideration towards our algorithm, most aEtware examples used in [9].

In Table 4.2, the third column shows the number of pocketsesed for each protein. To remove small pockets, we used
the MACT data structure discussed above in the implememtati prune geometrically insignificant nodes. We set a very
conservative threshold of 1%, which means a pocket woulddmadied only if its volume is less than 1% of the total pocket
volume, because a pocket of such a small volume is too smak ta binding site. For most proteins, the pockets with the
largest volumes often act as the ligand binding sites. Thelicolumn is the computed size of the largest pocket. Tétea
columns contain the name of the bound ligands and the rarfiedfinding pocket among all pockets in terms of their sizes.

Figure 4.9 visualize the extracted pockets for the protiésited in 4.2. The proteins are visualized as cartoonsustilate
their secondary structures, and ligands as sticks. Thdars/ef the binding pockets are rendered as transparentysiirfaces
to show the ligands inside them, while other pocket envetopgendered as green opaque surfaces. For all the examples,
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(3EST) (1ELA) (LFKF) (11BG)

Figure 4.9: Visualizations of pockets for the proteinslisin Table 4.2
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can see that the extracted pockets fit very well with the shapthe proteins. While the quantitative measures of théetsc
correlate with the results in the CASTp[9] reasonably wbky certainly don’t match exactly. This may be due to twoanaj
reasons. First we used a more sophisticated model of prstefaces in the implementation than union-of-ball usechin t
CASTp. Second the algorithms may segment the pocketseliffigr For example "Porin" (2POR) has 45 pockets computed in
the CASTp compared to only one in our algorithm.

We believe our algorithm is quantitatively more accuratecading to the visualizations. Our definition of pockets is
mathematically sound and the extracted pockets match tteipishapes and overlap well with the binding ligands asgaore
4.9.

Furthermore, the CASTp algorithm has its limitations in fimgdshallow pockets (depressions) with large openings on
protein surfaces, but our pocket algorithm still works eotly in those cases. Figure 4.10 (a) shows a docking exaaiple
a protein chain (PDB ID: 1YCC) on another protein (PDB ID: 1)Gn a protein complex (PDB ID: 2PCC). The docking
interface has large but shallow pockets, which the CASTf#®§ to extract. However, our algorithm successfully contes
the pockets on the docking interface, as shown in Figure ¢hl@nd (c). In Figure 4.10 (b), the extracted pocket functio
is rendered with volume rendering and the top four pocketlaps are extracted from the pocket function and displaged a
green surfaces. We can see that the pockets on the dockémtane are successfully calculated and the docked prdt¥iGC)
interacts with two major pocket envelops on the substratéepr (1CCP), which are the largest and fourth largest cdetbu
pockets respectively. Figure 4.10 (c) looks at the volunmeleeed pocket function and the two pocket envelops on thkikgc
interface from a direct angle. The pocket functions sudaélgscomputed by our algorithm may be applied to improve the
solutions to the docking problem, which tries to find the lwestfiguration of how a ligand docks on the substrate protein.

(b) (©

Figure 4.10: (a) Docking example with the protein chain 1Y(@&2) on the protein 1CCP (yellow). (b) The pocket functién o
the protein 1YCC is rendered with volume rendering and fatgést pocket envelops are displayed as green surfacdhéc)
volume rendered pocket function and the two pocket envaloghe docking interface.

4.2 Tunnels

Many applications in shape modeling require to identify$héent features of a given shape. Some of them such as dgsemb
planning, feature tracking, animations, structure elatah of bio-molecules, human-body modeling benefit fronemantic
annotation of the features. One such natural annotatiarhigeed by classifying the features as ‘tubular’ and ‘fl&bviously,

this annotation is ambiguous since the feature-space istinooim resulting into features that cannot be simply diessas
tubular or flat. Nevertheless, many designed and organmeshiaave pronounced features that are perceived to be tanda
flat. We seek to identify these features using a topologiedhod. The unstable manifolds induced by a shape distancédua
identify some one- and two-dimensional subsets of the rhadia. The preimage of a function that maps the points on the
surface to the medial axis provides an association of thpestmthese one- and two-dimensional subsets. The preinfage o
the one-dimensional subset is called tubular whereas ftthedwo-dimensional subset is called flat. Our experimiaetult
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shows that this classification can be effectively approx@ddor many datasets in practice.

Given a compact surface@smoothly embedded iR3, a distance functiohs can be assigned ov&? that assigns to each
point its distance t@.

hs : R =R, x— inf |x—p|
pez

In applicationsy is often known via a finite set of sample poiftef Z. Therefore it is quite natural to approximate the function
hs by the function

hp : R* = R, x— min|x—p|
peP

which assigns to each point &® the distance to the nearest sample poirR.in

In this section, we start with a finite samlef > and identify the index 1 and index 2 saddle pointe®from the Voronoi
diagram VolP and its dual Delaunay triangulation ®bf P. We then select only the saddle points of both indices wheh |
on the interior medial axis af and compute their unstable manifolds. The unstable mahdbindex 1 saddle pointdJg)
are two dimensional whereas those of indek?) @re one dimensional. Exact computation&lefis prone to numerical error.
See Section 4.3 for details about Voronoi diagram, Delati@ygulation, and definition, properties and computatibsaddle
points. Then, the algorithm given below maps the pointstgdltg toU; andU, back toX. The image otJ; under the mapping
gives the flat regions & and that olJ, gives its tubular regions.

4.2.1 Feature Annotation Algorithm
Mapping of Unstable Manifolds to >

There is a natural association between the medialMxiandZ via the mapp: ~ — Ms whereg(X) is the center of the medial
ball touchingZ atx. Following this map, any subs&tC Ms can be associated with *(A) C 3. Let A; andA; be the closure
of the unstable manifolds of index 2 and index 1 saddldgsrdefined by the distance functidi. Recall that, generically,
A; is one-dimensional and; is two-dimensional. Ideally, we would like to identify 1(A;) C = as tubular angp1(A;) C =
as flat. As we have an approximationhgf by hp, we compute these tubular and flat regions for the unstabiefabds in the
approximate medial axis which we denote alsd/asor convenience.

We face a difficulty to compute an approximation of the prajmaf ¢ from the approximate medial axids. We are
interested in computing an approximation of the preimagdof= A; UA; C Mz under the magp.

Unfortunately, this requires an expensive computatiorot@cthe entiréVls which often spans a substantial portioriv.
A naive approach is to take only a sampleM¥, namely the Voronoi vertices, and then associate theRy tosample of,
via the Voronoi-Delaunay duality. This also proves uselessausévls does not contain all the Voronoi vertices and therefore
many points ifP cannot be covered by this Voronoi-Delaunay duality.

It turns out that the distance functiti again proves to be useful to establish a correspondencebeRandMs. Recall
that, the stable manifold of a critical point is a collectioihpoints whose orbits terminate at that critical point. XeandY
be the set of maxima ify C Mg andA; C My respectively. Consider the stable manifolds of the maxim andY. The
points inP that are in the stable manifolds ¥f are associated with the tubular regions and those in théestadnifolds of
Y are associated with the flat regions. If a point belongs tosthble manifolds of maxima iX as well as inY, we tag it
arbitrarily. These points belong to the regions where alartpart meets a flat part. Subsequently, every trianglee$thface
reconstructed by IGHT COCONEIis tagged as flat or tubular if at least two of its vertices dreaaly marked as flat or tubular
respectively.

Computation of stable manifold of maxima has been desciibRil] and its approximation was given in [19]. We follow
the approximate algorithm to compute the stable manifoldiselocal maxima lying omMs.

Figure 4.11 shows the sdfts of the molecule data 1IRK, and the set of maxima belonging & $et and identified as
linear or planar. The corresponding flat and tubular postiithe surface captured by the mapping via stable manifdtiese
maxima - colored golden and cyan respectively - are showngargé 4.13. We collected the protein from Protein Data Bank
[5] and blurred the molecule at a resolution 8 angstrom.Heunve took the vertex set of a suitable level set as the irgporit
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Figure 4.11: One dimensional subset of the interior medisl is drawn in red and the two dimensional subset of the nhedia
axis is drawn in green for the molecule data 11RK. The rightfiguure shows the selection of local maxima of the distance
function in those two parts, colored accordingly.

program. We verified the result with the existing literaturstructural biology and we have seen that the flat regioastitied
by our algorithm correspond to tifiesheets of the protein molecule.

Annotation Algorithm

The modules described in the previous sections and subseatan thus be combined to devise an algorithm for automatic
feature annotation af. We give the pseudo-code of this annotation algorithm here.

IDENTIFY_FLAT_AND_TUBULAR_REGIONYP)
1 Compute VoP and DeP.
2 Compute the interior Medial Axisly
by TIGHTCOCONE_AND_MA (P)

3 C; =setofindex 1 saddle points lying ds and
C, = set of index 2 saddle points lying dy,

4 A=A=0

5 forallceC,

6 A; = AJUUM_INDEX_2(c)

7 forallceC

8 Ay = AoU APPROX_UM_INDEX_1(c)

9 X =maximainA;

10 Y =maximainA;

11 Zqypular= MAPPING_VIA_STABLE_MANIFOLD (A7)
12 Zpjat = MAPPING_VIA _STABLE_MANIFOLD(A2)
13  returnXtypular aNdZgat.

Figure 4.12: Pseudo-code of the feature annotation algorit



140 CHAPTER 4. COMPLEMENTARY SPACE
4.2.2 Results

Implementation Issues

The algorithm works on the Voronoi-Delaunay diagram of teiec sample points lying on the surface. To robustly compute
the Delaunay triangulation and its dual Voronoi diagramtfa input set of points we use the library CGAL [13] which is
freely available.

Even in CGAL-framework, we sometimes face the degeneraie aifive or more points being cospherical. This case has
to be handled with special care because only one Voronaéxéstrepeated and therefore the flow along the Voronoi edges
is not well-defined anymore. To deal with such situations mealify the algorithm slightly. At the start of the algorithwe
collect the sets of tetrahedra which are cospherical. Wiglaputing the unstable manifold of index 2 saddle pointshéf
polyline hits a Voronoi vertex whose dual is a member of orehstospherical cluster, the algorithm automatically adesn
through the non-degenerate Voronoi edges which are dudktdriangles bounding the cospherical lump. This degegerac
poses a more serious threat to the computation of unstalidotthof index 1 saddle points and at this stage, we do narekt
the manifold through any Voronoi edge whose dual Delauriapgte is shared by two cospherical tetrahedra.

There are some parameters involved in the full feature atioot process. For surface reconstruction and medial axis
approximation we used the software [16]. The parameterthfese routines are described in [23], [25]. For noisy inpugs
replace TGHT CocONE by RoBusT CococNEand the parameters for that step are again described in T2#.rest of the
algorithm requires only one paramekaewhich is the number of flat regions to be output.

Performance

Figure 4.13 shows the performance of the annotation alguoriin six datasets. The datasets have been chosen to répresen
different domains this algorithm can possibly be applied®Pm is a CAD dataset which has two tubular parts joined in the
middle through a flat portion. The algorithm can identifyrtheorrectly. Similarly the method can correctly identifgthandle

as the tubular and the body as the flat region for theduataset. In the second row we show the performance of ouradeth

on two protein molecules obtained from Protein Data Bank\/#& took the crystal structure of these two molecules (PDB ID
1CID and 1IRK) and blurred them with Gaussian kernel. Wehfeirtook a level set which represents a molecular surface and
used the vertex set of that isosurface as the input to ouritdign The flat features identified by our method correspaontie
B-sheets of the secondary structure of those two proteirteeltast row we show the result on two free form objects cointgi

both flat and tubular features. As we can see, the palm of thetHhas been detected as flat whereas the fingers have been
detected as tubular. Our method can also capture the majanfldubular features of AEN.

We purposefully show the performance of the algorithm aneAl as it brings forth the limitations of our algorithm. We
see that a portion of the arm has been identified as flat. Thisdause the initial reconstruction phase could not sep#rat
beginning of the arm from the torso due to lack of sampling:dBelly, one of the feet could not be fully identified as flat loy o
algorithm. This is because the approximate medial axi$vtleastarted with, is not a close approximation of the true iaded
axis in that region, again due to lack of sampling. Becaugbaif our method fails to collect sufficiently many index tidke
points leading to incomplete identification of flat featuireghat region.

Figure 4.14 shows the performance of our method on noisysdbHDRSE Instead of applying TGHT COCONE, we first
mark the interior and exterior of the closed surface fromissy point sample by @8usT COCONE ([24]) and then obtain
the interior medial axis and proceed further with the uristatanifold computation and feature identification. Orainthere
were some thin flat regions due to the unstable manifold ofesioilex 1 saddle points near the hind legs which we filtered out
by thresholding in order to get a clean skeleton of th@RIdE In the rightmost picture we see some white triangles near th
ears. These triangles appear as the mapping via stableaitamisses some points on the surface in that portion.

Timings

The time and space complexity of the algorithm is dominatgdhle complexity of Delaunay triangulation. We report the
timings of the entire execution into four major steps
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Figure 4.13: Performance of the feature annotation algwrit The models are (a)i®R, (b) Mug, (c) molecule 1CID (d)
molecule 1IRK, (e) AND, (f) ALIEN

1. Step 1: Building the Voronoi-Delaunay diagram of the psit (Line 1 of Figure 4.12).
2. Step 2: Computation of interior medial axis. (Line 2 ofltig 4.12).

3. Step 3: Computation of unstable manifold of index 1 an@x2 saddle points lying on the interior medial axis. (Line
3-8 of Figure 4.12).

4. Step 4: Mapping the maxima in the planar and linear podfdhe medial axis back to the surface. (Line 9-13 of Figure
4.12).

We built the code using CGAL [13] and gnu C++ libraries. Thde@s compiled at an optimization levelO2. We run the
experiments in a machine witlhnteL XEON processor with 1GB RAM running at 1GHz cpuspeed. Table 48nts the time
taken in the four steps of the algorithm for a number of dasadeis clear from the breakup of timing that the first twopste
of building the Delaunay triangulation and then computimginterior medial axis are the two most expensive stepsnéigy
datasets, additionally®BusT COCONEIs used to obtain an initial in-out marking. This step is camgpively inexpensive. For
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Figure 4.14: Results on Noisy Data.

example, for ISy HORSE(48,000 points) this step only adds 10 sec to the whole coatipattime which is approximately
100 sec.

# points| Step 1| Step2| Step 3| Step 4
object (sec.) | (sec.) | (sec.)| (sec.)
1CID 5170 759 | 1563 | 6.69 | 0.39
1IRK 13940 | 29.88 | 43.93 | 15.63 1

HEADLESS | 16287 | 18.63 | 51.30 | 16.01 | 1.26

MAN
PIN 15530 | 15.73 | 41.4 | 2153 | 0.92
CLuB 16864 | 20.54 | 47.3 | 19.83| 1.24
MuG 27109 | 37.68 | 83.28 | 47.14 | 2.19
HAND 40573 | 53.48 | 120.16| 40.67 | 2.69
P8 48046 | 33.46 | 136.59| 39.97 | 3.22

1BVP 53392 | 148.18| 159.52| 62.19 | 3.53
ALIEN 78053 | 102.62| 242.33| 64.11| 5.4

Table 4.3: Timings

4.3 Curation of Surface
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Related Work

Pockets, Tunnels
Pocket Extraction

Several pocket extraction methods have been developedubidhed. Delaney [18] used cellular logic operations aid gr
points in a spirit similar to our two-step marching algomithbut its results were very rough approximations and diffifor
further visualizations and analyses. LIGSITE is a simpi@ethm that scans along tixe y, andz axes and the cubic diagonals
for areas that are enclosed on both sides by a protein [36}dier to identify pockets. It would not be accurate if the kmis
are not along those predefined directions. Edelsbrunndr §23@] computed pockets for molecular surfaces based on the
union-of-balls model by using Delaunay triangulations alha shapes. In their method, the Delaunay trianguld@ig(and
its dual Voronoi diagram) are first constructed for theBeff all atomic centers[27]. A flow relation can then be defined f
two Delaunay tetrahedra,c Dg ando € Dg, if they share a common plane and the dual Voronoi vertexlfs on different
sides of the plane frora. If T < o, T is called a predecessor afando a successor af. A tetrahedron flows to infinity, if its
dual Voronoi vertex is outsidBg or its successor flows to infinity. The alpha-sh&ge- Dg ata = 0 is the sub-simplex dDg
contained in the union of balls. Pock&sare defined in[27] as the set of Delaunay tetrahedra that tifiavoto infinity and
do not belong to the alpha-shafg, i.e.

P C Dg— Ag.

The alpha-shape based algorithm was implemented and tiestednumber of sample proteins [47]. This method has the
shortcoming of being dependent on the union-of-balls maael the pockets represented by alpha-shapes are usually not
smooth. The SURFNET method [34, 42] tries to detect thestaitthe protein surfaces by placing spheres between ail giair
atoms and shrinking their sizes until they do not intersagtaioms. The sphere fitting process results in a number aefa&p
groups of interpenetrating spheres, corresponding todkiies and clefts of the protein. However, a set of sphecesat
match well with the actual pocket shapes. Masuya and Doiritesta method of computing protein cavities using digital
morphological operations [49]. They represented the sadand interior of the molecular surfaces as a set of desgréd
pointsX. Given a probe sphere, represented also as a set of grids pyitite dilation and erosion operationsXfoy P are
defined as

XepP = |J Ux+p3}

X X pjeP

XeP = () Ux+p}

X X pjeP

The closing operation ok by P defined as a dilation followed by an erosiofie P = (X ® P) © P, is used to obtain a filled
moleculeX . The set of grid points iX " — X are taken as the cavities. While the spirit of the dilatiod arosion operations

is the most similar to that of the two-step marching alganitim this paper, the algorithms and implementations ardyast
different. Our algorithm can much more accurately modelntindecular surfaces. The dilation and erosion operatiofédh
depend critically on the radius of the probe spHerd the radius ofP is too large, the algorithm would miss important pockets
and tunnels on the molecular surface; if the radiuB &f too small, many small cavities would be generated fromgelaeal
pocket. So it requires an "optimal” radius to be selecteéémh protein individually. Our algorithm in this paper doeshave
those limitations. The PASS (Putative Active Sites with &gis) [10] is a geometric pocket extraction algorithm tisatsismall
probe spheres to fill the "buried" regions on the proteinae$. A number of parameters such as the probe radius andl"bur
count" are chosen a prior for this algorithm. The resultssateof probe spheres represent the protein pockets. PaoétetF

[1] is not a geometrical method, but uses a volumetric fumctif the smoothed van der Waals potential of the protein. The
van der Waals potential is approximated as the sum of Leramds formula of all atoms and then smoothed using a simple
iterative averaging process. The bounding surfaces (p@ckelops) of the protein pockets are then computed as hdeve

of the potential function. However, the parameters for teathing process and the isovalue of the level set are detedn

ad hoc and the pocket surfaces do not match the geometrapéstof the proteins very well. Q-SiteFinder [43] is another
energy-based method for predicting protein-ligand bigdiites. Although it is different from the geometric algbnit in this
paper, the interaction energy computation described ih f#8/ be combined with our geometric algorithm to improve the
accuracy of predictions.
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Pockets Representation

It is advantageous to represent the pocket shapes with a Bithetric function, which allows further analyses of the sbs
Complicated shapes are often captured via volumetric fomgtcoupled to morphological operations on the functiolrs.

2D range images, Krishnapuram and Gupta [41] uses dilatimhesosion operations to detect and classify edges; Gil and
Kimmel [33] discussed algorithms for computing one-dimenal dilation and erosion operators. In addition to theaotion

of polygonal surfaces from volumetric functions, 3D polygbmodels are also converted into volumetric represemtsi@nd
then modified, repaired and simplified using morphologiparations [52, 29].

Shape Segmentation

Shape segmentation is a problem related to finding pocket®imolecular surfaces, which has been studied using eliffer
geometric and topological methods such as shock graphsiitesjial axes [45], skeletons [61], Reeb graphs [36], andrsth
[48, 37, 46]. Itis applicable to consider the pocket eximacas the problem of segmenting the complementary spasaleut
the molecular surfac8. A notable approach of shape segmentation is based on th&eNtweory, which segments the domain
manifoldM into stable (unstable) manifolds [20] or Morse-Smale d@8 of critical points of a Morse function. The Morse
function commonly used for shape segmentation is the distimctionh(x) to a set of discrete point[20, 32, 27]:

h(x) = min [ —pl

Here again the Delaunay triangulation (and the dual Vordeobmposition) can be computed for the point®irThe critical
points ofh are the intersections of Delaunay elements with their Voreomplements. The stable-manifolds of the critical
points of the distance function to a set of discrete poirgscatled the flow complex in [32], and which is homotopy eqlaaa

to its alpha-shape [21]. The stable manifolds of maximahasame dimension as the the manifigléind give a segmentation

of M. However, a large number of points are necessary to sampiples surfaces and a large number of maxima and stable
manifolds would segment the space into many small pieceési#tve no direct correspondence to the pockets.

Identifying Tunnels

Because of the significance of the problem, quite a few woaksjng various approaches have been reported in the literat
To mention a few, we refer to the curvature based methodsidgjed [50, 51], the fuzzy clustering method of [38], the nogeth
based on PCA of surface normals by [54], the hybrid variaieurface approximation by [66] and the Reeb graph approach
of [57] and [65]. Remarkably the distance function oR&rwhich is defined by the distance to the boundary of the shape ha
not been fully used for feature annotation. In the contexdusface reconstruction, topological structures indugedistance
functions have been analyzed by Edelsbrunner [26], Cha#leind Giesen and John [31]. Chazal and Lieutier [15] andi§id

et al. [58] have used it for medial axis approximations. O&igsen and Goswami used the topological structures indoged
the distance function to segment a shape [19]. Howevermthi& stops short of using the topological structures fotfea
annotations. In this paper we complete this step.
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Relevant Mathematics

Voronoi-Delaunay Diagram of P

[*Repeated from Chapter 2]

For a finite set of point® in R3, the Voronoi cell ofp € Pis
Vo= {xeR®:vge P—{p}, [x—p| < [x—dl)}.

If the points are in general position, two Voronoi cells withn-empty intersection meet along a planar, convex Vortauait,
three Voronoi cells with non-empty intersection meet alangpmmon Voronoi edge and four Voronoi cells with non-empty
intersection meet at a Voronoi vertex. A cell decompositionsisting of the/oronoi objectsthat is, Voronoi cells, facets,
edges and vertices is the Voronoi diagram Raf the point seP.

The dual of VoiP is the Delaunay diagram DRlof P which is a simplicial complex when the points are in geneasifion.
The tetrahedra are dual to the Voronoi vertices, the trizmglte dual to the Voronoi edges, the edges are dual to thedioro
facets and the vertices (sample points fienare dual to the Voronoi cells. We also refer to the Delaumapkces aDelaunay
objects

Induced Flow

The distance functiohp induces a flow at every pointc R3. This flow has been characterized earlier [31]. See also 28]
completeness we briefly mention it here.

Critical Points.  The critical points ohp are those points whelg has no non-zero gradient along any direction. These are
the points inR? which lie within the convex hull of its closest points frdf It turns out that the critical points i are the
intersection points of the Voronoi objects with their dual&unay objects.

e Maximaare the Voronoi vertices contained in their dual tetrahedra
¢ Index 2 saddlebe at the intersection of Voronoi edges with their dual Delay triangles,
¢ Index 1 saddlefie at the intersection of Voronoi facets with their dual B@hay edges, and

e Minimaare the sample points themselves as they are always coiaitieeir Voronoi cells.

In this discrete setting, the index of a critical point is thimension of the lowest dimensional Delaunay simplex toat&ins
the critical point.

Flow. For every poini € R, letV(x) be the lowest dimensional Voronoi object that contaimsdD(x) be its dual. Now
driver of x, denoted asl(x), is defined as

d(x) = argmin.cp ) [|x - Y|

The direction of steepest ascent can be uniquely deternfimedunit vector in the direction of— d(x). The critical points
coincide with their drivers. Now one can assign a vestat everyx with a zero vector assigned at the critical points. The
resulting vector field is not necessarily continuous. Nthadess, it inducesfowin R3. This flow tells how a point moves in

RR3 along the steepest ascenttpfand the corresponding path is known as dhlgit of x. We can also define dnverted orbit

of x wherex moves in the direction of steepest descent.
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Stable and Unstable Manifolds. For a critical pointc its stable manifold is the set of points whose orbits end. athe
unstable manifold of a critical poiratis the set of points whose inverted orbits end.akhe structure and computation of stable
manifolds of the critical points dfier were described in [31]. They can be computed from the Deltnengulations of the
given point sets though they may not be subcomplexes of tieuDay triangulations. For computational advantages ¢ney
also approximated by Delaunay subcomplexes as in [19].

As the Delaunay and Voronoi diagrams, the structures ofestaid unstable manifolds have a duality. Interestinglg on
can compute the unstable manifolds and their approximafiom the Voronoi diagrams. Here we state some of the factstab
the unstable manifolds of the critical points.

1. MAXIMA . The unstable manifold is the local maximum itself.

2. INDEX 2 SADDLES. The unstable manifold of an index 2 saddle point is a podyitarting at the saddle point and ending
at a maximum.

3. INDEX 1 SADDLES. The unstable manifold of an index 1 saddle point is a two diienal surface patch which is
bounded by the unstable manifold of index 2 saddle points.

4. MINIMA . The unstable manifold of a local minimum is a three dimemaigolytope bounded by the unstable manifold
of critical points with higher indices.

Flow on Voronoi Objects
Before we state the connection between the flow induceldsbgnd the Vor-Del diagram dP, we would like to state some

facts about the relative position of Voronoi and Delaunajects. These relative positions can describe the naturewsfin
the Voronoi objects. These facts were clearly explaine@} for a more general setting of power distance.
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Figure 4.15: Relative position of a Voronoi fadétwith respect to its dual Delaunay edge. The left picture shows the
creation of an index 1 saddle point. The right picture shdwesaosition of the drived of F.

Fact 1. The unoriented normal to the supporting plane of a Voronoéfas along its dual Delaunay edge and the plane passes
through the midpoint of the edge. The Delaunay edge, thaugh,or may not intersect the dual Voronoi face.

Figure 4.15 illustrates the two possibilities that may arihe left figure corresponds to the situation that resuoleni
index 1 saddle point.

Fact 2. The supporting line of a Voronoi edge always intersects thegof the dual Delaunay triangle at its circumcenter and
is along its unoriented normal. The Voronoi edge may or maymiersect the interior of the Delaunay triangle.
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Figure 4.16: Relative position of a Voronoi edgwvith respect to its dual Delaunay triangbgr. The blue circles denote the
two Voronoi vertices defining. The driver ofeis markedd and the supporting plane of triangbejr is drawn in cyan.

Figure 4.16 lists the four possible scenarios. The bottgimt iGorresponds to the generation of an index 2 saddle point.

We have already seen that the critical pointpfcan be computed from Vér and DeP. Also, the driver of a poink
comes from the Delaunay object dual to the Voronoi objdigts in. In this context we would like to state the followiremhma
which is key to the further computations.

Lemma 4.3.1. All interior points of a Voronoi object have the same driver.

This result can be easily proved by considering all the diffiécases regarding the dimension of the Voronoi objecitand
position with respect to its dual Delaunay object.

By Lemma 4.3.1 and Facts 1 and 2 we can list the possible posgifithe drivers of the points lying in the interior of a
certain dimensional Voronoi object.

Position of Drivers
Voronoi Cell

For a Voronoi celVy, the dual Delaunay object is a singleton set containingdigpde pointp and therefore all pointsin
the interior ofV, hasp as their driver.

Voronoi Facet

Consider a Voronoi facet in the intersectiorMpfandVgy. The dual Delaunay edge fand the midpoint opgis the driver
of all x lying in the interior of the Voronoi facet (Figure 4.15(rig#.

Voronoi Edge

Next, consider a Voronoi edge in the intersectioWgiVy, V. As Fact 2 and Figure 4.16 indicate, the infinite line segment
containing the Voronoi edge may or may not intersect the enhull of p,q,r leading to two different possibilities
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Case 1.1In case of intersection, the circumcenterpafr is the driver. Such Voronoi edges will be termedn-transversal
edges as the flow is along the edge itself. The Voronoi edgentagoronoi vertices as its endpoints. If both of them are
in the same half-space defined pgr, the closer Voronoi vertex is callesburceand the further one is callédrminusof
the Voronoi edge because the flow is directed from the clastiret further vertex. Figure 4.16 (top right) illustratesth
case.

Case 1.21If the Voronoi edge does not intersect the affine hulpodj, andr, the midpoint of the edge opposite to the largest
angle ofpqr is the driver. These Voronoi edges will be termedrassversal If any pointx moving along its orbit hits
one such edge, the position of the driver implies that it eilter the Voronoi facet dual to the Delaunay edge opposite to
the largest angle ipgr. Such Voronoi facet will be termeatceptorfacets of thatransversaMoronoi edge. Figure 4.17
illustrates the situation.

Figure 4.17: Transversal Voronoi edges shown in red with three incident Voronoi facets. Flow dtfen is shown with
arrows. Flow from either off; or I, hitse and enter$s, the acceptor oé.

\Voronoi Vertex

The case of Voronoi vertex again requires the analysis ofdifferent cases. We assume, that it is outside its dualitetra
dron because otherwise it is a local maximum and hence isvitgoiver. Letv be a Voronoi vertex with the dual tetrahedron
whose four neighbors ag,i = 1...4. Further, let the corresponding shared triangles betwesamd g; bet;,i = 1...4 where
wi, i =1,...4isits opposite vertex io.

Case 2.1There is only one triangle of o for which the Voronoi vertex and the opposite vertey lie in two different half-
spaces defined by, Letg be the Voronoi edge between the dualsradndg;. Then, the driver fov (dual too) is same
as the driver ofy. In such cases; is termed as theutgoingVoronoi edge ofv. See top row of Figure 4.18 for an
illustration.

Case 2.2There are two trianglds tj of o for which the Voronoi vertex and the opposite vertew( andw;) lie in two different
half-spaces defined by the corresponding triangles el ef be the Voronoi edges defined as in Case 2.1. Note, in this
case, botlg, e; are theoutgoingVoronoi edges of. There are two possibilities that we need to consider furthe

Case 2.2.1Both g, ej aretransversal In this case thecceptos of both of them is dual to the Delaunay edget; and
the corresponding driver is the midpointtpfit;. See bottom-left subfigure of Figure 4.18.
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Case 2.2.20ne ofg, g; istransversal The driver is same as that of the non-transversal Vorongée8ee bottom-right
subfigure of Figure 4.18.
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Figure 4.18: Possible driver positions of a Voronoi veneaccording to the cases2and 22.(1— 2). The acceptor Voronoi
facet is shown in pink. The flow along a non-transversal Vorauge is shown with a double arrow. The driver is shown in
red circle.
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In this context we state another lemma that is importantdbsequent developments.

Lemma 4.3.2. Let F be an acceptor Voronoi Facet for the transversal Voi@uges ¢ = (v1,V2) ... e = (Vk, k1) around it.

1. The Voronoi edges e.. g form a continuous chain around F.
2. The Voronoi verticesyv. . v fall in the category 2.2.1. The Voronoi verticesand v fall in the category 2.2.2.

3. F,e...e, W2...v have same driver which is the midpoint of the Delaunay edgétdu-.

We omit the proofs of all of the above claims.

Computing Unstable Manifolds

Unstable Manifold of Index-2 Saddle Points
In this section we describe the structure and computatidheofinstable manifolds of index 2 saddle points.

The unstable manifold of an index 2 saddle pointis one dim@as In our discrete setting it is a polyline with one enitppo
at the saddle point and the other endpoint at a local maxinTima polyline consists of segments that are either subsetsrof
transversal Voronoi edges or lie in the Voronoi facets. [uhe later case, the polyline may not be a subcomplex oPVor

Let us consider an index 2 saddle poigt,at the intersection of a Delaunay trianglevith a Voronoi edgee. Let the
two tetrahedra sharinfy be g1, g». The edgee has the endpoints at the dual Voronoi verticegpfand g,, denoted as1,v»
respectively. The unstable manifdldc) of c, has two intervals - one fromto v; and the other frone to v». We look at the
structure of one of them, say the one frano v4, and the other one is similar.
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At any point on the subsegmety, the flow is towards; from c. Once the flow reaches, the subsequent flow depends
on the driver ofv;. Instead of just looking at;, we consider a generic step, where the flow reaches at a Morertexv and
we enumerate the possible situations that might occur dipgmn the position of driver of. If v is a local maximum, the
flow stops there, as the driver ofs v itself. Otherwise there are two cases to consider.

e vfalls into Case 2.1: Let the dual tetrahedron ke and the driver of/ is same as that of the Voronoi edgevhich is
between the dual af and one of its neighbors, say. If eis non-transversal, the flow will be along the Voronoi eége
till it hits the Voronoi vertex at the other endpoint (duald®). Otherwise, the flow enters the acceptor Voronoi facet
of e. Due to Lemma 4.3.2, the driver &fis same as the driver & Therefore the next piece of the unstable manifold
can be uniquely determined by the driverepfayd and the Voronoi vertex. It is the segment betweerand the point

-5 .
where the raylvintersects a Voronoi edge 6&f

¢ vfalls under Case 2.2.x: This situation is similar to the one described above. In cdg®th of the Voronoi edges being
transversal(Case 2.2.1), the flow enters the acceptor Voronoi facethdrother case (Case 2.2.2), the flow follows the
non-transversal Voronoi edge.

Some segments &f (c) are not along the Voronoi edges. Wherever the flow encouateassversal Voronoi edge, it seizes
to follow the Voronoi edge and enters a Voronoi facet whichdseptor for that Voronoi edge. This calls for the analy$is o
the flow when it crosses an acceptor Voronoi facet and hitsrarv edge. We have already characterized the position of
the driver for a Voronoi edge and thereby classified those®dg either transversal or non-transversal. If the cuaeége
intersected by the ray from the drivertads a non-transversal edge, the flow will follow that Vorondge and hit a Voronoi
vertex. Otherwise, it will enter the acceptor Voronoi fackthe Voronoi edge again. There is a technical difficulty veedto
point out. Unless the acceptor for this Voronoi edge is déffe from the Voronoi facet the flow came from, we may encounte
a cycle. The following lemma saves us from this awkward sibua

Lemma 4.3.3. Let F be a Voronoi facet and let d be its driver. Let e be a Voreuge for which F is acceptor and x be any
point on e. Also assume the ray from d to x intersects a Voredge & If € is transversal, the acceptor of is different from
F.

.
index 2 saddle™ ',

maximum
5

Figure 4.19: Unstable manifold(c) of an index 2 saddle poimt ¢ is drawn with a cyan circle. The portion bf(c) which is

a collection of Voronoi edges is drawn in green with interimggl\oronoi vertices drawn in blue. The pink circle is a \food
vertex onU (c) where the flow enters a Voronoi facet. The portiorqk) which lies inside the Voronoi facets is drawn in
magenta. The transversal Voronoi edges intersected bpahi®n ofU (c) are dashedU (c) ends at a local maximum which
is drawn in red.

Figure 4.19 shows an example of the unstable manifold of dexi2 saddle point.

Following the above discussion on the structur&¢€) we devise the algorithm to compute the unstable manifoldhof a
index 2 saddle point. We assume, the saddle pomtarries the information about the two neighboring tetrahed, o>
and additionally we have access to Pakhich is used to evaluate the utility routines like acce@)tpterminus() etc. The
pseudo-code of the algorithm is given in Figure 4.20.
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UM_INDEX_2(C)
1 Up=cvyandU; =cw
2 v=wv;
3 enc(Ul) =V
4 while (vis not a maximum) do
5 if(vis not a Voronoi vertex)
6 e = \Voronoi edge containing
7 if(eis non-transversal)
8 endU;) = terminuge)
9 U; = U;Usegmenty,endU;)

10 v = terminuge)

11 else

12 F = acceptofe)

13 d = driver(F) = driver(e)

14 x=dvne # 0, € is a Voronoi edge oF
15 endU;) =x

16 U; = U;Usegmenty,endU;)
17 V=X

18 else

19 if(v falls under Case 2.1)

20 e = outgoingVoredge (v)

21 repeat steps 7-17.

22 else iff falls under Case 2.2)
23 F = acceptofv)

24 repeat steps 13-17.

25 endwhile

26  Similarly computéJ,.
27 returnU; UUo,.

Figure 4.20: Pseudo-code for computation of unstable rakhiff an index 2 saddle point.

Unstable Manifold of Index-1 Saddle Points

Unstable Manifold of index 1 saddle points are two dimenaioiDue to hierarchical structure, they are bounded by the
unstable manifold of index 2 saddle points. In this secti@nfinst describe the structure of the unstable manifolds hed t
describe an algorithm that computes an approximation ofittstable manifold of an index 1 saddle point.

Let us consider an index 1 saddle pomtThis point lies at the intersection of a Voronoi faéeand a Delaunay edge. For
any pointx € F \ ¢, the driver isc. For all suchx, if they are allowed to move in the direction of flow, they willove radially
outward and hit the Voronoi edges boundigThusF is inU(c). Now we analyze the flow when a point hits a Voronoi edge.

We have characterized the position of the drivers for a Voredge and we have also seen that depending on the driver,
one can classify the Voronoi edges into two categories strarsal and non-transversal. For a non-transversal Voeatye,
the flow is along the Voronoi edge. Such Voronoi edges lie enbthundary ofJ (¢). On the other hand) (c) grows via the
acceptor facets of transversal Voronoi edges. Dependirtigeoposition of the driver, which by Lemma 4.3.2 is same fahbo
the edge and the acceptor facetruncated conalefines the extension &f(c) into the acceptor Voronoi facet. Consider the
cone defined by the two rays emanating from the driver andingasisrough the endpoints of the transversal Voronoi edge.
The intersection of the acceptor facet with the cone definesruncated cone. The truncated cone hits a continuous chai
of Voronoi edges in the acceptor facet. Some of them are aatelplcontained in the truncated cone and some of them are
intersected by the two rays and hence are partially cordaimét. This chain of edges defines the new boundary ¢f)
through some of whickl (c) can be extended further recursively. Figure 4.21 shows ample truncated cone in a Voronoi
facetF by the driverd and the end Voronoi vertices of the transversal Voronoi €dggen).
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Figure 4.21: (a) Truncated Cone. Accurate computatiorctetmly the pink region from the yellow Voronoi facet as pafrt
unstable manifold of an index 1 saddle paoinnot shown). (b) Snapshot of approximate computatiob) @f) at a generic
stage.

To computeJ (c) accurately, one therefore needs to compute the intersegftmray and a line segment in three dimension.
Such computations are prone to numerical errors. Therefggeely on an approximation algorithm that computes a sqter
of U(c). The algorithm works as follows.

Starting from the Voronoi facdt containingc, we maintain a list of Voronoi facets which are alreadyitc) and a list
of active Voronoi edges which are transversal edges andhlidn® boundary of the current approximationtbfc). Through
these transversal edges we collect their acceptor facdtgramwU (c). Instead of computing the new set of active edges by an
expensive numerical calculation of ray-segment inteisectve collect all the transversal edges of this new aceeéfimnoi
facets. This way we grow (c) recursively till we have a set of Voronoi facets which are haed by only a set of transversal
Voronoi edges.

Figure 4.21(b) illustrates an intermediate stage of thimmatation. The index 1 saddle poinis contained in the blue
Voronoi facet. The yellow Voronoi facets are alreadyuifc). The red edges designate the static boundary as they are non-
transversal and the green edges designate the active bguhdzugh which the pink facets are includedJric) in the later
stage of the algorithm. Following is the pseudo-code fos @lgorithm. Given an index 1 saddle pomit computes an
approximation ofJ (c). We assume also has information about the Voronoi fa€eit is contained in.

ApPPROX_ UM_INDEX_1(C)
1 U=F

2 B=\oronoi edges of

3 while B # 0) do

4 e=pop(B)

5 if (eis transversal)

6 U = U Uacceptofe)

7 B = BUunvisited edges of acceptej

8 endwhile

9 returnU.

Figure 4.22: Pseudo-code for approximate computation stialne manifold of an index 1 saddle point.

Classification of Medial Axis

In the previous two subsections we have described the stegbf the unstable manifolds of an index 1 and index 2 saddle
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points. We have also given an accurate and an approximaisthlg to compute them. Our goal is to identify the unstable
manifolds near the medial axis Bf Ultimately these manifolds are mapped back for the feature annotation. For this we first

compute a Voronoi subcomplex that approximates the megisls and then identify different regions of this approximate
medial axis as the unstable manifolds computed by the twmstibes UM_NDEX_2 and A°PROX_UM_INDEX_ 1.

Before we describe our approach, we briefly mention a re@stltr by Dey, Giesen, Ramos and Sadri [22] where they
proved that under sufficient sampling bfby P, the critical points ohp lie either close t& or close toMs. This motivates
our approach. Applying the same result, we filter out onlyitfgex 1 and index 2 saddle points né&y instead of>. Further,
we consider only the components s which lie in the interior of the solid bounded ¥ For this purpose we use the
TIGHTCOCONE algorithm by Dey and Goswami [23]. The implementation oftaigorithm is freely available in the public
domain [16] along with the software for medial axis approatimns which is computed as a Voronoi subcomplex according
to the algorithm by Dey and Zhao [25]. For the purpose of retrmigtion, any other reconstruction algorithm also cowdd b
used [8, 2]. Applying TcHTCocoNE followed by medial axis approximation we get the approxeriaterior medial axis of
>. We perform the critical point detection only within the \@oioi subcomplex that approximates this medial axis. Letalis ¢
this set of index 1 saddle poin® and that of index 2 saddle poirBs. We then apply UM_Nbex_2(c) for all c € C; and
ApPPROX_UM_INDEX_1(c) for all c€ C;. U(c € C;) is two dimensional antdl (c € Cy) is one dimensional. Therefore, by
restricting the unstable manifold computation only withMig we obtain two subsets ®flz. In the next section, we describe
how this classification can be mapped back tor automatic identification of its flat and tubular regions.

-

Figure 4.23: Removal of small patches in the tubular regiarstarring. Magenta circles indicate the centroids ofétpegches,
green circles are the boundary vertices which connect d&pethb a linear portion (red line) and cyan circle indicatesene
two different patches join at a common vertex. Blue linesthesreplacements of these small patches obtained by thimgtar
process.

Because of sampling artifacts, sometimes the interior adediis in the tubular regions have a few index 1 saddle points
The unstable manifold of these saddle points need to betddtand approximated by lines. We partition theGgebased on
the connectivity of their unstable manifolds via a commogesdnd every partition creates a patch which is the unionef th
unstable manifolds of all the index 1 saddle points fallintpithat partition. We further assign anportancevalue based on
the area of the patch and sort the patches according toitmgartance One could also employ other attributes like diameter,
width etc. to evaluate the importance. The small clustezstlaen detected either by a user-specified threshold valbg or
simply selecting th&-smallest clusters wheleis also a user-supplied parameter. These insignificanaplagions are then
approximated by a set of straight lines emanating from tin¢roil of the patch to the boundary points which are conrmktcte
either a polyline (green circles in Figure 4.23) or anotregch (cyan circle in Figure 4.23). We call this procstsring.

The resulting one dimensional and two dimensional sub$¢ti® dnterior medial axis is shown in Figure 4.24. Left colum
shows the approximate medial axis computed by [25]. Thet dglumn shows the subset of medial axis capturet)bg;)
andu (Cy).
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Figure 4.24: Results of Medial Axis classification. Top rdwows the result for HADLESS MAN. Two closeups have been
shown to highlight the planar clusters in the palm of the hand the feet. The closeup of hand has been rotated for visual
clarity. The middle row shows the result oraND dataset and the bottom row shows the result on a moleculel @at®.
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Integral and Differential Properties

5.1 Areas, Volumes

5.2 Gradients, Curvatures
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Chapter 6

Energetics

In [6], the Gibbs free energy of a system of an assemble ote®lwith arbitrary shape and composition surrounded by a
dielectric solvent is expressed as

G=pV+ (YD) dr + [ (U ar+3 [ 100 Pe(e) o 0.1

The first term is energy of creating a cavity in the solvenirgtahe difference in bulk pressure between the liquid aaabv.
The second term is the energetic cost due to solvent arrangeaiose to the cavity surface. This interfacial energyaftgns
thought to be the main driving force for hydrophobic phenoef8]. They assumgis a function of the local mean curvature
of the cavity interface. The third term is the total non-#lestatic solute-solvent interaction. It is represente@m isotropic
Lennard-Jones potential. The fourth term is the total ebstatic energy. The electrostatic potengias evaluated by Poisson’s
equation.

In [20], they rewrite the Poinsson-Boltzmann (PB) equatitdo the form of the Euler-Lagrange equation the solution of
which minimizes the total electrostatic free energy of the&tam:

Ge'e:/ (pfqo—kTé’[Zcost(qo)—Z]—%E-D) dr, 0.2)

wherep' is the charge density of the fixed charges (of the proteinshmranacromolecules) ard is the bulk salt concentra-
tion. Wheng < 1, the PB equation can be linearized, so the electrostaticenergy can be written as

2
Ge'E_/<pf(p—ZLn —%E-D) . 0.3)

In [18], they write the total potential of mean for&X) for the configuratiorX as
G(X) = Uy(X) +AGMP(X) + AG®e9(X), (0.4)

whereUy(X) is the intramolecular solute potential. The represematicthe non-polar solvation contributiaxG("P (X) can
be obtained from the scaled particle theory (SPT). To preducavity in a liquid,

AG™P(X) = pV + YA, (0.5)

wherep is the isotropic pressur®, is the volume of the cavityy is a function of the surface tension of the solvent and the
curvature of the interface, amlis the area of the interface. The continuum electrostatitrdmution can be expressed as a

surface integral
eleq
2/Z |r—xI r (0.6)
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wherea(r) is the surface charge density. This is because the solvangeliensity is a sharply peaked function localized at
the solute-solvent interface. One can further rewrite)(@s6

elecj
2/z 49, |r

ZEZQiQJF(Xian)a (0.7)
]

wherea(r : xj) is the surface charge inducedraby a unit solute charge located»t The geometry-dependent coupling
functionF (xi, ;) has different approximations, for example FIESTA [22], IN&$ ACE [19], and GB [23].

In the Weeks-Chandler-Anderson (WCA) model [26], the imtelecular potential is separated into two parts:
W(r) = Uo(r) +u(r), (0.8)

whereuy(r) is the reference system pair potential which includes eltépulsive forces in the Lennard-Jones potentialgng
is the perturbation potential which includes all the atik@cforces. So one can also writgr) = Urep(r) +Uat (r). Because the
non-polar free energy can be decomposed into the repulaiigydydration free energy and the solute-solvent van daalg/
dispersion interaction [16],

AG"(X) = AGcay+ AGyaw, (0.9)

in [28] they use the WCA decomposition scheme to repres@gty andAG,qw by the repulsive potentidliep(r) and attractive
potentialUa(r), respectively. Explicit solvent simulation has shown th&ay is approximately proportional to the solvent
accessible ared&l(r) is obtained by summing the average van der Waals solutessodnergy),; of each atom

M
_ i
Uatt = i;Uatta (0.10)
where
ht = / Pl (Ir — i) dr. (0.11)
solvent
O0i+0s 6

p is the bulk density of the solvermim = —§ (‘rixi‘ , & measures the depth of the attractive wellrat xj| = g; + s, 0

andags are the radii of the solute atom and the solvent probe. Thegiation domain in (0.11) can be converted to a bounded
domain

Ul = Ul (isolated — p Ugee (I — i) o, (0.12)
Jsolute,atom

where first term is the solute-solvent attractive van derl$vaaergy when the solute is composed solely of atofhis can be
analytically obtained by integrating (0.11) for the singtem solute model.

6.1 Hamiltonian, Lagrangian
6.2 Partial Charge Assignment

6.3 Lennard Jones Potential (vander Waals)

The Lennard-Jones.{) potential between moleculdsandB is given by the following expression.

LI(AB) = ; 3G, 0), 1iG,0) = a /ri? —big /S,
icAjeB

wherer;; is the distance between atoins A andj € B, constants;; andbj; depend on the type (e.g., C, H, O, etc.) of the two
atoms involved. One can evaluate the LJ potential amongttmsaof a single molecula by settingB = A and considering
only non-bonded atom pairs.
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Observe that direct computation b(A, B) requires& (MaMg) time, whereMa (resp. Mg) is the number of atoms in
moleculeA (resp. B). However, since the terms in the summation diminish qyigkith the increase ofjj, one can evaluate
LIs-(AB)=73 icajemr; <5 li(i,]) asanapproximation dfJ(A B), whered is a given distance cutoff.

SupposéMa > Mg. Then one can evaluatds- (A, B) in ¢ ((Ma+ Mg) logMg + m) time and&’ (Ma + Mg) space, wheren
is the total number ofi € A, j € B) pairs within distanc®. The trick is to use an octree [12] to store the atomB,aind then
use it to locate the atoms Bfwithin distanced from each atom oA (see [4] for details). Use of a 3D grid instead of an octree
may result in® (Mg®) space usage in the worst case [4].

In the rest of this section we first outline our approach tdwatingLJs- (A, B) faster thary’ ((Ma + Mg) logMg + m) time
while still using&’ (Ma + Mg) space, followed by our approach to fast approximatiobdf, B) to within a factor of 14 € of
the exact value for any givem> 0.

6.3.1 Faster Evaluation ofLJ(A, B) with a Distance Cutoff

We store the atoms & in our Dynamic Packing GrigDPG) [1] data structure instead of an octree. The DPG cantaiaithe
atoms of a molecule in space linear in the number of atomdewaliowing a range of spherical range queries and updates (i
insertion/deletion) very efficiently. An update tak€g1) time (w.h.pl), while a range query returns all atoms within a given
distanced from any given atom center i (k) time? (w.h.p.), wherek is the number atoms returned. Therefore, all atoms of
B can be inserted into the DPG & (Mg) time (w.h.p.), and the total time required to find all atom®afithin distanced of

the atoms oA\ is € (Ma + m). HencelJ5- (A, B) can be evaluated exactly i (Ma + Mg + m) time (w.h.p.) and? (Ma + Mg)
space.

6.3.2 Fast(1+ ¢)-Approximation of LJ(A,B)

Observe thatJ(A,B) = LI5- (A,B) + L5+ (A, B), whereLJs+ (A,B) =3 icajerr,>s li(i,]). We outline below how to ob-
tain an error-bounded approximationlaf(A, B) through a fast approximation &fls+ (A, B) in addition to the exact evaluation
of LJ5- (A,B). More precisely, given any user-defined constgamt 0, we will approximate J(A, B) to within a(1+ ¢) factor
of its exact value.

In the expression dfJ(A, B), a; andbjj are fixed for any fixed pair of atom types, and can be calcuffated the Amber
force field using well depthgxy and equivalence contact distances of homogeneouspaifsy, whereX = atomTypéi € A)
andY = atomTypéj € B)) [27, 14]. By definitiona;j /bij; = rgqmXY/Z (see [14]). We assun¥Y € {C,H, N, O, P, §.

Let.#x denote the subset of atoms of ty}én molecule.# € {A,B}. ThenLJ(A,B) = Yx ve(c, H, N, 0, P, 3 LI(AX,By),
where LJ(Ax,By) = L‘]5x’y (Ax,By) + L\](5x+Y (Ax,By), for some constardixy > O (to be defined later). We outline below how to
approximatd_J(Ax, By) for a given pair(X,Y). We evaluatdLJafo (Ax,By) exactly, and approximale]@Y (Ax,By) to within
a factor of(1+ ¢€) of its exact value.

Letoxy > (1/2+ 1/5)1/6requy. If we approximate eachy; /rﬁ with rij > dxv to within a factor of 1-¢/(2+ ¢€), simple
algebraic manipulations sholy (i, j)| < [bij/rﬁ] < (A+9lljd, ).
approx

In order to approximateJ(Ax, By) as mentioned above, we construct two octrégg and.7g, from the atoms irAx and
By, respectively, and compute(a + €)-approximation ofLJ(Ax,By) by simultaneous recursive traversals.gf, and g,
starting from their root nodes. Suppose at some point wetanedex of Ja, and nodey of Jg,. If both x andy are leaf
nodes, potential between the atoms contained (gay, .#y) andy (say,.#) is computed exactly. Otherwisexfandy are
far enough (i.e., at leagky apart), and small enougtthe potential between#, and.#, is approximated by assuming that
andy are single pseudo atoms centered at the center of gravit,adnd.#y, respectively, and taking#y||.#y| (bij /rffy) as

1For an input of sizen, an event E occurs w.h.p. (with high probability) if, for amy> 1 andc independent of, Pr(E) < 1— o

2The actual complexities also depend onvoand log logw, respectively, wheres is the RAM word size (e.g., 32 or 64) of the machine, which isastant
for a given machine.

Si.e., Ixy + (rx+ry) < (L+e/(2+ s))% (rxy — (rx+Try)), wherery (resp.ry) is the radius of the smallest ball centered at the atom r=ofe (resp.y) that
encloses all atom centersxfresp.y).
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Figure 6.1: Approximation of LJ potential in 2D using quaas [9] (i.e., 2D variant of octrees): In the leftmost figune t
bounding box of moleculé (resp. B) represents the root node of the quadtree stofir{gesp. B). The smallest boxes in
the middle and the rightmost figures represent quadtreesraidevels 2 (i.e., children of the root) and 3, respectivkt us
assume for simplicity that if two nodes of the two quadtremgadt intersect they are far enough so that the LJ potentialdsn
their atoms can be approximated by treating them as pseiodasaln the leftmost figure the two root nodes (nodemdB)
intersect, and so we move to their children nodes in the raifigure. In the middle figure only nodés andBs intersect, and
so while the potential between the atoms of all otffgrB;) pairs can be approximated, we need to move to the childréa of
andBs in order to compute the potential between them (see themigsttfigure).

the approximated potential, wherg is the distance between the centers of the two pseudo atotherv@se we subdividg
and/ory (i.e., move to their children), and approximate the potdmécursively. Figure 6.1 explains the approach in 2D. The
pseudocode is given in Figure 6.2.

APPROXLI( X, Y)

(Inputs are two octree nodesc Ja, andy € Jg,, and the the output is a floating point numbérsuch thatU <V < (1+¢)-U, whereU =
Tie M€ My (aj/riljz—bij/rﬁ). By CHILD (X) (resp. CHILD (y)) we denote the set of non-empty octree nodes obtained byvidibd nodex (resp.
y). We denote byoxy the value of the constaby; for atom types< andY, and byryy the distance between the centersaihdy.)

1. if LEAF(X) A LEAF(y) then return Fic s jc s (%—’z - %‘—) {exact valug
i ij
. 1 My-b . .

2. dseif ryy — (rx+ry) > Sy A % < (1+ 55 ) 8 then return — (rx’\’;’\(’:‘;::y‘;) {approximatior}
3. elseif LEAF () return 3 Cy€ CHILD (¥) APPROXLI( X, cy) {recursive approximatioh
. seif LEAF(y) return PPRO cX, y recursive approximatio|

4 dlseif CX€E CHILD (X) A 1 i imati
5. esereturny . chip (X) ACy € CHILD (y) APPROXLJ(cx, cY) {recursive approximatioh

APPROX.J ENDS

Figure 6.2: Recursive approximation ofyic s jc.x, (a;j/riljz—bij/rﬁ> to within a factor of 1+e&.  The initial call is

APPROXLJ( ROOT(Zp, ), ROOT(.7B, ) ) for the approximation ofjca, jes, (aij /12— byj /rﬁ).

In order to obtain an upper bound on the time required for@gpratingLJ(Ax,By) we assume that the initial bounding
box of bothAx andBy have exactly the same size, and each non-root node of thedinges has at least one sibifadhen it
can be shown that each noxle Ja, will be paired with¢’ (5_13) nodes ot7g, of the same or larger size during recursive calls,
and vice versa. In order to see that this is indeed the cagposa the diameter of the smallest ball containing nodel (i.e.,
equal to the length of the longest diagonakgf Then a nodg € 7, of the same size will be paired wiktfor approximating
the potential by treating both nodes as pseudo atoms prbtige(center-to-center) distangg, between them is in the range

['d, 2¢'d), wheree’ = (" + 1)/ (¢” — 1), ande” = (1+¢/(2+¢))®. Since the volume of nodgis © (d3), there can be

4if not, we directly connect the node to its nearest ancebttrtas at least two children.
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0 (glg) such nodes within that range. Also since each internal nbdggpis assumed to have at least two children, the number

of nodes ofg, larger thany with which x can be paired as pseudo atom is also bounded léx%) Observing that there
are0 (|Ax|) (resp.& (|By|)) nodes inZa, (resp. g, ), and taking the construction times of the octrees into actdhe total
running time of the algorithm for atom-type pai,Y) is & (|A><| log|Ax|+ |By|log|By |+ glg(lA)(| + |B\(|)). Summing over

all possible pairs of atom types, the total running time fop@ximatingLJ(A,B) is & ((5_13 +log(Ma+ MB)) (Ma+ MB)).
However, assuming that the octrees are already constrircgegreprocessing stégthe running time of the algorithm is only
0 (&(Ma+Mg)).

6.4 Coulombic

Long range Coulomb potential plays a role in forming staldmplexes due to partially charged bio-molecules and stlven
atoms, and is given by2 = y; ; %. Assuminge(rij) = rij, 2 is also approximated agi’jqiqj/rﬁ, where pairwise
interactions fall off more sharply with distance.

We can obtain an approximatio®’ of 2 using an algorithm similar to the-£ € approximation algorithm in Section
6.3. Since contributions due to positive and negative pagwotentials tend to cancel out the algorithm does notagiiee a
multiplicative (i.e., 1+ €) error bound. Instead the error bound can be obtained as®llSuppose? = 24 — 2 4, where
24 (resp. 2 4) is the sum of all positive (resp. negative) pairwise passatn 2. Now if 2 > 0, then simple algebraic
manipulations show tha® — 245 < 2' < 2+€24. Similarly, if 2 <0theboundis?2-¢2 , < 2' < 2+e2 . We
cannot guarantee an error boundif= 0.

6.5 Dispersion

The solute-solvent van der Waals interaction energy (afsmvk asdispersion energyis modeled as [7, 25]Eydw(s-s)=

0o Ei“il jéxufa“) (xi,r)d3, wherepg is the bulk density, andi(a“) (xi,r) = — is the van der Waals dispersive component of

[r—xi[®
the interaction between atoin [1,M] and the solvent. ThiByaw(s-s)= 03 "1 Jux ﬁd%

The following discrete surface formulation of the equatdnove is obtained by applying the divergence theorem and-Gau
sian quadratureEygy(s-s)~ % Z“ilfk":lwkw- If R is the Born radius of atomcalculated using thef-approximation,

Iric—xi[®
thenEyaw(s-s)~ Po%’T Xi'\il %

Therefore Eyaw(s-s)can be approximated ier (M logM + M/£3) time ands’ (M) space usingh= &' (M) quadrature points
and the technique described in Section 6.6.2 for the simedtas approximation of Born radius of all atoms in a molecule
wheree > 0 is the approximation parameter used for Born radius agpration. In fact,Eyqw(s-sycan be approximated slightly
(a constant factor) faster than approximating all Bornirsidice we do not need to approximate the Born radius intdgral
each atom and instead we can simply compute the sum of thieggais. The simplified pseudocode is given in Figure 6.3.

The algorithm runs i’ (M/£3) time if the octrees are already available.

NFFT based Fast SummationThe inner summation in the discrete surface formatidhaf;s-sycan be written asy i ; wi (r‘rki:x;()‘g‘k =
- Al
X 4 V4
s, % A % VP, % —zy, % wherex = (xi,¥i,z) andny = (n,n’, nZ). The summations on
the right hand side are of the common foBtxi) = S, cg(Xi — k), i € [1,M], with g(x; —ry) = 1/|xi — ri|® and coefficients
Cx = Wil k - N, WK%, Wknf: andwn;, for the 1st, 2nd, 3rd and 4th summation, respectively. AthsB(x;) for i € [1,M] can be

5e.g., in rigid-body pairwise docking, where LJ potentiatisnputed for numerious relative translations and ori@natof the same two input molecules,
the octrees can be constructed only once, and the locatioihe @ctree nodes can be transformed on-the-fly during fiateapproximation based on the
relative transformation of the two molecules.
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APPROXDISPE( A, Q)

Catas. By pa= (xa.ya %) We

denote the center of an atamwhile by pq = (Xg,Yq, Zg), Wg andng = (nxq, Nyq, NZ;) we denote the location of a quadrature pajniveight assigned tq, and the
unit outward normal on the molecular surfacejatespectively. By(xa,Ya,Za) (resp. (Xq,Yq,Zo)) we denote the geometric center of the atoms (resp. integrat
points) undeA (resp.Q). By ra (resp.rg) we denote the radius of the smallest ball centergataya,za) (resp.(xq, Yo, Zg)) that encloses all atom centers (regp.
integration points) undeh (resp. Q). The distance between the geometric centes afdQ is given byra q. We also assumexg = 3 qeqWqnXg- Similarly for

Nyq andnzy. By CHILD (A) (resp.CHILD (Q)) we denote the set of non-empty octree nodes obtained byvidind nodeA (resp.Q), andMa (resp.mg) denotes
the number of atoms (resp. integration points) under Hottesp.Q).)

(For the given nodd in the atoms octree and no@ein the integration/quadrature points octree approxin@tgagA > qeQWq

. ra0+(ratrig) 1 .
1. ifrag—(ra+rq) >0 A AQTATQL S (14 £)5 then far enough to approximal
AQ—(ra+rq) TaoUATO) (1+¢) { 9 pp te
return 2 MAmQ(”NXQ'(XA*XQ)+”~YQ'()[;A*VQ)+EZQ‘(ZA*ZQ»
raQ)
2. elseif LEAF(A) A LEAF(Q) then {too close to approximate; compute exact valup

wg (Mg (xa—xq)+nyg-(ya—yg)+nz- (a—2q))
(raq)

o
return 225 .2 Sqeo

3. elseif LEAF(A) then return § oy oy p(q) APPROXDISPE( A, Q') {recurse on Q
4. elseif LEAF(Q) then return 3 wccyp(a) APPROXDISPE( A, Q) {recurse on A
5. ElSereturn ¥ occuin(a) o ccrio(Q) APPROXDISPE( A, Q') {recurse on Aand Q

APPROXDISPE ENDS
Figure 6.3: Octree-based algorithm for approximating the dispersioergy. Given the atoms octre€,, and quadrature/integration
points octreeZ74, the dispersion energy can be approximated (controlled given approximation parameter> 0) by making calling
APPROXDISPE( ROOT(.Z7,,), ROOT(9) ).

simultaneously approximated using the NFFT based fast atromtechnique [15] in” (M +m+n3log n) time , wheren® is
the size of the NFFT grid. HencEyqw(s-s)Can also be approximated within the same asymptotic timad.ou

6.6 Generalized Born

In this section, we describe a method for fast computatioh@fGB solvation energy, along with the energy derivativeas f
the solvation forces, based on a discrete and continuum Inobttee molecules (Figure 6.4). An efficient method of samgli
guadrature points on the nonlinear patch is given. We alew shat the error of the Born radius calculation is contr sy
the size of the triangulation mesh and the regularity of teequlic function used in the fast summation algorithm. Tiheet
complexity of the forces computation is reduced from thgiodl O(MN + M?) to nearly linear timeD(N + M + n®logn +
MlogM), whereM is the number of atoms of a moleculéjs the number of integration points that we sample on theaserdf
the molecule when we compute the Born radius for each atodm &na parameter introduced in the fast summation algorithm.
The fast summation method shows its advantage when it isegijol the Born radius calculations for macromolecules,rehe
there could be tens of thousands or millions of atoms,Mueduld be even larger. In the fast summation method, one arédn
to choose a smatt which is much smaller thalkl andN to get a good approximation, which makes the new fast suromati
based GB method more efficient.

6.6.1 Fast solvation energy computation
Method

Similarly to what is done for other GB models, we u8&)(as the electrostatic solvation energy function. Beforecam-

pute ??), we need to first compute the effective Born radRigor every atom which reflects the depth a charge buried inside
the molecule (Figure: 6.5). An atom buried deep in a molebaka larger Born radius, whereas an atom near the surface has
a smaller radius. Hence surfactant atoms have a strongeicinop the polarization. Given a discrete van der Waals (vdW)
atom model, as long as we kndiyfor each atom, we can comput&? by using the fast multipole method (FMM) [11] with

the time complexityO(MlogM). However the Born radii computation is not easy and is vanetconsuming. There are
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Figure 6.4: Top left: the discrete van der Waals surface @6 atoms); top middle: the triangulation of the contimuu
Gaussian surface model with 6004 triangles; top right: #wularized triangular mesh where the quality of the element
improved (making each as close as possible to an equildtenagjles); bottom left: the continuum ASMS model genetate
from the triangular mesh up right; bottom right: the molecidurface rendered according to the interaction with tiheesb
where red means strong and blue means weak interaction.

various ways of computing the Born radius as summarized]inT[Bese methods can be divided into two categories: volume
integration based methods and surface integration bastebd®e In general, the surface integration methods are efficeent
than the volume integration methods due to the decreasezhdion. So we adopt the surface integration method givetOh [

to compute the Born radius:

11 [ (r—=x)-n(r) .
Ril_ﬁfrwds i=1,...,M, (6.13)

whererl is the molecule-solvent interface,is the center of atorn andn(r) is the unit normal on the surfaceraaind we use
ASMS as the model df.

Figure 6.5: The effective Born radius reflects how deep agehar buried inside the molecule. The Born radius of an atom
is small if the atom is close to the surface of the moleculeentise the Born radius is large therefore has weaker ictiera
with the solvent.

Applying the Gaussian quadrature, We compute (6.13) nuaibyri

1 N (rg=x)-n(ry)

—1
R 47'rkZ1 K [r— x|

wherewy andry are the Gaussian integration weights and nodes (ffigure 6.6).r, are computed by mapping the Gaussian
nodes of a master triangle to the algebraic patch via thesfoamation.7. Letr? andwf be one of the Gaussian nodes and

i=1,... M, (6.14)
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(a) 1PPE (b) 1ANA (©) IMAG

(d) 1CGL_|

Figure 6.6: Gaussian integration points on the surfaceatepr (a) 1PPE, (b) 1ANA, (c¢) 1IMAG, and (d) 1CGI_|. The sudac
are partitioned into 24244 triangular patches for (a), 288ngular patches for (b), 30624 triangular patches ¢pr #nd
29108 triangular patches for (d). There are three Gaussiadrgture nodes per triangle. The nodes are then mappethento

ASMS to form the red point cloud.

weights on the master triangle. Then the corresponding npded weightwy arery = 7 (rd) andw, = wP|J(.7)| where
|3(.7)| is the Jacobian determinant 7.

We formalize (6.14) in two steps. First we split it into tworfsa

1 1 Nwren(r) 1 N wexion(ry)
1 1 kre-n(re) 1 i - N(r
R _47'[2 Ir — xi|4 47'[z Ire—xi|4 (6.15)

Then we split the second summation in (6.15) into three corapts:

wWixi-n(r) N wnk nk N wenk
neox N el Z e A 2 e

=1 =1

N

2

k=1

(6.16)
The first summation in (6.15) and the three summations irgf@vithout the coefficients in front are of the common form:

chg i—rg) i=1...,M, (6.17)

with the kernel functiorg(x — ry) = m and the coefficient, = wir - n(ri), wink, wink, wink, respectively. (6.17) can be
efficiently computed by using the fast summation algoritntnaduced in [15] with complexit®(M + N + n®logn), wheren

is a parameter used in the fast summation algorithm.
Fast summation

The fast summation algorithm is published in [15]. For cangace, we discuss this algorithm in this section brieflye Tdst
summation algorithm is often applied to compute the sunonatof the form
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chg Xj — k), i=1...,M, (6.18)

where the kernel functiogis a fast decaying function. Cutting off the tailgffone can assume that the suppog &f bounded.
In our Born radii computation, since the distance betwgeandr is no less than the smallest radius of the atoms, there is no
singularity ing. Without loss of generality, we assume-ry € N := [ 55 2] After duplicatingg in the other intervalsg can
be extended to be a periodic function of period on&¥rand this periodic function can be decomposed into the Foseiges:

g(x—ry) = Z QMO k), (6.19)

wWelw

wherele = {(wy, wp, w3) € Z3} andgy, = [ 9(x)e"21@* dx. We approximate (6.19) by a truncated series:

g(X—ry) = Z o€ @, (6.20)
welnp

wherel, = {(w1, wp, w3) € Z3: —§ < w < 3}. We compute the Fourier coefficiergg numerically by

S g(LeZein wel, (6.21)

Jow =
j€ln n

n3
by using the fast Fourier transform (FFT) algorithm with qexity O(n®logn).
Plugging (6.20) into (6.18), we get

N ) N
G(Xi) ~ Z Ck < gwém(xirk).w> _ Z Jo <Z € merk> e2rnwx,
k=1 [AE wElp k=1

= Y Qe (6.22)

welp
where N
aw=Y cpe 2Tk, (6.23)
=1

(6.22) is computed by using the NFFT algorithm with comgiexd(n*logn+ M) and (6.23) is computed by the NFFT
algorithm with complexityO(n®logn+ N). Hence the total complexity of computing (6.18)0¢N + M + n®logn), which is
significantly faster than the the trivi@(MN) summation method once the number of terms in the Fourieeselis much
smaller tharM andN. We explain the NFFT algorithm, the NFERIgorithm, and the error computations in the Related Math
section at the end of the chapter.

6.6.2 Fast solvation energy computation using Oct-Trees

we first describe a@ (M logM) algorithm for fast approximation of the Born radii of 8 atoms in a molecule, followed by
anotherd (MlogM) time algorithm for approximatingpo from the approximated Born radii.

Born Radii

Let.o/ be a set oM atoms in a molecule, and |12 be a set om= ¢ (M) Gauss quadrature points (denoted g-points) sampled
on the MS. For eacly € 2, let fiy = wgng, whereng is the outward unit normal on the MS at potptandwg is the weight
assigned ta@.

Our approach is to use a near and far decomposition of theselsrine’ and2. Hence, we build two octree$,, and 7y
for o7 and 2, respectively (see Figure 6.8).
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Figure 6.7: In our Born radius approximation algo-
e B o - rithm we construct two octrees: one for the atoms in
4 = LRI ':D:' T LI i the molecule, and the other for the quadrature points.
P 8 KH Born radii of all atoms are approximated by simul-
4 taneous recursive traversal of both octrees. Here the
i octrees are drawn as quadtrees [9] for simplicity.

Molecule with Quadrature Points Atoms Quadtree Quadrature Points Quadtree

Figure 6.8: In our Born radius approximation algo-

o T i ] rithm we construct two octrees: one for the atoms in
D S P S R E[II:I NEEE T g; the molecule, and the other for the quadrature points.

: - E8 EH T Born radii of all atoms are approximated by simul-
A -+ ;ﬁf taneous recursive traversal of both octrees. Here the
T octrees are drawn as quadtrees [9] for simplicity.

Molecule with Quadrature Points Atoms Quadtree Quadrature Points Quadtree

We traverseZ,, and 75 simultaneously starting at their root nodes, and colleetahproximated integrals at appropriate
internal nodes of7,, and atoms ofe. Suppose at some point during this traversal we are at Aagfe7,, and nodeQ of
Tg. Letra (resp.rg) be the radiuof A (resp.Q). If AandQ are far enough, i.e., the distance between their centeasger
than (ra+ro) %
the Born radius integral of each atomArcan be approximated by treatidg(resp.Q) as a single pseudo atom (resp. pseudo
g-point) centered at the geometric center of the atoms. (cpgpints) under it, and assuming = y 4. fig. This approximated
contribution is collected if\. If A andQ are not far enough but at least one of them is a nonleaf, weseaising the children
of the nonleaf/nonleaves. If both are leaves then we contpateontribution exactly using the atoms unéeand the g-points
underQ, and collect it in the respective atoms. Finally, we tragers, top-down and add the collected partial integrals to each
atom from its ancestors and compute its Born radius fromethesumulated values. The pseudocode is given in Figure 6.9.

for some user-defined approximation parameter 0, then the contribution of all g-points iQ to

The accuracy and running time of the algorithm depends oaplpeoximation parameter> 0. The smaller the value of
€ is the more accurate the approximated Born radii are, anthtgere is the faster the algorithm runs. The running time is
dominated by the time required for approximating the intBoas between the atoms and the g-points through the simedius
traversal of the two octrees. The analysis of the running tisnsimilar to the one given in Section 6.3 for approximatidg

potential, and can be shown to We(M logm+ mlogM + 5_13 M+ m)) which reduces t@ (MlogM + M/€3) for m= & (M).
Assuming the octrees are already available, the running isnonly & (M/e3). The algorithm use& (M) space.

Polarization Energy

Our algorithm is based on near and far decomposition of thengset of atoms using octrees. Consider acgaif M atoms
with Ryin andRnax being the minimum and the maximum of the Born radiidfy respectively. Now given an approximation
parametee > 0, we divide the atoms inttl; = log,, . (Rmax/Rmin) = ¢ (logM) groups, and place each atawith Born
radiusRy € [Rmin(1+ €)X, Rmin(1+ €)%"1) in groupk € [0,M,), and approximat®, with Ryin(1+ £)K. We build an octree7,,

as in Section 6.6.2. For every noflee .7, and 0< k < Mg, we precomput@ia[k] = 3 aca) A (acgroupk) Ga- W now traverse
Ty Simultaneously using two pointers both of which initiallgipt to the root node 0f/,,. Suppose at some point during
this traversal the two pointers point to nod¢sandV. We first check if bothJ andV are leaves, and if so, we compute the
interaction between the two sets of atoms uridemdV directly using actual charges, Born radii and inter-atodigtances.
Otherwise if the two nodes are far enough from each othentieesiction between the set of atoms under them is approgdnat
using the approximate Born radii described above and the afuchargesgy andqgy. If the two nodes are too close for
approximation, we recurse on the nonleaf node(s). The ps®akt is given in Figure 6.10.

As with most other algorithms in this paper the performarfais algorithm depends on the approximation parameter
with smaller values resulting in better approximations kmder values leading to better running times. The algorithns in

6i.e.,ra = radius of the smallest ball centered at the geometric ceftie atom centers iA that encloses all atom centers/of
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APPROXINTEGRALS( A, Q)

(For each atona under the subtree rooted at the given néda the atoms octree approximagqggwq%%""ﬂ. By pa = (Xa,Ya,Za) We denote the center of al

atoma, while by pq = (Xg,Yq. Zg), Wq andng = (nxq, nyy,nz;) we denote the location of a quadrature pajniveight assigned tq, and the unit outward normal o
the molecular surface gf respectively. By(xa,Ya,za) (resp.(Xo.Yo.Zg)) we denote the geometric center of the atoms (resp. integrpbints) undeA (resp.Q).

By ra (resp.rq) we denote the radius of the smallest ball centerdaiaya, za) (resp.(xq,Yq,Zo)) that encloses all atom centers (resp. integration poimtdgrA

(resp.Q). The distance between the geometric centersafidQ is given byra o. We also assum@xq = 3 qco WqnXq. Similarly for Ay, andnz,. Each atona has
two fieldss, andc,, and each nod@ in the atoms octree has fieldg andcy, all of which are initialized to zero. The approximated sunadded tes, provided
A andQ are far enough in space so that the sum can be approximatazheddy well (controlled by an approximation parameter 0). Otherwise the sums ar
computed recursively and added to 8iéeld of appropriate descendantsAfWe also approximate a correction temgwqm%""ﬁ and add it tocy or thec
field of the appropriate descendantsfoBy CHILD (A) (resp.CHILD (Q)) we denote the set of non-empty octree nodes obtained byvading nodeA (resp.Q).)

1. ifrag—(ra+rq) >0 A % > (14 e)% then {far enough to approximaje

Xy =XA—=XQ, Ya=YA—Yo: Ih =20~ 2o

X0 XA +0YQ YA +120 27 XX +0YQ YA +1ZQ 2
Sp = Sp+ QIATIQYATRQ A cA:cA+&%L

raQ) 'AQ)
2. elseif LEAF(A) A LEAF(Q) then {too close to approximate; compute exact valu
for each atona € Ado
for each quadrature pointe Q do
Xs=Xa—=Xqs Y6 =Ya—Yq» L5 =2 %

wq: (nxg-X5+nyg-Ys 1225 waq: (nxg-X5+nyg-ys+n2-25 )

=%+ (rag)? P G=Gt (raq)”
3. elseif LEAF(A) then VQ' € CHILD(Q) : APPROXINTEGRALS( A, Q') {recurse on Q
4. elseif LEAF(Q) then VA’ € CHILD(A) : APPROXINTEGRALS( A, Q) {recurse on A
5. else VA’ € CHILD(A) A VQ € CHILD(Q) : APPROXINTEGRALS( A, Q') {recurse on Aand Q

APPROXINTEGRALS ENDS

PUSH-INTEGRALS-TO-ATOMS( A, S, C)

(Ais anode in the atoms OCtre®s § y cancesrorga) Sy ANAC= 3 ycancestorga) Ca- This function pushes+ s, andc+ca to each descendant &f If Ais a leaf
it computes the Born radius of each atar& A usings+sa+ S, andc+ca + ca.%

1. if LEAF(A) thenVae A: Ry =max{ ra, L T {compute Born radii of A’s aton}s
1 Sa+St+sp Ca+C+C, 2
(1* ﬁ)' an *(WA)
2. elseVA' € CHILD(A) : PUSH-INTEGRALS-TO-ATOMS( A, S+Sa, C+Ca ) {push integrals to A’s descendahtg

PUSH-INTEGRALS-TO-ATOMS ENDS

173

Figure 6.9:Octree-based algorithm for approximating Born radii. Gitlee atoms octre€’,, and quadrature/integration points octr&e,
the Born radii of all atoms in7,, can be approximated (controlled by a given approximatiorapaters > 0) by making the following

sequence of function calls: PROXINTEGRALY ROOT(.7,/), ROOT(Zy) ), and RISH-INTEGRALS-TO-ATOMS( ROOT(Z,,), 0, 0).
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APPROXEpo (U, V)

WK =3 (uev) 1 RuelRpn(1+ek Rpin(1+e)k+1)) s

1. if LEAF(U) A LEAF(V) then return — 3 5 cuy A (vev) %
/ iy
\ B+ RuRveRURY

(For two given noded) andV in the atoms octreeZ,, approximate the part o resulting from the interaction between the set of atoms ubdendV. By
(xu,Yu,2u) we denote the geometric center of the atoms utbeBy ry we denote the radius of the smallest ball centergokatyy , zy ) that encloses all aton)

centers unded . For any atonu € U, its center, radius, charge and Born radius are givefxhyu, z), fu, Gu andRy, respectively. For & k< Mg =log,, . (%:) ,
whereRmin andRnax are the minimum and the maximum Born radius among all atoms.iBy CHILD (A) (resp.
CHILD (Q)) we denote the set of non-empty octree nodes obtained byvidibd nodeA (resp.Q).)

2. dseifryy > (ru +rv) (1+ 2) thenreturn —% Yoo j<m, ay fi-av[i)

3. elseif LEAF (U) then return 3y ey p(v) APPROX g, (U, V")
4. elseif LEAF (V) then return §ysc e p(u) APPROX £y ( u’,Vv)
5. elsereturn Z(U’GCHlLD(U)) A (V/ECHILD(V)) APPROX'Epm( U, v’ )

APPROXEpol ENDS

7
Y

$rL2JV+Rmin(1+5)i+i e Rin(+e) T

{exact valug

{approximate

{recurse on }
{recurse on Y

{recurse onU and Y

Figure 6.10:Octree-based algorithm for approximatifigy from Born radii. Given the atoms octre,, with all Born radii already
computed,Epg can be approximated (controlled by a given approximatiorampatere > 0) by making the following function call:

APPROX-Epo|( ROOT(Z,/), ROOT(Ty) ).

% (glg -M IogM) time, and use® (M) space.

6.7 Possion Boltzman
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Related Work

Generalized Born

Because the GB calculation is much faster than solving thedtBtion, the GB model is widely used in the MD simulations.
Programs which implement the GB methods include CHARMM [E3hber [2], Tinker [17], and Impact which is now part
of Schrodinger, Inc.’s FirstDiscovery program suite. Etteough the GB computation is much faster than the PB model, th
computation of the Born radiug is still slow. During the MD simulation, the Born radii neeaallie frequently recomputed at
different time steps. Because this part of computationdgitne-consuming, there are attempts to accelerate the MDIation

by computing the Born radii at a larger time step. For examiplg24] in their test of a 3 ns GB simulation of a 10-base pair
DNA duplex, they change the time step of computing the Bodii @nd long-range electrostatic energy from 1 fs to 2 fs.
This reduces the time of carrying out the simulation fromB8izhours to 7.16 hours. From this example we can see that the
calculation of the Born radii takes a large percentage af timputation time in the MD simulation. In the long dynamios,
this decrease in the frequency of evaluating the effectmeBadii are not accurate enough to conserve energy whithats
the MD simulation of the protein folding process to smallgiscale [21]. Hence it is demanding to calculate the Born radi
and the solvation energy accurately and efficiently.
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Relevant Mathematics

Gaussian surface, Triangular mesh and Algebraic spline melcular surface (ASMS)
See Chapters 2 and 3.

Oct-tree

Numerical Integration
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Chapter 7

Forces

Force field, used for molecular mechanics simulation, istatparameters and functions describing the potentialgsnef
a system atoms. The functions and parameters are derivedofoth experimental work and high-level quantum mechanical
calculations.

In CHARMM, the potential energy function has the form

E=Y Kb(b—bo)z—i-éKUB(S—So)z-i— S Ko(6— 60)?

bonds angle
+ Kx(L+cognx —8))+ Y Kimp(9— @)?
dihedrals impropers
. 12 . 6 A
n i (Famnm ) _ (Fﬁnwm ) +_E£91 (0.1)
nonbond Tij Tij Erij

whereKy, Kug, Ko, Ky, andKin, are the bond, Urey-Bradley, angle, dihedral angle, and opegar dihedral angle force con-
stantsh, S, 8, x, andg are the bond length, Urey-Bradleu 1,3-distance (the digtéetween atoms separated by two covalent
bonds), bond angle, dihedral angle, and improper torsigteariThe symbols with subscript zero represent the equilitor
values.n is the multiplicity of the rotor (e.g., 3 for a methyl group)add is the phase angle. The above terms are referred to as
the internal parameters. The Coulomb and Lennard-Jongsdiinds are the external or nonbonded interactiaysis the LJ
well depth and?minij is the mininum interaction radius. The dielectric constaist1 in the energy function. Different versions
of CHARMM have different optimization strategies for therpmetersy, Kug, Kg, Ky, Kimp, o, S0, 60, 0, 0, @, ai, &j, and
Rmin; - CHARMM 19 [?] treats polar hydrogens (i.e. H atoms on N and O) explicitlgl aydrogens bonded to S and C are
treated as parts of the extended atom (e.g.3 GHreated as a single atom), while CHARMM 22 pnd CHARMM 27 7]
include all the atoms explicitly. Comparing CHARMM 22 and S8RMM 27, the latter yields a better representation of the
equilibrium between the A and B forms of DNA and the A form of RN

The potential energy function of AMBER] has the form

Vh

E=S Kyb—bo)>+ $ Kg(8—60)+ 2(1+cognp—9J))
b(%ds anzgle dihe%rals 2

Aij  Bij  qqj

+ =5 — & (0.2)
non ondlri]]2 I’ﬁ Erij

The major difference between the energy function of CHARMiM #&AMBER force field is that AMBER omits the Urey-
Bradley terms. Amber 997] is developed to minimize the number of torsion energies extend the additive force field
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described by (0.2) to a nonadditive model by adding the pration energy of the form

1

Epol = > Iz Hi Eio (0.3)
Hi = aiE; (0.4)
Ei = Ei0+ ;Tijl-lj (0.5)

IE4]

ro

J# i

2

Tij = el (0.7)

i
The improvement of AMBER 03 is that it can deal with condenisage simulations of proteing][

The strategies to assign partial charges of CHARMM and AMBERalso different. For CHARMM, the partial atomic
charges are optimized by minimizing the interaction ereergind geometries between a water molecule and the chemuoaky
in a variety of orientation?]. For AMBER, the partial charges are assigned using a liestleelectrostatic potential fit (RESP)
model [?] which imposes symmetry on the hydrogens and constrainshtaege on the central iron. CHARMM force field is
optimized for molecular dynamics simulations with the TRR8ater model (explicit solventP], while AMBER force field is
optimized for the model with continuum solvef[ According to [?], simulation with an explicit representation of solventlan
counterions, as well as periodic boundary conditions, lhaemn the predominant method of applying MD simulation tdeiac
acid.

In Molecular dynamics (MD) simulations, atomic trajecesiare computed by solving equations of motion numerically
using the force fields?.

7.1 Energetic derivatives

7.2 Area, Volume Derivatives
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Chapter 10

Molecular Machines

10.1 \Virus

Viruses are one of the smallest parasitic nano-objectsitieagents of human disease [39]. They have no systemstislatiag
RNA, ATP generation, or protein, nucleic acid synthesisl, tierefore need the subsystems of a host cell to sustaireplicate
[39]. It would be natural to classify these parasites adogrtb their eukaryotic or prokaryotic cellular hosts (gatant, animal,
bacteria, fungi, etc.), however there do exist viruses twhigve more than one sustaining host species [39]. Curreinilges
are classified simultaneously via the host species(Algaehae, Bacteria, Fungi, Invetebrates, Mycoplasma, Pl&nttozoa,
Spiroplasma, Vetebrates), the host tissues that are @dfettie method of virial transmission, the genetic orgaiinaf the
virus (single or double stranded, linear or circular, RNADRIMA), the protein arrangement of the protective closed $oat
housing the genome (helical, icosahedral symmetric nucdgsids), and whether the virus capsids additionally laafuether
outer envelope covering (the complete virion)[39]. Tabffnmarizes a small yet diverse collection of viruses aridnar[1].
The focus of this article is on the computational geometrodieding and visualization of the nucleo-capsid ultragtrtes of
plant and animal viruses exhibiting the diversity and geimelegance of the multiple protein arrangements. Addiily, one
computes a regression relationship between surface aeenelosed volume for spherical viruses with icosahegrahsetric
protein arrangements. The computer modeling and quanitaichniques for virus capsid shells ultra-structurée weareview
here are applicable for atomistic, high resolution (lessith A) model data, as well as medium (5 A to 15 A) resolution map
data reconstructed from cryo-electron microscopy.

10.1.1 The Morphology of Virus Structures

Minimally viruses consist of a single nucleocapsid made roftgins for protecting their genome, as well as in facilitgt
cell attachment and entry. The capsid proteins magicalfyassemble, into often a helical or icosahedral symmehiell
(henceforth referred to as capsid shells). There do exigrakexamples of capsid shells which do not exhibit any glob
symmetry [1], however we focus on only the symmetric capills in the remainder of this article.

Different virus morphologies that are known, (a small santpincluded in Table 10.1) are distinguished by optional
additional outer capsid shells, the presence or lack of @snding envelope for these capsid shells (derived oftem fihe
host cell’'s organelle membranes), as well as additionaeprs within these optional capsids and envelopes, thateressary
for the virus lifecycle. The complete package of proteingleic acids and envelopes is often termed a virion.

The asymmetric structural subunit of a symmetric capsidl shay be further decomposable into simpler and smaller
protein structure units termed protomers. Protomers cbald single protein in monomeric form (example TMV), or form
homogeneous dimeric or trimeric structure units (exam@¥' R These structure units also often combine to form symimet
clusters, called capsomers, and are predominantly disshgble in visualizations at even medium and low resatutious
structures. The capsomers and/or protomeric structuts pack to create the capsid shell in the form of either hetica
icosahedral symmetric arrangements.
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Name Family Host NA Symmetry | Shell Modality
) (E?) | (resin A)(pdbid)
Tobacco mosaic [8, 29] Tobamoviridae | P sR (L) He 1(n) X(2.45) (1ei7)
Ebola [38] Filoviridae \% sR (L) He 1(E) X(3) (1ebo)
Vaccinia [12] Poxviridae Y dD (L) He 1(E) X(1.8) (1luz)
Rabies [25] Rhabdoviridae | V sR(L) He 1(E) X(1.5) (1vyi)
Satellite tobacco necrosis [23] Tombusviridae | P sR (L) Ic (1) 1(n) X(2.5) (2stv)
L-A (Saccharomyces cerevisiae) [27] Totiviridae F dR (L) Ic (1) 1(n) X(3.6) (Imic)
Canine parvovirus-Fab complex [40] Parvoviridae \% sD (L) Ic (1) 1(n) X(3.3) (2cas)
T1L reovirus core [32] Reoviridae Y dR (L) Ic (1,1) 2(n) X(3.6) (1ej6)
T3D reovirus core [36] Reoviridae \% dR (L) Ic (1,1) 2(n) X(2.5) (Imuk)
P4 (Ustilago maydis) [21] Totiviridae P dR (L) Ic (1) 1(n) X(1.8) (1kp6)
Tomato bushy stunt [19] Tombusviridae | P sR (L) Ic (3) 1(n) X(2.9) (2tbv)
Cowpea Chlorotic Mosaic [34] Bromoviridae P sR (L) Ic (3) 1(n) X(3.2) (1cwp)
Cucumber mosaic [34] Bromoviridae P sR (L) Ic (3) 1(n) X(3.2) (1f15)
Norwalk [31] Caliciviridae Y sR (L) Ic (3) 1(n) X(3.4) (1ihm)
Rabbit hemorrhagic disease complex [30] Caliciviridae \% sR (L) Ic (3) 1(n) X(2.5) (1khv)
Galleria mellonella denso[33] Parvoviridae I sD (L) Ic (1) 1(n) X(3.7) (1dnv)
Semiliki Forest [24] Togaviridae LV sR Ic (4,1) 2(E) C(9) (1dyl)
Polyoma [11] Papovaviridae | V dD (C) Ic (7D) 1(n) X(2.2) (1cn3)
Simian [35] Papovaviridae | V dD (C) Ic (7D) 1(n) X(3.1) (1sva)
Papillomavirus Initiation Complex [15]| Papovaviridae | V dD (C) Ic (7D) 1(n) X(3.2) (1ksx)
Blue Tongue [16] Reoviridae \% dR (L) | lc(2,13L) | 2(n) X(3.5) (2btv)
Rice dwarf [28] Reoviridae P dR (L) | lc(2,13L) | 2(n) X(3.5) (1uf2)
T1L reovirus virion [22] Reoviridae Y dR (L) | lc(2,13L) | 2(n) X(2.8) (1jmu)
Simian rotavirus (SA11-4F) TLP [17] Reoviridae \% dR (L) | lc(2,13L) | 2(n) X(2.38) (11j2)
Rhesus rotavirus [13] Reoviridae Y dR (L) | lc(2,13L) | 2(n) X(1.4) (1kqr)
Reovirus [44] Reoviridae \% dR (L) | le(1,13L) | 2(n) C(7.6)
Nudaurelia capensis w [18] Tetraviridae I sR (L) Ic (4) 1(n) X(2.8) (1ohf)
Herpes Simplex [9] Herpesviridae | V dD (L) Ic (7L) 1(E) X(2.65) (1jma)
Chilo Iridescent [42] Iridoviridae I dD (C) Ic(147) 1(E) C(13)
Paramecium Bursaria Chlorella [42] | Phycodnaviridag P dD (L) | Ic(169D) | 1(E) C(8)
HepBc (human liver) (nHBc) [41] Hepadnaviridae| V dD (C) Ic(4) 1(E) X(3.3) (1qagt)

Table 10.1: Helical and Icosahedral Viruses and Viral sittstructures: (1) Name and structure reference are giveqguare
brackets (2) Family nomencleature from the ICTV databagpel(3t types are P for Plant, V for Vertebrate, | for Inversgby

F for Fungi (4) Virus Nucleic Acid (NA) type is single strardi®&NA (sR) or DNA (sD), double stranded RNA (dR) or DNA
(dD) and linear (L) or circular (C) (5) Capsid symmetry is €He) or Icosahedral (Ic) with the triangulation numbeleaich
capsid shell in parenthesis (6) The number of capsid shedlsrvdnether enveloped (E) or not (n) (7) The acquisition mibgal
X-ray, feature resolution and PDB id in parenthesis.
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(@ (b)

(d) (e) ®

Figure 10.1: Organization of the Tobacco Mosaic Virus (JEiith its helical nucleo-capsid shown in (A), (B) and (C).)(A
and (B) are surface rendered, while (C) is volume renderbd.aBymmetric protomeric structure unitis visualized ing€an
implicit solvation molecular surface colored by distanai the helix symmetry axis (D) with a transparent molecslaface
and the protein backbone showing helix secondary strustufg) molecular surface of protomer with the mean curvature
function with red showing positive mean curvature and gnegh negative mean curvature (F) Gaussian curvature fancti
on the protomer molecular surface, with green showing pesitaussian curvature and the red signifying negative Sans
curvature, displayed on the molecular surface.

The subsequent sub-sections dwell on the geometry of thedoadl protomers, and capsomers, as part of a hierarchical
arrangement of symmetric capsid shells.

The Geometry of Helical Capsid Shells

Helical symmetry can be captured by a 4 x 4 matrix transfoionatl , 9, ) parameterized by = (ax,ay,a,), a unit vector
along the helical axis, b@, an angle in the plane of rotation, and by the pit¢lthe axial rise for a complete circular turn.

If Pis the center of any atom of the protomer, thris the transformed center, ai= H x P. Repeatedly applying this
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Figure 10.2: Organization of Rice Dwarf Virus (LUF2) witlog&ahedral capsid shells. (A) 2D texture based visualizatiohe
outer capsid shell showing a single sphere per non-hydratgen, and colored to distinguish individual proteins sutsufB)

the outer capsid shell shown as a smooth analytic molecuttace while the inner capsid surface is displayed usingexiute
maps of a union of spheres and colored (C) shows the outerdc@ipsdisplays the inner capsid (E) shows the icosahedral
asymmetric structure unit of the outer unit (F) displaysittesahedral asymmetric structure unit of the inner unit$@Qws

the protein backbone of the structure unit shown in (E) andsfiéws the protein backbone of the structure unit show in (F)

a2(1—cosf)+cosd  aay(l—cosh) —a,sind  aa,(1l—cosd)+aysind a;Ere
H@eL) = | axady(1—cosf) —a,sinf af,(l—cose)+cose ayaz(1—cosd) —aysind %

axaz(1—cosf) +aysinB  aya,(1—cosd) —axsind a2(1—cosA) + cosf S
0 0 0 1

transformation to all atoms in a protomer yields a helicatktof protomeric units. The desired length of the helicalleo-
capsid shell is typically determined by the length of thelesed nucleic acids. The capsid shell of the tobacco mosais v
(TMV) exhibits helical symmetry (Fig. 10.1, and 10.3), witlte asymmetric protein structure unit or the protomer csiimgj
of a single protein (pdb id 1EI7)

The Geometry of Icosahedral Capsid Shells

In numerous cases the virus structure is icosahedrally stnion The advantage over the helical symmetry structuthds
efficient construction of a capsid of a given size using thalkst protein subunits. An icosahedron has 12 vertices, 20
equilateral triangular faces, and 30 edges, and exhil8t2 Symmetry. A 5-fold symmetry axis passes through eactexea
3-fold symmetry axis through the center of each face, andadd?axis through the midpoint of each edge (see Fig. 10.4).

A rotation transformation around an ax¢is= (ay, ay,a;) by an angled is described by the 4x4 matrix
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Figure 10.3: Helical Symmetry Axis.

5—fold axis

o 0Lh
0 (@30(20+1¥3

3—fold axis

Figure 10.4: Icosahedral Transformations showing 5-foldl 3-fold Symmetry Axis.

a2(1—cosf)+cosf  axay(l—cosh) —a,sind  axa (1—cosh)+aysind 0

Riag) = | a&ay(l—cosd)—a;sinf a§(1 — cosf) + cosf ayaz(1—cosf) —aysin 0
axaz(1—cosf) +aysin@  aya,(1—cosh) —axsinb a2(1—cosf) + cosd 0

0 0 0 1

The vertices of a canonical icosahedron are giver{y-1, £¢), (+1,+¢,0), (0,4¢,+1), wheregp = (1+/5)/2 is
the golden ratio. For a 5-fold symmetry transformation abthe vertex0,+1, +¢) the normalized axis of rotation s=
(0,0.525730.85064 and the angle of rotation B = %’T , yielding a five fold symmetry transformation matrix

Similarly, one is able to construct five fold symmetry tramrsiiation matrices for the other icosahedron vertices. ¢gie
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0.30902 -0.80902  0.5000
R(s foiq) = | 0.80902  0.5000  0.30902
-0.5000 0.30902  0.80902

0 0 0 1

generic rotational transformation mati, ), one is able to construct the three fold transformation icervia the rotation

axis passes through the centroid of the triangular facebBeofdosahedron and an angle of rotationfof %’T Consider the

triangular face with corners 80,1, @), (1, ¢,0) and(0, ¢,1). The centroid is afp/3,0, (2¢+ 1)/3 and the normalized axis of
rotation isa = (0.3568220,0.934172 and the transformation matrix

0.30902 -0.80902  0.5000
R(s foiq) = | 0.80902 -0.5000  -0.30902
0.5000 0.30902  0.80902

0 0 0 1

A polyhedron with faces that are all equilateral triangtesalled a deltahedron. Deltahedra with icosahedral symyraet
classified as icosadeltahedra. Any icosadeltahedron HRsa@ts, wherd is the triangulation number given By = pf2,
where,P = h? + hk+ k? for all pairs of integer$ andk which do not have a common factor, afids any integer [Caspar
and Klug 1962]. The possible valuesBfare 13,7,13,19,21,31,37,.... In Fig. 10.5(A) we display triangles with different
triangulation numbers, for icosahedral virus structures.

With a fixed size asymmetric unit the greater the T numberlaiger the size of the virus capsid. Each triangular portion
of the icosahedral virus capsid is easily subdivided irgdhitee asymmetric units, with each unit containing somebioation
of protein structure units (protomers). In total an icoshhevirus capsid has 60T asymmetric units with numerousgejimo
structures inter-twined to form a spherical mosaic. In Fif).5 we see that when T=1, each vertex is at the center of a
pentagon, and the capsid proteins are in equivalent enmeots, i.e. five neighbors cluster at a common vertex. Howeve
for icosadeltahedra with larger triangulation numberg, & = 13, there are pentagons and hexagons in the capsid mosaic
(Fig. 10.5). Therefore, even though the capsid proteinst@pners) may be chemically identical, some cluster intofal&-
neighborhood and the others into a 6-fold neighborhood.h3ocally symmetric clusterings of protomers are alterredyi
termed capsomers. In these situations, the proteins arengel global symmetrically equivalent, but only quasiieglent
[10].

10.1.2 Surface and Volumetric Modeling and Visualization
Atomistic Resolution Model Structures

Numerous schemes have been used to model and visualizedbéoutes and their properties [45, 2, 4, 20]. All these défe
visual representation are often derived from an underlgiegmetric model constructed from the positions of atomadbp
chains, and residues information deposited as part of aniat@solution structure of the protein or nucleic acid ia Brotein
Data Bank (PDB). Hence, structural models are designedpesent the primary (sequence), secondary (etehelices,
B-sheets), tertiary (egr — 3 barrels) sub-parts, and quaternary structures of theegotirtein or nucleic acid.

An early approach to molecular modeling is to consider atastsard spheres, and their union as an attempt to capture shap
properties as well as spatial occupancy of the molecules iBhgimilar to our perception of surfaces and volume occapan
of macroscopic objects. The top two pictures in Figure 16\ hard-sphere model visualizations of the twin Rice Dwar
capsid shells, with individual proteins colored diffelgniSolvated versions of these molecular surfaces have pegrosed
by Lee - Richards, Connolly, et al. for use in computatioriathemistry and biophysics. Much of the preliminary work,
along with later extensions focused on finding fast methddsangulating this molecular surface (or as sometimesrrefi
to as the solvent contact surface). Two prominent obstéelesdeling are the correct handling of surface self-irgetions
(singularities) and the high communication bandwidth meledhen sending tessellated surfaces to the graphics hardwa
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(d)

Figure 10.5: Architecture of Icosahedral Viruses: (A) Gasklug Triangulation Number (T) via a hexagonal latticereén
triangle has T =1 while yellow represents T = 13 (B) shows tharanetric unit of an icosahedron, (C) asymmetric structure
units of the capsid shell (D) a single asymmetric structurié {(E) asymmetric unit colored by protein as well as showing
protein backbone. (F) a capsomere consisting of threeipsote/IRUS PDB: 1GW8).

A more analytic and smooth description of molecular sugeéthout singularities) is provided by a suitable level e
the electron density representation of the molecule. dpidtrGaussian kernels have been traditionally used to itbesatomic
electron density due to their ability to approximate electorbitals. The electron density of a molecule withatoms, centered
atxj, j € 1,...,M, can thus be written &jec dendX) = sz:l yiK(x—x;) wherey; andK are typically chosen from a quadratic
exponential description of atomic electron density

d d d .
Atom(x) = e 2 = e 2 XN — AKX~ y) Yteg dend ) = € 2T = i (x —x))

The atomic electron density kernels are affected by thausxdof individual atoms and the decay parameterSmooth
and molecular surface models for individual proteins,dtrce units, as well as entire capsid shells can be easilgtaaried
as a fixed level set dfejec dendX) = z’j"'zl yiK(x—X;j). An array of such structural molecular model visualizagiane shown
as Figures 10.1-10.5 as well as Figure 10.6. Some of thenraisgpiarency on the solvated molecular surface and show the
protein back-bone structure (folded chainsxehelices andetasheets).
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(0) (k) 0)

Figure 10.6: Portions of Capsid Shells of Icosahedral \dsushowing a significant portion of the capsid which proparly
cludes the asymmetric subnit. Note the isosurface is sgl@¢otprovide a good capsid surface approximation, whiletaaiing
topological equivalence to a sphere. This makes the suasEeand enclosed volume computation directly amenableeto t

calculations reported in the contour spectrum paper.
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Structure Elucidation from 3D Maps

Electron Microscopy (EM) and in particular single partickeonstruction using cryo-EM, has rapidly advanced oveeme
years, such that many virus structures can be resolvedaytit low resolution (10-20 A) and in some cases at sub-maier
(intermediate) resolution (7-10 A) [6, 7].

Symmetries within the virus capsid shells are exploitechbintthe 3D map reconstructions from raw 2D EM images,
as well as in structure elucidation in the 3D map. In many safee 3D maps are of spherical viruses, with protein capsid
shells exhibiting icosahedral symmetry. In these casesgtbbal symmetry detection can be simplified to computireg th
location of the 5-fold rotational symmetry axes, passimpuigh the twelve vertices of the icosahedron, from which3he
fold symmetry axes for the twenty icosahedron faces and Hfd2symmetry axes for the thirty icosahedron edges can be
easily derived. However determining the local symmetriethe capsomers (structure units) is more complicated, e th
exhibit varied k-fold symmetry, and their detection regsia modified correlation based search algorithm [43]. Veluin
segmentation methods are additionally utilized to patiticolor and thereby obtain a clearer view into the macremdes
architectural organization. Furthermore, electronycdlksecting the local structure units from a 3D Map allowsftather
structural interpretation (tertiary and secondary faldé¥ualizations from the afore-mentioned local symmeyedtion and
automatic segmentation, applied to a 3D volumetric Map effthrnip Yellow Mosaic virus (pdbid 1AUY), are shown in Figur
10.7.

10.1.3 Quantitative Visualization

The geometric modeling of virus capsids and the individirals/structure units, can be further augmented by the coatipuat
of several global and local shape metrics [5]. While inteégi@pological and combinatorial metrics capture globadsd
properties, differential measures such as mean and Gaussigatures have also proved useful to an enhanced unddirsga
and quantitative visualization of macromolecular stroesu

Integral Properties

Integral shape metrics include the area of the moleculasidagurface defining the capsid, the volume enclosed by dlose
capsid shells, and the gradient integral on the moleculpsidasurface. Given our smooth analytic level set definitén
the molecular surface from Section 10.1R2ec dendX) = sz:lyjK(x —X;j) = const for all the atoms that make up either an
individual structure unit, or the entire virus capsid, aficednt and accurate integration computation for these inteis given

by the contour spectrum [[3]. The surface integrations capdrformed by adaptively sampling the capsid surface using
technique known as contouring [3]. Contouring is often perfed by first decomposing (meshing) the space surrountdang t
capsid surface into either a rectilinear Cartesian gridhmasetrahedral or a hexahedral mesh. For a tetrahedral, riesh
surface area for the portion of the level set inside a tettedrecan be represented by a quadratic polynomial B-sp8he [
Summing these B-splines over all of the tetrahedra comtgittie capsid surface yields the capsid surface area. Theneol
enclosed by a closed capsid surface is determined by thetdefitegration of the surface area polynomial B-splines.

In Figure 10.8 we display the results of surface area andwelcalculations, and a regression relationship betweemihe
for a selection of spherical icosahedral capsids for vitugctures summarized in Table 10.2. The analytic moleaudiaces
were first computed, and then surface area and enclosed eelgne estimated through B-spline evaluation as statedeabov

Differential Properties

The gradient function of our smooth analytic capsid suriac@mply /Felec dendX) = szzlyj v K(x—Xj), the summation
of the vector of first derivatives of the atomic electron dgnfsinction. This gradient function is non-zero everywéen the
virus capsid surface (i.e. no singularity). The secondvddties of the molecular surface capture additional difféial shape
properties and provide suitable metrics. Popular metriestee magnitudes dflean Curvature Hand theGaussian curvature
G. These are given directly & = %(kminJr kmax) andG = kminkmax and are respectively the average and the product of the
twin principal curvatures, namelig,in andkmnay also sometimes known as the minimum and maximum curvagairagoint
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Table 10.2: Icosahedral Viruses and Viral Components: Aueds are square Angstrom), Volume (units are cube Angstro

CHAPTER 10. MOLECULAR MACHINES

Virus Surface Area| Volume | In(Surface Area) | In(Volume)

Satellite tobacco necrosis 17401.22 24419.51 9.76 10.1
L-A (Saccharomyces cerevisiae) 99643.6 155223.15 11.51 11.95

Canine parvovirus-Fab complex 48482.09 66028.46 10.79 11.1
T1L reovirus core 412654.67 | 517093.8 12.93 13.16

T3D reovirus core 99627.14 | 161424.33 11.51 11.99

P4 (Ustilago maydis) 7362.92 11269.59 8.9 9.33
Tomato Bushy Stunt 69600.33 98169.33 11.15 11.49
Cowpea Chlorotic Mosaic 42523.74 56607.48 10.66 10.94
Cucumber Mosaic 43317.17 61885.43 10.68 11.03
Norwalk 116674.31 | 170940.17 11.67 12.05

Rabbit hemorrhagic disease 80585.54 | 121611.94 11.3 11.71

VLP-MAb-E3 complex

Galleria mellonella densovirus 33251.61 46216.49 10.41 10.74
Human Rhino 67337.7 99964.3 11.12 11.51

HepBc (human liver) (hnHBc) 41669.23 65963.21 10.64 111
Nudaurelia capensis w 170957.88 | 278225.27 12.05 12.54
Semiliki Forest 47586.6 68392.18 10.77 11.13
Polyoma 104897.53 | 171532.31 11.56 12.05
Simian 177557.44 | 246603.02 12.09 12.42
Herpes Simplex Virus Glyco-Protein  29035.25 43098.51 10.28 10.67
Blue Tongue 590265.25 | 711692.59 13.29 13.48
Rice Dwarf 727228.58 | 820906.09 135 13.62
T1L reovirus virion 412654.67 | 517093.8 12.36 12.81
Simian rotavirus (SA11-4F) TLP 26451.69 35311.17 10.18 10.47
Rhesus rotavirus 15093.03 23469.18 9.62 10.06

and Logarithm entries displayed below are showing picligria Figure 10.8
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© (d)

Figure 10.7: (PDB-ID = 1AUY. Size: 255 Resolution: 4A). (A) Gaussian blurred map (outside vifrain the non-hydrogen
atom locations given in the PDB. (B) Gaussian blurred magidmview). (C) Symmetry detected, including global andiloc
3-fold symmetry axes. (D) Segmented trimers (outside viewith randomly assigned colors. (E) Segmented trimersd@ns
view). (F) One of the segmented trimers (left-bottom: algsiiew; right-top: inside view).
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Figure 10.8: (Area, Volume Relationship for Icosahedralises given in Table 1. The area and volume units are Square
Angstrom and Cube Angstrom respectively.

on the surface. Again for our level set based analytic mdée@urfaceFeiec dendX) = const= f, the twin curvaturesl andK
can be evaluated &= 2 “WHZ?Z)ZfofnyV andG = M&M wherey represents a cyclic summation owey and
z, and where additionallyy, etc., denotes partial differentiation with respect tosthwariables.

Displaying the magnitude of the gradient function and itdataon, as expressed by the mean and Gaussian curvature
functions over a molecular surface helps quantitativebualize the bumpiness or lack thereof of an individual prag a
structure unit or the entire viral capsid. In Figure 10.1 Hodtom two pictures display the mean and Gaussian curvature
functions of the Tobacco Mosaic virus asymmetric protonueiege, exhibiting and enhancing the bumpiness of the seirfa
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Topological and Combinatorial Properties

Affine invariant topological structures of volumetric fuimns, such as our smooth analytic electron density funaifdsection
10.1.2, include the Morse complex [14, 26] and the cont@e (€ T) [37]. Both the Morse complex and contour tree are related
to the critical points of the volumetric functioh i.e., those points in the domalwh where the function gradient vanishes. The
functional range off is the interval between the minimum and maximum values ofthetion f : [fmin, fmax. For a scalar
valuew € [fmin, fmay, the level set of the field at the valuew is the subset of points(w) C M such thatf (x) = w,Vx € L(w).

A level set may have several connected components, caliedws. The topology of the level setw) changes only
at the critical points i, whose corresponding functional values are called ctitiahues. A contour class is a maximal
set of continuous contours which have the same topology amibtlcontain critical points. Without loss of generalityet
critical points are assumed to be non-degenerate, i.e. iswllgted critical points. This assumption can be enforoedrall
perturbations of the function values. If the critical psiatre non-degenerate, then the Hesslda) at a critical pointa has
non-zero real eigenvalues. The index of the critical paiistthe number of negative eigenvaluedt{la). For a 3D volumetric
function, there are four types of critical points: index Grfima), indices 1 and 2 (saddle points), and index 3 (maxima)

ion volume rendering
(Blue Circle : Cavity)

Inher boundary Ou'l'%' boundary

Figure 10.9: (The contour tree (upper left) and the contpecsum (bottom) for the Human Rhinovirus serotype 2 (pdbid

1 FPN).The red color in the spectrum curve is the graph of cutde surface area, while the blue and green curves are the
excluded and enclosed volume by the various level surfattseovolumetric density map. The horizontal axis of the plot
above is map density, while the vertical axis is spectruncfion value.

The contour tree@T) was introduced by Kreveld et al. [37] to find the connectechponents of level sets for contour
generation. Th&T captures the topological changes of the level sets for thieeeunctional range fmin, fmay Of f; each
node of the tree corresponds to a critical point and eacharesponds to a contour class connecting two critical goiAs
an example, the contour tree for a virus capsid is shown in E@9. Each leaf node of theT represents the creation or
deletion of a component at a local minimum or maximum and é@aehior node represents the joining and/or splitting ob tw
or more components or topology changes at the saddle pairist on an arc of the tre@s,v2) I T by anisovalue; <w < v,
represents a contour of the level £€tv). Therefore, the number of connected components for thé $etk(w) is equal to
the number of cuts to th€T at the valuen. TheCT can be enhanced by tagging arcs with topological informegiech as
the Betti numbers of the corresponding contour classes B&fti numberg, (k= 0,1,...) intuitively measure the number
of k-dimensional holes of a virus capsid surface or of any imtiligi structure unit. Only the first three Betti numbggsB1, 32
of a smooth surface are non-zeiféy corresponds to the number of connected compon@atsprresponds to the number of
independent tunnelg, represents the number of voids enclosed by the surface.xBan@e, a sphere has the Betti numbers
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(Bo, B1,B2) = (1,0,1) while a torus hasfo, B1,82) = (1,2,1). Betti number computations for virus capsid surfaces gi®vi
useful topological and combinatorial structural inforroat

10.2 Ribosome
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Appendix A

Molecules

A.1 Internal Coordinates

peptide plane

® C, ® N ® H
o cC ® o ’side chain

Figure A.1: A polypeptide chain with backbone dihedras ¢, w) and side-chain dihedralg) shown.

Proteins have a naturally occurring backbone consistingH — C(H)R— CO— sequences, where R is some functional
group defined for 20 different amino acids. These functignalips appear as side-chains connected to the backboneals i
organic molecules, each type of bond formed in a proteinaomé to the characteristic bond length and bond angles &br th
type. Hence, the conformation of a protein can be approxlypalefined by a set afihedral anglegor torsional angleythat
determine the orientation of different chemical groupsigland around the backbone.

The following three dihedral angles determine the confdionaof the backbone (see Figure A.1).
@. This is the angle between the plarf@s; — N; — Cy, andN; — Cy, — G, i.e., the angle of rotation{180° < @ < +180°)

around theN; — Cq, bond. A positive change in thg value occurs by counter-clockwise rotation of e; — N — Cy,
plane around thé; — C4, bond.

Y. This is the angle of rotation{180° < ¢ < +180°) around theC, —C'i bond, and is determined by the angle between
theN, — Cy, — C'i andCq, — C'i — Niy1 planes.

213
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Figure A.2: A peptide plane with all bond lengths and bondesighown [9].

w. This is the angle of rotation around the peptide baP{d{— N;), and is given by the dihedral angle between@he, —
C_;— N andC_; — N —Cq planes. The partial (40 %) double-bond character of theigeftond and the steric
interactions between adjacent side-chains causes thegmadp {;, Cy;, Hi, C_;, Oj_1 andCy, ,) to be almost planar
with the distance betwedly, , andCy, as large as possible (see Figure A.1 for bond lengths and &oglés on this
plane). Therefore, almost always ~ 180 (for trans-peptides), oty = 0° (for cis-peptides).

More than than 99% of all residues (except proline) arans-peptides, and hence hase~ 180°. Approximately 5%
of all proline peptide bonds hawa ~ 0°.

The side chains change conformation through torsionalgdsim they; angles.

Xi- Depending on the amino acid type of the side chain there capbe 4 such successive angles per side chaip;: xi 2,
Xi.3 andx; 4. However, forGlycineside chain which consists of only one hydrogen atom, Allagiinewhose side chain
is only a single methyl group, these angles are undefinedalFother side chaing; 1 is defined as the dihedral angle
between the plands — Cq — Cg andCq —Cg — X, whereX is eitherCy, orCy, (Val, lle), Oy (Ser),0y, (Thr), orS, (Cys).
All side chain dihedrals have values clustered near thraéoomers known agauche or g+ (+60°), transort (180°),
andgauche org~ (—60°).
Figure A.3 shows the side-chain dihedrals of all amino aeitsept Glycine and Alanine. Table A.1 shows that about
90% of all side-chains in proteins can be completely desdribith three dihedral angles (i.¢¢1,1, X12 and x1.3), and
only two dihedral angles (i.ex1 1 andxz ) are necessary to completely specify more than two-thifdsesm.

| number of dihedralsd) | frequency (%)

d<4 100.00
d<s3 89.48
d<2 70.64
d<1 23.46

able A.IT: Amino acid frequencies in proteins
based on the number of (side-chain) dihedrals
they have (based on data in [26]).



Aliphatic: Aliphatic Hydroxyl: Secondary Amino Group:

H,

/CH3 CH, /CH3 /CH3 c
H,C CH,
c,—¢C C, —— CH,——CH C,——C-H C, —— CH,——OH C,——C -H
\ \ \ [
CH, CH, CH, —CH;, OH *HN——CH——
Valine (Val) Leucine (Leu) Isoleucine (lle) Serine (Ser) Threonine (Thr) Proline (Pro)

Acidic and their Amide Derivatives:

o

C, = CH,—— C——NH, C, —CH,—— C——0" C, = CHy=——CH,—— C——NH, C, —— CH,~—CH,——C——0"

Asparagine (Asn) Asparatic Acid (Asp) Glutamine (GIn) Glutamic Acid (Glu)
Basic:
NH,* C,—— CH,——C==CH
W | /
C, == CH,==— CH,=—— CH,=——CH,——NH;*  C, == CH,=—— CH,=—— CH,=——N——C ——NH, *HN\ /NH
N
H
Lysine (Lys) Arginine (Arg) Histidine (His)
Sulfur-containing: Aromatic:
C = CH,=—C
C, === CH,===—CH,==—=S——CH;  C_ == CH,=—— SH C,= CH, C,= CH, OH " |
HC
H
Methionine (Met) Cysteine (Cys) Phenylalanine (Phe) Tyrosine (Tyr) Tryptophan (Trp)
— Xy — Xy — Xz — Xig

Figure A.3: Side-chain dihedralgi(1, Xi 2, Xi 3, Xi.4) are shown for 18 of the 20 amino acids. The remaining twg, Gl/cine
(Gly) and Alanine (Ala), do not have any side-chain dihesirAldapted from [28].

A.2 LEG (Labelled Embedded Graph) Representations

TheLEG representation of a molecule is simply an annotated grgmiesentation of the chemical structure of the molecule,
in which each node represents an atom and each edge a chbeonchl Each atom may be annotated by its symbol and the
vdW radius, each edge may be annotated by the length of the porréimg chemical bond and possibly a dihedral angle, and
each pair of consecutive edges by a bond angle.

In Figure A.3 we show the chemical structures of various anaicids, and in Tables A.2, A.3 and A.4 we list all possible
vdW radii, bond lengths and bond angles, respectively, thatapip these chemical structures. Using these informaitids,
straight-forward to construct the requireEG representations of the amino acids.

Since secondary structures (eg-helices ang3-sheets) are composed of primary structures (i.e., amiiizatheLEG
representation of secondary structures can also be coteddriiom the information in Figure A.3 and Tables A.2, A.8l@n4.
However, the(@, ) dihedral angles of the residuesdnhelices angB-sheets lie in fairly restricted ranges:-45°, —60°) for
a-helices,(—120°,115") for parallel3-sheets, and abo(t 140, 135°) for anti-parallel-sheets. The bond lengths and bond
angles may also change slightly.

We can use geometric propertiesahelices ang3-sheets in order to extract them from thEG representatioh of the
given proteinP.

Extracting a-helices fromL. We traversd. along the peptide backbone Bf and using the internal coordinates (i.e., bond
lengths, bond angles, dihedral angles, etc.), bond typdsatom types specified ih, we detect and output all maximal
contiguous segments of this backbone (along with side eh#iat satisfy the following properties athelices.
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Lysine
(side chain)

Figure A.4: A Lysine side-chain with side-chain dihedrg{s{, X1.2, X1.3, X1,4)-

e The amino acids in an-helix are arranged in a right-handed helical structuré wdch amino acid corresponding to a
100 turn in the helix and a.5 A translation along the helical axis. Thus there are 13 atand 3.6 amino acid residues
per turn, and each turn is®A wide (see Figure A.5).

e TheC=0 group of residué forms a hydrogen bond with tié-H group of residué+ 4.

e Amino acid residues in aa-helix typically have dihedral angleg~ —45° andy ~ —60°.

Extracting B-sheets fromL. We scan the peptide backbonePfjiven inL, and detect and output all maximal contiguous
segments of this backbone (along with side chains) thatfgdlie following properties o8-sheets.

e EachfB-strand can be viewed as a helical structure with two resigeeturn. The distance between two such consecutive
residues is 3.47 A in anti-parallBlsheets and 3.25 A in parallBlsheets.

e Unlike a-helices theC=0 groups in the backbone of @-strand form hydrogen bonds with tié-H groups in the
backbone of adjacent strands.

— In parallel3-sheets alN-termini of adjacent strands are oriented in the same dire¢see Figure A.7(b)). If the
Cq atoms of residuesand j of two different strands are adjacent, they do not hydrogerdlio each other, rather
rasiduei may form hydrogen bonds to residujes 1 or j + 1 of the other strand.

— In anti-parallel3-sheets thé\-terminus of one strand is adjacent to txerminus of the next strand (see Figure
A.7(a)). If a pair ofC, atoms from two successiy& strands are adjacent, then unlike in pargBesheets they form
hydrogen bonds to each other’s flanking peptide groups.

e The (o, ) dihedrals are abot-120°,115") in parallel3-sheets, and abogt140°,135°) in anti-paralle|3-sheets.

e Unlike in a-helices, peptide carbonyl groups in successive residoies ip alternating directions.
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m or Group Symbol
>CHR CA
>C=0 c

>CH— CH

itom type

SW
‘W

F

Y
Y2

3

‘N
'HIE
'H2E
‘H2P
'H2G

'H3E
‘RI1E

R1W

‘MU

Ryaw (A) Notes
1.90 Main-chain a~carbon (excluding a-carbon of Gly)
1.75 Main-chain carbonyl carbon
Side-chain aliphatic carbon with one hydrogen (C* of Ile, C¥ of Leu, CP of Thr, CP of
2.01 Val)

Side-chain aliphatic carbon with two hydrogens, except those at B-position and those
next to a charged group (Cof Arg, Cv! of Ile, CYand C? of Lys, C¥ of Met, Ctand C?

4 nn VS SN

Table A.2: List of van der Waals radii for 25 protein atoms][21

Description

Carbonyl C atom of the peptide back
Tryptophan C”

Tryptophan C*?, C*? ond type  Bond length (A)  Bondtype  Bo
Pheny"la.lamync cr SW_CW 1433 CHIE-CHIE
Torusing G- W-CW 1:409 CHIE-CH2E
L’:;ﬂ;’:‘n‘: i _CHIE 1:525 CHIE-CH3E
N . . 5-CH2E 1497 CHIE-N
eutral carboxylic acid group C ator SW_CHIE 1498 CHIE-NHI
Tetrahedral C atom with one H atom
Tetrahedral C atom with two H atorr ‘F—CHEE 1-502 CHIE-NH3
CH2G) Y-CH2E 1:512 CHIE-OHI
Proline C”, C* -CH2E 1:516 CH2E-CH2E
Glycine C* ‘N-CH2E 1-503 CH2P-CH2E
Tetrahedral C atom with three H ato -CH2G 1516 CH2P-CH2P
Aromatic ring C atom with one H at SW-CRIE 1:365 CH2E-CH3E
CRIW, CRH, CRHH, CRIH) ‘W-CRIE 1:398 CH2P-N
Tryptophan C%2, C" W-CRIW 1394 CH2G-NH1
Neutral histidine C*' F-CRIE 1-384 CH2E-NHI
Charasd hictidine ©f! V_CDIE 1 200 MU N

Table A.3: Bond lengths in proteins [7].
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WL Wl _KIE 1559 CHIE-L
W-CW-CRIE 118-8 C-CH21
W_CW-CRI1W 122-4 C5-CH:
W-C5W-CRIE 106-3 CF-CH:
W-CW-NHI 107-4 C5W-CI
HIE-C-N 116-9 CY-CH
HI1E-C-NHI1 116-2 C-CH2I
HIE-C-0 120-8 C-CHX(
HIE-C-OC 117-0 C-CHX
H2E-C5-CRIE 129-1 CHI1E=(
H2E-C5-CRIH 131-2 CHI1E<(
H2E-CF-CRIE 120-7 CHI1E—(
H2E-C5W-CRIE 126-9 CHI1E—
H2E-CY-CRIE 120-8 CHIE—
H2E-C-N 118-2 CHIE=(
H2G-C-N 118-2 CHIE<
H2E-C5-NH1 122-7 CH2E
H2E-C-NHI1 116-5 CH2E(
H2G-C-NH1 116-4 CH2P-(
H2E-C-NH2 116-4 CH2E(
H2E-C5-NR 1216 CH2E«
H2E-C-0O 120-8 CH2E~
H2G-C-0 120-8 CY2-Cl
H2E-C-0OC 118-4 CW-CR
H2G-C-0C 118-4 CW-CR
R1IE-CY2-CRIE 120-3 CF-CR|
R1E-CY-CRIE 118-1 CY-CR
R1E-CF-CRIE 1186 C5-CR1
RIW-CW-NH1 130-1 C5-CR1
RI1E-C5-NH1 105-2 C5W-C
R1H-C5-NHI 106-1 C5-CRI1
RI1E-CY2-0H1 119-9 CRIE=(
=C-0 122-0 CRIW=
IC2-C-NC2 119-7 CRI1E—(
IC2-C-NH1 120-0 NHI1-C|
H1-C-0O 123-0 NHI1-C|
H2-C-0 122-6 C-N-CI

Table A.4: Bond angles in proteins [7].

A.3 FCC (Flexible Chain Complex) Representations

Complex biomolecules have a naturally occurring backbfmeing chains which flex through their torsion angles. Tiesve
is biochemically well defined, and described by a labeledmiera Structural (shape) and functional properties of atuitecule
can be described as a labelttbatharound the centraderve This combined representation (Flexible Chain Comple¥,©@C)
of anerveand asheathdescribe a flexible biomolecule.

The nerve of the FCC.The chain complex consists of the following elements.

e \ertices Atom or pseudo atom positions. Atom positions are obtatgpitally from the PDB files. For pseudo atoms,
we use the centers of a set of enclosing spheres which reptasdiner level using some error norm like the Hausdorff
error.
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Figure A.6: Geometric structure offasheet [9].
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(a) Antiparallel (b) Parallel

Top view

Figure A.7: Two types of8-sheets: (a) anti-parallel, and (b) parallel [13].

Figure A.8: Flexible Chain Complex: Combined volume (thgbthardware accelerated 3D texture mapping based volume
rendering) and imposter rendering, showing the chain tagetith the high density volumetric regions formed by thediional
groups protruding outwards from the chain.

e Edges Bonds or pseudo bonds. This is again from the PDB or from tbeatchical complex formed by clustering the
finer resolutions to a DAG.

e Faces Residues, bases or pseudo structures.
These elements are labeled with the following attributes.

e Position, length, areas.
e Ranges for flexible angles, lengths.
e Sub structural markers.

o Field attributes.

We allow the molecules to flex around their torsion angles aswidely accepted that bond angles and bond lengths do not
have much flexibility. In protein chains, thigand ¢ angle variations are obtained and stored in the complebuatitss. For
RNA, we have 8 different torsion angles along the backborie ringes for these atoms are obtained either from molecular
dynamics simulations or from NMR analysis for certain stuves.
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(a) Atom level (b) Residue level with a lowic) Residue level with a high
Gdropof f factor Gdropof f factor

Figure A.9: LOD volume rendering of a large ribosomal sub(thiJ2.pdb). The parameBopof t CONtrols the spread of the
density around a pseudo atom when blurring the chain complex

The sheath of the FCC.The surrounding volume, sub volumes and surfaces of a beentd are used to represent shape,
volumetric properties (like electrostatics, hydrophdiyicand surface properties (like curvatures). These ations enjoy
a dual implicit and explicit representation.

¢ Implicit volumetric representatiolm this representation, we have a vector containing of (egettof centers of expansion
points, (b) A parameter referred to as the blobbiness pasmich is useful to represent the van der Waals forces in
a continuous and hierarchical fashion, and (c), a set of.rdlese parameters are necessary and sufficient to define the
electron density function of a molecule. For functions Iikarophobicity and electrostatics, charges at each cefter
expansion is required.

e Explicit volumetric representatiofhere are three representations which can be used for gypdiescribing a volumetric
function.

— Simplicial representatianThe data is described over a simplex like a surface grideavéhntices.

— Tensor product An explicit grid is used to represent the functions. The %f such a representation can be very
large. Hence it is useful to develop compression baseditligms to represent and visualize such a representation.

— Multipole summationsSince our data set consists of a set of vertices and furgctidrich are summations of
functions defined over this limited set, Multi-Pole type snations can be used efficiently to represent the data
sets.

A.3.1 Hierarchical Representation

Both the skeletal and the volumetric features are repredenta hierarchical fashion. We have a biochemical basdit sta
hierarchy of the molecules, with atoms at the finest resmtutiGroups of atoms are collapsed to form residues and esidu
form secondary structures. Chains consist of a set of tremdary structures. A dynamic hierarchy, which could beemo

useful for interactive dynamic level of detail renderinglananipulation is also performed as outlined in [1].

Once a flexible chain complex hierarchy is rebuilt due to dyitachanges in the molecule, the implicitly defined volurieetr
and surface properties can be quickly updated. Explicitwas can also be extracted in a hierarchical fashion.

When we have a hierarchical representation of a FCC skeleterimplicitly have a hierarchical representation of the
surrounding differentiable sheath. In figure A.9, we shogvltirge ribosomal subunit at three different levels of adrighy.
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A.3.2 Flexibility representation

The paper [38] describes how to store the flexibility infotima in a structure. More specifically, they describe ergtand
new methods to obtain new atom positions when rotationsenfemed. Three schemes for storing and manipulatingiootat
matrices are given below.

Simple rotations schemeA tree is constructed from the molecule by taking any atonhagdot, and bonds in the molecule
as bonds in the tree. Rings in a protein are simply taken agyesattom. When a torsional angle changes at a node, théreall t
nodes below it are rotated to new positions. This rotatiothat involves a matrix multiplication. The update has toroenf
the node to the leaves and numerical errors can occur duertiputating positions of atoms down a chain for each rotation

Consider a bond rotated by anglé. Letv be a vector along the bond afidbe the translation matrix formed by tit8
atoms position. Then the update matrix is

V2 + (1—Vv2)cosh, ViV (1 — cOS) + V,SinG - Vpvk(1—cosB) +wsing 0
VxVy(1— cosh) + v,sing, v)2,+ (1—v§)cosﬂ WV,(1—cosB) —wsing 0
VoV (1 — cosB) — wsing  VyV,(1— cosh) + wsing V2 + (1—v2)cosh 0
1

0 0 0

T1 (3.1)

A.3.3 Denavit-Hartenberg scheme

In this scheme, we again maintain a tree, with matrices awiétepfrom a root to the leaf. But now, the matrices no longer
need the information on the current position of the atom dmly the rotations it underwent as a single matrix. Hence ithi
numerically stable.

To construct the matrix, we first define a local frame at eaaten@he origin and the vectors are the node position and
e w the bond from the node to its parent

e U a vector perpendicular to the previous vector and the bonthating this atom and a child. This means that a frame is
to be defined for each child.

e Vv a vector perpendicular to the above two.

The matrix which takes a point from one frame defined at a nodeet frame of the parent of that node is defined as

cosh, —sinG, 0 0
singcosy_1 cogBicosp 1 —sing_1 —lising_1 (3.2)
singsing_1 cosBsing ; cosp 1 —licosp 1 )
0 0 0 1
6 is the torsional angle of bortg

@-1 isthe bond angle between bortgs; andb;

Atomgroup scheme.This scheme eliminates the requirement for multiple fraaresframes where the bond does not rotate.
It simply aggregates the tree into a new tree where sets titesr( atoms ) which do not have rotatable bonds are colthpse
into a new vertex. Here, we define the local frame as the atoupgorigin and the vectors

e W; as a vector along the bond to atomgraupl
e U; as any vector perpendicularig

e V; as any vector perpendicular to the above two.
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Let the frames after and before rotation [Be u;, vi,w;] and[x{,uf,vi,w;]. In this case the transformation matrix, which
takes a point in frameto local frame at — 1 ( rotated byd around the connecting bond ) is defined as the product

Ui—1.U Ui—1.V Uim1.Wi o Uim1.(Xi — Xio1 cos® —sing 0 O
ViU ViV VieaWi o Vieg (X — Xiog sing cos®B 0 O (3.3)
Wis1.Uf Wisg.V WigWi o Wisg.(X — Xi—1 0 0 10 '

0 0 0 1 0 0 0 1

The concatenation of such matrices until the root gives tbleal position of the atomgroup.

A.3.4 Flexibility analysis in molecules - creation of flexibe models
One classification of flexibility analysis methods in therhaecular area is given by [14] as

e Molecular dynamics

Molecular dynamics involves simulation of the protein irovent environment and saving the conformation state at reg
ular time intervals. Since this simulation is often at vanedl time scales, ( pico or nano seconds ), large conformatio
changes ( which occur over micro or milli seconds ) will notrbeorded. Hence obtaining flexibility analysis through
molecular dynamics is limited. An adaptive solver is giveifli7]. By allowing users to interact with the system, confor
mational changes can be forced and observed [20], [32]. Aipheilgrid method for solving the electrostatics efficigntl
[31]. Compact structural domains were computed in [12]gisimple force calculations in a protein structure.

e Xray Crystallography and Nuclear Magnetic Resonance (NMR )

Xray Crystallography is used to obtain high resolution iesgf proteins, upto the atomic level. Most structure in the
PDB are generated using this method.

NMR techniques have been used to obtain dynamic conformetibproteins. The basic idea behind NMR is that atoms
have an intrinsic property spin, which determines its baravhen exposed to magnetic fields. Different atoms are seen
to emit different frequencies of light, providing an imadetee underlying protein as a signature. NMR imaging yields
lower resolution results than xray crystallography.

Given the large number of states which could be obtained frmtecular dynamics, NMR and xray crystallography,
the following methods generate certain important conféstetes by reducing the number of degrees of freedom in the
protein.

e Comparison of conformal states

Protein dynamics give rise to a large number of conformatidmalyzing these conformations for any problem, inclgdin
flexible protein docking is not computationally feasibleert¢e many methods are used to reduce these conformations to
a new basis, where the principal basis gave the large fluohsagfficiently. Many authors [35], have shown that the main
conformational changes of a protein is mostly captured liyygusnly a few bases and projection vectors, [34]. Normal
mode analysis and principal component analysis are twoaudstto reduce the dimensionality of the problem.

Singular Value Decomposition (SVD) is commonly used to fiadib vectors to reduce the dimensionality of a set of
vectors. An equivalent formulation using Principal ComeoiAnalysis (PCA) is also done. Consider the column vectors
of a matrix A as the zero mean weighted atomic displacemesitipns. Usually, this vector is also aligned with a given
conformation, so that the displacements are relative. Mi2 & a matrix is

SVDA) =U VT (3.4)
uyv are orthonormal m.amceSThe diagonal matrix has entries are all non negative ancedstrg, called the sin-
Y is a diagonal matrix

gular values.

In this decomposition, the set of left column vectorlodire the basis set f@, and the vectors iWT are the projections
along these basis vectors with magnitudes given by the kingalues. Hence, we have an ordering on the influence of
the basis vectors for the matrix.



224 APPENDIX A. MOLECULES
To apply the PCA algorithm, a matrixis defined with elements; as follows

ajj = ((X —Xi,avg) (Xj — Xj.avg)) (3.5)

The eigenvector proble®V =W/ is solved to get the axis vectors and the corresponding fitiotus in the eigenvectors
and eigenvalues [19].

In [10], a theorem relating the atom displacements to thgufeacies of vibrations is presented. In this paper, theoasith
prove that if a large molecule only flexes around a certaininmahenergy state, approximated by a multidimensional
parabola, then the average displacements of the atom@usit the sum of the contributions from each normal mode,
which is proportional to the inverse square of the frequdai®y. For Normal Mode Analysis ( NMA ), the moment
matrix diagonalized is

A=kgTF 1 (3.6)

kg is the Boltzmann constant,
T isthe absolute temperature,
F is a matrix of the second derivatives of the potential enatgyminimum point.

Successful modeling of the Chaperonin GroEL was perforns@tgUNMA in [22]. To avoid the computations on a large
matrix, [33] compute a blocked version of NMA by groupingidess.

Gaussian Network Models ( GNM ) are used in [18]. In this mothed correlation matrix is formed as

(3KT/V(THij) (3.7)

is the boltzmann constant,

is the absolute temperature,

is a harmonic potential,

is a nearness matrix, called Kirchoff matrix

aA< 4=

The kirchoff matrix inverse can only be approximated siris@leterminant is O.

e Deriving flexibility through a single structure.

Non polar regions in protein tend to lie in the interior anis ttlydrophobic effect folds the protein. In [37], the author
describe how to capture this information into rigid domaihthe protein. Their assumption is that rigid domains fdlde
by the hydrophobic effect behave as@mpact uniduring conformational changes. To quantify this, they diehically
grouped residues in a protein to form a tree, using a coetficecompactnesz given by

_accessible surface area of segment
~ surface area of sphere of equal volume

(3.8)

Static core or the backbone of molecules and their assdciggiel domains were computed in [3] using two different
conformations of a given proteina helices,3 strands and loops were segmented. Similar pairs of segmemts
clustered in a tree-like fashion using a rmsd calculatioom@ins or compact units of a protein were also computed by
[30]. The heuristic they used was that the amount of interaatact a domain had was larger than the amount of contact it
had with the rest of the protein. Hence by choosing suitglileganes along the sequence, they form compact sequences
Extending this idea, a Monte Carlo sampling in internal dimates using relevant torsion angles was performed in [23]
They obtained a set of low energy conformations for any gpmiein structure as a representation of its flexibility.
Using graph theoretical algorithms, [14] obtained flexifel rigid domains in a protein.

A.4  Flexibility in RNA

Flexibility in RNA is given by three sets of angles

e The backbone torsion angles.
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(a) The six backbone torsion a(B) The torsion angles defindd) Nucleotides can rotate about
gles for a RNA along the sugar ring the x torsion angle

Figure A.10: The torsion angles around which a RNA can flex.

Figure A.11: The backbone torsion angles are representpgbiwo pseudo rotation anglgsandf.

e The angles on the sugar ring, also defined by amplitude andseph

e An angle about which the residue can flex.

The angles are shown in figure A.10. Due to the large numbenglea, people have studied and proposed various means
to reduce the conformational space.

A.4.1 Reduced conformation space

Due to the large number of angles defining the flexibility otleatides, it is useful to find fewer pseudo torsion angles to
represent the other angles.

Reduction to two angles.Duarte et al. have reduced the number of torsion angles sage® describe an RNA molecule to
two, n and@ [5], [4]. Figure A.11 gives the relative positions of thesgkes and the specific atoms of the backbone involved.

n is the torsion angle resulting fro@4_, — R —C4/ — R 1. The atoms connectd®l — C4{ — P, 1 — C4, , createf [5].
In their most recent publication, Duarte et al. combinedrjihand 6 data with position information to describe the overall
structure of the RNA molecule. Using PRIMOS [6] to create RINA worm" - a sequential description of the angle data -
allows for analysis of the structure on a nucleotide by notidie basis.

After all n and6 angles have been calculated from the PDB [8], NDB [2], and BNSE [36] data, PRIMOS creates an
RNA worm file which gets deposited into a database. The twdesraye plotted and d3dimension, sequence, is added to the
graph to form a 3D representation of structure. See Figut@ A.
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Figure A.12: Example of 3D representation of RNA structi®mtting the RNA chains using only two angles per residue in a
3D plot shows similar structures along tverms

Angle Bin 1 Bin 2 Bin3 | Bin4
a 40-90| 135-190| 260-330| other

y 35-75| 150-200| 260 - 320| other

o 68-93| 130-165 other

{ | 255-325 other

Table A.5: Classification of angles:discrete ranges of@sgt "bins" as defined by Hershkovitz.

In this plot, A-helices (the most common form of RNA; repnetsel in blue) travel in relatively straight lines, wherelas t
motifs/other features of the RNA show large deviations fthmstraight line (shown in red).

To compare RNA worm representations, and thus conformalticariations between molecules, it is necessary to find the
difference between thg and 6 values in the two molecules. Simply put:

A(N.8)i = \/(NA—nB)2+ (A~ 6B)? (4.9)

The larger the value di(n, 6); the more extreme the disparity between the two RNA fragmehtsns, or molecules.

Further, Duarte et al. use this method to compare ribosoomaptexes, search for existing motifs, identify new motifisd
characterize two different types of the same motifs. To campibosomal complexes, Duarte et al use PRIMOS to catulat
differences in h and g when the ribosome is in different conftional states. For example, the conformational statbef
ribosome is altered during antibiotic binding or duringeliént stages of translation. The same method can be usethjzate
conformational states of ribosomes from different species

To find existing motifs in RNA structures, they used PRIMOS®iteate another RNA worm database. From this database,
a fragment of RNA that contained the motif of interest wagesteld and compared to every other fragment of the same size
within the database and given a score according to equatién 4

_ ZP:lA(na 6)|

A(n,0) .

(4.10)

The scores were sorted in increasing order. The smalleesdodicate a closer match.

Reduction to four angles and binning.Hershkovitz et al. [11] suggest a more complex, yet compigarg, method to that of
Duarte [5]. This method involves calculating four torsiargkes,a, y, 4 and{, and binning these angles into allowable ranges.
"Binning" is a term used to describe the technique used bglikewitz to classify various RNA configurations into digere
bins. For example, nuclectides in the A-form helix, the ntmshmon conformation of RNA, have a bin number of 3111 where
each number represents which "bin", or range, the torsigtearbelong to (i.ea is in bin 3, or 260 - 320° andy, é and{ and

are in bin 1, or 35- 75°). See Table A.5.
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The bin number combination 3111 is then assigned an ASChacler, "a". All combinations of bin numbers are assigned
a unique ASCII character, enabling the entire RNA chain taléscribed by a sequence of letters that represent thewsiuct
of the molecule. Their goals were to recognize and cataledjube RNA conformational states, eliminate any unneagssa
angle information, and to assess the validity of their bigninodel by comparing it to a torsion-matching model. Thsitor-
matching method for RNA motif searching is a brute force radth So while it is highly accurate, it is computationally
expensive as it involves calculating all backbone anglekiding a ribopseudorotation phase angle, P, for eachuesdd
comparing each set of angles to all other sets of angles imdiecule.

After using the binning method for all RNA fragments and nooles in their database, Hershkovitz et al found 37 distinct
conformational states of RNA. Table A.13 lists the assigniachumbers, the corresponding ASCII symbols, and the obser
frequency of these 37 conformational states.

Because this method allows the three dimensional struofume RNA molecule to be displayed as a sequence of characters
it facilitates motif searching. Without computational sl one could see that a string of repeating letters (otlzar 'th")
represents a possible motif.

Hershkovitz et al suggest an alternative to the Ramacharplogs traditionally used for representing angle disthiitmns.
The tree diagram in figure A.14 is a natural progression fiwafour integer code, or bin. Here the widths of the line cspond
to the log of the number of residues in each bin.

A.4.2 Classification of RNA using clustering

Nucleotides from the large ribosomal subunit (1JJ2.pdlipwhistered into commonly occurring structures by Scheread al.

[29]. They classified the non A-type nucleotides separdt8$0 of them ). Eighteen distinct non A-type conformationd a
fourteen A-type conformations were reported. They repgut & large number of the RNA were very close (in a RMSE sense
) to the clusters. The authors also say that their resuleseagith those from Murray et al. [24].

The steps used in obtaining the conformations were as fellow

e Separate the A-type from the non A-type nucleotides.
¢ Plot the histogram for the backbore,(3,y, d, €, {) and the basey() angles.

— a andy were seen to have tri-modal distributions.
— B has a wide gaussian with 180 as its center.
— ¢ has values greater than 180 due to the ring, and lacked aigassape.

— deltaalso was constrained by the ring, and had a sharp bimodaibdison due to the C3’-endo and C2’-endo
ribose puckers.

— The basgy angle was largely bimodal, due to the two main configuratidmases (anti and syn).
— There was a wide distribution df.

e Plot 2D scatter plots for the following angle pairs,[¢], [ B, ], [&, {1, [V, a1, [ x, {] and [x, J].

— The reason for choosing the above sets were not given.
— Clusters were found in the pairg,[a], [a, y] and [x, J].
— The lack of clusters in other plots led to clustering of 3 &gobf angles.

e From the features and distributions seen in the 1D and 23 glneé authors choose six 3D plots to base their clusters on
to classify the structure of nucleotides.

air1, & and [¢i, &, Xil-
— The clusters in the 3D plots were assigned peaks and labeled.
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Ascii letter® Bin number Frequency
i 3111 1709
e 3112 169
I 3122 124
i 2211 103
0 2111 58
I 4111 48
it 1111 37
s 2122 34
| 1211 3l
¢ 3121 30
u 4211 28
d 1121 26
p 4122 21
m 1122 21
h 3411 18
g 1322 18
b 1112 14
f 3211 14
y 4112 13
W 2212 11
k 4121 11
v 3212 10
b 3222 10
z 1331 9
i 4222 g
q 3321 8
1 1212 8
2 3422 3
3 4311 b
4 4411 3
5 2121 7
] 3322 7
7 2222 7
8 2411 7
9 1311 7
(0 1221 7
+ 3311 6

“The assignmenl ol characters 1© configuration classes was made by
frequency of observation. The choice of letter assignment was taken from
http:/fwww .askoxtord.com/asktheexperts/fag/aboutwords/frequency. All bins
with less than five residues are denoted by * and are omitted from this

table.

Figure A.13: Classification into 37 clusters through bimnin
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o

37 14 26 21 31 8 7 4 7 5 18 9 &5

Figure A.14: This tree represents the case witeig1. There are three others; one for each possible valae of

— Each nucleotide was assigned the corresponding label famim @ot, if any, or simply a '-.

e Each nucleotides 6 letter classification was clusteredgusixicographic clustering. The authors do not mention why
this method was used.

e From this clustering, eighteen distinct non A-type confations and fourteen A-type conformations were reported.

A.4.3 Division of RNA backbone bysuites

Murray et al. [24] identify several problems associatechwiite methods of Murthy [25], Hershkovitz [11], and Duarté [5
While these methods are excellent at finding and comparing RMtifs in a large nucleic acid sample, they oversimplifg th
problem of determining RNA backbone structure. As a reddiirray et al. propose to analyze the folding structure of RNA
molecules on a more detailed level, correct the artifactated in the data structures (sometimes caused by NMR oy X-ra
crystallography), produdew-noise data distributionsand create a list of the resulting, distinct RNA backbongfoconmers.

The traditional nine angles of the RNA backbone and its bésesa, 3,y,9,¢,{, x, and the 2 puckering angles of the
sugars) were reduced to six. was not included in the model. The two puckering angles werebined and represented as
9, whered was bimodal - either C3’ endo or C2’ endo. This allowed thersixaining angles two be divided into 2 sets of
3D distributionsa, B,y andd, €, {. Dividing the RNA backbone intbeminucleotidesa term coined by Malathi and Yathinda
[27], in this manner provided some advantage to the tratitiphosphate - phosphate division in that it reduced thedsgion
of the problem and made visualization more feasible. Inrotlords, two 3D plots can be created using3, y data and, ¢, {
data respectively. See figure A.15

The methods of Murray et.al were fairly straightforward.eytobtained the sequence and structure data samples from the
Protein Database and/or the Nucleic Acid Database. Froseteamples they calculated all the dihedral angles and added
hydrogens with REDUCE [15]. The backbone steric hindraneee calculated with PROBE and CLASHLIST [16]. A
clash was noted when the overlap between two atoms was gteaite0.4A. The angles, quality, resolution, base id, higjhe
crystallographic B factor, and d-e-z values were enteréal éxcel. Images were created using the software PREKIN and
MAGE from the same authors. For each of the seven peaks draathe d, ¢, distributions, thea, 3,y set was plotted.
Finally, a quality filter was applied to rule out nucleotideith greater than 2.4A resolution.

210 potential RNA conformers were determined from which hdé an acceptable (low) amount of steric hindrance. 42
conformers had actual cluster points from the data.
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Figure A.15: Division of angles into residue and "suite"adat

Figure A.16: 3D visualization of clusters
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