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ABSTRACT

We present an isocontouring a gorithmwhichis near-optimal
for real -timeinteraction and modification of isovaluesinlarge
datasets. A preprocessing step selects a subset S of the
cells which are considered as seed cells. Given a particular
isovalue, al cdlsin S which intersect the given isocontour
are extracted using a high-performance range search. Each
connected component is swept out using a fast isocontour
propagation agorithm. The computational complexity for
the repeated action of seed point selection and isocontour
propagation is O(logn’ + k), where n’ isthe size of S and
k is the size of the output. In the worst case, n’ = O(n),
where n is the number of cells, while in practica cases, n’
is smaller than n by one to two orders of magnitude. The
genera case of seed set construction for a convex complex
of cellsis described, in addition to a speciaized algorithm
suitable for meshes of regular topol ogy, including rectili near
and curvilinear meshes.
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1 INTRODUCTION

A wide range of techniques have been developed for the
visualization of scalar fields defined by a function F(x)
over a given domain D. One of the most common and
useful approaches is to compute and display isocontours
C = {x|F(x) = w}. Itisestimated that ina3D domain D,
the average number of cellsintersected by an isocontour wil |
be O(n?/3) [5], where n is the number of cells, which can
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be generalized to O(n!?~1/4) for a d-dimensiona domain.
Hence algorithms which perform an exhaustive covering of
cells are found to be inefficient, spending a large portion of
time traversing cells which do not contributeto the contour.

This fact has a great impact on the amount of interaction
which is possible between the user and the visualization.
I nteractive manipulation and control of visualization param-
etersallow the user to more quickly locate aregion of interest
and in general provide the user with a better understanding
of the scalar field asawholefrom display of contours, which
inherently represent only a subset of the entirefield.

We present an automated isocontour extraction agorithm of
near-optimal complexity for the case of multiple isovalue
gueries. A one-pass preprocessing step through the volume
data selects a subset .S of the volume cells which are main-
tained as candidate seed cells. The generd case for a cell
complex of arbitrary topology isdescribed, aswell asasim-
plification for structured data. For any isovalue, it is guar-
anteed that each connected component of the isocontour will
intersect at least one cell in .S. A subsequent preprocessing
step generates a search structurefor thecellsin S, permitting
O(logn' + k) search for al cellsin .S which contain agiven
isovalue, where n’ isthe size of the S and £ isthe size of the
output. Cellswhich intersect the given isovalue are used as
start cells for an isocontour propagation agorithm, visiting
only the cellswhich are intersected by theisocontour, result-
ing in an overal complexity of O(logn’ + k). We present
results and statisticsfor volume data from several domains.

2 RELATED WORK

Extraction of isocontours from scalar data has received a
great deal of attention in recent years. Among the contribu-
tionsto the field are methods for classifying and computing
intersections within a single cdl [7, 11, 12, 17]. Here we
are concerned primarily with the search for intersected cel s,



while the choice of triangulation technique can be chosen
based on the data characteristics and topol ogical needs of the
application.

The majority of thetechniquesfor accel erating the extraction
of isocontours do so by limiting the number of cells that
are visited, thereby reducing the overhead associated with
the inevitable search for cells which are intersected by the
isocontour.

Wilhelms and Van Gelder[18] use an efficient partial oc-
tree partitioning of a structured mesh with hierarchical
[min, maz] data in order to quickly locate cells which are
intersected by the isocontour while skipping large regions of
space with no contribution to the contour. Such a geometric
decomposition works well for smooth data with high spatia
coherence but suffers when applied to noisy data.

Recent techniques have concentrated on processing of the
value space of the cells rather than the geometric space.
Giles and Haimes [3] describe a method which forms two
sorted lists of cells, one by minimum value and the other
by maximum value. The maximum cell range, Aw, is com-
puted, which alowsthe limitation of the search to cells with
minimum value in the range [w — Aw, w] for a given iso-
value w. Cellsinthisrange which do not cross the threshold
are removed by inspection. For small changesin w, an in-
cremental approach of adding new cells and removing cells
outside the given w gives improved performance. Evident
in this approach is the fact that a single cell with alarge Aw
drastically reduces the effectiveness of the technique when
specifying arandom isovaue.

Gallagher describes a technique called span filtering [2], in
which the entire range space is divided into a fixed number
of buckets. Cells are grouped into buckets based on the
minimum val uetaken on by thefunction over thecell. Within
each bucket, cellsare classified into severd listsbased on the
number of buckets which are spanned by the range of the
cell. For an individua isovaue, cellswhich fal into a given
bucket only need be examined if their span extends to the
bucket containing the isovalue.

Itoh and K oyamada compute a graph of the extrema values
in the scalar field [5]. Every connected component of an
isocontour is guaranteed to intersect at least one arc in the
graph. Isocontours are generated by propagating contours
from a seed point detected along these arcs. Noisy datawith
many extremawill reduce the performance of such astrategy.

Shen and Johnson describe a Sweeping Simplices algorithm
which maintains two lists of cells, one sorted by minimum
cell vaue, the other by the maximum cell value [14]. For
a given isovaue, a binary search in the minimum value list
determinesall cells with minimum value below theisova ue.
Pointers from the minimum value list to the maximum value
list arefollowed to set a corresponding bit for each candidate
cell. At the same time, the candidate cell with the largest

maximum val uewhich islessthantheisoval ueisdetermined.
As aresult, all marked (candidate) cells to the right of this
cell in the maximum list must intersect the contour, as they
have minimum val ue bel ow theisoval ueand maximum value
above the isovalue. Optimizations are performed when the
isovalueis changed by asmall delta.

Livnat, Shen, and Johnson describe a new approach which
processes the cells into a 2D min-max span space [6]. Cells
are preprocessed into a Kd-tree which alows O(y/n + k)
guery timeto determine the cellswhich intersect the contour,
where k is the size of the output. It is reported that in the
average case, k is the dominant factor, providing optimal
complexity. The same authors, with Hansen, have recently
described an advancement which demonstratesimproved em-
piricd resultsby usingan L x L lattice search decomposition
in span space, in addition to allowing for parallel implemen-
tation on a distributed memory architecture [13].

A similar approach to ourshas been devel oped independently
by van Kreveld [16], in which seed sets are computed for
the specialized case of atriangular mesh in two dimensions
representing terrain for GIS applications. An interval treeis
used to perform the search for intersected seed cell s, resul ting
in worst-case complexity of O(logn + k). Our approach
differsinthe seed sel ection technique, whichwegeneraizeto
acell complex of arbitrary topology, in addition to devel oping
aspeciaized simplification for regular grids.

Insummary of therelated work, isocontour accel eration tech-
nigques attack the problem of minimizing the search phase by
forming a structure based either on the embedding space of
the geometric mesh or the 2D span space of the scalar field.
Characterizations of such approaches can be made based on
how well they handle noisy as well as smooth functions, and
whether the technique yields higher performance for consec-
utive isovalues which are close to one another.

Our approach isto initially extract a subset of cells S from
the given volume such that for any given isovalue w, every
connected component of the isocontour defined by w will
intersect a cel in S. The set of cells S are preprocessed
into a range search structure defined by the minimum and
maximum value of each seed cell. From this structure, cells
for agiven isovaue can be extracted in O(logn’ + k) time.
From each selected cell, one or more connected components
of the isocontour are extracted by propagation through cell
adjacencies [4].

3 ALGORITHM OVERVIEW

The approach we take is based on the formalization and
unification of three known techniques. The three leading
ideas we are retaining are the following:



1. Theextraction of an isocontour does not require search-
ing al the cells of the mesh [5].

2. To improve the efficiency of the cell extraction, it is
necessary to define a search structure over the set of
cells[18].

3. The search space we need to work on is not the embed-
ding space of the original mesh but thetwo dimensional

span space [6].

Exploiting these three main ideas we get the following high
level sketch of an isocontouring agorithm:

1. (Preprocessing A)
Reduce the set of cellsto a subset S that encompasses
at least one cell per connected component of each iso-
contour.

2. (Preprocessing B)
Construct an efficient search structure over the cdllsin
theset S.

3. (Step 1)
Given the scalar value w, perform alogarithmic search
ontheset S tofind all thecdllsin S which intersect the
isocontour of value w.

4. (Step 2)
For each cell ¢ foundinstep 1, trace theentire connected
component of the isocontour intersected by c.

This approach allows us to obtain near-optima worst case
time complexity along with an even better performance in
averagenon-perversecases. If k isthesizeof theoutputand n
isthesize of theinput mesh, theworst case compl exity we get
isO(logn+ k). Inpractical cases we have observed atiming
that grows linearly with the size of the output, implying an
optimal average case complexity of O(k).

The approach is applicable to any unstructured grid of cells
on which a scalar field is defined. The scalar field itself is
only assumed to be continuous. We only need a function R
that, for each cell ¢ in the mesh, returns the range R(c) of
all possible values assumed by the field on that cell. On the
basis of thisgeneral framework, we then exploreasimplified
version of the method where a regular 2D or 3D grid is
used as the mesh and the scaar field is approximated as a
piecewise linear function interpolating the values sampled
on the vertices of the mesh.

It is important to note how part A of the preprocessing is
gtrictly connected with step 2 of the isocontouring process.
In fact the cells that do not need to be stored inthe set S are
the cells that can be captured during step 2 performed from
somecdl in S. Inthe same way step B of the preprocessing
is coupled with step 1 of the contouring algorithm, as in

the former the search structure which is used in the latter is
congtructed. Details of the general agorithm for seed set
construction will be described in the next section, followed
by a simplified approach devised for regular grids.

3.1 Contour Propagation

Extraction of 2D surfacesfrom 3D data by mesh propagation
isdescribed by Speray and Kennon [15] for the case of arbi-
trary slicesin unstructured meshes, whileothers have applied
similar techniques to isocontour extraction [1, 4, 5].

The central ideais that, given an initial cell which contains
thesurface of interest, the remainder of the surface can be ef-
ficiently traced performing abreadth-first search inthegraph
of cell adjacencies, asillustrated for a 2D contour extraction
in Figure 1. Use of a breadth-first search keeps the memory
requirements minimal, as only the “advancing front” of the
surface needs to be stored at any one time. One advantage
to using a propagati on approach over other techniquesisthat
surfaces are easily transformed into a triangle strip represen-
tation for more efficient rendering [4]. Also of importanceis
thefact that shared vertices between cellsare more efficiently
located, as we are considering only a single closed contour
a any given time. In our implementation, carefully hashed
indexing of the advancing front allows usto efficiently elim-
inate recomputing intersections when the advancing front
closes on itself, completing the extraction of a connected
component. Similar to related caching techniques [1, 18],
the cache is made efficient by discarding entries which are
known to not be referenced again, based on the maximum
number of cells which share a given edge.

3.1.1 Cdl Connectivity

Given such a contour propagation scheme, we can abstract
the concept to a cell connectivity graph defined in terms of
the scalar field defined on the mesh. In this way we can
easily determine a subset of the mesh cells from which all
the possible isocontours of the scalar field can be computed
using the given propagation scheme. Note that on the basis
of the defined propagation scheme the connectivity graph is
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FIGURE 1: Illustration of contour propagation
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FIGURE 2: Sweep process on the mesh space aong the « direction. Astheline sweeps the seeds are collected

(marked in the picture).

simply alabeled adjacency graph of the mesh cells. The use
of adifferent propagation scheme impliesthe construction of
a connectivity graph different from the adjacency graph. In
generdl, to define the connectivity graph we assume:

1. Thefunction F(z1, ..., #,) defining the scalar field of
our n-dimensional mesh is continuous.

2. All the cdlls of the mesh are connected.

3. A function R(c) is available that, for any given cdl ¢
of the mesh, returns the range of values assumed by F
over thedomain of ¢. Notethat, since F is continuous,
the range returned isaways an interval [min, max].

4. For each pair of connected (adjacent) cells (e1, ¢2), we
define a connecting interval: [min’, maz'] C R(e1) N
R(cp) such that if the cell ¢1(cp) is processed for a
value w € [min’, max'], then the cel cy(eq) will be
also processed for the same value w. Thisisessentially
the information we get from the contour propagation
scheme.

Based on the aboveinformation, we construct alabeled graph
(. For each cdl ¢ inthe mesh, we have anode ¢ in GG that
islabeled R(c) = [min, max]. For each pair of connected
(adjacent) cdls (e1, ¢2), thereis an arc f in G connecting
c1 t0 2 labeled R(f) = [min', maz']. We name thearc f
because, with respect to the above propagation scheme, each
arc of (¢ represents the facet f along which the cells ¢; and
¢ are adjacent. In this case, the connecting interval of such
anarcistherange R( f) of thescalar field F on such facet f.

With reference to the graph ¢, we define connectivity re-
lations between the nodes of the graph and hence between
the corresponding cells of the underlying mesh. All cells
which intersect the same connected component of a contour
of isovalue w we call w-connected. Formally we have the
following recursive definition:

Definition 1 Consider a scalar value w and two nodesc, ¢
of G. ¢1 and ¢, are said to be w-connected if one of the two
following conditionsholds:

(8) c¢1ande, areconnected by anarc f suchthatw € R(f).

(b) There exists a node c3 that is w-connected to both ¢;
and co.

We can extend the concept of w-connectivity between pairs
of cellsto the connectivity of a set of cellswith respect to a
range of values.

Definition 2 Consider a subset S of the nodes of ¢ and
anode ¢ € G. The node ¢ is connected to S if, for any
w € R(c), thereexistsanode ¢’ € S that is w-connected to
C.

312 Seed Sets

We now characterize some particular subsets, called seed
sets, of the cells of amesh in terms of the connectivity prop-
erties defined in the previous subsection. The seed sets are
important because any isocontour of the entire original mesh
can be traced by propagating from the cells of any seed set.

Definition 3 A subset .S of the nodes of (G isa seed set of ¢
if all the nodes of G are connected to S.

If wewishto determine quickly all the cells of amesh whose
range contains a particular scalar value w, we can proceed as
follows:

1. searchfor al thenodes ¢ € S suchthat w € R(¢);



2. dtarting from the nodes we have found and using the w-
connectivity relation on the graph &' (that is the contour
propagation scheme), we find al the cells of the mesh
whose range contains w.

To reduce the search time we need to reduce the cardinality
of the seed set S as much as possible. Toward this end we
will apply the following property:

Property 1 If Sisaseed set and ¢ € S isa cell connected
toS — {c}, then S — {¢} isaseed set.

Proof: By hypothesiswehavethat ¢ isconnectedto S —{c}.
Also, from Definition 1(b), we have that any cell which is
w-connected to ¢ isa so w-connected tosomecdl in S — {c}.
Hence S — {c} isaseed s&t. o

Property 1 provides us with a method to reduce the size of
aseed set. If we wish to find a small seed set, we can start
with the entire set of the cells — that is the largest seed set
—and keep removing cells until we achieve a minimal seed
set. Note that a minimal seed set is not the seed set with
the minimum number of cells but a seed set from which we
cannot remove any cell to obtain a new seed set.

The repeated application of Property 1 requires the knowl-
edge at each step of the connectivity relations within the
current seed set. Thus, we may start fromtheinitial graph .
At each step, we remove the selected cell ¢ along with al its
incident arcs and add some new arcs between pairs of cells
that were connected to ¢ to takeinto account the connectivity
relationsinduced by ¢ on GG — {¢}. Inparticular, if two cells
¢1 and ¢, are both connected to ¢ with arcs f1 and f», thenthe
removal of ¢ requires aso the remova of f1 and f> and po-
tentially theinsertion of anew arc f connecting ¢; to ¢,. This
new arc f needsto beinserted if R(f1) N R(f2) # 0 (acase
in which Definition 1(b) applies). If this condition is true,
then the new arc is added with label R; = R(f1) N R(f2).
If we proceed in thisway, it becomes simple to determine
if Property 1 can be applied. We can remove acedll ¢ of the
current seed set if:

k

U B(f) = R(o)

i=1

where f, ..., fr aredl thearcsincident to the cdl ¢ inthe
reduced graph of the current seed set.

Given this general reduction scheme, we still have freedom
to select the cells to be removed in any order. We can use
a greedy approach, removing first the cells that we consider
less likely to belong to a minimal seed set — for example the
cells that have narrower range. In thisway we can assume
that the minimal seed set we achieve is not much larger than
the seed set with the minimum number of cells. On the

other hand, we can use this freedom to make the algorithm
as smple as possible (a very important property in actual
implementations).

A simple and efficient strategy for computing a small seed
set S isto apply a sweep in the grid space while maintaining
only thepart G’ of thegraph G relativeto thecells of thegrid
intersecting the sweep hyperplane (note that the complete
graph & does not need to be stored because it is equa to the
adjacency graph of thegrid cells). For a2D unstructured grid,
such asin Figure 2(a), the sweep hyperplaneisaline parallel
to the y direction moving along the = direction. Figure 2(b)
showsthe cells of the mesh that need to be represented in G’
in thick outline. Those are the cells on which Property 1 is
being tested. The connectivity relations among cells on the
right of the sweep line (thin solid lines) do not need to be
storedin GG’ because they are still likein G. The connectivity
relations among the cells on the left of the sweep line (thin
dotted lines) do not need to be stored in G’ since such cells
have already been discarded. Figure 2(c)-(d) shows how
during the sweep process the cells that cannot be discarded
are marked as seed célls.

In a regular grid the sweep process can be simply imple-
mented as a traversal of the grid by rows using a regular
marching scheme. In the following section we will examine
such a case in which we take a simplified approach specid-
ized for 2D and 3D grids of regular topology. The technique
is applicable to both rectilinear and curvilinear grids as we
depend only on the topological structure of the grid.

3.2 Generating Seed Sets

In theory, the use of an O(logn) search for seed pointsin
a seed set does not require that we extract a subset of the
cells: the complexity is no worse if we use the entire set.
In practice, because of the overhead of storing the search
structurefor theentire set of cells, in additionto our abil ity to
propagate an isocontour from one cell to the next efficiently,
we are interested in constructing a small set of cels, with
the only regquirement that each connected component of an
isocontour is represented in the selected set.

Weintroduce a simplification of the connectivity graph tech-
niquedescribed in the previous section for determining aseed
set S. The simplification does not require that we store the
entire graph, but instead we maintain a subset of the infor-
mation from the graph which can belocally propagated from
cell to cell using simple ruleswhen marching inaregular or-
der with temporary storage complexity of O(n(?=1/4). We
begin with all cells ¢ in the set S. We associate with each
seed cell a computed range T(¢), which represents the range
of values for which the given cell is a seed cdl. Initialy,
we have T(¢) = R(¢), the entire range of the cell, hence S
isaseed set. We present an incremental seed elimination
technique to reduce the seed set S. The reduction and re-
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FIGURE 3: lllustration of range propagation for asingle cell

moval of seed cellsisbased on propagation of responsibility
ranges of isovalues. The information propagated from cell
to cell in marching order isarange T for each dimension of
the regular grid. An incoming range T represents the range
of values w for which responsibility has been propagated to
the current cell from the neighboring cells. The incoming
rangeisaways asubset of the range of the shared facein the
direction of propagation. The complement of the incoming
range in the direction which varies fastest consists of values
w for which the current cell is w-connected to either (i) a
processed cell which remains in the seed set or (é¢) an un-
processed cell to which responsibility for the value w has
been propagated. An outgoing range represents the respon-
sibility range which is propagated from the current cell to a
neighboring cell. Illustrated for the 2D case in Figure 3, the
marching order is Y varying fastest, X varying slowest.

We describe the processing of a cell ¢ at index (¢,7) in a
topologically regular grid of dimension (n,, n, ). Boundary
conditions are handled directly through the following nota-
tion, defined for simplicity:

1. T(f,) represents the range of the incoming face in the
U direction, where U isan arbitrary dimension.

2. T(u) representstheincoming range propagated in the U
direction. In the case of the boundary condition v = 0,
wetake T(u) = T(fy).

3. T(u) represents the complement of T(w) with respect
to therange T( f,,) of the shared face, or T(f,) — T(u).
Note that the propagated range T(u) C T(fy)-

4. T(f,) represents the range of the outgoing shared face
inthel direction. Intheboundary case when thereisno
adjacent cell in the outgoing U/ direction (v = n, — 2),
we assign T(f,’) = 0, indicating that no propagation
may occur in the given direction.

5. T(u') represents the range propagated from the current
cell to the outgoing adjacent cell inthe U direction.

We first compute the combined incoming range T(7), and
complement range T(/):

T(I) representsthe subset of incoming isovaueswhich cdl ¢
must either account for intheseed set S’ or defer responsibility
for by propagation through T(z’) and T(y'). The subtraction
of T(y) in Equation 1 aboveisjustified based on theal gorithm
for range propagation presented below. For al w € T(I),
thereeither existsaprocessed cell in .S which isw-connected
to ¢ or the value w has aready been further propagated and
hence w € T(I) need not be considered in processing c. This
leads to the definition of T(R), representing the entire range
of values which make up the responsibility range of cell c.

T(R) = R(c) = T(I) (3)

Forw € T(R), wemust take care that ¢ remains w-connected
to S inorder to maintain the property that S isaseed set. We
also compute T( P), which represents the combined range of
isovalueswhich may befurther propagated through outgoing
faces:

T(P) = T(for) UT(fy) (4)

This leads to the following greedy algorithm for deferring
seed cell sdlection through propagation of responsibility.
Through the processing of acell ¢, we maintain the invariant
that S isaseed set.

if (T(R) C T(P)) then
{ Cél ¢ can be safely removed from 5 }

S=5-¢

{ Propagate responsibility ranges }
T(x') =T(fer) NT(R)

T(y') = T(fy) O (T(R) — T")



ese
{ Cdl ¢ must remain in the seed set }
T(c) = T(R)
T')=10
T(y') =0
end

Proof: (S remains a seed set after processing of cell ¢)

Case1(T(R) C T(P)) - Recall that cell ¢ isw-connected to
aprocessed seed cell for w € ﬁ Through propagated
responsibility ranges, we have that ¢ is w-connected to
the remaining (unprocessed) seed set for w € T(z’) U
T(y') = [T(for) NT(R) U IT(fy) N(T(R) — T(2'))] =
(T(fe) UT(fyr)) NT(R) = T(P) NT(R) = T(R) =
R(c) — T(I). Thus, ¢ isconnected to S — {c}, and by
Property 1, S — {c¢} isdso a seed set, maintaining the
invariant property.

Case 2 (Cdl ¢ remains in the seed set) - Cell ¢ istrivialy
w-connected to S for w € T(¢) = T(R) = R(¢)—T(I).
Fromtheinput conditions, wehavethat ¢ isw-connected
to a processed cell which remainsin S for w € T(I).
Thus, ¢ is w-connected to S for w € R(¢), maintaining

theinvariant property that S isa seed set.

In the first case, the propagated range T(P) includes the
responsibility range T( ) initsentirety, and cell ¢ isremoved
from the seed set S. The responsibility range is propagated
through the outgoing faces by the computation of T(«') and
T(y'). Note that the propagated ranges are disjoint and that
the preference isto propagatetherangeinthe X direction. It
isthispreference which allowsusto remove T(y) in equation
(). Fordl w € @ theassoci ated w-connected component
is either accounted for by a processed cell in the seed set
S, or responsibility has been propagated to an unprocessed
cell, hence w need not be considered for the current cell.
The same cannot be said for T(x), because the precedence
of propagation indicates that responsibility for values w €
T(x) may, through some path of responsibility propagation,
ultimately be propagated through T(y). Consider the case of
Figure 3, and suppose that the value A isaloca minimum.
Vaues w € T(x) overlap with the range T(y), providing
incoming information which appears to conflict. In fact we

cannot make use of the range T(«), where « is other than the
direction which varies fastest in the marching order.

The second case above occurs when cell ¢ cannot propagate
theentireincomingrange. Cell ¢ remainsintheset .S, though
T(c) is reduced to exclude the complement ranges which
have been propagated elsewhere. In this case the empty set
is propagated to outgoing edges, indicating that all valueson
shared faces are accounted for in the seed set S.

As described above, the range propagation method for se-
lecting seed cells requires O(n{4~1/4) storage to maintain
the propagated ranges for a sweeping line or plane in 2D
or 3D. Note that our use of range subtraction may result
in ranges with two disconnected components. In practice,
disconnected ranges may either be maintained or closed by
taking the smallest range which contains the entire discon-
nected range. Maintainingthe disconnected rangeeffectively
requiresthat multipleseedsbeprocessed into thesearch struc-
ture, increasing the number of seeds, while merging discon-
nected ranges simply means that two or more cellswhich are
w-connected may be selected for inclusionin the seed set S.
Of course, thisgreedy techni quedoesnot guarantee otherwi se
in the case that disconnected ranges are maintained. In our
implementation, we maintain disconnected ranges through
the seed cell selection, closing each rangewhichisultimately
selected toremainintheseed set S. In practice the number of
seed cells with disconnected ranges does not exceed 10% of
the seed cells, and the number of seed cells does not exceed
10% of the data, as presented in the resultsin Section 4.

Results for a 2D regular mesh are illustrated in Figure 4.
The relatively smooth function is sampled on a grid of size
64 x 64. Figure4 (upper) showsthe 206 seed cells chosen by
the marching seed selection method. Figure 4 (lower) shows
the decrease to 56 seed cells which is achieved using a more
sophisticated method currently under devel opment. Our pre-
l[iminary results on small datasets have shown decreases in
|S| by factors ranging from 2.5 (noisy 2D MRI) to 20 (3D
SOD data presented in the results section) over the marching
seed selection method which is in current use, however the
current implementation of the more sophisticated selection
algorithmistoo computationally expensive to be considered
practical.

3.3 RangeQueries

Inthisbrief sectionweanalyzetheproblemof selectingall the
cellsof agiven set .S whose range contains an assigned value
w. This problem is independent from the characteristics of
the set S that can be the entire set of the mesh cells or any
subset, e.g. aseed set. The important aspect to focus on is
the selection criterion.

A cell ¢ of S issdected iff w € R(c).

To achieve a good search scheme, it is important to de-
fine what our search space is. As observed in [2], we do
not need to search for the required cells in the embedding
space of the cells sincewe select them only considering their
range. In[6], the two dimensiona span space is considered
the search space, where each cell is represented by a point
whose coordinates are the two extremes [min, max] of the
cell range. The search complexity achievedwitha Kd—tree



FIGURE 4: Results of two seed selection
techniques

inthisway is O(y/n + k) where n is the number of celsin
S and k is the number of cells reported (also in this case S
encompasses al the cells in the mesh and is not reduced to
a seed set). We want to go a step further and notice that the
range of a cell is not simply defined by a pair of humbers
(to be mapped to 2D points) but is actually an interval that
can be mapped to the 1D line. That is, we assume as search
space a set of 1D segments instead of a set of 2D points. In
this way we can use well known search structures such as
the segment tree (see e.g. [9] or [10]) or the interval tree, a
specific case of apriority search tree[8]. Examples of each
search tree are given in figure 5 for a small set of intervals
and briefly discussed in the following paragraphs.

In a segment tree, the set of min and maa vaues of the seg-
ments are simply sorted (along the 1D line), and a standard
binary search treeisconstructed over them. Additional infor-
mation isthen stored in each nodeof thetree. If anode a isthe
root of asubtreethat spansvauesintherange [min,, maz,]
and acdl ¢ hasarangethat contains [min,, maz,], thenthe

node ¢ containsthe label ¢. With such a structure, determin-
ing the cells which span agiven value w is achieved through
abinary search for the w in thetree. During traversa of the
tree, al labels stored in visited nodes are collected. They
are the labels of all cellswhose range contains w. The time
complexity achieved is O(logn’ + k) in the case that all n’
cells have distinct min and max values, while the storage
complexityisO(n’ logn’). These areworst case bounds, and
may improve in the specia case that the number of distinct
valuesislimited, as discussed in the resultsin Section 4.

In an interval tree, each node holds a split value s, and each
interval is classified as less than (max < s), greater than
(min > s), or spanning (min < s < maz). Intervaswhich
span s are stored in anode in the tree, while intervalswhich
areentirely lessthan (greater than) s arerecursed intothel eft
(right) subtrees. Within each node, the intervals are sorted
intotwo lists, thefirst sorted by increasing min value, and the
second by decreasing maa value. The storage complexity of
theinterval treeis O(n) as each interval is stored two times.
A query for an isovalue w consists of performing a search for
w based onthesplit values. At each node, one of thetwollists
istraversed, depending on whether w is less than or greater
thans. If w < s, themin-sorted listissearched to determine
cells with min < w, and the traversal continues with the
left subtree. If w > s, the max-sorted list is searched, and
traversal continues with the right subtree. Intersected cells
will always appear at the left of the lists due to their sorted
order.

4 RESULTS

Results were computed on a Silicon Graphics Indigo? IM-
PACT with 128Mb memory and one 250Mhz R4400 pro-
cessor. The search structure used in these examples was the
segment tree.

Table 1 provides characteristics of our test data suite, as well
as statisticsfor the preprocessing stage of the algorithm. Ex-
amination of the percentage of cellswhich remain in the seed
set revedl s that the set S is one to two orders of magnitude
smaller than theentire set of cellsfor practical real data. This
observation is very important because the number of seed
cellsn’ represents the search overhead of O(logn’) for the
segment tree, indicating that in practica situations the dom-
inant complexity will be O(k), where £ is the size of the
output. We make specia note of the number of distinct seed
values (min or max), because the height of the segment tree
is dependent on this number alone. For the case of scaar
datawhich take on alimited number of values, such as 8-bit
integer or quantized floating point vaues, the O(logn’) is
effectively made into a constant, resulting in an optimal time
complexity of O(k) aswell asegment tree storage complexity
of O(n').



FIGURE 5: Segment tree (a) and Interval Tree (b) for the set of ranges (c)

Table 2 gives timing results on volume datasets of various
sizes, with comparison to a brute force Marching Cubes ap-
proach. Times are reported in seconds and include computa-
tion of theisosurface and storagein an internal datastructure.
Images of each contour can be found in the color plates.

Evident in the data collected is the fact that the algorithm
scales approximately linearly with respect to the number of
triangles computed (or the number of cells intersected by the
surface). In our implementation, performance ranges from
45K triangles/second to 97K triangles/sec, while the brute
force approach has widely varying performance, from 2K
triangles/sec to 40K triangles/sec. Figure 6 shows the actual
performancein triangles/sec for multipleisovalue queriesfor
the SOD dataset, demonstrating a performance which scales
linearly with the number of triangles in the output. Using
the same isovaues for the SOD data, Figure 7 compares our
speedup (over traditional Marching Cubes) with the volume
fraction, measured in triangles/cell. Evident from the plot
isthat our algorithm providesthe greatest speedup when the
surface of interest is small compared to the volume. Thisis
consistent with the notionthat for small numbers of triangl es,
the exhaustive search dominates the triangulationtime.

5 CONCLUSIONS

We have presented a fast agorithm for computing isocon-
tours from scalar volume data. Observed average complex-
ity isO(k), where k isthe number of cellsintersected by the
contour. In the worst case (logn’ > k), the limiting factor
becomes the search.

The importance of linearity with respect to the number of
cellsintersected by an isocontour cannot be overstated. With
the ever-increasing size of volumetric data, contouring tech-
niqueswhich search the entire space grow with thesize of the
volume. Using the method we have presented, an increase
in the size of the input results in an increase in computation

on the order of the dimensionality of the contour. The result
isthat larger volumes which were prohibitive using | ess effi-
cient algorithms are now ble to the visualization user.
For intermediate size volumes, the increased performance
resultsin true interactive computation, allowing the visual-
ization user to explore volumetric data, modifying isovalues
and viewing the resultsin real-time, on desktop devices.
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