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Abstract

By a d-dimensional B-spline object (denoted as Od), we mean a B-spline curve (d = 1), a
B-spline surface (d = 2) or a B-spline volume (d = 3). By regularization of a B-spline object
Od we mean the process of relocating the control points of Od such that it approximates
an isometric map of its definition domain in certain directions and is shape preserving. In
this paper we develop an efficient regularization method for Od, d = 1, 2, 3 based on solving
weak form L2-gradient flows constructed from the minimization of certain regularizing energy
functionals. These flows are integrated via the finite element method using B-spline basis
functions. Our experimental results demonstrate that our new regularization methods are
very effective.

Key words: Spline objects, Regularization, L2-gradient flow, Finite element method.
MR (2000) Classification: 65D17

1 Introduction

In this paper we use the term a d-dimensional B-spline object Od to imply a B-spline curve
(O1), a B-spline surface (O2) or a B-spline volume (O3). Since B-spline basis functions are
linearly independent, many people believe that the parametric B-spline representation of a B-
spline object is unique. However, this is not true. Two different sets of control points, with
the same number of entries, may represent the same Od. To see this explicitly, let us consider
a Bézier curve x(t) =

∑n
i=0 piB

n
i (t) ∈ R

2, which is a special case of a B-spline curve, on the
interval [0, 1]. Let t = t(s) = αs(1− s) + s2, s ∈ [0, 1], α ∈ [0, 2]. Then t(0) = 0, t(1) = 1 with
t(s) increasing. Substituting t(s) into x(t), we obtain another representation y(s) := x(t(s)) for
the same curve. In this new representation, there is a free parameter α ∈ [0, 2], which shows

∗G. Xu was supported in part by NSFC grant 60773165 and NSFC key project under the grant 10990013.
C. Bajaj was supported in part by NSF grant CNS-0540033 and NIH contracts R01-EB00487, R01GM074258,
R01-GM07308.
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that the representation is not unique. Though the changing of α does not change the shape of
the curve O1, whenever y(s) is sampled on a uniform grid of the interval [0, 1], different α′s yield
very different distributions of points on the curve. For instance, for the plane Bézier curve

x(t) = [0, 1]T B3
1(t) + [2, 1]T B3

2(t) + [2, 0]T B3
3(t), t ∈ [0, 1], (1.1)

it is easy to obtain

y(s) =
1

2

»
0
α

–
B6

1(s) +
1

5

»
2α2

−α2 + 4α + 1

–
B6

2(s) +
1

20

»
6α4 − 22α3 + 24α2 + 12α

3α4 − 9α3 + 12α + 12

–
B6

3(s)

+
1

5

» −2α2 + 8α + 2
−α2 + 5

–
B6

4(s) +
1

2

» −2α2 + 8α + 2
−α2 + 5

–
B6

5 (s) +

»
4

−α + 2

–
B6

5(s) +

»
2
0

–
B6

6(s).

Fig 1.1 shows the distributions of the sampling points and control polygons for three different
α′s, where the sub-figures (a), (b) and (c) are generated using α values 0, 1 and 2, respectively.
It is easy to observe that different α′s yield different distributions of the sampling points and
the uniformness of the control polygon reflects the uniformness of the sampled points.

(a) α = 0 (b) α = 1 (c) α = 2

Fig 1.1: (a), (b) and (c) are the sampling points and control polygons of the curve y(s) = x(t(s)) defined by
(1.1), using α values 0, 1 and 2, respectively. The curve points are sampled at the equal-spaced parameter values
on [0, 1].

The aim of “regularization of a Od” is to relocate the control points of Od such that the
object shape is not changed and a uniform sampling on the parameter domain leads to Od with
an approximate uniform sampling. The main idea of the regularization is to construct several
L2-gradient flows that move the control points of Od in the tangential directions. The foundation
of our regularization method is based on a result of Epstein and Gage (see [6]), which states
that the tangential motion of a manifold does not change its shape.

The regularization of Od is an interesting problem that has not been directly studied in the
past. A direct application of the regularization is to generate a high quality discrete approx-
imation (quality mesh) of Od. Another application perhaps is in the area of computer aided
manufacturing (CAM). Quite often, the machine parts to be manufactured are represented by
B-splines in a CAM system. When a machine part is manufactured using cutting tools, one
often requires the surface motion of the tools or the curve motion relative the tools, be at a
uniform rate with respect to the domain parameters.

For the triangular mesh fairing, the regularization problem has been considered in the past in
computer graphics literature (see [11, 12, 17, 19]). In these papers, a tangential displacement is
imposed at each of the vertices to move it towards its geometric or mass center of the surrounding
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vertices. In Du et al’s publications [4, 5], Spherical Centroidal Voronoi Tessellation (SCVT) have
been introduced . A Voronoi tessellation {Vi}N

i=1 of the sphere S from the generators {pi}N
i=1 ⊂ S

is called SCVT if and only if pi is the constrained mass centroid of the Voronoi region Vi for
i = 1, · · ·N . Recently, a superlinear convergent Centroidal Voronoi Tessellation method for
volumes has also been presented by Liu, Wang et al. [8]. In [18], a sequence of spherical
triangulations are constructed which are optimal in certain sense, leading to smaller truncation
error of the discrete Laplace-Beltrami operator.

Another subarea of research that is related to but different from the mesh regularization
is mesh re-parametrization, which computes a bijective mapping between a triangular surface
mesh and another surface with the same or similar topology. There are several excellent surveys
[7, 9, 16] on this topic. For volume data re-parametrization, Martin et al [10] present a method
based on discrete volumetric harmonic functions to parameterize a volumetric model in a way
that it can be used to fit a single trivariate B-spline to data. We could not find any other
prior work that directly addressed the regularization of parametric Bernstein-Bézier or B-spline
surfaces.

The rest of our paper is organized as follows: Section 2 introduces some background material
on Od. Sections 3 discuss the regularization methods of Od, d = 1, 2, 3, respectively. Several
experimental examples to illustrate the dramatic effects of Od regularization are given in section
4.

2 B-Spline Objects

B-spline representations of curves and surfaces are well-known (see [1, 2, 3, 13, 15]). For easy
of understanding and sake of completeness in this paper, we briefly introduce their definition
and establish notation, necessary for subsequent use. There are several equivalent approaches to
define B-spline functions, including divided differences of truncated power function (see [2, 15]),
the blossoming method (see [13]) and the recursive formulas (see [1, 3]). We adopt the approach
of recursive formulas which additionally facilitates computer programming.

Definition 2.1 Given a positive integer m, nonnegative integer k and a knot sequence

u0 ≤ · · · ≤ ui ≤ ui+1 ≤ ui+2 ≤ · · · ≤ um+2k.

U = {u0, · · · , um+2k} is referred to as a knot vector. Then B-splines basis functions are defined
as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ni,0(u) =

{
1, for u ∈ [ui, ui+1),

0, otherwise,
i = 0, 1, · · · ,m + 2k − 1,

Ni,k(u) =
u − ui

ui+k − ui
Ni,k−1(u) +

ui+k+1 − u

ui+k+1 − ui+1
Ni+1,k−1(u), i = 0, 1, · · · ,m + k − 1,

Assume
0
0

= 0,

(2.1)
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where i is the index of Ni,k(u), k is the degree.

In this paper, we assume that

u0 = u1 = · · · = uk = 0, uk < uk+1 < · · · < um+k, um+k = · · · = um+2k = 1.

In order to have the B-spline objects to be at least C1 smooth, we take k ≥ 2.

B-Spline objects. Our B-spline objects are located in the n-dimensional Euclidean space R
n

and defined in the d-dimensional Euclidean space R
d with n ≥ d. For given positive integers

m1,m2, · · · ,md, a nonnegative integer k, and knot vectors

U (l) = {u(l)
0 , · · · , u

(l)
ml+2k}, l = 1, · · · , d,

the 2d-sided degree k spline object Od is defined as

Od = {x ∈ R
n : x = x(u), u ∈ [0, 1]d},

with

x(u) =
m1+k−1∑

i1=0

· · ·
md+k−1∑

id=0

pi1···id
d∏

j=1

Nij ,k(u(j)),

where

pi1···id ∈ R
n, u = [u(1), · · · , u(d)]T ∈ [0, 1]d ⊂ R

d.

The vectors pi1···id are called control points of the object x(u). If il = 0 or ml+k−1, l = 1, · · · , d,
pi1···id are called boundary control points. Other control points are called inner control points.
Let Dl = ∂

∂u(l) be the first order partial derivative operators, Dij = DiDj the second order
partial derivative operators.

For a space curve C(t) ∈ R
3, t ∈ [0, 1], the arc-length of the curve is

L =
∫ 1

0
‖C ′(t)‖dt.

If ‖C ′(t)‖ is a constant, then ‖C ′(t)‖ = L. Hence, we introduce the following definition.

Definition 2.2 Let ul = [u(1), · · · , u(l−1), u(l+1), · · · , u(d)]T be a point in [0, 1]d−1, and L(l)(ul)
the arc length of the space curve C(t) := x(u), t ∈ [0, 1], with u = [u(1), · · · , u(l−1), t, u(l+1),
· · · , u(d)]T . If ‖C ′(t)‖ = L(l)(ul) for any t ∈ [0, 1] and any ul ∈ [0, 1]d−1, then we say the object
Od is isometric in the u(l) direction.

In this paper, our attention is focused on the cases n = 3, d = 1, 2, 3, where the B-spline
objects Od are space curves O1, surfaces O2 and volumes O3 in R

3, respectively.
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3 Regularization of B-Spline Objects Using L2-Gradient Flows

In this section, we present a set of L2-gradient flows, a method for discretization, and a solution
via a linear system solver. The full derivation of these flows starting from an energy functional
is given in Appendix A.

3.1 L2-Gradient Flows

For a given B-spline object Od defined by x(u), let

L(l)(ul) =
∫ 1

0
‖Dlx(u)‖du(l), u ∈ [0, 1]d, l = 1, · · · , d.

For a fixed ul ∈ [0, 1]d−1, L(l)(ul) is the arc length of the space curve x(u), u(l) ∈ [0, 1], in the
u(l) direction. Let

E (l)(Od) =
∫
Od

[
‖Dlx(u)‖ − L(l)(ul)

]2
dV, l = 1, · · · , d. (3.1)

To regularize the B-spline object x(u), we minimize the energies E (l)(Od) by moving the object
point in the Dlx directions, respectively. This goal is achieved by solving d L2-gradient flows
derived from (3.1). Consider the general form energy functional

E (Od) =
∫
Od

f(D1x, · · · ,Ddx) dV, (3.2)

where f is a given C1 smooth function with respect to its arguments.

Theorem 3.1 Let E (Od) be an energy functional defined by (3.2) for the B-spline object Od.
Then the L2-gradient flow of E (Od) in the direction Dlx is given by

∫
Od

∂x
∂t

φ dV = −
∫
Od

d∑
k=1

[(
(Dklx)(αd

k)T + (Dklx)T αd
kIn

)
(Dlx)φ + (Dlx)T αd

kIn(Dlx)Dkφ
]
dV,

(3.3)

where In stands for the n × n unit matrix, for d = 1, 2, 3, αd
k are defined by

α1
1 = ∇D1xf +

D1x
‖D1x‖ ,

α2
1 = ∇D1xf +

1√
g

[g22(D1x− g12D2x] , α2
2 = ∇D2xf +

1√
g

[g11(D2x − g12D1x] .

α3
1 = ∇D1xf + D2x× D3x, α3

2 = ∇D2xf + D3x × D1x, α3
3 = ∇D3xf + D1x× D2x.

Taking l = 1, · · · , d in (3.3), we obtain a sequence of flows. For n = 3 and d = 1, 2, 3, these
flows are for B-spline curves, surfaces and volumes, respectively.
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3.2 Numerical Solutions

To regularize the B-spline object Od in the Dlx directions, we solve (3.3) interchangeably using
finite element method for the spatial discretization and a semi-implicit Euler scheme for temporal
discretization. More specifically, the terms

(Dklx)(αd
k)T + (Dklx)T αd

kIn, (Dlx)T αd
kIn, (3.4)

in (3.3) are treated as known quantities which are computed from the previous step of the
approximation. The term Dlx is treated as an unknown.

For ease of description, we reorder the control points pi1···id of the B-spline object into a
1-dimensional array and represent them as:

x0, · · · ,xn0 ,xn0+1, · · · ,xn1 ,

where x0, · · · ,xn0 are inner control points, xn0+1, · · · ,xn1 are boundary control points, and

n0 =
d∏

i=1

(mi + k − 2) − 1, n1 =
d∏

i=1

(mi + k) − 1.

The B-spline basis functions
∏d

j=1 Nij ,k(u(j)) are correspondingly reordered and represented as

φ0, · · · , φn0 , φn0+1, · · · , φn1 .

Using this ordering of the basis functions and control points, Od can be represented as

x(u) =
n0∑

j=0

xjφj(u) +
n1∑

j=n0+1

xjφj(u). (3.5)

Substituting (3.5) into (3.3), and taking the test function φ as φi, for i = 0, · · · , n0, we can
discretize (3.3) as a set of linear systems of ordinary differential equations (ODE) with the inner
control points xi, i = 0, · · · , n0, as unknowns.

n0∑
j=0

m
(l)
ij

dxj(t)
dt

+
n0∑

j=0

q
(l)
ij xj =

n1∑
j=n0+1

q
(l)
ij xj, i = 0, · · · , n0, l = 1, · · · , d,

where

m
(l)
ij =

∫
Od

φiφjIn dV,

q
(l)
ij =

∫
Od

d∑
k=1

[(
(Dklx)(αd

k)T + (Dklx)T αd
kIn

)
(Dlφj)φi + (Dlx)T αd

kIn(Dlφj)Dkφi

]
dV.

6



For the temporal discretization of these ODE systems, we use a forward Euler scheme which
finally leads to a set of linear systems of algebraic equations.

n0∑
j=0

(
m

(l)
ij + τq

(l)
ij

)
x(s)

j =
n0∑
j=0

m
(l)
ij x(s−1)

j +
n1∑

j=n0+1

τq
(l)
ij x(0)

j , i = 0, · · · , n0, l = 1, · · · , d, (3.6)

where τ is a temporal step-size. Let Si ⊂ R
d be the support of φi. Then

m
(l)
ij = q

(l)
ij = 0 if Si ∩ Sj = ∅.

Hence, the coefficient matrices of system (3.6) are sparse. Solving these linear systems via
GMRES iterative method (see [14]) for l = 1, · · · , d, we obtained the new inner control points.
In the GMRES iteration, we impose a limitation on the number of iterations, if the iteration
does not converge within the limitation (we take it to be 300), we reduce the temporal step-size,
and restart the iteration.

4 Algorithm Steps and Illustrative Examples

This section outline the steps of regularization algorithms for B-spline curves, surfaces and
volumes. Illustrative examples are also given.

4.1 Curve Regularization

Let O1 be the B-spline curve to be regularized and defined by x(u) =
∑m1+k−1

i1=0 pi1Ni1,k(u).

(a) (b)

Fig 4.1: (a) and (b) are control polygons as well as the sampled curves of a spline curve before and after regu-
larization. The larger and smaller diamonds represent the control points and sampled curve points, respectively.

Algorithm 4.1. Curve Regularization

1. Set the temporal step-size τ , and set s = 0, p(0)
i1

= pi1 .

2. For n = 3 and d = 1, form the linear system (3.6) and solve it.
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3. Check the stopping conditions if s ≥ 1

max
i1

‖p(s)
i1

− p(s−1)
i1

‖ ≤ ε1τ,

dis((O1)(s), (O1)(0)) ≥ ε2,

where dis(·, ·) stands for the Hausdorff distance between two curves. If one of the two
conditions is satisfied, stop the iteration and return x(s)(u) =

∑m1+k−1
i1=0 p(s)

i1
Ni1,k(u) as the

final result, otherwise set s to be s + 1, go back to the previous step.

It is well-known that the Hausdorff distance for two sets S and S′ is defined as

dis(S, S′) = max
{
d(S, S′), d(S′, S)

}
,

where

d(S, S′) = max
p∈S

d(p, S′) with d(p, S′) = min
p′∈S′ ‖p − p′‖.

Let x(s)(u) and x(0)(u) = x(u) be the B-spline representations of (O1)(s) and (O1)(0), respec-
tively. Then the Hausdorff distance between (O1)(s) and (O1)(0) is computed approximately as
follows.

Algorithm 4.2. Hausdorff distance Computation

1. Sample x(s)(u) at equal-spaced parameter values ui = i
K , i = 1, 2, · · · ,K − 1, obtain a set

of points {x(s)
i }, where K is a given integer (we take it as 4m1).

2. For each x(s)
i , let Pi = {x ∈ R

3 : (x − x(s)
i )T D1x(s)(ui) = 0} be the plane passing

through the point x(s)
i and perpendicular to the tangent vector D1x(s)(ui). Compute the

intersection point y(s)
i = x(0)(u(s)

i ) between the curve x(0)(u) and the plane Pi. We solve
the intersection equation

(x(0)(u) − x(s)
i )T D1x(s)(ui) = 0,

for the unknown u, using the Newton-Raphson iteration method with previous data u
(s−1)
i

as initial value (u(0)
i is taken as ui). Then d((O1)(0), (O1)(s)) is approximated as

d((O1)(0), (O1)(s)) ≈ max
i

‖x(s)
i − y(s)

i ‖.

3. Compute d((O1)(s), (O1)(0)) in the same way as computing d((O1)(0), (O1)(s)). Finally
compute dis((O1)(s), (O1)(0)).
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Note that if τ is small, u
(s−1)
i and u

(s)
i are close. Hence, u

(s−1)
i is a good initial value for the

Newton-Raphson iteration method for computing u
(s)
i . Two or three Newton-Raphson iterations

are usually sufficient to obtain the required result.

Computational complexity. Since the B-spline basis has compact support, the coefficient
matrix of system (3.6) is sparse with O(m1) nonzero elements. Hence, the computation costs of
forming and solving system (3.6) are both of the order O(m1). Obviously, the cost for computing
maxi1 ‖p(s)

i1
− p(s−1)

i1
‖ is O(m1). The cost for computing the Hausdorff distance is also O(m1).

Hence, the total cost is of the order O(m1), for each iteration.

Figure 4.1 shows an regularization example of a B-spline curve, which is defined on the
equal-spaced knots with k = 3, m1 = 6.

4.2 Surface Regularization

Let O2 be a given B-spline surface to be regularized and defined by

x(u, v) =
m1+k−1∑

i1=0

m2+k−1∑
i2=0

pi1i2Ni1,k(u)Ni2,k(v).

Algorithm 4.3. Surface Regularization

1. Regularize each of the four boundary curves using the curve regularization algorithm.

2. Regularize the interior of the surface as follows

(a) Set the temporal step-size τ , and set s = 0, p(0)
i1i2

= pi1i2 .

(b) For n = 3 and d = 2, form the systems (3.6) and solve them for l = 1, 2.

(c) Check the stopping conditions

max ‖p(s)
i1i2

− p(s−1)
i1i2

‖ ≤ ε1τ, (4.1)

dis((O2)(s), (O2)(0)) ≥ ε2. (4.2)

If one of the two conditions is satisfied, stop the iteration and return {p(s)
i1i2

} as the
final result of control points, otherwise set s to be s + 1, return to step (b).

Let x(s)(u, v) and x(0)(u, v) = x(u, v) be the B-spline representations of (O2)(s) and (O2)(0),
respectively. The computation of the Hausdorff distance between two surfaces is computed in a
way similar to the curve case. The only difference is the computation of the intersection points.
Let x(s)

ij be a sampling point of x(s)(u, v) at [ui, vj ]T = [ i
K , j

K ]T . Let n(s)
ij be the surface normal

at x(s)
ij . Then the intersection point y(s)

ij = x(0)(u(s)
i , v

(s)
j ) is defined as the intersection of the

line x(s)
ij + tn(s)

ij and surface x(0)(u, v). To solve the equation x(s)
ij + tn(s)

ij = x(0)(u, v), for the
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unknowns t, u and v, we take inner products of both sides with D1x(s)(ui, vj) and D2x(s)(ui, vj)
and obtain the following equations for the unknown u, v:{ [

x(s)
ij − x(0)(u, v)

]T
D1x(s)(ui, vj) = 0,[

x(s)
ij − x(0)(u, v)

]T
D2x(s)(ui, vj) = 0.

(4.3)

System (4.3) is solved using the Newton-Raphson method with u
(s−1)
i and v

(s−1)
j as initial values

(we take u
(0)
i and v

(0)
j as ui and vj, respectively). The solutions of the system are the required

u
(s)
i and v

(s)
j .

Remark 4.1 Though the tangential motion does not change the shape of the surface, but since
the PDEs to be solved are nonlinear, the semi-implicit discretization yields a certain amount of
normal motion. This motion is small relative to the tangential motion. However the accumula-
tion over long time evolution could make it significant. The stopping condition (4.2) is used to
control this movement within a given allowable bound.

Remark 4.2 If a B-spline surface representation is not unique, then there are degrees of freedom
to relocate the control points to regularize the surface. If the B-spline surface representation is
unique, then there will essentially be no freedom for the tangential motion. However we can still
regularize the surface within a given error bound ε2.

Computational complexity. Similar to the curve case, the computation costs of forming
and solving system (3.6), and for computing maxi1 ‖p(s)

i1
− p(s−1)

i1
‖ are O(m1m2). The cost

for computing the Hausdorff distance is also O(m1m2). Hence, the total cost is of the order
O(m1m2).

Now we give a few examples to illustrate that the surface regularization method proposed is
efficient and gives good results. Fig 4.2–4.4 show the regularization effects for B-spline surfaces
with different shaped boundaries. The B-spline basis are defined on equal-spaced knots with
k = 3 and m1 = m2 = 6. Sub-figures (a) and (b) show the control meshes of the spline surfaces
on the domain [0, 1]2 without and with using the regularization step, respectively. Sub-figures
(c) and (d) show the uniform sampling of the spline surfaces on the domain [0, 1]2 without and
with using the regularization step, respectively. It is easy to observe that the surface shapes
are unchanged after the regularization, but the quality of the sampling surface meshes are
significantly improved.

4.3 Volume Regularization

Let O3 be a given B-spline volume to be regularized which is defined by

x(u, v,w) =
m1+k−1∑

i1=0

m2+k−1∑
i2=0

m3+k−1∑
i3=0

pi1i2i3Ni1,k(u)Ni2,k(v)Ni3,k(w).
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(a) (b)

(c) (d)

Fig 4.2: (a) Control mesh of a spline surface without regularization. (b) Control mesh of the same spline surface
after regularization. (c) Spline surface mesh without regularization. (d) Spline surface mesh after regularization.

Algorithm 4.4. Volume Regularization

1. Regularize each of 12 boundary curves of the volume using the curve regularization algo-
rithm.

2. Regularize each of 6 boundary faces of the volume using the surface regularization algo-
rithm.

3. Regularize the interior of the volume as follows:

(a) Set the temporal step-size τ , and set s = 0, p(0)
i1i2i3

= pi1i2i3 .

(b) For n = 3 and d = 3, form the systems (3.6) and then solve them for l = 1, 2, 3.

(c) Check the stopping conditions if s ≥ 1

max ‖p(s)
i1i2i3

− p(s−1)
i1i2i3

‖ ≤ ε1τ, (4.4)
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(a) (b)

(c) (d)

Fig 4.3: (a) Control mesh of a spline surface without regularization. (b) Control mesh of the same spline surface
after regularization. (c) Spline surface mesh without regularization. (d) Spline surface mesh after regularization.

If this condition is satisfied, stop the iteration and return {p(s)
i1i2i3

} as the final control
point set, otherwise set s to be s + 1, return to step (b).

Remark 4.3 Since the space span{D1x,D2x,D3x} for the B-spline volume is three dimen-
sional, the normal space is null. Hence there is no normal motion problem as mentioned in
Remark 4.1. For this reason, we do not need to control normal motion. We further point out
that the regularization for B-spline volume can always be performed. This is different from the
cases of curves and surfaces.

Computational complexity. The computation costs of forming and solving the system (3.6),
and for computing maxi1 ‖p(s)

i1
− p(s−1)

i1
‖ are all O(m1m2m3).

Next we present a few test examples to illustrate the regularization effect of B-spline vol-
umes. To see the insides of the sampled volumes, we use both spacing and mesh slicing display
techniques. Figure 4.5 shows the regularization of a cube, where the initial inner control points

12



(a) (b)

(c) (d)

Fig 4.4: Convex B-spline surface: (a) Control mesh of a spline surface without regularization. (b) Control mesh
of the same spline surface after regularization. (c) Spline surface mesh without regularization. (d) Spline surface
mesh after regularization.

are not regularly distributed. The left figure shows these irregularities. The right figure is the
result after regularization. Figure 4.6 show the regularizing results for a volume with curved
boundary faces. These figures clearly exhibit the post regularization effects. In these examples,
the B-spline volume are defined on equal-spaced knots with m1 = m2 = m3 = 6 and k = 3. The
sampling is on an equal-spaced grid of the domain [0, 1]3 with sampling rate 163.

5 Conclusions and Extensions

We have presented a novel and efficient regularization technique for multi-dimensional B-spline
objects. Our new technique consists of first devising appropriate energy functionals, then con-
structing variational L2-gradient flows and finally solving the flows using the finite element
method. Our regularization method can be used to generate uniform polygonal approximations
for curves, near regular and quality quadrilateral surface meshes for surfaces and near regular
and quality hexahedral volumetric meshes for volumes. The implementation results show that

13



(a) (b)

Fig 4.5: Regularization of a cube: (a) Sampling of the initial B-spline volume with irregularly distributed control
points. (b) Sampling of the B-spline volume after regularization.

(a) (b)

Fig 4.6: Regularizing a B-spline volume with curved boundary faces: (a) Sampling of the initial B-spline volume.
(b) Sampling of the B-spline volume after regularization.

the proposed method is effective and yields desired results. This research could be extended in
several directions. Here we list a few possibilities.

1. Application the regularizing method to generate regular curve, surface and volume meshes.
This could be done by first interpolating the mesh with the B-spline objects, and then
regularizing the B-spline objects and finally resampling them to obtain regularized meshes.

2. The regularization method for B-spline objects could be applied to other type objects,

14



such as Bézier objects, NURBS objects as well as subdivision objects (subdivision curves,
surfaces and volumes) and so on.

3. Replacement of the current regularizing energy functional with other type of functionals to
meet different requirement, such as the energy functional measuring the angle distribution
of the tangent vectors aiming at to achieve unform distribution of angles. Since the flows
for surface and volume are derived for a general form functional, these extensions are
straightforward.
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A The Derivation of L2-gradient Flows

We construct an L2-gradient flow for a general form energy functional

E (Od) =
∫
Od

f(D1x, · · · ,Ddx) dV =
∫ 1

0
· · ·

∫ 1

0
f(D1x, · · · ,Ddx) Jd du, (A.1)

where f is a given C1 smooth function with respect to its arguments, Jd is the metric of the
object. For n = 3 and d = 1, 2, 3,

J1 = ‖D1x‖,
J2 =

√
g, g = g11g22 − g2

12,

g11 = (D1x)T D1x, g12 = (D1x)T D2x, g22 = (D2x)T D2x,

J3 = det[D1x,D2x,D3x],

and det[·] stands for the determinant of a matrix. Let

Od(Φ, ε)) = {x(u, ε) = x + εΦ(u) : u ∈ [0, 1]d}, Φ ∈ C1
0 ([0, 1]d)n.

Then we have

δ(E (Od),Φ) =
d
dε

E (Od(·, ε))∣∣
ε=0

,

where

δ(E (Od),Φ) =
∫ 1

0
· · ·

∫ 1

0

[ d∑
k=1

(∇Dkxf)Tδ(Dkx) +
fδ(Jd)

Jd

]
Jd du. (A.2)
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Now we compute δ(Dkx) and δ(Jd) in (A.2). It follows from

x = x + εΦ, (A.3)
Dkx = Dkx + εDkΦ, (A.4)

we have

δ(Dkx) = DkΦ, k = 1, · · · , d,

and

δ(J1) =
(D1Φ)T D1x

‖D1x‖ ,

δ(J2) =
1√
g

[
g22(D1Φ)T D1x + g11(D2Φ)T D2x− g12[(D1Φ)T D2x + (D2Φ)T D1x]

]
.

δ(J3) = det[D1Φ, D2x, D3x] + det[D1x, D2Φ, D3x] + det[D1x, D2x, D3Φ]
= (D1Φ)T (D2x× D3x) + (D2Φ)T (D3x × D1x) + (D3Φ)T (D1x × D2x),

where × denotes cross product of two vectors in R
3. Hence δ(Jd) could be written as

δ(Jd) =
d∑

k=1

(DkΦ)T βd
k , βd

k ∈ R
n.

Substituting these into (A.2), we have

δ(E (Od),Φ) =
∫
Od

d∑
k=1

[
(DkΦ)T

(
∇Dkxf + βd

k

)]
dV

=
∫
Od

d∑
k=1

(
(DkΦ)T αd

k

)
dV, (A.5)

where

αd
k = ∇Dkxf + βd

k ∈ R
n,

To construct L2-gradient flows moving the volume in the direction Dlx, l = 1, · · · , d, we take

Φ = (Dlx)(Dlx)T φ, φ ∈ C1
0([0, 1]d).

Then

DkΦ = (Dklx)(Dlx)T φ + (Dlx)(Dklx)T φ + (Dlx)(Dlx)T Dkφ.

Therefore, we construct the following weak form L2-gradient flows moving the surface in the
Dlx direction∫
Od

∂x
∂t

φ dV = −
∫
Od

d∑
k=1

[(
(Dklx)(αd

k)
T + (Dklx)T αd

kIn
)

(Dlx)φ + (Dlx)T αd
kIn(Dlx)Dkφ

]
dV,

l = 1, · · · , d. (A.6)
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For the energy functional defined by (3.1), f = [‖Dlx(u)‖ − Ll(ul)]2, it is easy to derive that

∇Dlxf = 2
[
1 − Ll(ul)

‖Dlx(u)‖
]

Dlx(u), ∇Dkxf = 0, for k = l.
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