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Abstract

In a landmark paper, Catmull and Clark  described  a simple generalization of the subdivision rules for bi-

cubic B-splines to arbitrary quadrilateral  surface meshes. This subdivision scheme has become a main-

stay of surface modeling systems.  Joy and MacCracken described a generalization of this surface scheme



to volume meshes.  Unfortunately, little is known about the smoothness and regularity of this scheme due

to  the complexity  of  the subdivision rules.  This paper  presents an  alternative subdivision scheme for

hexahedral  volume meshes that  consists of  a simple split  and average algorithm.  Along extraordinary

edges of  the volume mesh, the scheme provably converges to a smooth limit volume.  At extraordinary

vertices,  the authors supply  strong experimental  evidence that  the scheme also converges to a smooth

limit  volume.  The scheme automatically produces reasonable rules for  non-manifold topology and can

easily be extended to incorporate boundaries and embedded creases expressed as Catmull-Clark surfaces

and B-spline curves.

1  Introduction

Subdivision has evolved into a fundamental  technique for describing geometric shape, mainly due to its

simplicity.  Given a coarse polygonal  mesh p0 ,  subdivision produces a sequence of  increasingly dense

polygonal  meshes pi  with each successive mesh related by the linear transformation pi
� Si � 1 pi � 1 .  If

these  subdivision  matrices  Si � 1  are  chosen  appropriately,  then  this  sequence  of  polygonal  meshes

converge to  a smooth  limit  shape p �  that  approximates the initial  coarse mesh  p0 .   Figure 1  is an

example of  this process.   An initial  coarse mesh is repeatedly  refined into a sequence of  increasingly

dense meshes.  The limit of this process is a smooth surface that follows the initial mesh.

Fi gur e 1

Typically, the pi  are treated as vectors that store the positions of each vertex of the mesh.  The topologi-

cal  connectivity of  the mesh is specified via an auxiliary data structure Ti  that consists of  a list of  faces

of  the mesh.  In this framework,  each round of  subdivision consists of  two separate steps:   topological
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splitting of  each face in Ti � 1  to produce Ti , then computing new vertex position pi  via the subdivision

transformation Si � 1 pi � 1 .  The beauty of this arrangement is that there are very simple rules for generat-

ing reasonable transformations Si � 1  (i.e.  ones whose limit  is well-behaved)  directly from the topology

Ti � 1 .  The example of  figure 1 uses the subdivision rules for  bi-cubic B-splines.  Each quadrilateral  is

split into four quadrilaterals.  Each new vertex of  pi  is a convex combination of  its nearby neighbors on

pi � 1 .  One of  three different combinations is used depending on whether the new vertex lies on a face,

edge or vertex of Ti � 1 .

Unfortunately,  these rules only  apply  to  quadrilateral  meshes with  tensor  product  topology  (i.e.  each

interior vertex is shared by four quadrilaterals).  This restriction greatly reduces the applicability of these

rules.  Standard shapes such as a sphere require meshes with non-tensor product topology.  In a landmark

paper, Catmull  and Clark [2]  developed a generalization of  the rules for bi-cubic B-splines that apply to

any type of  quadrilateral  mesh.  In particular, they developed a rule for repositioning those vertices that

are shared by n  quadrilaterals. This new rule was designed to produce smooth surfaces in the limit even

in the case of extraordinary vertices (i.e.n �
4 ).

The development of  this scheme ignited the growth of subdivision into a practical surface modeling tool.

Major  corporations such as Pixar  have adopted Catmull-Clark  surfaces as their  basic surface modeling

primitive.  For volume modeling, the use of  subdivision is still  in its infancy.  Joy and MacCracken [8]

introduced the first generalization of the rules for Catmull-Clark subdivision to volume meshes.   Unfortu-

nately,  the complexity  of  these rules makes analyzing the smoothness of  the resulting volume scheme

very  difficult  and has in all  likelihood hampered the use of  the scheme in practice.   In this paper,  we

suggest an alternative set of  subdivision rules that have a much simpler description in terms of  splitting

and averaging.  In addition, we provide a theoretical  analysis that  yields strong evidence that  this new

scheme produces smooth volume meshes everywhere.
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2  The scheme

To understand the new scheme, we first consider the subdivision rules for  bi-cubic B-splines.  Initially,

the bi-cubic rules were described in terms of  topological  splitting followed by vertex positioning.  One

difficulty  with  this approach was the need for  three types of  positioning rules:  one for  each possible

topological  position of  a new vertex in Ti  with respect to Ti � 1  (i.e. on a face of  Ti � 1 ,  on an edge of

Ti � 1 , at a vertex of  Ti � 1 ).  One way to avoid this problem is to recast the bi-cubic rules into a slightly

different framework.  

The geometric  positioning rules embodied by  the subdivision Si � 1  can be factored into  two separate

transformations: bi-linear subdivision followed by a simple averaging operation.  Figure 2 illustrates this

factorization for  the first  step of  figure 1.  A  coarse mesh is first  split  using bi-linear  subdivision.  The

resulting mesh is then smoothed using a simple averaging operator supported over the nearby neighbors

of each vertex.

Fi gur e 2

There are two  superficial  advantages of  this approach.  First,  bi-linear  subdivision  can be carried  out

during topological  splitting.  Second, the averaging operator  for  tensor  product meshes employs only a

single type of  averaging rule.  Similarly, the rule for tri-cubic subdivision can be factored into tri-linear

subdivision  followed by  averaging.   The true advantage of  this decomposition is that  the problem of

developing a variant  of  the tri-cubic rule for  arbitrary hexahedral  meshes can be focused solely  on the

averaging operation.   This approach allows us to develop a single,  simple averaging rule for  arbitrary
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meshes (as opposed  to  the four  required  under  the Joy  and  MacCracken  approach).   Our  task  is to

develop a generalization of  this averaging rule that reproduces the tensor product rule on tensor product

meshes and yields smooth limit volumes for arbitrary hexahedral meshes.  This generalization, developed

in 2D by Morin et al. [10], Zorin and Schröder [20] and Stam [15]  simultaneously , is remarkably simple.

2.1  Multi-linear subdivision

Before proceeding to the problem of  averaging, we consider  the problem of  implementing multi-linear

subdivision.  At first glance, this might appear to be an imposing task.  However, with the correct choice

of  data structures, implementing multi-linear subdivision is straightforward.  (Note that we consider the

general  d -dimensional  case since the three dimensional  solution allows for little simplification.)  Essen-

tially, multi-linear subdivision consist of  splitting a topological  d -cube into 2d subcubes and positioning

the new vertices using multi-linear interpolation.  To implement the topological split, we must first settle

on a representation for the topology of  a d -dimensional  cube (a d -cube).    We suggest a simple, recur-

sive representation with a 0 -cube consisting of  a vertex index and a d -cube (d � 0 ) consisting of  a list

of  two �d � 1 � -cubes.  For example, a square consists of  a list of  two line segments and a cube consist

of  a list  of  two squares.   Given this representation,  an algorithm for  splitting a d -cube C  into its 2d

subcubes is as follow: 

Given a d -cube C, recursively compute the multi-linear subdivision of two �d � 1 � -cubes comprising C

and  call  the  two  resulting  lists  of  2d � 1  (d � 1 )-cubes  t op  and  bot t om,  respectively.  t op  and

bot t om are splits of the "top"  and "bottom" faces of C.  Next, use linear interpolation to compute a list

of 2d � 1 (d � 1 )-cubes called mi ddl e  that lie halfway between t op  and bot t om.  Finally, return 2d � 1

d -cubes from corresponding pairs of cubes in t op  and mi ddl e  and 2d � 1  d-cubes from corresponding

pairs of cubes in mi ddl e  and bot t om.  

Given this topological  representation  for  a single d -cube,  the topology  Ti  for  a mesh of  d -cubes is

simply a list of  such d -cubes.  To ensure topological  consistency of  this representation, each new vertex

that  is common  to  several  subcubes must  use the same index  for  each  subcube.   To  maintain  these

5



indices,  we suggest  using a hash table.  The hash table can be indexed by  the smallest  d-cube on the

coarse mesh that contains each vertex.  For instance, a vertex inserted on an edge would be indexed by

the two vertices that make up that edge.

2.2  Cell averaging

The key  to  finding  a suitable averaging  operator  for  non-tensor  product  meshes is to  understand  the

structure of  the averaging operator  in the tensor  product  case.   In the univariate case,  the subdivision

rules for  cubic B-splines can be expressed as linear  subdivision followed by  averaging with the mask

� 1��� �
4

1��� �
2

1��� �
4
� .   Specifically, the subdivision matrix Sk � 1  can be decomposed as follows:
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Note that  application of  the mask  � 1��� �
4

1��� �
2

1��� �
4
�  has a simple geometric interpretation:  reposition a

vertex at the midpoint of the midpoints of the two segments that contain the vertex.  In the bivariate case,

bi-cubic subdivision is equivalent to bi-linear subdivision followed by averaging with the tensor product

of  the univariate mask with itself.  Plotted in 2D, the coefficients of  this averaging mask have the form
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This mask  has a geometric  interpretation  analogous to  the univariate case:  reposition  a vertex  at  the

centroid  of  the centroids of  the four  quadrilaterals that  contain  the vertex.   The averaging  mask  for

tri-cubic  B-splines (the tensor  of  the mask  � 1� � �
4

1��� �
2

1� � �
4
�  with  itself  three times)  can be expressed
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decomposed  in  a similar  manner.   Again,  this mask  has a geometric  interpretation  analogous to  the

univariate case: reposition a vertex at the centroid of the centroids of the eight hexahedra that contain the

vertex. These geometric interpretations of the tensor product rules lead to our general  rule for smoothing

a mesh of topological d -cubes,

Cell  averaging:   Given a vertex v , compute the centroids of  those topological  d -cubes that contain v .

Reposition v  at the centroid of these centroids.

Due to its simplicity, cell averaging can be implemented in a very straightforward manner with a minimal

amount of  topological  computation.  Given a mesh of  the form 	 T, pol d 
 , first compute val � v � , the

number of  d -cubes in T  that contain the vertex v .  This quantity can easily be computed during a single

pass through T .  Next, initialize a table of  new vertex positions pnew  to be zero.  Finally, make a second

pass through T .  For each d -cube in T , compute the centroid cent  of  its vertices and update the posi-

tion of each vertex v  of the d -cube via:

( 1)pnew� v � � �
cent

����� ��������� ���������������� �

val � v � .

Since  there  are  exactly  val � v �  d -cubes  containing  v ,  pnew� v � accumulates  the  centroid  of  the

val � v �  centroids. 

Combining multi-linear  subdivision with cell  averaging yields a subdivision scheme that  we refer  to as

multi-linear cell  averaging (MLCA) subdivision. Figure 3 shows the effect  of  applying MLCA  subdivi-

sion to an initial  surface mesh consisting of  six squares forming a cube. The top row shows the effect of

bi-linear subdivision. The bottom row shows the effect of  cell  averaging.  As we shall  see, the resulting

limit surface is smooth even at vertices of valence three.
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Fi gur e 3

2.3  Composite subdivision rules

In some situations (such as analyzing the smoothness of  the scheme),  it  is preferable to have a vertex

positioning rule that accounts for the effect of  multi-linear subdivision and cell  averaging simultaneously

(as done in Catmull-Clark). We next derive such a rule for a mesh of  d -cubes sharing a single common

vertex (i.e. the subdivision rule at an extraordinary vertex).  To aid in the derivation, we define several

relevant functions for a mesh of topological d -cubes:

Let r i ng � v1, v2, . . . �  be the set of d -cubes containing all of the vertices v1, v2, . . . ,

Let val � v1 , v2, . . , �  be the number of d -cubes in r i ng � v1, v2, . . . � ,

Let di m� v1, v2, . . . �  be the dimension of  the smallest  facet containing all  of  v1, v2, . . .  (e.g.

0  if they coincide, 1  if they lie on a common edge, 2  if they lie on a common face, etc.)
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Given a coarse (old) 	 Tol d, pol d 
 , let 	 Tnew, pnew
  be the fine (new)  produced by MLCA subdivi-

sion.   If  v  is a vertex of  the old , then its position in the new  is a weighted sum of  the vertices u  in

r i ng � v �  on the old .  In particular, we claim that the weight associated with u  has the form:

( 2)
1

����������������������� �������������� ��� � � �

4d val � v � 3d � di m� u, v � val � u, v �

For  a one-dimensional  curve (d � 1 ), val � v �  is two for  all  vertices.   Therefore,  by equation 2, the

subdivision  at  vertex  of  Tol d  has  the  form   31 � 1 � 1��������������� � ����� � �

41 2
, 31 � 0 � 2����������� ��� ������� � �

41 2
, 31 � 1 � 1����� ��������� ������� � �

41 2
�  which  is  equal  to

� 1��� �
8

, 3��� �
4

, 1��� �
8
� .   In the surface case (d � 2 ), the subdivision rule at an extraordinary vertex of valence

n  has the weights shown in figure 4.  One interesting feature of the equation 2 is that the weight assigned

to  the  central  vertex  v  by  this  rule  is  always  � 3��� �
4
� d  since  val � v � � val � v, v �  and

di m� v, v � � 0 . 

Fi gur e 4

9
� � � � � � �

16
3

� � � � � � � �

8 n

3
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8 n
3

� � � � � � � �

8 n

3
� � � � � � � �

8 n
3

� � � � � � � �

8 n

1
��� � � � � � � ��� �

16 n

1
� � � � � � � � � � �

16 n

1
� � � � � � � � � � �

16 n

1
� � � � � � � � � � �

16 n

1
��� � � � � � � ��� �

16 n

We conclude this section by proving the correctness of  equation 2.  To this end, let C be a cell  of  Tnew

containing v  and whose parent also contains u .  After multi-linear subdivision, but prior to cell  averag-

ing, the  vertices of C involve weighted combinations of u  due to repeated linear interpolation.   If u  and

v  share a facet of  dimension di m� u, v � in Tol d , then these weights appear on a complementary sub-

facet of C of dimension �d � di m� u, v � � .  The sum of these weights in u  is given by the expression
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( 3)�
i � 0

d � di m� u, v �
� d � di m� u, v �

i
� 2i � d.

where � a
b
�  is the binomial  coefficient a

�
������� ������� ���������������� �

b
� �a � b � � .This expression can be simplified via Mathematica to

2 � d 3d � di m� u, v � .   Thus,  the  total  contribution  of  u  to  the  centroid  of  C  during  cell  averaging  is

2 � d 3d � di m� u, v �  divided by the number of vertices in the cell 2d .  Thus, the total contribution of u  to the

new position of v   from the cell C is 3d � di m� u, v �
������� ������������������������������ � � �

4d val � v � .  Since there are val � u, v �  cells that contain u  and

v , the total  contribution over all  cells must be as in equation 2. Since both multi-linear subdivision and

cell averaging reproduce constants, the weights of  equation 2 must form a partition of unity, i.e.

( 4)�
u � r i ng � v �

3d � di m� u, v � val � u, v � � 4d val � v � .

3  Extensions

3.1  Non-manifold meshes

One particular advantage of  MLCA  subdivision is that it  makes no restrictions on the local  topology of

the mesh.  In particular, the scheme can be applied without change to meshes with non-manifold topol-

ogy.  In the univariate case,  non-manifold  topology  gives rise to curve networks with n � 2  segments

meeting at a vertex.  The vertex positioning rule at such a non-manifold vertex takes 3��� �
4

 of  the original

vertex plus 1������� � �

4 n
 times each of  its n  neighbors. This rule is very similar to the variational  rule for curve

networks  developed  in  Warren  and  Weimer  [18].   Figure  5  show  an  example  of  MLCA  averaging

subdivision  applied  to  an butterfly  shaped curve network.   Figure 6  shows an example of  an MLCA

subdivision applied to a quadrilateral mesh consisting of 12  squares.  The final surface mesh inherits the

non-manifold curve present in the initial mesh.
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Fi gur e 6

3.2  Boundaries and embedded creases

Hoppe et  al.  [5]  introduced  a useful  variant  of  the Catmull-Clark  subdivision  rules that  allowed  the

introduction of  B-spline "crease"  curves on a Catmull-Clark surface.   The benefit of  these crease curves

were two-fold:  they  allowed  the controlled  introduction  of  tangent  plane discontinuities on  a smooth

Catmull-Clark  surface and  they  allowed  for  direct  control  of  boundary  curves.   By  making  a small

modification to the rule for cell  averaging, MLCA subdivision can be adjusted to introduce "creases"  of

any dimension into a smooth limit shape.

To  introduce creases,  we allow  the topology  T  of  a  mesh  to  contain  topological  cubes of  differing

dimensions.  The  topology  list  T0  for  a  mesh  of  quadrilaterals  may  also  contain  line  segments  and

vertices. These lower dimensional  cells define crease curves and crease vertices in the resulting surface

mesh. For example, the initial  topology T0  for the bounded quad surface patch of  figure 1 consists of  4

faces, 8  boundary edges and 4  corner vertices.  These extra cells were added to the mesh to ensure that

the boundary curves of the limit surface were defined by the boundary of the initial mesh.   If the vertices

in this 3 � 3  grid are numbered 
�

�

������
1 2 3
4 5 6

7 8 9

�

�

������ , then the initial topology T0  is a list of the form
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	 	 1, 2, 5, 4 
 , 	 4, 5, 8, 7 
 , 	 2, 3, 6, 5 
 , 	 5, 6, 9, 8 
 ,
	 1, 4 
 , 	 4, 7 
 , 	 1, 2 
 , 	 2, 3 
 , 	 3, 6 
 , 	 6, 9 
 , 	 7, 8 
 , 	 8, 9 
 ,

	 1 
 , 	 3 
 , 	 7 
 , 	 9 
 
 .

Given this new representation, multi-linear subdivision is performed as usual  with each d -cube split into

2d  subcubes.  However, cell  averaging is adjusted as follows: for each vertex v , we compute di m� v � ,

the dimension of the lowest dimension cell  in T  that contains v . In the example above, di m� v �  has the

values

v : 1 2 3 4 5 6 7 8 9

di m� v � : 0 1 0 1 2 1 0 1 0

di m� v �  as well  as val � v �  (now  the number  of  cells containing v  of  dimension di m� v � )  can be

computed in a single pass through T . Given these two quantities, the averaging rule of equation 1 can be

reused with the following adjustment:

Cell  averaging with  creases :   Given a vertex  v ,  compute the centroids of  those cells of  dimension

di m� v �  that contain v  .  Reposition v  at the centroid of these centroids.

This modification ensures that  the subdivision rule for  vertices on a crease is influenced only by those

vertices that give rise to the crease.  For example, if  T  contains a topological  0 -cube (i.e. a vertex), cell

averaging simply  leaves the position of  the vertex  unchanged and MLCA  subdivision interpolates the

vertex.  Figure 1 is an example of  MLCA  subdivision applied to a mesh incorporating creases along its

boundaries.   Note  that  boundaries  of  this  patch  are themselves B-spline  curves.   Figure 7  shows a

cross-section  of  figure 3.   The surface mesh in  figure 3  is actually  the boundary  for  a volume mesh

starting from a single cube with crease quads on the six faces of the cube.

Fi gur e 7
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Figure 8 shows an example of a volume mesh with different types of creases.  The "A" is constructed out

of  cubes and the surface is covered with quads.  The bottom of the "A's"  legs have crease curves around

them as does the hole in the center.  In the wireframe picture it is possible to see the cubes that make up

the "A"  as it  is subdivided.   This figure was produced  with  the method  in  [10]  where tensions are

attached to the edges of  the mesh.  This allows the mesh to converge to circles on the bottom and in the

center.   Figure 9 shows a torus that  uses tensions as well  to reproduce circles.    The original  figure is

made up of four cubes and sixteen quads on its surface.  Again, the wireframe shows the cubes that make

up the figure being subdivided.

Fi gur e 8

Fi gur e 9
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Figure 10 shows two examples of  objects modeled using MLCA  subdivision.   Each mesh is a volume

mesh whose boundary is made to conform to the shape of  a ring and an axe, respectively, using crease

surface, crease edges and crease vertices.

Fi gur e 10

A ring and an axe modeled using MLCA subdivision with creases.

Finally, we note that the ability to define smooth volume meshes with embedded crease surface should be

particularly useful.  3D application such as geological modeling require precise representation of embed-

ded faults and fractures. We intend to pursue applications of MLCA subdivision in this area.

3.3  Non-hexahedral initial meshes

Any polygonal surface mesh can be converted into a quadrilateral mesh by splitting each face n -gon into

n  quadrilateral faces. Each of these n  quadrilaterals consist of a vertex, the midpoints of its two incident

edges and the centroid of  the polygon.  Figure 11 shows three examples of  this split. Ideally, a similar

method would allow one to split any convex polyhedron into a mesh of hexahedra.  Unfortunately, such a

split is possible only for those polyhedra for which all  vertices have valence three.  Given such a polyhe-

dra with n  vertices, it can be split into n  hexahedra where each hexahedra consists of  a vertex, 3 adja-

cent edge midpoints, 3 adjacent face centers and the centroid of  the original  polyhedron.  Note that the

split on the faces of  the polyhedron is exactly the 2D split for a polygon. Figure 12 shows two examples

of this 3D split for a tetrahedron and a triangular prism.
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Given this observation, we suggest two possible approaches to converting a polyhedral mesh to a hexahe-

dral mesh.  Since all the vertices of a tetrahedron have valence three, one approach is to triangulate a non-

hexahedral volume mesh and then split each tetrahedron into four hexahedra.  The main drawback of this

approach is that  it  introduces an extraordinary vertex  of  valence 4 into the center  of  every tetrahedron

and destroys any kind of tensor product structure that might have existed in the initial  mesh.  Given a set

of points in space, a second approach is to construct the 3D Voronoi diagram for the point set.  In general

position,  the cells of  this diagram are convex  polyhedra whose vertices have valence three.    Each of

these polyhedra can then be partitioned into a collection of hexahedra as described above.  

Fi gur e 12

We are also considering other approaches for generating initial  hexahedral  meshes from point data (see

[4], [9], [14]  and [16]  for examples of  such methods).  Our results will  be summarized in a forthcoming

paper [1].
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4  Smoothness analysis

The MLCA  subdivision scheme is applicable to meshes of  both quadrilaterals  in two dimensions and

meshes of hexahedra in three dimensions.  In this  section, we analyze the smoothness of MLCA scheme

in  each  case.   In  two  dimension,  we show  that  the scheme produces limit  surfaces that  are smooth

everywhere.  In three dimension, we prove that MLCA subdivision converges to  a smooth limit volume

along  extraordinary  edges of  the mesh.   At   extraordinary  vertices of  the 3D  mesh,  we examine the

characteristic  map for   MLCA  subdivision and provide strong evidence that  MLCA  subdivision most

likely  converges to  smooth  limit  volume at  these vertices.   The key  to  this  analysis is the spectral

technique described in Reif [13], Prautzsch [12], Peters and Reif [11] and Warren [17].

4.1  The surface case

 For quadrilateral  meshes, topological  subdivision produces quadrilateral   meshes that are locally tensor

product  almost  everywhere.   In particular,  the meshes are locally  tensor  product  everywhere except  at

extraordinary points  (i.e. those vertices of  the original  mesh whose valence is not four).  Since  MLCA

subdivision  was designed to  reproduce the subdivision rule for  bi-cubic  B-splines on tensor  product

meshes,  the limit  surfaces produced by  the scheme  are C2  everywhere except  at  these extraordinary

points.  Thus, our task is to  determine the smoothness of MLCA subdivision at an extraordinary vertices.

Luckily, much of the analysis has been done in previous work by Reif and  Peters [11] on the smoothness

of Catmull-Clark subdivision at an  extraordinary vertex v .  
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Consider  an  extraordinary  point  v  shared  by  n  quadrilaterals.   In  the neighborhood  of  v ,  repeated

topological  subdivision yields a topological  mesh T   consisting of  n  quadrants of  a tensor product mesh

surrounding v  (see figure 13).  In this framework, the behavior of the subdivision scheme at v  is charac-

terized  by  the spectral  structure of  the subdivision  matrix  S  associated  with  T .   For  a valence five

extraordinary vertex v , the matrix S (restricted to r i ng � v � ) has the form:

( 5)
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Note that we have not completely specified the position rule at the  extraordinary vertex.  The variable a

is free and can be chosen as a function of n . 

If  the eigenvalues 
�

i  of  S  and their corresponding eigenvectors z i  are indexed in order of  decreasing

magnitude,  a necessary condition for   building a subdivision scheme with linearly  independent  scaling

functions  that  is  smooth  at  an  extraordinary  vertex  v  is  that  these  eigenvalues  must  satisfy

1 �
�

0 � � �
1 � � � �

2 � � � �
3 � � . . .  (see [12],  [21])  .  Based on the block  circulant  structure of  S,

the eigenvalues and eigenvectors of S  can be computed directly using the discrete Fourier transform. All

but  two of  the eigenvalues of S  (and their corresponding eigenvectors) are independent of  the choice of

a .   The remaining two eigenvalues (and their  corresponding eigenvectors)   depend on the choice of  a

and are eigenvalues of the reduced matrix

( 6)

�
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���������

1 � 7 n a 6 n a n a
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1��� �
8
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4

�

�

���������
.
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Now, Catmull-Clark suggests a vertex rule with a � 1� ����� ��� � � �

4 n2 .  Using some basic calculus,  Reif  and Peters

[11]  show  that  the eigenvalues of  the resulting  S  are real  and  satisfy  1 �
�

1 �
�

2 � �
�

3 … where

�
2 � 1��� �

4
.   On the other  hand,  the subdivision matrix  S  for  MLCA  subdivision has a vertex  rule with

a � 1������� ��� � �

16 n
.  For this choice of a , the two eigenvalues of the reduced matrix in equation 6 are 1��� �

4
 and 1������� �

16
.

Since  the  remaining  eigenvalues  of  S  are  unchanged,  the  spectrum  of  S  continues  to  satisfy

1 �
�

1 �
�

2 �
�

3 … for MLCA subdivision.

Unfortunately, this condition alone is not sufficient to guarantee that  the scheme is smooth at the extraor-

dinary vertex v .   For schemes with a spectrum of  the form 
�

0 � 1 � � �
1 � � � �

2 � � …, the eigenvec-

tors z1  and z2  corresponding to the subdominant  eigenvalues 
�

1  and 
�

2  determine whether  the limit

surface forms a manifold in the neighborhood  of  v .  Given an initial  mesh of  the form 	 T, p0 
  with

p0
� 	 z1, z2 
 T , Reif  [13]  defines the character istic map  �  associated with the eigenvectors z1  and

z2  to  be  the  limit  of  the  subdivision  process  pk
� S pk � 1  (see  figure  13  for  plots  of  the  meshes

	 z1, z2 
 T  for extraordinary vertices of  low valence).  Now, if  the characteristic map �  is regular  (i.e.

it is 1 � 1  and onto everywhere),  then subdivision scheme associated with S  is guaranteed to be smooth

at v .  For the subdivision matrix of equation 5, the subdominant eigenvalues z1  and z2  are independent

of  the particular choice of  a .    Therefore, both Catmull-Clark subdivision and MLCA subdivision share

the same characteristic map.     Since Reif  and Peters [11]  show that  the characteristic map associated

with  Catmull-Clark  is  regular  for  all  valences n � 3 ,  the characteristic  map  associated  with  MLCA

subdivision is also regular  and MLCA  subdivision converges to smooth  limit  surfaces at  extraordinary

Fi gur e 13
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4.2  The volume case

To analyze the smoothness of  MLCA subdivision on hexahedral  meshes, we  first consider the effect of

topological  subdivision on a hexahedral  mesh.   Repeated subdivision of  a single hexahedron produces a

tensor  product  volume  mesh on the interior  of  the hexahedra.   This tensor  product  structure extends

uniformly  across the faces of  the hexahedra to  face adjacent  hexahedra.   Since MLCA   subdivision

reproduces the subdivision rule for  tri-cubic B-splines on tensor   product  meshes, the limiting volumes

are C2  on both the interiors of the hexahedra and the interiors of their faces.   

For n  hexahedra sharing a common edge, repeated topological subdivision yields  a volume mesh whose

topology is the tensor product of  a uniform quad mesh  surrounding an extraordinary vertex of  a valence

n  extraordinary point and a curve mesh.  Figure 14 shows local examples of such meshes for n � 3  and

n � 5 .   Using  equation  2,  one can  verify  that  the subdivision  rules produced  by  MLCA  along  this

"extraordinary"  edge are the tensor product of  the bivariate MLCA rule for  a valence n  vertex and the

univariate rule for  cubic B-splines.   Since these rules  deliver  C1  surfaces and C2  curves respectively,

the tensor product rules produces C1  volumes.  Note that volume scheme of Joy and MacCracken does

not  have this  tensor  product  property. As a result,  analyzing the smoothness of  Joy and MacCracken

scheme along  extraordinary edges appears to be impossible with current analysis  techniques.

Fi gur e 14

All  that  remains is to  analyze the smoothness of  MLCA  subdivision  at  extraordinary  vertices of  the

original  mesh.   Given  a vertex  v  of  the original  hexahedral  mesh,  repeated  topological  subdivision

produces  an  infinite  topological  mesh  T  that  is  invariant  under  topological  subdivision  and  whose
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structure is  determined  by  r i ng � v � .   As in  the two-dimensional  case,  the spectral  structure of  the

subdivision matrix S  associated with this mesh T  governs the behavior of  the subdivision scheme at v .

In particular, we believe that conditions on the subdominant eigenvalues and eigenvectors of S similar to

those given by Reif  in [13]  are the key to analyzing the smoothness of  this scheme at  an extraordinary

vertex.  The crux of  this analysis would be constructing a three-dimensional  analog of  the characteristic

map based on the eigenvectors z1 , z2 , and z3  associated with the subdominant eigenvalues 
�

1 , 
�

2  and

�
3 , respectively.  However, we leave a precise characterization of  these conditions and a proof  of  their

correctness for future work. 

One obstacle to  this type of  smoothness analysis in the three-dimensional  case is that  the topological

mesh T  lacks the rotational  symmetries that  made it  possible to use the discrete  Fourier  transform to

compute the spectral  structure of S  in two dimensions. In general, the spectral structure of S depends on

the topological structure of r i ng � v �  in a way that appears to defy symbolic computation.  Instead, one

possibility is to use a  brute force approach and simply enumerate possible topologies for r i ng � v � . For

each distinct  topology, we compute the eigenvalues and eigenvectors  of  S  restricted to the two-ring of

v .   Figure 15 shows plots of  the mesh defined by the subdominant  eigenvectors of  S  (i.e.  the charac-

terisitc  map)  for  nine distinct  low  valence topologies (all  configurations for  which  the extraordinary

vertex v  has 7  or few edge adjacent neighbors).  Based on a visual  examination of  these meshes, their

associated  characteristic  maps appear  to  be regular.   However,   developing a rigorous,  computational

method for testing the regularity of these meshes is also the subject of future work.
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5  Conclusions

MLCA  subdivision has many attractive features.  It  is fast, simple to implement, handles non-manifold

meshes and  easily  incorporates boundaries/creases.   Our  intention  is  to  explore both  the theory  and

application  of  MLCA  subdivision  in  future  work.   Potential  application  domains  include  3D  mesh

modeling  for  physical  simulations,  representing  smooth  implicit  surfaces  and  constructing  smooth

deformations for volume textures.  We are also currently in the process of implementing an exact test for

regularity of meshes created through MLCA subdivision.  This test can be used to answer the question of

smoothness at extraordinary vertices posed in the previous section as well  as for mesh modeling applica-

tions where regularity is important.
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