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Abstract: This paper describes an approach to smooth the surface and improve the quality of
quadrilateral/hexahedral meshes with feature preserved using geometric flow. For quadrilateral
surface meshes, the surface diffusion flow is selected to remove noiseby relocating vertices
in the normal direction, and the aspect ratio is improved with feature preserved by adjusting
vertex positions in the tangent direction. For hexahedral meshes, besides the surface vertex
movement in the normal and tangent directions, interior vertices are relocated to improve the
aspect ratio. Our method has the properties of noise removal, feature preservation and quality
improvement of quadrilateral/hexahedral meshes, and it is especially suitable for biomolecular
meshes because the surface diffusion flow preserves sphere accurately if the initial surface
is close to a sphere. Several demonstration examples are provided from a wide variety of
application domains. Some extracted meshes have been extensively used in finite element
simulations.

Key words: quadrilateral/hexahedral mesh, surface smoothing, feature preservation, quality
improvement, geometric flow.

1 Introduction

The quality of unstructured quadrilateral/hexahedral meshes plays an important role in
finite element simulations. Although a lot of efforts have been made, it still remains a chal-
lenging problem to generate quality quad/hex meshes for complicated structures such as the
biomolecule Ribosome 30S shown in Figure 1. We have described an isosurface extraction
method to generate quad/hex meshes for arbitrary complicated structures from volumetric
data and utilized an optimization-based method to improve the mesh quality [1] [2] [3], but
the surface needs to be smoothed and the mesh quality needs to be furtherimproved.

Geometric partial differential equations (GPDEs) such as Laplacian smoothing have been
extensively used in surface smoothing and mesh quality improvement. There are two main

⋆http://www.ices.utexas.edu/∼jessica/paper/quadhexgf
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(a) (b) (c)

(d) (e)

Fig. 1. The comparison of mesh quality of Thermus Thermophilus small Ribosome 30S (1J5E)
crystal subunit. The pink color shows 16S rRNA and the remaining colorsare proteins. (a)
the original quadrilateral mesh (13705 vertices, 13762 quads); (b) the improved quadrilateral
mesh; (c) the improved hexahedral mesh (40294 vertices, 33313 hexes); (d) the zoom-in pic-
ture of the red box in (a); (e) the zoom-in picture of the red box in (b). The mesh quality is
measured by three quality metrics as shown in Figure 10.

methods in solving GPDEs, the finite element method (FEM) and the finite difference method
(FDM). Although FDM is not robust sometimes, people still prefer to choosing FDM instead
of FEM because FDM is simpler and easier to implement. Recently, a discretized format of
the Laplacian-Beltrami (LB) operator over triangular meshes was derived and used in solving
GPDEs [4] [5] [6]. In this paper, we will discretize the LB operator overquadrilateral meshes,
and discuss an approach to apply the discretizated format on surface smoothing and quality
improvement for quadrilateral or hexahedral meshes.

The main steps to smooth the surface and improve the quality of quadrilateral and hexa-
hedral meshes are as follows:

1. Discretizing the LB operator and denoising the surface mesh - vertex adjustment in the
normal direction with volume preservation.

2. Improving the aspect ratio of the surface mesh - vertex adjustment inthe tangent direction
with feature preservation.

3. Improving the aspect ratio of the volumetric mesh - vertex adjustment inside the volume.

For quadrilateral meshes, generally only Step 1 and Step 2 are required, but all the three steps
are necessary for surface smoothing and quality improvement of hexahedral meshes.

Unavoidly the quadrilateral or hexahedral meshes may have some noise over the surface,
therefore the surface mesh needs to be smoothed. In this paper, we derive a discretized format
of the LB operator, and choose the surface diffusion flow (Equation (1)) to smooth the surface
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mesh by relocating vertices along their normal directions. The surface diffusion flow is volume
preserving and also preserves a sphere accurately if the initial surface mesh is embedded and
close to a sphere, therefore it is especially suitable for surface smoothing of biomolecular
meshes since biomolecules are usually modelled as a union of hard spheres.

The aspect ratio of the surface mesh can be improved by adjusting vertices in the tangent
plane, and surface features are preserved since the movement in thetangent plane doesn’t
change the surface shape ([7], page 72). For each vertex, the mass center is calculated to find
its new position on the tangent plane. Since the vertex tangent movement is an area-weighted
relaxation method, it is also suitable for adaptive quadrilateral meshes.

Besides the movement of surface vertices, interior vertices also need tobe relocated in
order to improve the aspect ratio of hexahedral meshes. The mass center is calculated as the
new position for each interior vertex.

Although our relaxation-based method can not guarantee that no inverted element is in-
troduced for arbitrary input meshes, it works well in most cases with theproperties of noise
removal, feature preservation, mesh quality improvement. Furthermore, it is especially suit-
able for surface smoothing and quality improvement of biomolecular meshes. As the ‘smart’
Laplacian smoothing [8] [9], this method is applied only when the mesh qualityis improved
in order to avoid inverted elements. This method can also be combined with theoptimization-
based method to obtain a high quality mesh with relatively less computational cost.

The remainder of this paper is organized as follows: Section 2 reviews theprevious related
work; Sections 3 discusses the detailed algorithm of the LB operator discretization, surface
smoothing and quality improvement of quadrilateral meshes; Sections 4 explains the quality
improvement of hexahedral meshes; Section 5 shows some results and applications; The final
section presents our conclusion.

2 Previous Work

It is well-known that poor quality meshes result in poorly conditioned stiffness matrices
in finite element analysis, and affect the stability, convergence, and accuracy of finite element
solvers. Therefore, quality improvement is an important step in mesh generation.

Some quality improvement techniques of triangular and tetrahedral meshes, such as the
edge-contraction method, can not be used for quadrilateral and hexahedral meshes because we
do not want to introduce any degenerated elements. Therefore, the mesh smoothing methods
are selected to improve the quality of quad/hex meshes by adjusting the vertex positions in the
mesh while preserving its connectivity. As reviewed in [10] [11], Laplacian smoothing and
optimization are the two main quality improvement techniques.

As the simplest and most straight forward method for node-based mesh smoothing, Lapla-
cian smoothing relocates the vertex position at the average of the nodes connecting to it [12].
There are a variety of smoothing techniques based on a weighted average of the surrounding
nodes and elements [13] [14] [15]. The averaging method may invertor degrade the local
quality, but it is computationally inexpensive and very easy to implement, soit is in wide use.
Winslow smoothing is more resistant to mesh folding because it requires thelogical variables
are harmonic functions [16].

Instead of relocating vertices based on a heuristic algorithm, people utilizedan optimiza-
tion technique to improve mesh quality. The optimization algorithm measures thequality of
the surrounding elements to a node and attempts to optimize it [17]. The algorithm is similar to
a minimax technique used to solve circuit design problems [18]. Optimization-based smooth-
ing yields better results but it is more expensive than Laplacian smoothing,and it is difficult



4 Yongjie Zhang, Chandrajit Bajaj, and Guoliang Xu

to decide the optimized iteration step length. Therefore, a combined Laplacian/optimization-
based approach [8] [9] [19] was recommended. Physically-basedsimulations are used to repo-
sition nodes [20]. Anisotropic meshes are obtained from bubble equilibrium [21] [22].

When we use the smoothing method to improve the mesh quality, it is also important to
preserve surface features. Baker [23] presented a feature extraction scheme which is based on
estimates of the local normals and principal curvatures at each mesh node. Local parametriza-
tion was utilized to improve the surface mesh quality while preserving surface characteristics
[24], and two techniques called trapezium drawing and curvature-based mesh improvement
were discussed in [25].

Staten et al. [26] [27] proposed algorithms to improve node valence forquadrilateral
meshes. One special case of cleanup in hexahedral meshes for the whisker weaving algo-
rithm is presented in [28]. Schneiders [29] proposed algorithms and a series of templates for
quad/hex element decomposition. A recursive subdivision algorithm was proposed for the re-
finement of hex meshes [30].

3 Quadrilateral Mesh

Noise may exist in quadrilateral meshes, therefore we need to smooth thesurface mesh.
The quality of some quadrilateral meshes may not be good enough for finite element calcula-
tions, and the aspect ratio also needs to be improved.

There are two steps for the surface smoothing and the quality improvement of quadrilateral
meshes: (1) the discretization of Laplace-Beltrami opertor and the vertex movement along its
normal direction to remove noise, (2) the vertex movement on its tangentplane to improve the
aspect ratio while preserving surface features.

3.1 Geometric Flow

Various geometric partial differential equations (GPDEs), such as the mean curvature flow,
the surface diffusion flow and Willmore flow, have been extensively used in surface and imag-
ing processing [5]. Here we choose the surface diffusion flow to smooth the surface mesh,

∂x
∂t

= ∆H(x)n(x). (1)

where∆ is the Laplace-Beltrami (LB) operator,H is the mean curvature andn(x) is the unit
normal vector at the nodex. In [31], the existence and uniqueness of solutions for this flow
was discussed, and the solution converges exponentially fast to a sphere if the initial surface is
embedded and close to a sphere. It was also proved that this flow is areashrinking and volume
preserving [5].

In applying geometric flows on surface smoothing and quality improvement over quadri-
lateral meshes, it is important to derive a discretized format of the LB operator. Discretized
schemes of the LB operator over triangular meshes have been derived and utilized in solving
GPDEs [4] [5] [6].

A quad can be subdivided into triangles, hence the discretization schemesof the LB op-
erator over triangular meshes could be easily used for quadrilateral meshes. However, since
the subdivision of each quad into triangles is not unique (there are two ways), the resulting
discretization scheme is therefore not unique. Additionally in the discretization scheme, the
element area needs to be calculated. If we choose to split each quad into two triangles and
calculate the area of a quad as the summation of the area of two triangles, then the area cal-
culated from the two different subdivisions could be very different because four vertices of a
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quad may not be coplanar. Therefore, a unique discretized format of the LB operator directly
over quad meshes is required.

3.2 Discretized Laplace-Beltrami Operator

Here we will derive a discretized format for the LB operator over quadrilateral meshes.
The basic idea of our scheme is to use the bilinear interpolation to derive the discretized format
and to calculate the area of a quad. The discretization scheme is thus uniquely defined.

z

x

y
0 u

v

1

1

P4P3

P1 P2
P1 P2

P3 P4

Fig. 2. A quad [p1p2p4p3] is mapped into a bilinear parametric surface.

Area Calculation: Let [p1p2p4p3] be a quad inR3, then we can define a bilinear para-
metric surfaceS that interpolates four vertices of the quad as shown in Figure 2:

S(u,v) = (1−u)(1−v)p1 +u(1−v)p2

+ (1−u)vp3 +uvp4. (2)

The tangents of the surface are

Su(u,v) = (1−v)(p2− p1)+v(p4− p3), (3)

Sv(u,v) = (1−u)(p3− p1)+u(p4− p2). (4)

Let ∇ denote the gradient operator about the(x,y,z) coordinates of the vertexP1, then we have

∇Su(u,v) = −(1−v), (5)

∇Sv(u,v) = −(1−u). (6)

Let A denote the area of the surfaceS(u,v) for (u,v) ∈ [0,1]2, then we have

A =
∫ 1

0

∫ 1

0

√

‖ Su×Sv ‖2dudv

=
∫ 1

0

∫ 1

0

√

‖ Su ‖2‖ Sv ‖2 −(Su,Sv)2dudv. (7)

It may not be easy to obtain the explicit form for integrals in calculating the area, numerical in-
tegration quadrature could be used. Here we use the following four-point Gaussian quadrature
rule to compute the integral

∫ 1

0

∫ 1

0
f (u,v)dudv≈ f (q1)+ f (q2)+ f (q3)+ f (q4)

4
, (8)

where
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q− =
1
2
−

√
3

6
, q+ =

1
2

+

√
3

6
,

q1 = (q−, q−), q2 = (q+, q−),

q3 = (q−, q+), q4 = (q+, q+).

The integration rule in Equation (8) is ofO(h4), whereh is the radius of the circumscribing
circle.

Discretized LB Operator: The derivation of the discretized format of the LB operator is
based on a formula in differential geometry [4]:

lim
diam(R)→0

∇A
A

= H(p), (9)

whereA is the area of a regionRover the surface around the surface pointp, diam(R) denotes
the diameter of the regionR, andH(p) is the mean curvature normal.

From Equation (7), we have

∇A =
∫ 1

0

∫ 1

0
∇

√

‖ Su ‖2‖ Sv ‖2 −(Su,Sv)2dudv

=
∫ 1

0

∫ 1

0

Su(Sv,(v−1)Sv− (u−1)Su))
√

‖ Su ‖2‖ Sv ‖2 −(Su,Sv)2
dudv

+
∫ 1

0

∫ 1

0

Sv(Su,(u−1)Su− (v−1)Sv)
√

‖ Su ‖2‖ Sv ‖2 −(Su,Sv)2
dudv

= α21(p2− p1)+α43(p4− p3)

+ α31(p3− p1)+α42(p4− p2), (10)

where

α21 =
∫ 1

0

∫ 1

0

(1−v)(Sv,(v−1)Sv− (u−1)Su))
√

‖ Su ‖2‖ Sv ‖2 −(Su,Sv)2
dudv

α43 =
∫ 1

0

∫ 1

0

v(Sv,(v−1)Sv− (u−1)Su))
√

‖ Su ‖2‖ Sv ‖2 −(Su,Sv)2
dudv

α31 =
∫ 1

0

∫ 1

0

(1−u)(Su,(u−1)Su− (v−1)Sv)
√

‖ Su ‖2‖ Sv ‖2 −(Su,Sv)2
dudv

α42 =
∫ 1

0

∫ 1

0

u(Su,(u−1)Su− (v−1)Sv)
√

‖ Su ‖2‖ Sv ‖2 −(Su,Sv)2
dudv

∇A could be written as

∇A = α1p1 +α2p2 +α3p3 +α4p4 (11)

with

α1 = −α21−α31, α2 = −α21−α42,

α3 = −α31−α43, α4 = −α43−α42. (12)

Here we still use the four-point Gaussian quadrature rule in Equation (8)to compute the inte-
grals in theαi j . It follows from Equation (12) that∑4

i=1 αi = 0, we have

∇A = α2(p2− p1)+α3(p3− p1)+α4(p4− p1). (13)
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P2j

P2j+1

P2j−1

Pi

Fig. 3. A neighboring quad[pi p2 j−1p2 j p2 j+1] around the vertexpi .

Now let pi be a vertex with valencen, andp2 j (1≤ j ≤ n) be one of its neighbors on the
quadrilateral mesh, then we can define three coefficientsα2, α3, α4 as in (13). Now we denote
these coefficients asαi

j , βi
j andγi

j for the quad[pi p2 j−1p2 j p2 j+1] as shown in Figure 3. By
using Equation (13), the discrete mean curvature normal can be defined as

H(pi) ≈ 1
A(pi)

n

∑
j=1

[αi
j (p2 j−1− pi)

+ βi
j (p2 j+1− pi)+ γi

j+1(p2 j − pi)] (14)

=
2n

∑
k=1

wi
k(pk− pi)

whereH(pi) denotes the mean curvature normal,A(pi) is the total area of the quads around
pi , and

wi
2 j =

γi
j

A(pi)
, wi

2 j−1 =
αi

j +βi
j−1

A(pi)
, wi

2 j+1 =
αi

j+1 +βi
j

A(pi)
.

Using the relation∆x = 2H(pi) ([32], page 151), we obtain

∆ f (pi) ≈ 2
2n

∑
k=1

wi
k( f (pk)− f (pi)). (15)

Therefore,

∆H(pi)n(pi) ≈ 2
2n

∑
k=1

wi
k(H(pk)−H(pi))n(pi)

= 2
2n

∑
k=1

wi
k

[

n(pi)n(pk)
TH(pk)−H(pi)

]

, (16)

whereH(pk) and H(pi) are further discretized by (14). Note thatn(pi)n(pk)
T is a 3× 3

matrix.
Figure 4 shows one example of the molecule consisting of three amino acids(ASN, THR

and TYR) with 49 atoms. The molecular surface was bumpy as shown in Figure 4(a) since
there are some noise existing in the input volumetric data, the surface becomes smooth after
the vertex normal movement as shown in Figure 4(b).
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(a) (b)

(c) (d)

Fig. 4. Surface smoothing and quality improvement of the molecule consisting of three amino
acids (ASN, THR and TYR) with 49 atoms (45534 vertices, 45538 quads). (a) and (c) - the
original mesh; (b) and (d) - after surface smoothing and quality improvement.

3.3 Tangent Movement

In order to improve the aspect ratio of the surface mesh, we need to adda tangent move-
ment in Equation (1), hence the flow becomes

∂x
∂t

= ∆H(x)n(x)+v(x)T(x), (17)

wherev(x) is the velocity in the tangent directionT(x). First we calculate the mass center
m(x) for each vertex on the surface, then project the vectorm(x)− x onto the tangent plane.
v(x)T(x) can be approximated by[m(x)−x]−n(x)T [m(x)−x]n(x) as shown in Figure 5.

Mass Center: A mass centerp of a regionS is defined by findingp∈ S, such that
∫

S
‖ y− p ‖2 dσ = min. (18)

S is a piece of surface inR3, andSconsists of quads around vertexx. Then we have
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n(x)

n(x) n(x)[m(x)−x]

n(x) n(x)[m(x)−x]

x

m(x)−x

[m(x)−x]−

T

T

Fig. 5. The tangent movement at the vertexx over a surface. The blue curve represents a
surface, and the red arrow is the resulting tangent movement vector.

∑(
pi + p2 j−1 + p2 j + p2 j+1

4
− pi)A j = 0, (19)

A j is the area of the quad[pi p2 j−1p2 j p2 j+1] calculated from Equation (7) using the integration
rule in Equation (8). Then we can obtain

m(pi) =
n

∑
j=1

(
pi + p2 j−1 + p2 j + p2 j+1

4
A j )/Ai

total, (20)

whereAi
total is the total of quad areas aroundpi . The area of a quad can be calculated using

Equation (7).
In Figure 4, the vertex tangent movement is used to improve the aspect ratio of the quadri-

lateral mesh of the molecule consisting of three amino acids. Compared withFigure 4(c), it
is obvious that the quadrilateral mesh becomes more regular and the aspect ratio is better as
shown in Figure 4(d).

3.4 Temporal Discretization

In the temporal space,∂x
∂t is approximated by a semi-implicit Euler schemexn+1

i −xn
i

τ , where

τ is the time step length.xn
i is the approximating solution att = nτ, xn+1

i is the approximating
solution att = (n+1)τ, andx0

i serves as the initial value atxi .
The spatial and temporal discretization leads to a linear system, and an approximating

solution is obtained by solving it using a conjugate gradient iterative method with diagonal
preconditioning.

3.5 Discussion

Vertex Normal Movement: The surface diffusion flow can preserve volume. Further-
more, it also preserves a sphere accurately if the initial mesh in embedded and close to a
sphere. Suppose a molecular surface could be modelled by a union of hard spheres, so it is
desirable to use the surface diffusion flow to evolve the molecular surface. Figure 4 shows one
example, the molecular surface becomes more smooth and features are preserved after surface
denoising.

Vertex Tangent Movement: If the surface mesh has no noise, we can only apply the
tangent movement∂x

∂t = v(x)T(x) to improve the aspect ratio of the mesh while ignoring the
vertex normal movement. Our tangent movement has two properties:

• The tangent movement doesn’t change the surface shape ([7], page 72). Figure 6 shows
the comparison of the human head model before and after the quality improvement. In
Figure 6(b), each vertex is relocated to its mass center, so both normal movement and
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(a) (b) (c)

Fig. 6. The quality of a quadrilateral mesh of a human head model is improved (2912 vertices,
2912 quads) after 100 iterations with the time step length 0.01. (a) The original mesh; (b)
Each vertex is relocated to its mass center, some facial features are removed; (c) Only tangent
movement is applied.

(a) (b)

Fig. 7. The quality of an adaptive quadrilateral mesh of a biomolecule mAChE is improved
(26720 vertices, 26752 quads). (a) the original mesh; (b) after quality improvement.

tangent movement are applied. After some iterations, the facial features, such as the nose,
eyes, mouth and ears, are removed. In Figure 6(c), the vertex movement is restricted on
the tangent plane, therefore facial features are preserved.

• The tangent movement is an area-weighted averaging method, which is also suitable for
adaptive quad meshes as shown in Figure 7 and 8. In Figure 7, there is acavity in the
structure of biomolecule mouse acetylcholinesterase (mAChE), and denser meshes are
generated around the cavity while coarser meshes are kept in all other regions. In Figure
8, finer meshes are generated in the region of facial features of the human head.

From Figure 6, 7 and 8, we can observe that after tangent movement, the quadrilateral meshes
become more regular and the aspect ratio of the meshes is improved, aswell as surface features
are preserved.
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(a) (b) (c)

Fig. 8. Adaptive quadrilateral/hexadedral meshes of the human head. (a) theoriginal quad
mesh (1828 vertices, 1826 quads); (b) the improved quad mesh; (c)the improved hex mesh
(4129 vertices, 3201 hexes), the right part of elements are removedto shown one cross section.

4 Hexahedral Mesh

There are three steps for surface smoothing and quality improvement of hexahedral
meshes, (1) surface vertex normal movement, (2) surface vertextangent movement and (3)
interior vertex relocation.

4.1 Boundary Vertex Movement

The dual contouring hexahedral meshing method [1] [2] [3] provides a boundary sign for
each vertex and each face of a hexahedron, indicating if it lies on the boundary surface or not.
For example, a vertex or a face is on the surface if its boundary sign is 1,while lies inside the
volume if its boundary sign is 0.

The boundary sign for each vertex/face can also be decided by checking the connectivity
information of the input hexahedral mesh. If a face is shared by two elements, then this face
is not on the boundary; if a face belongs to only one hex, then this face lieson the boundary
surface, whose four vertices are also on the boundary surface.

We can use the boundary sign to find the neighboring vertices/faces for agiven vertex.
For each boundary vertex, we first find all its neighboring vertices andfaces lying on the
boundary surface by using the boundary sign, then relocate it to its new position calculated
from Equation (17). There is a special situation that we need to be careful, a face/edge, whose
four/two vertices are on the boundary, may not be a boundary face.

4.2 Interior Vertex Movement

For each interior vertex, we intend to relocate it to the mass center of all its surrounding
hexahedra. There are different methods to calculate the volume for a hexahedron. Some peo-
ple divide a hex into five or six tetrahedra, then the volume of the hex is the summation of
the volume of these five or six tetrahedra. This method is not unique since there are various
dividing formats. Here we use an trilinear parametric function to calculate the volume of a
hex.
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P4

P2P1

w

P8

P6

P3

P5

P7

v

u

Fig. 9. The trilinear parametric volumeV of a hexahedron [p1p2 . . . p8].

Volume Calculation: Let [p1p2 . . . p8] be a hex inR
3, then we define the trilinear para-

metric volumeV(u,v,w) that interpolates eight vertices of the hex as shown in Figure 9:

V(u,v,w) = (1−u)(1−v)(1−w)p1

+ u(1−v)(1−w)p2 +(1−u)v(1−w)p3

+ uv(1−w)p4 +(1−u)(1−v)wp5

+ u(1−v)wp6 +(1−u)vwp7

+ uvwp8. (21)

The tangents of the volume are

Vu(u,v,w) = (1−v)(1−w)(p2− p1)+v(1−w)(p4− p3)

+ (1−v)w(p6− p5)+vw(p8− p7),

Vv(u,v,w) = (1−u)(1−w)(p3− p1)+u(1−w)(p4− p2)

+ (1−u)w(p7− p5)+uw(p8− p6),

Vw(u,v,w) = (1−u)(1−v)(p5− p1)+u(1−v)(p6− p2)

+ (1−u)v(p7− p3)+uv(p8− p4).

Let V denote the volume ofV(u,v,w) for (u,v,w) ∈ [0,1]3, then we have

V =
∫ 1

0

∫ 1

0

∫ 1

0

√

V̄dudvdw (22)

where

V̄ = ‖ (Vu×Vv) ·Vw ‖2 (23)

Numerical integration quadrature could be used. Here we choose the following eight-point
Gaussian quadrature rule to compute the integral

∫ 1

0

∫ 1

0

∫ 1

0
f (u,v,w)dudvdw≈

∑8
j=1 f (q j )

8
, (24)

where

q− =
1
2
−

√
3

6
, q+ =

1
2

+

√
3

6
,
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q1 = (q−, q−, q−), q2 = (q+, q−, q−),

q3 = (q−, q+, q−), q4 = (q+, q+, q−),

q5 = (q−, q−, q+), q6 = (q+, q−, q+),

q7 = (q−, q+, q+), q8 = (q+, q+, q+).

The integration rule in Equation (24) is ofO(h4), whereh is the radius of the circumscribing
sphere.

Mass Center: A mass centerp of a regionV is defined by findingp∈V, such that
∫

V
‖ y− p ‖2 dσ = min. (25)

V is a piece of volume inR3, andV consists of hexahedra around vertexx. Then we have

∑(
1
8

8

∑
j=1

p j − pi)Vj = 0, (26)

Vj is the volume of the hex[p1p2 . . . p8] calculated from the trilinear function, then we can
obtain

m(pi) = ∑
j∈N(i)

(
1
8

8

∑
j=1

p jVj )/V i
total, (27)

whereN(i) is the index set of the one ring neighbors ofpi , andV i
total is the total of hex volume

aroundpi .
The same Euler scheme is used here for temporal discretization, and thelinear system is

solved using the conjugate gradient iterative method.

5 Results and Applications

There are many different ways to define the aspect ratio for a quad ora hex to measure
the mesh quality. Here we choose the scaled Jacobian, the condition number of the Jacobian
matrix and Oddy metric [33] as our metrics [34][35][36].

Assumex ∈ R
3 is the position vector of a vertex in a quad or a hex, andxi ∈ R

3 for
i = 1, . . . ,m are its neighboring vertices, wherem= 2 for a quad andm= 3 for a hex. Edge
vectors are defined asei = xi −x with i = 1, . . . ,m, and the Jacobian matrix isJ = [e1, ...,em].
The determinant of the Jacobian matrix is calledJacobian, or scaled Jacobianif edge vectors
are normalized. An element is said to beinverted if one of its Jacobians≤ 0. We use the
Frobenius normas a matrix norm,|J| = (tr(JTJ)1/2). The condition number of the Jacobian

matrix is defined asκ(J) = |J||J−1|, where|J−1|= |J|
det(J)

. Therefore, the three quality metrics
for a vertexx in a quad or a hex are defined as follows:

Jacobian(x) = det(J) (28)

κ(x) =
1
m
|J−1||J| (29)

Oddy(x) =
(|JTJ|2− 1

m|J|4)
det(J)

4
m

(30)

wherem= 2 for quadrilateral meshes andm= 3 for hexahedral meshes.
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Type DataSet MeshSize Scaled Jacobian Condition Number Oddy Metric Inverted
(Vertex♯, Elem♯) (best,aver.,worst) (best,aver.,worst) (best,aver.,worst) Elem♯

quad Head1 (2912, 2912) (1.0, 0.92, 0.02) (1.0, 1.13, 64.40) (0.0, 1.74, 8345.37) 0
Head2 - (1.0, 0.93, 0.16) (1.0, 1.11, 6.33) (0.0, 0.63, 78.22) 0
Head3 - (1.0, 0.96, 0.47) (1.0, 1.05, 2.12) (0.0, 0.22, 6.96) 0

Ribosome 30S1 (13705, 13762) (1.0, 0.90, 0.03) (1.0, 1.17, 36.90) (0.0, 1.38, 2721.19) 0
Ribosome 30S2 - (1.0, 0.90, 0.03) (1.0, 1.17, 34.60) (0.0, 1.37, 2392.51) 0
Ribosome 30S3 - (1.0, 0.93, 0.06) (1.0, 1.08, 16.14) (0.0, 0.38, 519.22) 0

hex Head1 (8128, 6587) (1.0, 0.91, 1.7e-4) (1.0, 2.99, 6077.33) (0.0, 29.52,1.80e5) 2
Head2 - (1.0, 0.91, 0.005) (1.0, 1.96, 193.49) (0.0, 6.34, 5852.23) 0
Head3 - (1.0, 0.92, 0.007) (1.0, 1.80, 147.80) (0.0, 4.50, 1481.69) 0

Ribosome 30S1 (40292, 33313) (1.0, 0.91, 2.4e-5) (1.0, 2.63, 4.26e4) (0.0, 34.15,2.27e6) 5
Ribosome 30S2 - (1.0, 0.91, 0.004) (1.0, 1.74, 263.91) (0.0, 4.97, 8017.39) 0
Ribosome 30S3 - (1.0, 0.92, 0.004) (1.0, 1.59, 237.36) (0.0, 3.42, 5133.25) 0

Fig. 10. The comparison of the three quality criteria (the scaled Jacobian, the condition number
and Oddy metric) before/after the quality improvement for quad/hex meshes of the human
head (Figure 12) and Ribosome 30S (Figure 1). DATA1 – before quality improvement; DATA2

– after quality improvement using the optimization scheme in [2] [3]; DATA3 – after quality
improvement using the combined geometric flow/optimization-based approach.

(a) (b) (c)

(d) (e)

Fig. 11. The comparison of mesh quality of Haloarcula Marismortui large Ribosome 50S
(1JJ2) crystal subunit. The light yellow and the pink color show 5S and 23S rRNA respectively,
the remaining colors are proteins. (a) the original quad mesh (17278 vertices, 17328 quads);
(b) the improved quad mesh; (c) the improved hex mesh (57144 vertices, 48405 hexes); (d)
the zoom-in picture of the red box in (a); (e) the zoom-in picture of the redbox in (b).

In [2] [3], an optimization approach was used to improve the quality of quad/hex meshes.
The goal is to remove all the inverted elements and improve the worst condition number of the
Jacobian matrix. Here we combine our surface smoothing and quality improvement schemes
with the optimization-based approach. We use the geometric flow to improve the quality of
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(a) (b) (c)

Fig. 12. The comparison of mesh quality of the interior and exterior hexahedral meshes. (a) the
original interior hex mesh (8128 vertices, 6587 hexes); (b) the improved interior hex mesh; (c)
the improved exterior hex mesh (16521 vertices, 13552 hexes). The mesh quality is measured
by three quality metrics as shown in Figure 10.

(a) (b) (c) (d)

Fig. 13. The comparison of mesh quality of the human knee and the Venus model. (a) the
original hex mesh of the knee (2103 vertices, 1341 hexes); (b) the improved hex mesh of the
knee; (c) the original hex mesh of Venus (2983 vertices, 2135 hexes); (d) the improved hex
mesh of Venus.

quad/hex meshes overall and only use the optimization-based smoothing when necessary. Fig-
ure 10 shows the comparison of the three quality criteria before and afterquality improvement.
We can observe that the aspect ratio is improved by using the combined approach.

We have applied our surface smoothing and quality improvement technique on some
biomolecular meshes. In Figure 4, the surface of a molecule consisting of three amino acids
is denoised, the surface quadrilateral mesh becomes more regular and the aspect ratio is im-
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(a) (b) (c)

Fig. 14. The comparison of mesh quality of the bubble. (a) a uniform quad mesh (828 vertices,
826 quads); (b) an adaptive quad mesh (5140 vertices, 5138 quads); (c) the improved adaptive
quad mesh.

proved. The comparison of the quality of quad/hex meshes of Ribosome30S/50S are shown
in Figure 1, Figure 11 and Figure 10. The surface diffusion flow preserves a sphere accu-
rately when the initial mesh is embedded and close to a sphere and the tangent movement
of boundary vertices doesn’t change the shape, therefore features on the molecular surface
are preserved. Our quality improvement scheme also works for adaptive meshes as shown in
Figure 7.

From Figure 6 and 8, we can observe that the mesh, especially the surface mesh, becomes
more regular and facial features of the human head are preserved as well as the aspect ratio
is improved (Figure 10). The interior and exterior hexahedral meshesof the human head as
shown in Figure 12 have been used in the electromagnetic scattering simulations. Figure 13
shows the quality improvement of hexahedral meshes, as well as the surface quadrilateral
meshes, of the human knee and the Venus model.

Figure 14 shows the quadrilateral meshes for a bubble, which was usedin the process of
bubble elongation simulation using the boundary element method. First a uniform quad mesh
(Figure 14(a)) is extracted from volumetric data for the original state of the bubble, then we
use the templates defined in [2] [3] to construct an adaptive mesh as shown in Figure 14(b),
the boundary element solutions such as the deformation error are takenas the refinement
criteria. Finally we apply our quality improvement techniques to improve the mesh quality.
The improved quad mesh is shown in Figure 14(c).

6 Conclusions

We have presented an approach to smooth the surface and improve the quality of quadrilat-
eral and hexahedral meshes. The surface diffusion flow is selectedto denoise surface meshes
by adjusting each boundary vertex along its normal direction. The surface diffusion flow is
volume preserving, and also preserves a sphere accurately when theinput mesh is embedded
and close to a sphere, therefore it is especially suitable for surface smoothing of biomolecular
meshes because biomolecules are usually modelled as a union of hard spheres. The vertex tan-
gent movement doesn’t change the surface shape, therefore surface features can be preserved.
The interior vertices of hex meshes are relocated to their mass centers in order to improve the
aspect ratio. In a summary, our approach has the properties of noiseremoval, feature preser-
vation and mesh quality improvement. The resulting meshes are extensively used for efficient
and accurate finite element calculations.
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