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Abstract: This paper describes an approach to smooth the surface and impeayestlity of
quadrilateral/hexahedral meshes with feature preserved using tyexitoev. For quadrilateral
surface meshes, the surface diffusion flow is selected to remove Inpisdocating vertices
in the normal direction, and the aspect ratio is improved with feature pwexséy adjusting
vertex positions in the tangent direction. For hexahedral meshesgbédbiel surface vertex
movement in the normal and tangent directions, interior vertices areateldto improve the
aspect ratio. Our method has the properties of noise removal, feaaserpation and quality
improvement of quadrilateral/hexahedral meshes, and it is especida#ipke for biomolecular
meshes because the surface diffusion flow preserves sphematateif the initial surface
is close to a sphere. Several demonstration examples are providedafiide variety of
application domains. Some extracted meshes have been extensiveljnuUsgte element
simulations.

Key words. quadrilateral/hexahedral mesh, surface smoothing, feature yaéser quality
improvement, geometric flow.

1 Introduction

The quality of unstructured quadrilateral/hexahedral meshes plays ortant role in
finite element simulations. Although a lot of efforts have been made, it etifins a chal-
lenging problem to generate quality quad/hex meshes for complicatetusésisuch as the
biomolecule Ribosome 30S shown in Figure 1. We have described anfamsextraction
method to generate quad/hex meshes for arbitrary complicated stsuétane volumetric
data and utilized an optimization-based method to improve the mesh quali®] [[d]] but
the surface needs to be smoothed and the mesh quality needs to beifopttued.

Geometric partial differential equations (GPDES) such as Laplacianthing have been
extensively used in surface smoothing and mesh quality improvemeate Ere two main
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Fig. 1. The comparison of mesh quality of Thermus Thermophilus small Ribe S48 (1J5E)
crystal subunit. The pink color shows 16S rRNA and the remaining cal@gproteins. (a)
the original quadrilateral mesh (13705 vertices, 13762 quads); €hjrthroved quadrilateral
mesh; (c) the improved hexahedral mesh (40294 vertices, 33%&3héd) the zoom-in pic-
ture of the red box in (a); (e) the zoom-in picture of the red box in (bg fitesh quality is
measured by three quality metrics as shown in Figure 10.

methods in solving GPDEs, the finite element method (FEM) and the finiteetife method
(FDM). Although FDM is not robust sometimes, people still prefer to clirog FDM instead
of FEM because FDM is simpler and easier to implement. Recently, a disddtzmat of
the Laplacian-Beltrami (LB) operator over triangular meshes wasetbend used in solving
GPDEs [4] [5] [6]. In this paper, we will discretize the LB operator ogaadrilateral meshes,
and discuss an approach to apply the discretizated format on sunfexelsng and quality
improvement for quadrilateral or hexahedral meshes.

The main steps to smooth the surface and improve the quality of quadiilaterhexa-
hedral meshes are as follows:

1. Discretizing the LB operator and denoising the surface mesh - vedijggtment in the
normal direction with volume preservation.

2. Improving the aspect ratio of the surface mesh - vertex adjustm#re tangent direction
with feature preservation.

3. Improving the aspect ratio of the volumetric mesh - vertex adjustmsidginhe volume.

For quadrilateral meshes, generally only Step 1 and Step 2 are reduiteadl the three steps
are necessary for surface smoothing and quality improvement ahkexal meshes.
Unavoidly the quadrilateral or hexahedral meshes may have soneeowgsthe surface,
therefore the surface mesh needs to be smoothed. In this paperiveeaddiscretized format
of the LB operator, and choose the surface diffusion flow (Equatiprtgsmooth the surface
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mesh by relocating vertices along their normal directions. The surfffasidn flow is volume
preserving and also preserves a sphere accurately if the initial surfash is embedded and
close to a sphere, therefore it is especially suitable for surface smgathibiomolecular
meshes since biomolecules are usually modelled as a union of haré@spher

The aspect ratio of the surface mesh can be improved by adjustingegdrithe tangent
plane, and surface features are preserved since the movementtangent plane doesn't
change the surface shape ([7], page 72). For each vertex, tisecerater is calculated to find
its new position on the tangent plane. Since the vertex tangent movemardrisaweighted
relaxation method, it is also suitable for adaptive quadrilateral meshes.

Besides the movement of surface vertices, interior vertices also ndeslredocated in
order to improve the aspect ratio of hexahedral meshes. The mates iecalculated as the
new position for each interior vertex.

Although our relaxation-based method can not guarantee that no ihedeiment is in-
troduced for arbitrary input meshes, it works well in most cases witlptbperties of noise
removal, feature preservation, mesh quality improvement. Furthetritds especially suit-
able for surface smoothing and quality improvement of biomoleculahegeds the ‘smart’
Laplacian smoothing [8] [9], this method is applied only when the mesh quslityproved
in order to avoid inverted elements. This method can also be combined wibptingzation-
based method to obtain a high quality mesh with relatively less computaticstal co

The remainder of this paper is organized as follows: Section 2 revievseh®us related
work; Sections 3 discusses the detailed algorithm of the LB operator titstien, surface
smoothing and quality improvement of quadrilateral meshes; Sectiorgldires the quality
improvement of hexahedral meshes; Section 5 shows some resiliipplications; The final
section presents our conclusion.

2 Previous Work

It is well-known that poor quality meshes result in poorly conditioned stffnmatrices
in finite element analysis, and affect the stability, convergence, angamycof finite element
solvers. Therefore, quality improvement is an important step in masérggon.

Some quality improvement techniques of triangular and tetrahedralasestich as the
edge-contraction method, can not be used for quadrilateral antiddned meshes because we
do not want to introduce any degenerated elements. Therefore, 8fesm®othing methods
are selected to improve the quality of quad/hex meshes by adjusting the pesigons in the
mesh while preserving its connectivity. As reviewed in [10] [11], Laj@acsmoothing and
optimization are the two main quality improvement techniques.

As the simplest and most straight forward method for node-baseld snesothing, Lapla-
cian smoothing relocates the vertex position at the average of the nadesctiog to it [12].
There are a variety of smoothing technigues based on a weighted evertg surrounding
nodes and elements [13] [14] [15]. The averaging method may ioretiegrade the local
quality, but it is computationally inexpensive and very easy to implemeiitjso wide use.
Winslow smoothing is more resistant to mesh folding because it requirésdical variables
are harmonic functions [16].

Instead of relocating vertices based on a heuristic algorithm, people utlizegtimiza-
tion technique to improve mesh quality. The optimization algorithm measuresutiiy of
the surrounding elements to a node and attempts to optimize it [17]. Thétligds similar to
a minimax technique used to solve circuit design problems [18]. Optimizatsed smooth-
ing yields better results but it is more expensive than Laplacian smootniagit is difficult

3
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to decide the optimized iteration step length. Therefore, a combined Laplagianization-
based approach [8] [9] [19] was recommended. Physically-bsisadations are used to repo-
sition nodes [20]. Anisotropic meshes are obtained from bubble equitid2d] [22].

When we use the smoothing method to improve the mesh quality, it is also imptota
preserve surface features. Baker [23] presented a featuret@tracheme which is based on
estimates of the local normals and principal curvatures at each mdshlmcal parametriza-
tion was utilized to improve the surface mesh quality while preserving sudaaracteristics
[24], and two techniques called trapezium drawing and curvaturedbrassh improvement
were discussed in [25].

Staten et al. [26] [27] proposed algorithms to improve node valencedadrilateral
meshes. One special case of cleanup in hexahedral meshes fohidlemweaving algo-
rithm is presented in [28]. Schneiders [29] proposed algorithms aedesf templates for
quad/hex element decomposition. A recursive subdivision algorithenpr@posed for the re-
finement of hex meshes [30].

3 Quadrilateral Mesh

Noise may exist in quadrilateral meshes, therefore we need to smoathrfaee mesh.
The quality of some quadrilateral meshes may not be good enoughiterdlement calcula-
tions, and the aspect ratio also needs to be improved.

There are two steps for the surface smoothing and the quality improvefregradrilateral
meshes: (1) the discretization of Laplace-Beltrami opertor and thexuaxdgement along its
normal direction to remove noise, (2) the vertex movement on its tapggme to improve the
aspect ratio while preserving surface features.

3.1 Geometric Flow

Various geometric partial differential equations (GPDES), such asdamicurvature flow,
the surface diffusion flow and Willmore flow, have been extensiveld irssurface and imag-
ing processing [5]. Here we choose the surface diffusion flow to #mtbe surface mesh,

o =AH(X)n(x). 1)

ot

whereA is the Laplace-Beltrami (LB) operatdd is the mean curvature amgx) is the unit
normal vector at the node In [31], the existence and uniqueness of solutions for this flow
was discussed, and the solution converges exponentially fast to & sitherinitial surface is
embedded and close to a sphere. It was also proved that this flow shaiielding and volume
preserving [5].

In applying geometric flows on surface smoothing and quality improvémar quadri-
lateral meshes, it is important to derive a discretized format of the Ldadpr. Discretized
schemes of the LB operator over triangular meshes have beendiarideutilized in solving
GPDEs [4] [5] [6]-

A quad can be subdivided into triangles, hence the discretization sclodrttesLB op-
erator over triangular meshes could be easily used for quadrilatesdlaneHowever, since
the subdivision of each quad into triangles is not unique (there are twe)wing resulting
discretization scheme is therefore not unique. Additionally in the discretizattbeme, the
element area needs to be calculated. If we choose to split each quad dntdamgles and
calculate the area of a quad as the summation of the area of two triangleshé¢harea cal-
culated from the two different subdivisions could be very differemtaose four vertices of a
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guad may not be coplanar. Therefore, a unique discretized forfitia¢ &.B operator directly
over quad meshes is required.

3.2 Discretized Laplace-Beltrami Operator

Here we will derive a discretized format for the LB operator over gietéral meshes.
The basic idea of our scheme is to use the bilinear interpolation to derivestiretized format
and to calculate the area of a quad. The discretization scheme is thuslywigfieed.

P3 P4
P3 P4

z

TZ,y P1 P2
P1 P2
. 0 1 U

Fig. 2. A quad [p1p2p4p3] is mapped into a bilinear parametric surface.

Area Calculation: Let [pyp2paps] be a quad inR3, then we can define a bilinear para-
metric surfaceSthat interpolates four vertices of the quad as shown in Figure 2:

S(u,v) = (1-u)(1-Vv)pr+u(l-Vv)p2
+ (1—-uVvps+uvp. (2

The tangents of the surface are

Su(u,v) = (1-V)(p2— p1) +V(Pa — P3), ®3)
Su(u,v) = (1—u)(ps— P1) +U(pa— p2). 4)
Let O denote the gradient operator about tkgy, z) coordinates of the verte, then we have
O0Su(u,v) = —(1-v), (5)
0Sy(u,v) = —(1-u). (6)

Let A denote the area of the surfad@y, v) for (u,v) € [0,1]?, then we have

A= [ [ Visxs dua

1 r1
= [ iSRS 12 (58 duoy -

It may not be easy to obtain the explicit form for integrals in calculating tha,arumerical in-
tegration quadrature could be used. Here we use the following fout-@aimssian quadrature
rule to compute the integral

/1/1 f(u,v)dudv= F() + () + () + (%) (8)
0 Jo

4 )

where
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The integration rule in Equation (8) is @i(h*), whereh is the radius of the circumscribing
circle.

Discretized LB Operator: The derivation of the discretized format of the LB operator is
based on a formula in differential geometry [4]:

A
lim —=H 9
diamR)—0 A (p), ©)
whereA is the area of a regioR over the surface around the surface pgndiam(R) denotes
the diameter of the regioR, andH (p) is the mean curvature normal.
From Equation (7), we have

a- [ 1D¢ Is \|2|| S |7 (5,5, 2dudv

// ¢||sa|\ HSVHZ &S e

// msJHZHsvHZ “&sr

= d21(p2 — P1) +043(Ps — ps)
+ a31(ps — P1) + 042(Ps4 — P2), (10)

where

B (v-DS - (W-DS)),
o= // ¢H&|| HS/HZ R

- - 1>sJ>>d ;
e = // ¢||sdu usvuz “&sr

s — / / U-DS- (v-DS)
Jn&u ||&||2 —(SS)?

e // msun HSVHZ A

UJA could be written as

dudv

OA=a1py+02pz +03pP3+04pPs (11)
with
01 = —021 — 03y, Oz = —021 —U42,
O3 =—031—043,  0O4=—043— 4. (12)

Here we still use the four-point Gaussian quadrature rule in Equatido (@mpute the inte-
grals in theaij . It follows from Equation (12) thazf'zlai =0, we have

OA=az(pz — p1) +03(p3 — P1) +aa(pPs— P1)- (13)
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N

P2j+1

P2j-1 Pj

Fig. 3. A neighboring quadpj p2j—1p2j p2j+1] around the vertex.

Now let p; be a vertex with valence, andpy; (1 < j < n) be one of its neighbors on the
quadrilateral mesh, then we can define three coefficentas, a4 as in (13). Now we denote
these coefficients as', B! andy‘j for the quad|pj p2j—1P2; P2j+1] as shown in Figure 3. By
using Equation (13), the discrete mean curvature normal can be diefine

n

H(p Z ! (P2j—1— i)

+ B'j(p2j+1— Pi)+ Vi1 (P2j — Pi)] (14)
2n

= > w(pk—pi)
=1

whereH (p;) denotes the mean curvature norm#&lp;) is the total area of the quads around
pi, and _ o . .
) ! ) ot +p- ) ol 4B
Wy = —VIJ » Woj_1 = 1= P L 2j+1 = 2 P
A(pi) Alpi) A(pi)
Using the relatiol\x = 2H (p;) ([32], page 151), we obtain

f(pi) ~22Wk () — f(pi)). (15)

Therefore,
2n
AH(pi)n(pi) ~ 2 Z Wie(H (p) —H(pi))n(pi)

_22"‘“ (i) TH(p) —H(pi) |, (16)

whereH(py) and H(p;) are further discretized by (14). Note thatpi)n(pc)T is a 3x 3
matrix.

Figure 4 shows one example of the molecule consisting of three amino(AS8s THR
and TYR) with 49 atoms. The molecular surface was bumpy as shown ime~#{a) since
there are some noise existing in the input volumetric data, the surfacenbe@mooth after
the vertex normal movement as shown in Figure 4(b).

7
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Fig. 4. Surface smoothing and quality improvement of the molecule consistinges e#tmino
acids (ASN, THR and TYR) with 49 atoms (45534 vertices, 45538 quéasand (c) - the
original mesh; (b) and (d) - after surface smoothing and quality imgr@nt.

3.3 Tangent M ovement

In order to improve the aspect ratio of the surface mesh, we need ta @adent move-
ment in Equation (1), hence the flow becomes

0X
at
wherev(x) is the velocity in the tangent directioh(x). First we calculate the mass center
m(x) for each vertex on the surface, then project the veator) — x onto the tangent plane.
v(x)T(x) can be approximated Hyn(x) —x] — n(x)T [m(x) —x]n(x) as shown in Figure 5.
Mass Center: A mass centep of a regionSis defined by finding € S, such that

/s\|y—p||2 do = min. (18)

= AH(X)n(x) +Vv(X) T(x), a7

Sis a piece of surface i3, andS consists of quads around vertexThen we have
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n(x) A m(x)—x

(%) [m(x)—x] n(x)

[m(x)=x]-n(x) [mx)—x] 7(x)

Fig. 5. The tangent movement at the vertexver a surface. The blue curve represents a
surface, and the red arrow is the resulting tangent movement vector.

z(pi+DzjflJ:lF’Zj+|°2J'+1_pi)A]- -0, (19)

Aj is the area of the quégi p2j 1 p2j P2j+1] calculated from Equation (7) using the integration
rule in Equation (8). Then we can obtain

n " . . .
Pi + P2j—1+ P2j + P2j+1 i
m(p) = Y (S A A, (20)

=1

whereAl ., is the total of quad areas aroupd The area of a quad can be calculated using
Equation (7).

In Figure 4, the vertex tangent movement is used to improve the aspiecbfthe quadri-
lateral mesh of the molecule consisting of three amino acids. ComparedFigitre 4(c), it
is obvious that the quadrilateral mesh becomes more regular and thet &sfio is better as
shown in Figure 4(d).

3.4 Temporal Discretization

In the temporal spac%‘ is approximated by a semi-implicit Euler scheﬁgé[i“n, where
T is the time step length" is the approximating solution &t= nt, xi”Jrl is the approximating
solution att = (n+ 1)t, andx? serves as the initial value st

The spatial and temporal discretization leads to a linear system, and soxiapgting
solution is obtained by solving it using a conjugate gradient iterative metfithddragonal
preconditioning.

3.5 Discussion

Vertex Normal Movement: The surface diffusion flow can preserve volume. Further-
more, it also preserves a sphere accurately if the initial mesh in emibeddkclose to a
sphere. Suppose a molecular surface could be modelled by a uni@md§pheres, so it is
desirable to use the surface diffusion flow to evolve the molecular furffagure 4 shows one
example, the molecular surface becomes more smooth and feawimeserved after surface
denoising.

Vertex Tangent Movement: If the surface mesh has no noise, we can only apply the
tangent movemer%‘ = Vv(X)T(x) to improve the aspect ratio of the mesh while ignoring the
vertex normal movement. Our tangent movement has two properties:

e The tangent movement doesn't change the surface shape (§d,42. Figure 6 shows
the comparison of the human head model before and after the qualitpuerpent. In
Figure 6(b), each vertex is relocated to its mass center, so both norovahment and
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(b)

Fig. 6. The quality of a quadrilateral mesh of a human head model is impro@@ (Zertices,
2912 quads) after 100 iterations with the time step length 0.01. (a) The arigiesh; (b)
Each vertex is relocated to its mass center, some facial features areaan(c) Only tangent
movement is applied.

(b)

Fig. 7. The quality of an adaptive quadrilateral mesh of a biomolecule mAChE isowved
(26720 vertices, 26752 quads). (a) the original mesh; (b) aftditgjiraprovement.

tangent movement are applied. After some iterations, the facial feagureh as the nose,
eyes, mouth and ears, are removed. In Figure 6(c), the vertexmanids restricted on
the tangent plane, therefore facial features are preserved.

e The tangent movement is an area-weighted averaging method, whido isugtable for
adaptive quad meshes as shown in Figure 7 and 8. In Figure 7, themmistain the
structure of biomolecule mouse acetylcholinesterase (MAChE), arebdermeshes are
generated around the cavity while coarser meshes are kept in all etiens. In Figure
8, finer meshes are generated in the region of facial features of tharhinead.

From Figure 6, 7 and 8, we can observe that after tangent movemedarilateral meshes
become more regular and the aspect ratio of the meshes is improvesl| as surface features
are preserved.



Surface Smoothing and Quality Improvement of Quad/Hex Meshes 11

(b)

Fig. 8. Adaptive quadrilateral/hexadedral meshes of the human head. (ajitfieal quad
mesh (1828 vertices, 1826 quads); (b) the improved quad mestiig(@nproved hex mesh
(4129 vertices, 3201 hexes), the right part of elements are remogbdwn one cross section.

4 Hexahedral Mesh

There are three steps for surface smoothing and quality improvenfismxahedral
meshes, (1) surface vertex normal movement, (2) surface vengent movement and (3)
interior vertex relocation.

4.1 Boundary Vertex Movement

The dual contouring hexahedral meshing method [1] [2] [3] pravi@®oundary sign for
each vertex and each face of a hexahedron, indicating if it lies on thredaoysurface or not.
For example, a vertex or a face is on the surface if its boundary sigmibitk lies inside the
volume if its boundary sign is O.

The boundary sign for each vertex/face can also be decided byingeblke connectivity
information of the input hexahedral mesh. If a face is shared by twoesiés, then this face
is not on the boundary; if a face belongs to only one hex, then this faceriése boundary
surface, whose four vertices are also on the boundary surface.

We can use the boundary sign to find the neighboring vertices/facesgioem vertex.
For each boundary vertex, we first find all its neighboring verticesfanes lying on the
boundary surface by using the boundary sign, then relocate it to its asitiom calculated
from Equation (17). There is a special situation that we need to be tadace/edge, whose
four/two vertices are on the boundary, may not be a boundary face.

4.2 Interior Vertex Movement

For each interior vertex, we intend to relocate it to the mass center of allrisusiding
hexahedra. There are different methods to calculate the volume fxadédron. Some peo-
ple divide a hex into five or six tetrahedra, then the volume of the hex is thenstion of
the volume of these five or six tetrahedra. This method is not unique siace dhe various
dividing formats. Here we use an trilinear parametric function to calcul&edlume of a
hex.
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p7 P8
PS 5 P6
'P3
wl A P4
Vv
P1 U P2

Fig. 9. The trilinear parametric volumeé of a hexahedrongdipz. .. ps].

Volume Calculation: Let [pyp;... pg] be a hex inR3, then we define the trilinear para-
metric volumeV (u, v, w) that interpolates eight vertices of the hex as shown in Figure 9:

V(uvw) = (1-u)(1-v)(1-w)p
+u(l-v)(1-w)pz+ (1 - uv(1-w)pg
+uv<1 W)pa -+ (1 U)(1— v)wps
+ u(l-v)wps+ (1—u)vwpy
+ Uvws. (22)

The tangents of the volume are

Vu(u,v,w) = (1-v)(1—w)(pz2 — p1) + V(1 —w)(ps — p3)
+ (1= Vv)W(ps — Ps) -+ VW(Pg — P7),

V(U v,w) = (1—u)(1—w)(ps— p1) +u(1—w)(ps — p2)
+ (1~ u)w(p7 — ps) +uw(ps — Pe),
Vin(u, v, W) = (1—u)(1-V)(ps— p1) +Uu(1—V)(ps — P2)

+ (1= u)v(p7 — p3) +uv(ps — Pa)-

LetV denote the volume of (u,v,w) for (u,v,w) € [0,1]3, then we have

1 1 1 —
vz/ / / VN dudvdw 22)
JO JO JO
where
Vo= || (Vux V) Vi |2 (23)

Numerical integration quadrature could be used. Here we choosdltheifg eight-point
Gaussian quadrature rule to compute the integral

1 1 1 87 f .
/// f(u,v,w)dudvdeM, (24)
o Jo Jo 8
where
1 V3 . 1 V3
9-27% 9727%
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w=@, g, qg) =0, q, q)
w=0, g, g), =@ g, q),
=@, g, g"), dg=(@" g, q),

o=@, g, g, a=(q", q*, g").

The integration rule in Equation (24) is 6f(h*), whereh is the radius of the circumscribing
sphere.
Mass Center: A mass centep of a regionV is defined by findingy € V, such that

[ lly=pI2do—min (25)
Y,
V is a piece of volume ifR3, andV consists of hexahedra around veriesThen we have
18
2(g 2 Pi—p)Vi=0, (26)
=1

Vj is the volume of the hekp;p; ... pg] calculated from the trilinear function, then we can
obtain

| =

8
mp) =Y (35 PiVi)Motas @7
jeN() ©j=1
whereN(i) is the index set of the one ring neighborsp;zfand\/tiota
aroundp;.
The same Euler scheme is used here for temporal discretization, alieguesystem is
solved using the conjugate gradient iterative method.

| is the total of hex volume

5 Resultsand Applications

There are many different ways to define the aspect ratio for a quachex to measure
the mesh quality. Here we choose the scaled Jacobian, the condition mointhe Jacobian
matrix and Oddy metric [33] as our metrics [34][35][36].

Assumex € RS is the position vector of a vertex in a quad or a hex, and R® for
i =1,...,mare its neighboring vertices, wheme= 2 for a quad anan= 3 for a hex. Edge
vectors are defined &= x —xwithi = 1,...,m, and the Jacobian matrix = [ey, ..., €m].
The determinant of the Jacobian matrix is calladobian or scaled Jacobiaif edge vectors
are normalized. An element is said to inwertedif one of its Jacobians< 0. We use the

Frobenius normas a matrix norm|J| = (tr(J7J)1/2). The condition number of the Jacobian
matrix is defined ag(J) = |J||J72|, where|J | = Il Therefore, the three quality metrics

det(J)
for a vertexx in a quad or a hex are defined as follows:
Jacobiar{x) = det(J) (28)
1,1
— 2
k() = 137 (29)

(9732~ &3

O = " )

(30)

wherem = 2 for quadrilateral meshes anu= 3 for hexahedral meshes.
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Type DataSet MeshSize Scaled Jacobian Condition Number Oddy Metric Inverted
(Vertext, Elent) (best,aver.,worst) (best,aver.,worst) (best,aver.,worst) Elem
quad Headl (2912,2912) (1.0,0.92,0.02) (1.0,1.13,64.40) (0.0,1.7458%3 O
Head - (1.0,0.93,0.16) (1.0,1.11,6.33) (0.0, 0.63, 78.22) 0
Head - (1.0,0.96,0.47) (1.0, 1.05, 2.12) (0.0, 0.22, 6.96) 0
Ribosome 305 (13705, 13762) (1.0, 0.90,0.03) (1.0,1.17,36.90) (0.0,1.38129) 0O
Ribosome 303 - (1.0, 0.90,0.03) (1.0,1.17,34.60) (0.0,1.37,2392.51) O
Ribosome 303 - (1.0,0.93,0.06) (1.0,1.08,16.14) (0.0, 0.38,519.22) 0
hex Head (8128, 6587) (1.0,0.91, 1.7e-4) (1.0, 2.99, 6077.33) (0.0, 29.8Re5) 2
Head - (1.0, 0.91,0.005) (1.0,1.96,193.49) (0.0, 6.34,5852.23) 0
Head - (1.0,0.92,0.007) (1.0, 1.80,147.80) (0.0, 4.50,1481.69) O
Ribosome 305 (40292, 33313) (1.0, 0.91, 2.4e-5) (1.0,2.63,4.26e4) (0.0,32.23¢6) 5
Ribosome 303 - (1.0, 0.91,0.004) (1.0,1.74,263.91) (0.0,4.97,8017.39) 0
Ribosome 303 - (1.0,0.92,0.004) (1.0,1.59, 237.36) (0.0,3.42,5133.25) O

Fig. 10. The comparison of the three quality criteria (the scaled Jacobian, th#¢icanmtimber
and Oddy metric) before/after the quality improvement for quad/hexhatesf the human
head (Figure 12) and Ribosome 30S (Figure 1). DATAefore quality improvement; DATA
— after quality improvement using the optimization scheme in [2] [3]; DAFAafter quality
improvement using the combined geometric flow/optimization-based apipro

Fig. 11. The comparison of mesh quality of Haloarcula Marismortui large Ribesé066

(23J2) crystal subunit. The light yellow and the pink color show 5S aSdRBIA respectively,
the remaining colors are proteins. (a) the original quad mesh (17278eg 17328 quads);
(b) the improved quad mesh; (c) the improved hex mesh (57144 \&rd8d405 hexes); (d)
the zoom-in picture of the red box in (a); (e) the zoom-in picture of théoedin (b).

In [2] [3], an optimization approach was used to improve the quality ofithex meshes.
The goal is to remove all the inverted elements and improve the worsiticonaumber of the
Jacobian matrix. Here we combine our surface smoothing and qualitpvement schemes
with the optimization-based approach. We use the geometric flow to imprevgudiity of
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SR,

Fig. 12. The comparison of mesh quality of the interior and exterior hexahedrsthes. (a) the
original interior hex mesh (8128 vertices, 6587 hexes); (b) the ingatavterior hex mesh; (c)
the improved exterior hex mesh (16521 vertices, 13552 hexes). €kl quality is measured
by three quality metrics as shown in Figure 10.

@ (b) (© (d

Fig. 13. The comparison of mesh quality of the human knee and the Venus maji¢he(
original hex mesh of the knee (2103 vertices, 1341 hexes); (b) theimg hex mesh of the
knee; (c) the original hex mesh of Venus (2983 vertices, 2135 heiBsthe improved hex
mesh of Venus.

guad/hex meshes overall and only use the optimization-based smoothémecessary. Fig-
ure 10 shows the comparison of the three quality criteria before andjatiéty improvement.
We can observe that the aspect ratio is improved by using the combipexbap.

We have applied our surface smoothing and quality improvement te@hmigusome
biomolecular meshes. In Figure 4, the surface of a molecule considtthgee amino acids
is denoised, the surface quadrilateral mesh becomes more regdltveaaspect ratio is im-
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Fig. 14. The comparison of mesh quality of the bubble. (a) a uniform quad n82hwertices,
826 quads); (b) an adaptive quad mesh (5140 vertices, 5138)q(@dke improved adaptive
guad mesh.

proved. The comparison of the quality of quad/hex meshes of Ribo80®B¥50S are shown
in Figure 1, Figure 11 and Figure 10. The surface diffusion flow puesea sphere accu-
rately when the initial mesh is embedded and close to a sphere and thettermament
of boundary vertices doesn't change the shape, therefore featnréhe molecular surface
are preserved. Our quality improvement scheme also works fotieelapeshes as shown in
Figure 7.

From Figure 6 and 8, we can observe that the mesh, especially theesorésh, becomes
more regular and facial features of the human head are presesweellzas the aspect ratio
is improved (Figure 10). The interior and exterior hexahedral meshté® human head as
shown in Figure 12 have been used in the electromagnetic scattering simsildtigure 13
shows the quality improvement of hexahedral meshes, as well as tlaeesguadrilateral
meshes, of the human knee and the Venus model.

Figure 14 shows the quadrilateral meshes for a bubble, which wasruttesl process of
bubble elongation simulation using the boundary element method. Firfioaramuad mesh
(Figure 14(a)) is extracted from volumetric data for the original state ebtibble, then we
use the templates defined in [2] [3] to construct an adaptive mesh as shd-igure 14(b),
the boundary element solutions such as the deformation error are dskére refinement
criteria. Finally we apply our quality improvement techniques to improve teshmguality.
The improved quad mesh is shown in Figure 14(c).

6 Conclusions

We have presented an approach to smooth the surface and improvalityeaf quadrilat-
eral and hexahedral meshes. The surface diffusion flow is selectihoise surface meshes
by adjusting each boundary vertex along its normal direction. Thecddfusion flow is
volume preserving, and also preserves a sphere accurately whieptitenesh is embedded
and close to a sphere, therefore it is especially suitable for surfaaatisimg of biomolecular
meshes because biomolecules are usually modelled as a union of hardssfT he vertex tan-
gent movement doesn’t change the surface shape, thereftaeesteatures can be preserved.
The interior vertices of hex meshes are relocated to their mass centedeimmimprove the
aspect ratio. In a summary, our approach has the properties ofnreoiewal, feature preser-
vation and mesh quality improvement. The resulting meshes are extgnseel for efficient
and accurate finite element calculations.
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