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Abstract

This paper describes a comprehensive approach to construct quadiesi®r implicit solvation models
of biomolecular structures starting from atomic resolution data in the ProteinEzatia (PDB). First, a
smooth volumetric electron density map is constructed from atomic data usingteei@hussian isotropic
kernel functions and a two-level clustering technique. This enableglbeti®n of a smooth implicit solva-
tion surface approximation to the Lee-Richards molecular surface. Nexdddied dual contouring method
is used to extract triangular meshes for the surface, and tetrahedfasrfes the volume inside or outside
the molecule within a bounding sphere/box of influence. Finally, geometrictéiolaniques are used to im-
prove the surface and volume mesh quality. Several examples aretprgseauding generated meshes for
biomolecules that have been successfully used in finite element simulatiohgrigveolvation energetics
and rate binding constants.
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1 Introduction

Finite element simulations have become an important tothénanalysis of biomolecular func-

tional models, such as electrophoresis, electrostatidddfusion influenced reaction rate con-
stants [36] [37] [41]. For efficient and accurate finite el@mnsolutions, adaptive and quality

meshes are a necessary first step. Quite often, people haeetaip FEM because they can
not generate satisfied triangular or tetrahedral meshesptesent the geometric model for large
complicated biomolecules such as Ribosome (Fig. 1), or thtwgetures whose active site occurs
at the bottom of a narrow gorge (deep pocket) (Fig.13).

* Visit http://www.ices.utexas.edu/cvc/meshing/MolMesh
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(c) after smoothing

(d) the interior mesh (e) an exterior mesh (f) an exteriorhmes

Fig. 1. Implicit solvation models of Haloarcula Marismortui large Ribosome 3032) crystal subunit. The
light yellow and the pink color show 5S and 23S rRNA respectively, the ir@ngacolors are proteins. (a):
the implicit solvation model at the medium resolution leyal= 0.0625, p, = 1.0; (b) and (c): triangular
meshes (16700 vertices, 33400 triangles); (d): the interior mesh (83@0fices, 1141575 tets); (e): an
exterior mesh within a sphere (234902 vertices, 1162568 tets); (fxtari@ mesh within a bounding box
(260858 vertices, 1315112 tets).

The protein data bank (http://www.rcsb.org/pdb) proviB&B format files for protein and RNA
structures, with the location of principally all the majdoms (e.g., hydrogen atoms are not dis-
cernible via X-ray diffraction and therefore rarely presenthe PDB). The summation of kernel
functions centered at each atom can be used to construct attswvaumetric electron density
map from PDB data [4] [17]. The volumetric data is often saedpht each rectilinear grid point,
VvV ={F(i, j,k)i, j, kare indices ok, y, zcoordinates in a rectilinear gridand the implicit solva-
tion surface is approximated as a level Sefc) = {(x,y,2)| F(i, j,k) = c}, wherec is a constant
[17] [23]. The computation of density maps can be made vdigieht with worst case complexity
linear in the number of grid points and the number of atomsl{2ihis paper, we describe an ap-
proach to generate quality triangular/tetrahedral me&ireaomplex biomolecular structures from
PDB format data, conforming to good implicit solvation sué approximations. There are three
main steps in our mesh generation process:



(1) Implicit Solvation Surface — A good approximation of tingplicit solvation surface is gen-
erated from a smooth volumetric synthetic electron densigyp by a careful choice of the
parameter of Gaussian kernel functions.

(2) Mesh Generation — The modified dual contouring methodésiuo generate triangular and
interior/exterior tetrahedral meshes.

(3) Quality Improvement — Geometric flows are used to impribequality of extracted trian-
gular and tetrahedral meshes.

The summation of Gaussian kernel functions is used to aartstre density map of a biomolecule
and sampled volumetric data. A smooth implicit solvationdelocan be constructed to approxi-
mate the Lee-Richards molecular surface by using weightes$san isotropic kernel functions
and a two-level clustering techniques.

The dual contouring method [19] [42] [43] is selected for mgeneration as it tends to yield
meshes with better aspect ratio. In order to generate ektereshes, we add a sphere or box
outside the biomolecular surface as an outer boundary. lantaof the dual contouring method
is developed to extract interior and exterior meshes. Qwatiedral mesh is spatially adaptive
and attempts to preserve molecular surface features winlienizing the number of elements. An
extension step is performed to generate the exterior mesh.

The extracted triangular and tetrahedral meshes cannotdaglg used for finite element calcula-
tions, they need to be modified and improved. Since the ifmseigenerated from discrete volu-
metric data suffers from noise, geometric flows are used twosimthe generated surface meshes
with feature preserved. The quality of extracted surfackveiume meshes is also improved.

The main contributions of this paper include: a simple andoam treatment for approximating
implicit solvation models, a modified adaptive surface aolime mesh extraction scheme com-
bined with geometric flows and therefore yields high quatigshes. The generated meshes of the
monomeric and tetrameric mouse acetylcholinesterase (rBAGave been successfully used in
solving the steady-state Smoluchowski equation usingfel#gment method [36] [37] [41].

The remainder of this paper is organized as the followingtiSe 2 reviews related previous work.
Section 3 introduces how to construct implicit solvationface from PDB format data. Section
4 explains mesh generation schemes. Section 5 discussasguagy improvement. Section 6
presents results and conclusion.

2 PreviousWork

Molecular Surface Approximation: There are three different approximations of molecular sur-
faces or interfaces [31], the van der Waals surface (VWS)stient-accessible surface (SAS)
and the solvent-excluded surface (SES) or the Lee-Richarézsce [22]. The VWS is simply the
boundary of the union of balls. As introduced in [22], the Si&%n inflated VWS with a probe
sphere. The SES is a surface inside of which the probe nevaedes.



According to the properties of molecular structures, LaagjBorouchaki used a combined advancing-
front and generalized-Delaunay approach to mesh molesuléaces [21]. Algorithms were de-
veloped for sampling and triangulating a smooth surfach watrect topology [1]. Skin surfaces,
introduced by Edelsbrunner in [9], have a rich combinatigtraicture and are suitable for model-

ing large molecules in biological computing. Cheng et. aln@lintained an approximating trian-
gulation of a deforming skin surface. Simplex subdivisioheames are used to generate tetrahedral
meshes for molecular structures in solving the PoissonzB@hn equation [18]. Gaussian func-
tions have been used to construct density maps [4] [17] f&8}) which implicit solvation models

are approximated as an isocontour [17] [23] [14]. HoweMestill remains a challenging problem

to generate quality triangular and tetrahedral meshesfgelcomplicated molecular structures.

Mesh Generation: As reviewed in [30] [38], octree-based, advancing fronteoband Delaunay
like techniques were used for triangular and tetrahedrahnggeneration. The octree technique
recursively subdivides the cube containing the geometodehuntil the desired resolution is
reached [33]. Advancing front methods start from a bounday move a front from the bound-
ary towards empty space within the domain [12] [25]. Delaurefinement is to refine triangles
or tetrahedra locally by inserting new nodes to maintainRie&unay criterion (‘empty circum-
sphere’) [8]. Sliver Exudation [7] was used to eliminates@alivers. Shewchuk [34] solved the
problem of enforcing boundary conformity by constrainedadeay triangulation (CDT).

The predominant algorithm for isosurface extraction framtume data is Marching Cubes (MC)
[26], which computes a local triangulation within each ctdb@pproximate the isosurface by us-
ing a case table of edge intersections. MC was extended tacexetrahedral meshes between
two isosurfaces [13]. A different and systematic algorithvas proposed for interval volume tetra-
hedralization [29]. By combining SurfaceNets [16] and theeeded Marching Cubes algorithm
[20], octree based Dual Contouring [19] generates adaptivérasolution isosurfaces with good
aspect ratio and preserves sharp features. The dual congaonethod has already been extended
to extract adaptive and quality tetrahedral meshes fromimetric imaging data [42] [43].

Quality Improvement: Algorithms for mesh improvement can be classified into tluaegories
[38] [30]: local coarsening/refinement by inserting/delgtpoints, local remeshing by face/edge
swapping and mesh smoothing by relocating vertices.

Laplacian smoothing relocates the vertex position at tkeesage of the nodes connecting to it [10].
Instead of relocating vertices based on a heuristic alyorithe optimization technique measures
the quality of the surrounding elements to a node and attetopdptimize it. The optimization-
based smoothing yields better results while it is more egperthan Laplacian smoothing. There-
fore, a combined Laplacian/Optimization-based approaahinecommended [5] [11]. The Lapla-
cian operator was discretized over triangular meshes Et¥],geometric flows have been used
in surface and imaging processing [32] [40]. Physicallgdzhsimulations are used to reposition
nodes [24]. Anisotropic meshes are obtained from bubbldiequm [35].



3 Implicit Solvation Surface from volumetric Density Maps

We extract the implicit solvation surface (molecular soefpas a level set of the volumetric syn-
thetic electron density maps. The implicit solvation scefés chosen to be a good approximation
of the Lee-Richards molecular surface [22] by choosing am@pfate parameter of the Gaussian
kernel functions.

3.1 Gaussian Density Map

As used for Poisson-Boltzmann electrostatics calculaiiofis3], a characteristic functiof(x) is
selected to represent an ‘inflated’ van der Waals-basedsibigy

1, if [[x=x]| <ri+o fori=1,...,N,
f(x) = _ 1)
0, otherwise

where (X, r;) are the centers and radii of the N atoms in the biomoleculd,ais the radius
of the diffusing species, here we choase 2 [37]. Wheno = 0, the VWS is constructed. The
function f (x) provides a grid-based volumetric data which can be isocwatbat the isovalue 0.5
to represent the SAS. Fig. 16(a) shows one constructed gagomedel of mAChE.

Molecules are often modelled as the union of hard spHgr@goms). The surface, denoted\g,

of a molecule is therefore described as the boundary of tienwf balls. To have the blurring
effect at the intersection parts of atoms, the moleculdiasaris approximated by an isocontour
[4]:

M:={xeR3: G(x) =1} (2)
with
(il
G(x) = .ieB' (_ﬂz_ 1), (3)

where (X, r;) are the center and radius of tith atom in the biomolecule, ar®f < 0 is called
‘decay rate’, which controls the blurring effect. Note tiBatmust be negative to ensure that the
density function goes to zero dx— ¥; || goes to infinity. In order to make the distance between
M andMg as uniformly as possible, we take

C= Bi/l’iz, (4)

whereC < 0 is a given constant. No®(x) becomes



G(x.C) = ieCUXXiII“iZ).

()

The various presentatiod (C;) = {x € R®: G(x,C;) = 1} of the molecular surface is therefore
achieved by takin€ =C,,...,G,.

As shown in Fig. 2, the different effects &f and constanBj(= B) are studied in a two-sphere
system, one is centering at (0, 0, 0) with the radius of 1@ dtmer one is at (2.8, 0, 0) with the
radius of 2.0. It could be observed that

(a)

(b)

Fig. 2. Implicit Solvation models by choosing various C in (a) andrB(b). Yellow balls are two input
atoms. The correspondence between;@Hues and these models are shown in Table 1.

Table 1: C/B and Implicit Solvation Models in Fig. 2

Red Green | Magenta| Blue
Fig.2(a)| C=-0.125| C=-0.25| C=-05| C=-1.0
Fig.2(b) | Bi=-0.125| Bj=-0.25| B;=-0.5 | Bi=-1.0

introduce more inflation.

C leads to more uniform inflation thd).

Small balls have more inflation than big ones.
Large error happens around the intersection region, and duces gradually away from it.
LargerC andB; lead to more inflation. For the same C aBdvalue, e.g., -0.1253; tends to

Fig. 3 shows implicit solvation models of Ribosome 30S. Coragavith Fig. 3(a), proteins inflate
much more seriously in Fig. 3(e). rRNA in Fig. 3(c) and (f) Isaimilar, but proteins in Fig. 3(f)
look a little more inflated than Fig. 3(b). rRNA in Fig. 3(d) afg) looks similar too, but proteins
in Fig. 3(g) are close to proteins in Fig. 3(c).



(a) C =-0.03125

(e) B=-0.03125 () B=-0.125 (99 B=-05
Fig. 3. Implicit solvation models of Thermus Thermophilus small Ribosome 3@E]ktystal subunit for
various Gaussian kernel parameters. The pink color shows 16S rRiNtha remaining colors are proteins.

3.2 Multi-Level Gaussian Density Map

In order to model different level structures, we introduceltirievel Gaussian map. First let us

introduce some notations as shown in Fig. 4. Ngt= {N(()O), - ,Nén)} denote the index set of all
the atoms witH\Ié') = {i}. Supposé\y is grouped into several subsél%'), i=12---,ng, such
that

o . .

UNY=No, N N N =g 6)

i=1 1<i#j<m

The setN; .= {Nf) i”il, whose elements are also sets, may be further grouped imte sobsets
NS, i=1,2,-- np, such that

n2 i . .
UNY =N, N N N =a (7)
i=1 1<i#j<ny

The collection of{NS)}i’El is denoted byN,. This hierarchical grouping process could be repeated
several times according to the nature of the molecular cexnpbnsidered. In practical, two or

three iterations may be enough. By using these Néfsand a given sequendgy} of p with
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Fig. 4. The definition of multi-level surfaces.

px > 0, thek-level Gaussian map are defined recursively as

Gy(="3 [GnI™ N €N
NeN,

where 0-level Gaussian map is defined by EqQrC 5 (L.0) or
2
Gy (9 =K(lIx=x[)/K(r), K)=e.

The atom group format depends on what kind of structure we teaaddress. For a protein, atoms
may be grouped by residues, meaning that atoms in the saideeese classified into one group.
Then the residues are grouped according to the secondacy s®.

For each k-level Gaussian Miﬁf\l(i)(x), a k-level surface is defined by
k

MNS) = {X € R3 . GNS)(X) = 1}

This surface encloses the surfadg for N ¢ NS). Hence, all theseN,Ei) define a hierarchical
surface family. We call the surfaddy as the child oﬂ\/INm, and M) the parent oMy. The
k K

enclosing relation of this hierarchical surface family iscs, meaning that the minimal distance
from My to MN“> is greater than zero for anly € N,E'). We further define the B-surface bfy for
k



(a) low resolution (b) residual level (c) atomic level

Fig. 5. Implicit solvation models of Haloarcula Marismortui large Ribosome 3032) crystal subunit. (a)
p1 =0.03125; (b)py = 0.125; (c)p1 = 0.5. p2 = 1.0. The light yellow and the pink color show 5S and 23S
rRNA respectively, the remaining colors are proteins.

allN e N,Ei) as

S =Bd( |J {xeR*:Gn(x) <1}),
‘ NeN,

where Bd() denotes the boundary of a regioiRh Note thaiSNm is enclosed strictly bMNa)-
k k

The aim to introduce multi-level Gaussian map is to addressstructure of molecules at a cer-
tain level. For instance, at the residual level of a proteia,regard each residue as one unit and
therefore the residue is modelled as one structure. Thestsubtures of the residue (atoms), are
not modelled individually. Similarly, at the secondarydé\a group of residues is regraded as one
unit while the residues are not regarded as individual sires. The goal of addressing certain
level structure and un-addressing the higher level oneshieaed by the properly selection of the
parameterpy in the multi-level Gaussian map. Basically, larggrshould be chosen to address
k-level structure and smallgy_; is used to un-addregk — 1)-level structures.

Considering three levels of structures, including the atortiie residual and the second levels,
we can construct three level Gaussian map with gigerp, and ps. To address the secondary
structure, we need to choopglarger andp, smaller, whilep; have less influence to the secondary
structure. Therefore, we consider only two-level Gauseiap instead of three: Level one is the
residual level, Level two is the low level. In this paper, wayoconsider two-level Gaussian map.

In implicit solvation modeling, various models are consted by choosing differen; € (0, )
and p2 € (0,0) in the Gaussian map. To make the constructed model corrdgpoa certain
level, p1 and p2 need to be selected properly. For a fixed level, the stru@utkis level should
be distinguishable, while the structure at a higher levey mat be presented remarkably. For
instance, at the residual level, the chain structure ofiteds should be observed, while atoms
may not be distinguished clearly. Fig. 5 shows constructedeis of Ribosome 50S at the low
resolution, residual and atomic levels.



3.3 Surface Point Classification and Parameterization

The adopted multi-level Gaussian map addresses certastrgatures, which are visually distin-
guishable. To enhance the contrast, certain color maps mayséd to paint the substructures.
Therefore, a classification of the surface points is reguiBasically, the problem is: for each

pointp € M )y we need to classify this point by its child surfaddg, N N,E D Pointp € MN(,)
k
belongs td\/IN if and only if

Gn(p) > Gy(p) YNeN! NzK. (8)

Such a classification is unique for point which makes theuaéty above hold strictly, otherwise,
it is not unique. According to this classification of surfaM?\I(,-) is partitioned into patches, each

of them belongs to one child surface. We denote the patc%g'eig toMy by MN(,> N
k

The surfaceM i) could be classified according to zero level surfaces. Th#téspointp € M
belongs tdS |f and only if

Gy (P) 2 Gy(p) ¥ i #k 9)
Let x; andr; be the center and radius §f Then
ri(p—x)
1P —xill
is the nearest point frorp to S ). Equation (10) establishes a mapping from a patch of surface
M () which belongs to spherﬁ to a patch of spher§. It follows from [3] that this patch of

P(p) =%+ (10)

sphere could be represented exactly by a NURB patch ougvadomain, with trimming curves
as the boundaries of the patch. Therefore, the mapping éadslto a piecewise parameterization
of the surfaceMN<,)

k

3.4 Error Computation

In order to obtain the tight enclosing surface for the firselewe need to compute the minimal
distance fronMy, N € Ni) to its parent surfacM ). On the other hand, in order to have an error
controlled approximation of the second level surface wedrte compute the maximal error from
Mn, N € N( Jtoits parent surfacM . Hence, we need to consider the error computation for two
levels of surfaces. The error computatlons are based omamaijection algorithm.

Given the surfac®ly, a pointq ¢ My and a unit directiom, the point projection algorithm in the
following computes a nearby intersection poinof the lineq+tn (t € (—oo,0)) with the surface
MnN.

10



Algorithm 3.4.1 (Point Projectior).

(1) Compute an intervaa,b| fort, on whichGy(g+tn) — 1 changes sign once. This is achieved
by a linear search step in a certain raf@yeB]. If (OGn(q))"n[Gn(q) — 1] < 0, search im
direction, otherwise in-n direction. If such an interval could not be found, the projgmnt
does not exist and return a failure signal. After the inteiva@etermined, sdh = %’ and
k=0.

(2) Computey, 1 by the Newton iteration method

__ Gn(g+tkn)
nTOGN(g+tkn)

i1 = (11)

If ter1 & (a,b), replacei 1 by 252,

(3) Replace the intervéh, b| by [a,t. 1] if Gn(g+tn) — 1 changes sign ovéa, ty. 1], and replace
[a,b] by [t 1,b] otherwise.

(4) If Ib—al| < € (¢ is a given error tolerance, we take it to b&~*), stop the iteration and
p = q+tx. 1N is the projection point, otherwise, det k+ 1 and go back to step 2.

We specify the searching rang®, B] in step 1 of the algorithm to bg-4,4|, since the atom
diameters are around 4. Errors beyond that are not conditiere. If the projection exists, then
the projection poinp of pointq on the surfacéy in the directiom is denoted by, (g, n).

3.4.1 Minimal Error of Level One Surface

Now we assumd& = 1, then the child surfaces are atoms. Net {j} € Nf), the minimal error

from My = Sy to M ) is defined by

dy:= min —Xill=ri, j€N.
DGMN<i)N”p il =T |
1

Letq=Xj+r; HS%QH’ thenq is on the spher& andp is the projection ofy to the surfacev )
1
in the spherical normal directian(q). Thatis,p=Pu_ (d,n(q)). Hence in order to computd,
N
we need to computBy  (a,n(q)) for g € Sy. '
N

1
Now we consider the computation of the minimal distance fidg to M ), where N € N(')

First we assume that each atom (sphere) is uniformly sanwalédm vertlces This sampling is
achieved by translating a triangulated unit sphere to ebttte@atom center and re-scaling it to the
atom size. We obtain the unit sphere triangulation from.[B8} each verteg on the triangulated
atom surfaceMy,, PMN(i) (g,n(q)) is computed using thpoint projectioralgorithm, wheren(q) is

1
the spherical normal at

Algorithm 3.4.2 (Minimal Error computatioi.

11



Setdy = 4.
for each triangle verteg € SyN Sy, do {

computePyy, (9,n(d)), and then compute

dn = min{d; [[Pwy, (9, n(a)) = Xjl[ =i},
if PMNl (qa n(Q)) € My N-

(12)

Table 2 shows the minimal error of the level one surface fasadue and a chain from Ribosome
30S, wheree(M) is defined ag(M) := max dn. It can be observed that the error decreases as
1

p increasing. The algorithm for computing minimal error c&sode used to compute the maximal
error by changing the min to max in (12). Maximal errors foré&&bme 30s are also listed in Table
2 for differentp; (see the second row).

Table 2: Minimal Error and Maximal Error of First Level Surfaces of 8&8bme 30S (1J5E)

P 0.25 0.5 1.0 2.0 4.0 8.0 16.0
Min Error (atomic) | 8.338e-02 | 2.829e-03| 6.287e-06| <10 | <106 | <106 | <10°©
Max Error (atomic) | 1.634e+00| 8.656e-01| 4.121e-01| 2.038e-01| 8.893e-02| 3.940e-02| 1.842e-02

3.4.2 Maximal Error of Level Two Surface

The maximal error fronMy to M. N € NS) is defined as
2

dN = M ma); M Hq_PMN(i)<qan)”>
qe N7PMNS)(q> )E N§I>AN 2

whereq € My, Py i) (g,n) is the normal direction projection @fto the surfaceMN(i). This error
N2 2

is computed as follows. Lé; ¢ NS).

Algorithm 3.4.3 (Maximal Error computatioh
Setdy, = 0.
for eachN € N; do{

for each triangle verteg € SyN Sy, do{

computeq := Pwy, (9,n(a)), and

12



computhMN(i) (G,n(q)) if § € My N
2

and then compute

Ay, = max{dn,, [Py, (A, 1(9)) =P g, (6,n(@)l]

2

IfPM (@, ())GM

N1

}
Again, the projection pointg = Phvin, (q,n(q)) andPM : (” n(§)) are computed by the point pro-

jection algorithm, where the searching raf@eB] is set to bd0, 4|, since we knovWI enclosmg
Mn and we are not interested in the errors that are larger than 4.

The first row of Table 3 shows the maximal errors of the secewell(residual level) surfaces for
ribosome 30s, wherp; is chosen to be .8, p, = 0.25,0.5,1.0,---,16. The second row lists the
maximal errors of the second level (low level) surfaces fier samep; and p2. The results show

that the errors decrease in approximately linear rae @ascreases.

Table 3: Maximal Error of Second Level Surfaces of Ribosome 305H)LJ

p2 0.25 0.5 1.0 2.0 4.0 8.0 16.0
Max Error (residual)| 3.923e+00| 2.124e+00| 6.832e-01| 3.240e-01| 1.550e-01| 7.794e-02| 3.278e-02

Max Error (low) 9.899e+00| 7.695e+00| 8.045e-01| 2.365e-01| 1.390e-01| 6.113e-02| 2.653e-02

3.5 Good Approximations of Molecular Surfaces

We have discussed that it is sufficient to consider two-l€&alssian map. To address certain
structuresp; is taken to be a small value to blur the higher level det@iss chosen to be larger
to enhance the feature of the current level structure. Asave khown in the last section, a smaller
p1 leads to a larger error for the level one surface, and a lgygtzads to a smaller error for the
second level surface. Therefore, our strategy for obtgitight enclosing surface is to remove the
level one error and ignore the error of the second level.

The main idea to obtain the tight level one enclosing surfdﬁa is to reduce the radii of the

atoms, such thaVI iy touches the original atoms (see Fig. 6) Supppsel\/l i is the nearest
1

point to thej-th atom,j € Ni ), and the distance fromito the atom iglj. Then we have

> KUy=xID/Kr)P + [K(lly —xj[[) /K (rj)]Pr = 1. (13)

leNW 1]

13



Fig. 6. The left picture shows the inflation effect by the Gaussian map.righé one shows the tight
enclosing of atoms. The centers of the five atoms(ar2 0,0), (2,0,0), (0,—1,0), (0,1,0) and(0,0,0).
The corresponding radii are&) 0.9, 1.1, 1.3 and 13. The parametep in the Gaussian map is chosen to be
0.4. The tight approximation on the right figure is obtained by shrinking thedigi into 055644, 072525,
0.60476, 104567 and @ respectively.

whereK(x) = e, Now we want to adjust the radiug to fj, such that the new nearest poynt
is on thej-th sphere. Since the dominate part of (13) is the secondaéthe left hand side, we
therefore require; satisfying

0Lt <ry, (14)
K(rj+d;j)/K(rj) = K(rj) /K(Fj). (15)

From this we obtain

—1 [ _Krp? o K(rj)?
= K™ {K(nidj)]’ if xr+a) € RandK),
0, otherwise

whereK ~! denotes the inverse functionkfx), RandK) := {y € R:y=K(x), xc (0,%)}. Based
on this analysis, we build the following iterative algorittfor computingrj.

Algorithm 3.5.1 (Sphere Shrinking

Fori=1,2,---,n; do the following steps

(1) Sett =0, =rj,d") =, vj e N
(2) Compute the minimal distana:é'ﬂ), Vj € Ni') from the j-th atom to the iso-surface de-
fined by the generalized Gaussian n@fﬁi) (X) = 2N [K(][x— X ||)/K(rJ(-'))]pl, using the
1 1

Algorithm 4.2.

14



Fig. 7. Different effects of changing, and tight/non-tight approximations for three amino acids (ASN,
THR and TYR) which consist of 49 atoms. The surface (b), (c) andr@}he same as outer surfaces of (e),
() and (g) respectively. The inner surface of (e), (f) and (g) eshiard sphere model of three residues. (a)
shows the atomic level approximation of the hard sphere model, whetes.0, p., = 1.0; (b), (e), (c) and

(f) show the tight approximation of the residual level wjgh= 0.4. But differentp, are used. We choose
p2 = 2.0 for (b) po = 0.5 for (c). It could be observed that larges leads to closer approximation. (d) and
(9) show non-tight approximations using the samendp, as (c) and (f). Comparing with (f), even larger
error is observed in (g).

(3) Compute

Cp [REDKED ] KK
rj('“): K [K(r,-+d}')) if (,+d() € RandgK),
0, otherwise
(4) If max eny) |d 'H | < £ (we takes = 10~%), terminate the loop andr( U are the

requ:red results Otherw:se, set | + 1 and go back to step 2.

o KK .
Remark: The condltlon% € RandgK) may lead to some of the atoms locating in the deep
ri B

inside of the molecule are not touchable. Figure 6 showdlieatircle at the origin is not touched.

The experiments show the sphere shrinking algorithm cgegein a linear rate. Table 4 lists the

errore,(néx_ max ent! |d | for 20 amino acids wittp; = 0.4. These amino acids are taken from

the protein mAChE We notice that the shape of different cpifeone amino acids will differ.
Currently, we are studying theoretically the convergenahdefalgorithm.
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Table 4: Errora%axfor 20 amino acids ang; = 0.4

| ALA ARG ASN ASP CYS GLN GLU GLY HSD ILE
0 | 5.13e-01| 6.97e-01| 5.99e-01| 6.23e-01| 5.36e-01| 6.26e-01| 7.06e-01| 4.34e-01| 7.36e-01| 6.00e-01
2 | 6.22e-02| 1.37e-01| 2.66e-01| 6.75e-02| 5.86e-02| 1.16e-01| 7.78e-02| 5.33e-02| 7.20e-02| 5.62e-02
4 | 2.80e-03| 3.79e-02| 5.83e-02| 1.50e-03| 6.82e-04| 1.76e-03| 4.57e-04| 1.90e-02| 1.45e-02| 2.73e-03
6
8

5.76e-04 | 2.30e-02| 1.83e-04| 4.93e-04| 1.81e-04| 4.51e-04| 1.38e-04| 8.62e-05| 5.30e-03| 5.60e-04
1.30e-04 | 6.95e-04| 6.06e-05| 1.64e-04| 4.97e-05| 1.74e-04| 4.26e-05| 6.31e-06| 2.20e-03| 1.25e-04
10 | 3.14e-05| 2.18e-04| 2.22e-05| 5.59e-05| 1.39e-05| 7.84e-05| 1.32e-05| 7.16e-07 | 9.94e-04| 3.11e-05

| LEU LYsS MET PHE PRO SER THR TRP TYR VAL
0 | 8.48e-01| 8.62e-01| 6.08e-01| 6.14e-01| 7.98e-01| 9.63e-01| 1.06e-00| 6.01e-01| 6.10e-01| 7.07e-01
2 | 6.51e-02| 3.96e-01| 1.13e-01| 8.94e-02| 2.06e-03| 8.81e-02| 3.06e-02| 9.17e-02| 6.03e-02| 2.86e-02
4 | 5.72e-03| 1.54e-03| 7.78e-03| 6.50e-03| 3.62e-04| 5.28e-04| 6.63e-03| 1.49e-02| 4.25e-02| 5.76e-03
6
8

1.27e-03| 5.18e-04| 2.25e-03| 1.90e-03| 9.12e-05| 1.19e-04| 1.68e-03| 6.42e-03| 1.69e-03| 1.36e-03
3.03e-04| 1.77e-04| 6.77e-04| 7.13e-04| 2.35e-05| 2.66e-05| 4.67e-04| 2.90e-03| 6.93e-04| 3.56e-04
10 | 7.52e-05| 6.23e-05| 2.09e-04| 3.02e-04 | 6.26e-06| 5.88e-06| 1.36e-04| 1.56e-03| 3.52e-04| 9.78e-05

(b)

Fig. 8. Multi-resolution models of Ribosome 30S. (a) - Ribosome 30S at the i@iWwath p; = 0.0625,
p2 = 1.0 in multi-level Gaussian map. Ribosome 30S contains 22 chains and eaclmoistpainted in a
different color. The pink color shows 16S rRNA and the remaining caoggroteins. The blue box shows
one protein (Chain B). (b) - Chain B at the residual level with= 0.4, p, = 5.0. It consists of 234 residues.
(c) - Chain B at the atomic level with; = 5.0, p2 = 1.0. It consists of 1900 atoms.

Fig. 7 shows multi-resolution models of the amino acid ASMRTIand TYR with variousp;
and p2. Fig. 7(a) shows an atomic level model, Fig. 4 are residual level models. It can be
observed that when the sarpe is selected, smallep, leads to fatter surfaces. Compared with
Fig. 7(g), Fig. 7(f) is more tight.

Fig. 8 shows multi-resolution models of Ribosome 30S. Fig) & a low level model, the pink

color shows 16S rRNA and the remaining colors are proteing. @atein (Chain B) is separated
from the whole structure. The residual level model can besttanted by selecting smath and
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large p2 as shown in Fig. 8(b), and the atomic level model is constdiby selecting largp; and
small p> as shown in Fig. 8(c).

4 Mesh Generation

There are two main methods for contouring scalar fields, gricontouring [26] and dual con-
touring [19]. Both of them can be extended to tetrahedral ngesteration. The dual contouring
method [42] [43] is often the method of choice as it tends &dymeshes with better aspect ratio.

4.1 Triangular Meshing

Dual contouring [19] uses an octree data structure, and/zemthose edges that have endpoints
lying on different sides of the isosurface, callgign change edge3he mesh adaptivity is de-
termined during a top-down octree construction. Each sigange edge is shared by either four
(uniform case) or three (adaptive case) cells, and one naempoint is calculated for each of
them by minimizing a predefined Quadratic Error Function FQE5]:

QEF[ =3 [ni- (x—p)]?, (16)
|
wherep;, n; represent the position and unit normal vectors of the ietgisn point respectively.
For each sign change edge, a quad or triangle is construgteahimecting the minimizers. These
guads and triangles provide a ‘dual’ approximation of tlusuisface.

A recursive cell subdivision process was used to presemedhnrect topology [43] of the iso-
surface. During the cell subdivision, the function valueath newly inserted grid point can be
exactly calculated since we know the function (Gaussiarmtfans, Eqn. (5)). Additionally, we
can generate a more accurate triangular mesh by projeditiggenerated minimizer point onto
the isosurface (Egn. (2)).

4.2 Tetrahedral Meshing

The dual contouring method has already been extended tacéxétrahedral meshes from volu-
metric scalar fields [42] [43]. The cells containing the isdace are called boundary cells, and the
interior cells are those cells whose eight vertices ar@@tie isosurface. In the tetrahedral mesh
extraction process, all the boundary cells and the intextls need to be analyzed in the octree
data structure. There are two kinds of edges in boundary, @elk is a sign change edge, the other
is an interior edge. Interior cells only have interior eddad42] [43], interior edges and interior
faces in boundary cells are dealt with in a special way, aedvtilume inside boundary cells is
tetrahedralized. For interior cells, we only need to spkn into tetrahedra.
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(@) (b) (€)

Fig. 9. The analysis domain of exterior meshes. (&)'-i$ the geometric center of the molecule, suppose
the circum-sphere of the biomolecule has the radius ®he box represents the volumetric data, a®(d *

is the maximum sphere inside the box, the radius(s, > r). ‘'S’ is an outer sphere with the radius of
ri(r1 = (20~ 40)r). (b) - the diffusion domain is the interval volume between the biomoleculaaseiegnd
the outer sphere5;’, here we choose; = 5r for visualization. (c) - the outer boundary is a cubic box.

4.2.1 Adding an Outer Boundary

In the biological diffusion system, we need to analyze thkl fighich is from infinite faraway
to the molecular surface. Assume that the radius of the mirsphere of a biomolecule is The
computational model can be approximated by a field from aerapgheres; with the radius of
(20 ~ 40)r to the molecular surface. Therefore the exterior mesh iseéefas the tetrahedral-
ization of the interval volume between the molecular swfand the outer sphe& (Fig. 9(b)).
Sometimes the outer boundary is chosen to be a cubic box asmshd-ig. 9(c).

First we add a spher& with the radius ofrg (whererg > r andrg = 2"/2 = 2"-1) outside the
molecular surface, and generate meshes between the naslsauface and the outer sphe&&ge
Then we extend the tetrahedral meshes from the spheti@ the outer bounding sphe&. For
each data point inside the molecular surface, we keep tgeatifunction value. While for each
data point outside the molecular surface, we reset theibmealue as the smaller one bfx) — a
and the shortest distance from the grid point to the spBgr&qn. (17) shows the newly con-
structed functiorg(x) which provides a grid-based volumetric data containingttioenolecular
surface and an outer sph&dg

min(||x—Xo|| —ro, f(X) —a), if f(x) < a,||[x—Xol|| < ro,
903 = § lIx—xoll —ro, if f(x) <a,[jx—xol| > ro, (17)

f(x)—a, if f(x) >a,

wherexg are coordinates of the molecular geometric center. Thealsew = 0.5 for volumetric
data generated from the characteristic function, arl 1.0 for volumetric data generated from
the summation of Gaussian kernels.

The biomolecular surface and the outer spifrean be extracted as an isosurface at the isovalue
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0, §(0) = {x/g(x) = 0}. All the grid points inside the interval volumg(0) = {x/g(x) < 0} have
negative function values, and all the grid points outsideite positive values.

Pl
Pl

(a) (b)

Fig. 10. 2D triangulation. (a) Old scheme, (b) New scheme. Blue and yellamgtes are generated for sign
change edges and interior edges respectively. The red curveeemsd¢he molecular surface, and the green
points represent minimizer points.

4.2.2 Primal Mesh Extraction

Here we introduce a different scheme from the algorithmearesd in [42] [43], in which we do
not distinguish boundary cells and interior cells when walyre edges. We only consider two
kinds of edges - sign change edges and interior edges. Forbeamdary cell, we can obtain a
minimizer point by minimizing its Quadratic Error FunctioRor each interior cell, we set the
middle point of the cell as its minimizer point. Fig. 10(b)ps¥s a simple 2D example. In 2D, there
are two cells sharing each edge, and two minimizer pointohtained. For each sign change
edge, the two minimizers and the interior vertex of this edgestruct a triangle (blue triangles).
For each interior edge, each minimizer point and this edgstcoct a triangle (yellow triangles).
In 3D as shown in Fig. 11, there are three or four cells shazaah edge. Therefore, the three (or
four) minimizers and the interior vertex of the sign chandgesconstruct one (or two) tetrahedron,
while the three (or four) minimizers and the interior edgastauct two (or four) tetrahedra.

Compared with the algorithm presented in [42] [43] as showRig 10(a), Fig. 10(b) generates
the same surface meshes, and tends to generate more regetarrimeshes with better aspect
ratio, but a little more elements for interior cells. Fig(lipcan be easily extended to large volume
decomposition. For arbitrary large volume data, it is diffi¢co import all the data into memory
at the same time. So we first divide the large volume data mneessmall subvolumes, then mesh
each subvolume separately. For those sign change edgestandriedges lying on the interfaces
between subvolumes, we analyze them separately. Finadlygénerated meshes are merged to-
gether to obtain the desired mesh. The mesh adaptivity tsalted by the structural properties of
biomolecules. The extracted tetrahedral mesh is finer arthenmolecular surface, and gradually
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gets coarser from the molecular surface out towards the spkereSy. Furthermore, we generate
the finest mesh around the active site, such as the cavitgimtmomeric and tetrameric mMAChE
shown in Fig.16 (ab), and a coarse mesh everywhere else.

Fig. 11. Sign change edges and interior edges are analyzed in 3D teai#ation. (a)(b) - sign change
edge (the red edge); (c)(d) - interior edge (the red edge). Tha gmdiel points represent minimizer points,
and the red solid points represent the interior vertex of the sign chaigge ed

4.2.3 Mesh Extension
st

V0 V2

uo u2

o ‘h  2h ul ul
(@) | (b) ©)

Fig. 12. (a) - one triangle in the sphe®g (blue) is extended steps until arriving the sphe® (red); (b)
and (c) - a prism is decomposed into three tetrahedra in two different ways

We have generated meshes between the biomolecular surfddfe outer sphergy, the next
step is to construct tetrahedral meshes gradually from pherseSy to the bounding spher§;
(Fig. 9). The spher& consists of triangles, so we extend each triangle radiallgreown in Fig.
12 and a prism is obtained for each extending step. The prasnbe divided into three tetrahedra.
The extension step lengtihcan be calculated by Eqn. (18). It is better for the spli&réo be
triangulated uniformly since the step length is fixed forreaxtending step.

2(ry—ro)

n(n+1) (18)

ro+h+2h+..-+nh=r; = h=

wheren is the step number. In Figure 12, suppage;u; is a triangle on spher&, and up,

up, Uz are the unique index numbers of the three vertices, where up andu; < up. For one
extension stepJouiUsz is extended taqvive, and the two triangles construct a prism, which can
be decomposed into three tetrahedra. In order to avoid dgodal conflict problem, a different
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decomposition method (Fig. 12{e)) is chosen based on the index number of the three vertices.
If up < up, then we choose Fig. 12(b) to split the prism into three betdaa. Ifu, < ug, then Fig.
12(c) is selected

Assume there arm triangles on the sphei®), which is extended steps to arrive the spheg.

m prisms or 3ntetrahedra are generated in each extending step, and aft@ahtetrahedra are
constructed in the extension process. Therefore, it iebtitkeep coarse and uniform triangular
mesh on the sphe®).

5 Quality Improvement

In general, the molecular surface generated by iscontguhi@ Gaussian density function or the
characteristic function is bumpy. This is because the veldata could not be sufficiently fine due
to the capacity limit of the computer, and is not smooth ehgegpecially for the data generated
from the characteristic function. The error of the isoscef&rom the characteristic function could
be as large as half of the grid size since the characterigtiction generates binary volumetric
data, and could be very large relative to the atom size. Ttierea post-processing step for the
extracted isosurface is necessary. There are three taskefmesh quality improvement:

(1) Denoising the surface mesh (vertex adjustment in thenabdirection).
(2) Improving the aspect ratio of the surface mesh (vertgxsaishent in the tangent direction).
(3) Improving the aspect ratio of the volumetric mesh (veadjustment inside the volume).

We use geometric partial differential equations (PDEsatiodbe the first two problems. Geometric
PDEs, such as the mean curvature flow, the surface diffuss@nghd Willmore flow, have been
intensively used in surface and imaging processing [40jeie choose the surface diffusion flow
to smooth the molecular surface.

X _ AH (X)A(X), (19)

ot

whereH is the mean curvaturé,is the unit surface normal vector, aAds the Laplacian-Beltrami
operator. This flow is area shrinking and volume preservifigthermore, it preserves sphere
exactly and torus approximately. Suppose a molecularsidauld be ideally represented by the
joining of spherical and torus surface patches [21], it siddle to use the surface diffusion flow
to evolve the isosurface. However, this flow could only inyarthe surface shape, not the mesh
regularity. In order to improve the aspect ratio, we needdih atangent movement in Eqn. (19).
Hence the flow becomes

X~ AR VOO T (4. 20)

wherev(x) is the velocity in the tangent directidn(x).
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Fig. 13. Comparison of mAChE (9308 vertices, 18612 triangles) befudeafter surface smoothing. (a) -
original; (b) - after smoothing.

Eqgn. (20) is solved over a triangular mesh with verti¢mg by discretizing each of its terms. In

n+1_ o . i
the temporal spacé%%‘ is approximated by the Euler scheﬁ‘t\eT—x'n, wheret is time step-length.

X" is the approximating solution &t= nt, X" is the approximating solution &t= (n+ 1)1, and
x,-0 = X; serves as the initial value. Discretizing schemeg¥andH in the spatial space are given
in [40], we do not go to detail herg(x)T (x) is approximated by

(M) — 7 = A T (M) — XA, (21)

wherem(x") is defined as the mass center of all the triangles arofinéd mass centeP of a
regionV is defined by findingp € V, such that

|, Ily=pl? do = min (22)
V

V could be a piece of surface or a volumeRiA. For our surface mesh caséconsists of triangles
around vertexq'. Then from Eqn. (22), we could derive that

1
m(x;) 3>q 3 2 XA+ A)/AN, (23)
JEN()

whereN(i) is the index set of the one ring neighbors@fA | is the area of the trianglex]_,X]].
A(X") is the total of triangle areas.

Usually, people use the geometric center [40], instead @hthAss center. But we found that the
mass center works better. The discretization will lead toeglr system. The approximated solution
is obtained by solving it.

After the molecular surface is smoothed and regularizednéxt step is to improve the volumetric
mesh by relocating each interior vertex to the mass centés etirrounding tetrahedra. Lpt be
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Fig. 14. Comparison of Ribosome 30S (13428 vertices, 26852 triangdémeband after surface smoothing.
Left - original; Right - after smoothing.

an interior vertex,p; be one of its neighboring vertices, then the mass centerl ¢étahhedra
aroundp; is computed by

1 1
m(pi):Zpi+4_\/iZV”pj’ (24)
J

whereVj; is the volume summation of all the tetrahedra around the &ulge], V; is the volume
summation of the tetrahedra around the veggex

Here we choose the aspect ratio (twice of the ratio of ineireldius to circumcircle radius) to
measure the quality of triangular meshes, and the surfdftesidin flow to smooth the surface.
The left picture in Fig.15 shows the improvement of the aspato, and Fig.13-14 show the
improvement of molecular surfaces. We can see that noisegsianoved and features are preserved
since the surface diffusion flow preserves volume and sgdlegieometry. The surface error is
restricted within half of the grid size for the binary datarfr the characteristic function, and
almost zero for the data from Gaussian density map since wegrajected each boundary vertex
onto the isosurface.

In [43], the edge contraction and linear averaging method used to improve the quality of
tetra meshes with the edge-ratio (the longest edge lengthtbe shortest edge length) and Joe-

Liu parameter (é X 3% (|V|)%/zogi<j§3 l&j|2, where|V | denotes the volume; represents the
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Fig. 15. The histogram of the aspect-ratio and Joe-Liu parameter.

edge connecting vertex andv;) as metrics. The goal is to improve the worst parametersagh ea
iteration. Here we still use the same edge contraction sehbut relocate each interior vertex to
its mass center (Eqn.(24)) since it can minimize the eneafyned in Eqn.(22). From the right
picture in Fig.15, we can see that the worst Joe-Liu parametamproved significantly after
guality improvement. Fig.16 and 18 show interior tetra nessbf mAChE and Ribosome 30S.

6 Resultsand Conclusion

Monomeric mMAChE: For efficient and accurate finite element calculations, aameshes are
preferred. Therefore we generated finer meshes around ¥itg eagion since the bottom of the
gorge is the active site in mAChE, while coarser meshes i offggons. The extracted tetrahedral
meshes of the monomer as shown in Fig. 16 have been used asatimetgic model in the finite
element analysis of the steady-state Smoluchowski equé88SE) for diffusion rate constant
calculations [36] [37]. The calculated rates showed goaga&ment with experimental results.
Our generated surface mesh is being used in calculatingeb&astatic potential distribution of
biomolecules.

Tetrameric mAChE: We also applied our approach to generate tetrahedral mistikee tetramer,
which has two different arrangement formats from four moamsraccording to previous crystal-
lographic studies. Each monomer has an active site acte#silugh a long gorge (20 Angstrom),
so there are a total of four gorges. Fig. 17 shows the twoalrgsuctures. In the first crystal struc-
ture, two gorges are partially blocked, while the other twe eompletely accessible to solvent.
In the second one, all the four gorges are open. Similarlygereerated fine meshes around the
region of the four gorges and coarse meshes in other regiofigite element simulations [41].

Ribosome: Ribosomes are macromolecular complexes responsible fdrahslation of mMRNA
into protein. These complexes consist of two subunits: #éngel 50S and the small 30S, both
of them are composed of rRNA and protein constituents. Atdevel, residual level and low
resolution structures were constructed from density mgghaewn in Fig. 3 and 5. The constructed
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Fig. 16. Interior and exterior tetra meshes of monomeric mAChE. The left tetarps conform to the
SAS withc = 2, and the right two pictures conform to the surface constructed fronsgn summation
with p; = 0.25, p» = 1.0. From left to right: (65147 vertices, 323442 tets), (121670 vert@®8323 tets),
(103680 vertices, 509597 tets) and (138967 vertices, 707284 taeskolor shows potential (leftmost) or
residues (the right two).

Fig. 17. Interior and exterior tetra meshes of tetrameric mMAGRE: 0.5, po = 1.0. The left two pictures
show the 1st crystal structure 1C20 (133078 vertices, 670950 tetb)ha right two pictures show the 2nd
one 1C2B, (106463 vertices, 551074 tets). Cavities are shown in re$bo

Fig. 18. Interior and exterior tetra meshes of Ribosome 30S, low resolgicn0.03125,p, = 1.0. From
left to right: (33612 vertices, 163327 tets), (37613 vertices, 18649pdad (40255 vertices, 201724 tets).
The pink color shows 16S rRNA and other colors show proteins.
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various implicit solvation models help to study the machynef protein production. Fig. 18 and
Fig. 1 show interior and exterior meshes of Ribosome 30S/50S.

We have developed a quality molecular meshing approach RDB data, including implicit sol-
vation surface construction from electron density mapangjular/tetrahedral mesh generation,
and quality improvement with surface smoothing. Geomégadures are preserved for the molec-
ular surface. Some of our generated meshes have been usebteing used in boundary/finite
element simulations.
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