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Curves, Surfaces and Segments, Patches
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• Conics: Curves and Quadrics: Surfaces

– Implicit form

– Parametric form

• Rational Bézier Forms and Join Continuity

• Recursive Subdivision of Bézier Curve segments

• Recursive Subdivision of Bézier Surface patches
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Conic Curves

Conic Sections (Implicit form)

• Ellipse
x2

a2
+

y2

b2
= 1 a, b > 0

• Hyperbola
x2

a2
−

y2

b2
= 1 a, b > 0

• Parabola

y
2 = 4ax a > 0
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Conic Sections (Parametric form)

• Ellipse

x(t) = a
1 − t2

1 + t2

y(t) = b
2t

1 + t2
(−∞ < t < +∞)

• Hyperbola

x(t) = a
1 + t2

1 − t2

y(t) = b
2t

1 − t2
(−∞ < t < +∞)
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• Parabola

x(t) = at
2

y(t) = 2at (−∞ < t < +∞)
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Constructing Curve Segments

Linear blend:

• Line segment from an affine combination of points

P
1
0 (t) = (1 − t)P0 + tP1

1P00P
1P

_ t1( )t
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Quadratic blend:

• Quadratic segment from an affine combination of line segments

P
1
0 (t) = (1 − t)P0 + tP1

P
1
1 (t) = (1 − t)P1 + tP2

P
2
0 (t) = (1 − t)P 1

0 (t) + tP
1
1 (t)

P
2

1P

P

1

1

0
P

P0
2P0

1
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Cubic blend:

• Cubic segment from an affine combination of quadratic segments

P
1
0 (t) = (1 − t)P0 + tP1

P
1
1 (t) = (1 − t)P1 + tP2

P
2
0 (t) = (1 − t)P 1

0 (t) + tP
1
1 (t)

P
1
2 (t) = (1 − t)P2 + tP3

P
2
1 (t) = (1 − t)P 1

1 (t) + tP
1
2 (t)

P
3
0 (t) = (1 − t)P 2

0 (t) + tP
2
1 (t)
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1
0
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0

P

P

P

• The pattern should be evident for higher degrees
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Geometric view (de Casteljau Algorithm):

• Join the points Pi by line segments

• Join the t : (1 − t) points of those line segments by line segments

• Repeat as necessary

• The t : (1 − t) point on the final line segment is a point on the curve

• The final line segment is tangent to the curve at t

0
2

0P

P

0

1

P
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P0
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Expanding Terms (Basis Polynomials):

• The original points appear as coefficients of Bernstein polynomials

P
0
0 (t) = P01

P
1
0 (t) = (1 − t)P0 + tP1

P
2
0 (t) = (1 − t)

2
P0 + 2(1 − t)tP1 + t

2
P2

P
3
0 (t) = (1 − t)3P0 + 3(1 − t)2tP1 + 3(1 − t)t2P2 + t

3
P3

P
n
0 (t) =

n
∑

i=0

PiB
n
i (t)

where B
n
i (t) =

n!

(n − i)!i!
(1 − t)

n−i
t
i
=

(

n

i

)

(1 − t)
n−i

t
i

• The Bernstein polynomials of degree n form a basis for the space of all degree-n

polynomials
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Recursive evaluation schemes:

• To obtain curve points (upward diagram):

– Start with given points and form successive, pairwise, affine combinations

P
0
i = Pi

P
j
i = (1 − t)P j−1

i + tP
j−1
i+1

– The generated points P j
i are the deCasteljau points

• To obtain basis polynomials (downward diagram):

– Start with 1 and form successive, pairwise, affine combinations

B
0
0 = 1

B
j
i = (1 − t)Bj−1

i + tB
j−1
i+1

where Bs
r = 0 when r < 0 or r > s
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_ t)(1
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Bernstein-Bézier (BB) Splines

Bernstein-Bézier (BB) Curve Segments and their Properties

Definition:

• A degree n (order n + 1) Bernstein-Bézier curve segment is

P (t) =
n
∑

i=0

~PiB
n
i (t)

where the ~Pi are k-dimensional control points.
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Rational Quadratic BB Forms

Quadratic Rational BB Form:

• Homogeneous form





x(t)

y(t)

w(t)



 =





x0

y0

w0



B
2
0(t) +





x1

y1

w1



B
2
1(t) +





x2

y2

w2



B
2
2(t)

=







x0B
2
0(t) + x1B

2
1(t) + x2B

2
2(t)

y0B
2
0(t) + y1B

2
1(t) + y2B

2
2(t)

w0B
2
0(t) + w1B

2
1(t) + w2B

2
2(t)
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• Rational (projected) form

[

x̄(t)

ȳ(t)

]

=







x0B
2
0(t)+x1B

2
1(t)+x2B

2
2(t)

w0B
2
0(t)+w1B

2
1(t)+w2B

2
2(t)

y0B
2
0(t)+y1B

2
1(t)+y2B

2
2(t)

w0B
2
0(t)+w1B

2
1(t)+w2B

2
2(t)







=

[

x0

y0

]

B2
0(t) +

[

x1

y1

]

B2
1(t) +

[

x2

y2

]

B2
2(t)

w0B
2
0(t) + w1B

2
1(t) + w2B

2
2(t)
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Conversions:

• Conic parameterization elements in BB form

2t = B
2
1(t) + 2B

2
2(t)

1 − t
2 = B

2
0(t) + B

2
1(t)

1 + t
2 = B

2
0(t) + B

2
1(t) + 2B2

2(t)

t
2

= B
2
2(t)
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Conics as Rational Bézier Curves

Conics as NURBS (Ellipse)

• Rational Bézier

[

x(t)

y(t)

]

=

[

a(1 − t2)

b(2t)

]

1 + t2

=

[

aB2
0(t) + aB2

1(t) + 0B2
2(t)

0B2
0(t) + bB2

1(t) + b2B2
2(t)

]

B2
0(t) + B2

1(t) + 2B2
2(t)

=

[

a

0

]

B2
0(t)

[

a

b

]

B2
1(t)

[

0

2b

]

B2
2(t)

B2
0(t) + B2

1(t) + 2B2
2(t)
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which implies
w0 = 1 x0 = a y0 = 0

w1 = 1 x1 = a y1 = b

w2 = 2 x2 = 0 y2 = 2b
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Conics as NURBS (Hyperbola)

• Rational Bézier

[

x(t)

y(t)

]

=

[

a(1 + t2)

b(2t)

]

1 − t2

=

[

aB2
0(t) + aB2

1(t) + a2B2
2(t)

0B2
0(t) + bB2

1(t) + b2B2
2(t)

]

B2
0(t) + B2

1(t)

=

[

a

0

]

B2
0(t)

[

a

b

]

B2
1(t)

[

2a

2b

]

B2
2(t)

B2
0(t) + B2

1(t) + 0B2
2(t)

which implies
w0 = 1 x0 = a y0 = 0

w1 = 1 x1 = a y1 = b

w2 = 0 x2 = 2a y2 = 2b
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Conics as NURBS (Parabola)

• Rational Bézier

[

x(t)

y(t)

]

=

[

a(t2)

a(2t)

]

1

=

[

0B2
0(t) + 0B2

1(t) + aB2
2(t)

0B2
0(t) + aB2

1(t) + a2B2
2(t)

]

B2
0(t) + B2

1(t) + B2
2(t)

=

[

0

0

]

B2
0(t)

[

0

a

]

B2
1(t)

[

a

2a

]

B2
2(t)

B2
0(t) + B2

1(t) + B2
2(t)

which implies
w0 = 1 x0 = 0 y0 = 0

w1 = 1 x1 = 0 y1 = a

w2 = 1 x2 = a y2 = 2a
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Not Unique

• x, y, w are not unique

– Numerator and denominator can be multiplied by a common (positive) factor

• The following example is a common alternative form:

[

x(t)

y(t)

]

=

[

x0

y0

]

w0B
2
0(t) +

[

x1

y1

]

w1B
2
1(t) +

[

x2

y2

]

w2B
2
2(t)

w0B
2
0(t) + w1B

2
1(t) + w2B

2
2(t)

which derives from rewriting





x

y

w



 −→ w





x̄

ȳ

1
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Bernstein-Bézier Curve Properties

Convex Hull:

n
∑

i=0

Bn
i (t) = 1, Bn

i (t) ≥ 0 for t ∈ [0, 1]

=⇒ P (t) is a convex combination of the ~Pi for t ∈ [0, 1]

=⇒ P (t) lies within convex hull of ~Pi for t ∈ [0, 1]
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Affine Invariance:

• A Bernstein-Bézier curve is an affine combination of its control points

• Any affine transformation of a curve is the curve of the transformed control points

T

(

n
∑

i=0

PiB
n
i (t)

)

=
n
∑

i=0

T (Pi)B
n
i (t)

• This property does not hold for projective transformations!

Interpolation:

Bn
0 (0) = 1, Bn

n(1) = 1,
n
∑

i=0

Bn
i (t) = 1, Bn

i (t) ≥ 0 for t ∈ [0, 1]

=⇒ Bn
i (0) = 0 if i 6= 0, Bn

i (1) = 0 if i 6= n

=⇒ P (0) = P0, P (1) = Pn
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Derivatives:

d
dt
Bn

i (t) = n
(

Bn−1
i−1 (t) − Bn−1

i (t)
)

=⇒ P ′(0) = n(~P1 − ~P0), P
′(1) = n(~Pn − ~Pn−1)
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Smoothly Joined Curve Segments (G1 continuity)

• Let Pn−1, Pn be the last two control points of one segment

• Let Q0, Q1 be the first two control points of the next segment

Pn = Q0

(Pn − Pn−1) = β(Q1 − Q0) for some β > 0

0

P

1
Q

n

Q

n-1
P
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Recurrence, Subdivision:

Bn
i (t) = (1 − t)Bn−1

i + tBn−1
i−1 (t)

=⇒ deCasteljau’s algorithm:

P (t) = P
n
o (t)

P
k
i (t) = (1 − t)P

k−1
i (t) + t P

k−1
i+1 (t)

P
0
i = Pi

Use to evaluate point at t, or subdivide into two new curves:

• P 0
0 , P

1
0 , . . . P

n
0 are the control points for the left half

• P 0
n, P

1
n−1, . . . P

n
0 are the control points for the right half
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P1
2
1P1

P1

P

0

0
0 P0

3

P0
2

1

P0

P0
0 P0

3

P1
0 P0

2

P0
3

P1

1

P
2

1

P1
0

P0
2

P0
3P0

0

2P

3
0

2

P

2
0P
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Quadric Surfaces

Implicit form

• Ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1 a, b, c > 0

• Hyperboloid
x2

a2
+

y2

b2
−

z2

c2
= 1 a, b, c > 0

• Hyperbolic Paraboloid
x2

a2
−

y2

b2
−

z2

c2
= 1 a, b, c > 0

• Parabolic

y
2 = 4ax a > 0

Parametric form
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• Ellipsoid

x(s, t) = a
1 − s2 − t2

1 + s2 + t2

y(s, t) = b
2s

1 + s2 + t2
(−∞ < s < +∞)

z(s, t) = b
2t

1 + s2 + t2
(−∞ < t < +∞)

• Paraboloid

x(s, t) = a(s
2
+ t

2
)

y(s, t) = as (−∞ < s < +∞)

z(s, t) = at (−∞ < t < +∞)
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Tensor Product Bernstein-Bézier Patches

Tensor Patches:

• The control polygon is the polygonal mesh with vertices Pi,j

• The patch basis functions are products of Bézier curve basis functions

P (s, t) =
n
∑

i=0

n
∑

j=0

Pi,jB
n
i,j(s, t)

where

B
n
i,j(s, t) = B

n
i (s)B

n
j (t)
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Properties:

• Tensor Bernstein-Bézier Patch basis functions sume to one

n
∑

i=0

n
∑

j=0

B
n
i (s)B

n
j (t) = 1

• Patch basis functions are nonnegative on [0, 1] × [0, 1]

B
n
i (s)B

n
j (t) ≥ 0 for 0 ≤ s, t ≤ 1

=⇒ Surface patch is in the convex hull of the control points

=⇒ Surface patch is affinely invariant

(Transform the patch by transforming the control points)

Subdivision, Recursion, Evaluation:

• As for curves in each variable separately and independently

• Normals must be computed from partial derivatives
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Partial Derivatives:

• Ordinary derivative in each variable separately’:

∂

∂s
P (s, t) =

n
∑

i=0

n
∑

j=0

Pi,j

[

d

ds
B

n
i (s)

]

B
n
j (t)

∂

∂t
P (s, t) =

n
∑

i=0

n
∑

j=0

Pi,jB
n
i (s)

[

d

dt
B

n
j (t)

]

• Each of the above is a tangent vector in a parametric direction

• Surface is regular at each (s, t) where these two vectors are linearly independent

• The (unnormalized) surface normal is given at any regular point by

±

[

∂

∂s
P (s, t) ×

∂

∂t
P (s, t)

]

(the sign dictates what is the outward pointing normal)

The University of Texas at Austin 35



Department of Computer Sciences Graphics – Spring 2013 (Lecture 10)

• In particular, the cross-boundary tangent is given by

(e.g., for the s = 0 boundary):

n

n
∑

i=0

n
∑

j=0

(P1,j − P0,j)B
n
j (t)

(and similarly for the other boundaries)
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Smoothly Joined Tensor Bernstein-Bézier Patches:

P

P

P

Q

P

Q

Q

P

PP

P

Q

Q

Q

Q

Q
02

11

21

20

23

03 00

01

12

31

13

10

32

22

30

33

• Can be achieved by ensuring that

(Pi,n − Pi,n−1) = β(Qi,1 − Qi, 0) for β > 0

(and correspondingly for other boundaries)
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Rendering via Subdivision:

• Divide up into polygons:

1. By stepping

s = 0, δ, 2δ, . . . , 1

t = 1, γ, 2γ, . . . , 1

and joining up sides and diagonals to produce a triangular mesh

2. By subdividing and rendering the control polygon
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Barycentric Triangular Bernstein-Bézier Patches

de Casteljau Revisited Barycentrically:

• Linear blend expressed in barycentric terms

(1 − t)P0 + tP1 = rP0 + tP1 where r + t = 1

• Higher powers and a symmetric form of the Bernstein polynomials:

P (t) =
n
∑

i=0

Pi

(

n!

i!(n − i)!

)

(1 − t)n−i
t
i

=
∑

i+j=n
i≥0,j≥0

Pi

(

n!

i!j!

)

t
i
r
j

where r + t = 1

=⇒
∑

i+j=n
i≥0,j≥0

PijB
n
ij(r, t)
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• Examples

{B
0
00(r, t)} = {1}

{B1
01(r, t), B

1
10(r, t)} = {r, t}

{B2
02(r, t), B

2
11(r, t), B

2
20(r, t)} = {r2

, 2rt, t2}

{B
3
03(r, t), B

3
12(r, t), B

3
21(r, t), B

3
30(r, t)} = {r

3
, 3r

2
t, 3rt

2
, t

3
}
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Surfaces – Barycentric Blends on Triangles:

• Formulas

P (r, s, t) =
∑

i+j+k=n
i≥0,j≥0,k≥0

PijkB
n
ijk(r, s, t)

B
n
ijk(r, s, t) =

n!

i!j!k!
r
i
s
j
t
k
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Triangular Bézier Surface Patches

Triangular deCasteljau:

• Join adjacently indexed Pijk by triangles

• Find r : s : t barycentric point in each triangle

• Join adjacent points by triangles

• Repeat

– Final point is the surface point P (r, s, t)

– final triangle is tangent to the surface at P (r, s, t)

• Triangle up/down schemes become tetrahedral up/down schemes

Properties:
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• Each boundary curve is a Bézier curve

• Patches will be joined smoothly if pairs of boundary triangles are planar as shown

P030

003P

P120

P111
P
102

021P

120
Q

102111Q Q

012P
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Reading Assignment and News

Before the next class please review Chapter 10 and its practice exercises, of the recommended

text.

(Recommended Text: Interactive Computer Graphics, by Edward Angel, Dave Shreiner, 6th

edition, Addison-Wesley)

Please track Blackboard for the most recent Announcements and Project postings related to

this course.

(http://www.cs.utexas.edu/users/bajaj/graphics2012/cs354/)
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