
Department of Computer Sciences Graphics – Spring 2013 (Lecture 18)

Textures

Two dimensional texture pattern T (s, t)

The independent variables s and t are known as texture coordinates. At this point we can

think of T as continuous, although, in reality, it is stored in texture memory as an n × m

array of texture elements called texels.

A texture map associates a unique point of T with each point on a geometric object that

is itself mapped to screen coordinates for display.

The University of Texas at Austin 1



Department of Computer Sciences Graphics – Spring 2013 (Lecture 18)

Difficulties:

1. We must determine the map from texture coordinates to geometric coordinates.

2. Due to the nature of the rendering process, which works on a pixel-by-pixel basis, we are

more interested in the inverse map from screen coordinates to texture coordinates.

3. Because we calculate the shade for pixels, each of which generates a color for a small

rectangle on the display surface, we are interested in mapping not points to points, but

rather area to areas.

The University of Texas at Austin 2



Department of Computer Sciences Graphics – Spring 2013 (Lecture 18)

t

s

z

y

x

sx

y
s

v

u

The University of Texas at Austin 3



Department of Computer Sciences Graphics – Spring 2013 (Lecture 18)

Given a parametric surface, we can often map a point in the texture map T (s, t) to a point

on the surface p(u, v) with a linear map of the form

u = as + bt + c,

v = ds + et + f.

As long as ae 6= bd, this mapping is invertible. Linear mapping makes it easy to map

a texture to a group of parametric surface patches. The patch determined by the corners

(smin, tmin) and (smax, tmax) corresponds to the surface patch with corners (umin, vmin)

The University of Texas at Austin 4



Department of Computer Sciences Graphics – Spring 2013 (Lecture 18)

and (umax, vmax), then the mapping is

u = umin +
s − smin

smax − smin

(umax − umin),

v = vmin +
t − tmin

tmax − tmin

(vmax − vmin).

Another approach to the mapping problem is to use a two-part mapping. The first step maps

the texture to a simple three-dimensional intermediate surface, such as a sphere, cylinder, or

cube. In the second step, the intermediate surface containing the mapped texture is mapped

to the surface being rendered.

Suppose that our texture coordinates vary over the unit square, and that we use the surface

of a cylinder of height h and radius r as our intermediate object.

x = r cos(2πu),

y = r sin(2πu),

z = v/h,

The University of Texas at Austin 5



Department of Computer Sciences Graphics – Spring 2013 (Lecture 18)

and u and v vary over (0, 1). Hence, we can use the mapping

s = u,

t = v.
t

s

Back

Left Right Top

Front

Bottom

t

s

The University of Texas at Austin 6



Department of Computer Sciences Graphics – Spring 2013 (Lecture 18)

If we use a sphere of radius r as the intermediate surface, a possible mapping is

x = cos(2πu),

y = sin(2πu) cos(πv),

z = sin(2πu) sin(πv),

We can also use a rectangular box. Here, we map the texture to a box that can be unravelled,

like a cardboard packing box. This mapping often is used with environment maps.

The second step is to map the texture values on the intermediate object to the desired

surface.

1. We take the texture value at a point on the intermediate object, go from this point in

the direction of the normal until we intersect the object, and then place the texture value

at the point of intersection.

2. Reverse this method, starting at a point on the surface of the object and going in the

direction of the normal at this point until we intersect the intermediate object, where we

obtain the texture value.

The University of Texas at Austin 7



Department of Computer Sciences Graphics – Spring 2013 (Lecture 18)

3. If we know the center of the object, draw a line from the center through a point on

the object, and to calculate the intersection of this line with the intermediate surface.

The texture at the point of intersection with the intermediate object is assigned to the

corresponding point on the desired object.

n

nn

n

n n

(a) (b) (c)

Intermediate object

The University of Texas at Austin 8



Department of Computer Sciences Graphics – Spring 2013 (Lecture 18)

The University of Texas at Austin 9



Department of Computer Sciences Graphics – Spring 2013 (Lecture 18)

Texture Mapping in OpenGL

Two-dimensional texture mapping starts with an array of texels. Suppose that we have a

512× 512 image my_texels that was generated by a program, or perhaps was read in from

a file into an array

my_texels[512][512];

We specify that this array is to be used as a two-dimensional texture (usually as part of

initialization) by

glTextImage2D(GL_TEXTURE_2D, 0, 3, 512, 512, 0,

GL_RGB, GL_UNSIGNED_BYTE, my_texels);

More generally, two-dimensional textures are specified through the function

glTextImage2D(GL_TEXTURE_2D, level, components, width, height,

border, format, type, tarray);

The University of Texas at Austin 10



Department of Computer Sciences Graphics – Spring 2013 (Lecture 18)

The texture pattern tarray is stored in the width × height array. The components value

is the number (1 through 4) of color components (RGBA) that we wish to affect with the

map. The parameters level and border give us fine control over how texture is handled.

The texture map has two coordinates, s and t, both of which normally range over the interval

(0.0, 1.0). For our example, the value (0.0, 0.0) corresponds to the point my_texels[0][0],

and (1.0, 1.0) corresponds to the point my_texels[511][511].

Assign texture coordinates to vertices through

glTexCood2f(s, t);

We must set the texture coordinate before we specify a vertex. If we want to assign our

texture to a quadrilateral, then we use code such as

glBegin(GL_QUAD);

glTexCood2f(0.0, 0.0);

glVertex2f(x1, y1, z1);

glTexCood2f(1.0, 0.0);

glVertex2f(x2, y2, z2);

The University of Texas at Austin 11



Department of Computer Sciences Graphics – Spring 2013 (Lecture 18)

glTexCood2f(1.0, 1.0);

glVertex2f(x3, y3, z3);

glTexCood2f(0.0, 1.0);

glVertex2f(x4, y4, z4);

glEnd();

(a) (b)

OpenGL has something called mipmapping. For objects that project to an area of screen

space that is small compared with the size of the texel array, we do not need the resolution

of the original texel array. OpenGL allows us to create a series of texture arrays at reduced

sizes; it will then automatically use the appropriate size. For a 64× 64 original array, we can

set up 32× 32, 16× 16, 8× 8, 4× 4, 2× 2, and 1× 1 arrays through the GLU function

gluBuid2DMipmaps(GL_TEXTURE_2D, 3, 64, 64, GL_RGB,

The University of Texas at Austin 12



Department of Computer Sciences Graphics – Spring 2013 (Lecture 18)

GL_UNSIGNED_BYTE, my_texels);

We can also set them through a set of GL functions. These mipmaps are invoked automatically

if we specify

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_NEAREST_MIPMAP_NEAREST);

The University of Texas at Austin 13



Department of Computer Sciences Graphics – Spring 2013 (Lecture 18)

Reading Assignment and News

Please review the appropriate sections related to this lecture in chapter 7, and associated

exercises, of the recommended text.

(Recommended Text: Interactive Computer Graphics, by Edward Angel, Dave Shreiner, 6th

edition, Addison-Wesley)

Please track Blackboard for the most recent Announcements and Project postings related to

this course.

(http://www.cs.utexas.edu/users/bajaj/graphics2012/cs354/)

The University of Texas at Austin 14


