
Department of Computer Sciences Graphics – Spring 2013 (Lecture 20)

Image Compositions

• Compositing of images — combining images to create new images.

• With compositing

1. one portion of the image needs alteration, the whole image does not need to be

regenerated

2. some portions of an image are not rendered but have been optically scanned into

memory instead, compositing may be the only way to incorporate them in the image

3. special effects (fog, transparency etc)

4. meta-buffer (parallel image rendering)

The University of Texas at Austin 1



Department of Computer Sciences Graphics – Spring 2013 (Lecture 20)

α-Channel Compositing

A pixel’s value in the composited image is taken from the background image unless the

foreground image has a nontransparent value at that point, in which case the value is taken

from the foreground image. A blending of two images, the resulting pixel value is a linear

combination of the value of the two component pixels.

Consider a pixel lying on the edge of the back red polygon but inside the front (transparent)

blue polygon? If we color it red only, aliasing artifacts will result. If we know that the back

polygon covers 70 percent of the pixel, we can make the composited pixel 70 percent red

and 30 percent blue and get a much more attractive result.

The University of Texas at Austin 2



Department of Computer Sciences Graphics – Spring 2013 (Lecture 20)

Tricky pixel

front
(red)

back
(blue)

Compositing operations near an edge: How do we color the pixel?

The University of Texas at Austin 3



Department of Computer Sciences Graphics – Spring 2013 (Lecture 20)

The color associated with each pixel in the image is given an α value representing the

coverage of the pixel. For an image that is to become the foreground element of a

composited image, many of the pixels are registered as having coverage zero (they are

transparent); the remainder, which constitue the important content of the foreground image,

have larger coverage values (usually one).

We need tha α information at each pixel of the images being composited. Assume that,

along with the RGB values of an image, we also have an α value encoding the coverage of

each pixel. This collection of α values is often called the α channel.

How do α values combine? Suppose we have a red polygon covering one-third of the area

of a pixel, and a blue polygon that, taken separately, covers one-half of the area of the pixel.

How much of the first polygon is covered by the second? How do we compute the color of

the pixel resulting from 60–40 blend of these 2 pixels?

0.6(
1

3
)(1, 0, 0) + 0.4(

1

2
)(0, 0, 1) = (0.2, 0, 0.2)

The University of Texas at Austin 4



Department of Computer Sciences Graphics – Spring 2013 (Lecture 20)

Non overlap Total overlap Proportional overlap

The ways in which polygons can overlap within a pixel. In image composition, the first two

cases are considered exceptional; the third is treated as the rule.

The University of Texas at Austin 5



Department of Computer Sciences Graphics – Spring 2013 (Lecture 20)

Areas and possible colors for regions of overlap in compositing

Region Area Possible colors

neither (1 − αA)(1 − αB) 0

A alone αA(1 − αB) 0, A

B alone αB(1 − αA) 0, B

both αaαb 0, A, B

Whenever we combine a pixels, we use the product of the α value and the color of each pixel.

This suggests that, when we store an image (within a compositing program), we should store

not (R, G, B, α), but rather (αR, αG, αB, α) for each pixel, thus saving ourselves the

trouble of performing the multiplications each time. When we refer to an RGBα value for a

pixel, we mean exactly this.

The University of Texas at Austin 6



Department of Computer Sciences Graphics – Spring 2013 (Lecture 20)

Generating α Values with Fill Mechanisms

What if an image is produced by scanning of a photograph or is provided by some other

source lacking this information? Can it still be composited? If we can generate an α channel

for the image, we can use that channel for compositing. Even if we merely assign an α value

of zero to black pixels and an α value of 1 to all others, we can use the preceding algorithms,

although ragged-edge problems will generally arise.

The University of Texas at Austin 7



Department of Computer Sciences Graphics – Spring 2013 (Lecture 20)

Blending and Compositing in OpenGL

The mechanics of blending in OpenGL are straightforward. We enable blending by

glEnable(GL_BLEND);

glBlendFunc(GLenum sfactor, GLenum dfactor);

OpenGL has a number of blending factors defined, including the values 1 (GL_ONE) and

0 (GL_ZERO), the source α and 1 − α (GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA),

and the destination α and 1 − α (GL_DST_ALPHA and GL_ONE_MINUS_DST_ALPHA). The

application program specifies the desired operations and then uses RGBA color.

The major difficulties with compositing are that the order in which we render the polygons

affects the image. For example, many applications use the source α as the source blending

factor and 1 − α for the destination factor. The resulting color and opacity are

(Rd′, Gd′, Bd′, αd′) = (αsRs + (1 − αs)Rd, αsGs + (1 − αs)Gd,

αsBs + (1 − αs)Bd, αsαs + (1 − αs)αd).

The University of Texas at Austin 8



Department of Computer Sciences Graphics – Spring 2013 (Lecture 20)

This formula ensures that both transparent and opaque polygons are handled correctly and

that neither colors nor opacities can saturate. However, the color and α values depend on

the order in which the polygons are rendered.

A more subtle but visibly apparent problem occurs when we combine opaque and translucent

objects in a scene. In a scene with both opaque and transparent polygons, any polygon

behind an opaque polygon should not be rendered, but translucent polygons in front of

opaque polygons should be composited but their depth information not registered. There

is a simple solution to this problem that does not require the application program to order

the polygons. We can enable hidden-surface removal as usual and can make the z-buffer

read-only for any polygon that is translucent. We do so by

glDepthMask(GL_FALSE);

When the depth buffer is read-only, a translucent polygon that lies behind any opaque

polygon already rendered is discarded. A translucent polygon that lies in front of any polygon

that has already been rendered is blended with the color of the polygons of which it is

in front. However, because the z-buffer is read-only for this polygon, the depth values in

the buffer are unchanged. Opaque polygons set the depth mask to true and are rendered

normally.

The University of Texas at Austin 9



Department of Computer Sciences Graphics – Spring 2013 (Lecture 20)

OpenGL Blending Examples

(a) (b)

(a) No Blending (b) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

The University of Texas at Austin 10



Department of Computer Sciences Graphics – Spring 2013 (Lecture 20)

(a) (b)

(a) glBlendFunc(GL_ONE, GL_ONE) (b) glBlendFunc(GL_ONE, GL_SRC_ALPHA)

The University of Texas at Austin 11



Department of Computer Sciences Graphics – Spring 2013 (Lecture 20)

Fog Affects Achieved by Compositing

Let f denote a fog factor, and let z be the distance between a fragment being rendered

and the viewer. If the fragment has a color Cs and the fog is assigned a color Cf , then we

can use the color

Cs′ = fCs + (1 − f)Cf

in the rendering. If f varies linearly between some minimum and maximum values, we

achieve a depth-cueing effect. If this factor varies exponentially, then we obtain effects that

look more like fog. OpenGL supports linear, exponential, and Gaussian fog densities. For

example, in RGBA mode, we can set up a fog-density function f = e−0.5z2 by using the

function calls

GLfloat fcolor[4] = { ... };

glEnable(GL_FOG);

glFogf(GL_FOG_MODE, GL_EXP);

glFogf(GL_FOG_DENSITY, 0.5);

glFogfv(GL_FOG_COLOR, fcolor);

Fog Density

The University of Texas at Austin 12



Department of Computer Sciences Graphics – Spring 2013 (Lecture 20)

z

e

A
t
t
e
n
u
a
t
i
o
n

Distance

e-z
2

1 - 0.5 z

e-z

The University of Texas at Austin 13



Department of Computer Sciences Graphics – Spring 2013 (Lecture 20)

The University of Texas at Austin 14



Department of Computer Sciences Graphics – Spring 2013 (Lecture 20)

Reading Assignment and News

Please review the appropriate sections related to this lecture in chapter 7, and associated

exercises, of the recommended text.

(Recommended Text: Interactive Computer Graphics, by Edward Angel, Dave Shreiner, 6th

edition, Addison-Wesley)

Please track Blackboard for the most recent Announcements and Project postings related to

this course.

(http://www.cs.utexas.edu/users/bajaj/graphics2012/cs354/)

The University of Texas at Austin 15


