Supplement to Lecture 14

Illumination Model in OpenGL

CS 354 Computer Graphics <u>http://www.cs.utexas.edu/~bajaj/</u> Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics*, 6th *Ed.*, 2012 © *Addison Wesley* University of Texas at Austin

Phong Illumination

- A simple model that can be computed rapidly
- Has three components
 - Diffuse
 - Specular
 - Ambient
- Uses four vectors
 - To source
 - To viewer
 - Normal
 - Perfect reflector

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics, 6th Ed., 2012* © *Addison Wesley* University of Texas at Austin

Ambient Light

- Ambient light is the result of multiple interactions between (large) light sources and the objects in the environment
- Amount and color depend on both the color of the light(s) and the material properties of the object
- Add $k_a I_a$ to diffuse and specular terms

reflection coef

intensity of ambient light

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics*, 6th *Ed.*, 2012 © *Addison Wesley* University of Texas at Austin

Distance Terms

- The light from a point source that reaches a surface is inversely proportional to the square of the distance between them
- We can add a factor of the
- form $1/(ad + bd + cd^2)$ to
- the diffuse and specular

terms

• The constant and linear terms soften the effect of the point source

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics, 6th Ed., 2012* © *Addison Wesley* University of Texas at Austin В

Light Sources

- In the Phong Model, we add the results from each light source
- Each light source has separate diffuse, specular, and ambient terms to allow for maximum flexibility even though this form does not have a physical justification
- Separate red, green and blue components
- Hence, 9 coefficients for each point source
 - I_{dr} , I_{dg} , I_{db} , I_{sr} , I_{sg} , I_{sb} , I_{ar} , I_{ag} , I_{ab}

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics, 6th Ed., 2012* © *Addison Wesley* University of Texas at Austin

Material Properties

- Material properties match light source properties
 - Nine absorbtion coefficients
 - k_{dr} , k_{dg} , k_{db} , k_{sr} , k_{sg} , k_{sb} , k_{ar} , k_{ag} , k_{ab}
 - Shininess coefficient a

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics*, 6th *Ed.*, 2012 © *Addison Wesley* University of Texas at Austin

Adding up the Components

For each light source and each color component, the Phong model can be written (without the distance terms) as

I = $k_d I_d I \cdot n + k_s I_s (v \cdot r)^a + k_a I_a$ For each color component we add contributions from all sources

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics, 6th Ed., 2012* © *Addison Wesley* University of Texas at Austin

Modified Phong Model

- The specular term in the Phong model is problematic because it requires the calculation of a new reflection vector and view vector for each vertex
- An approximation using the halfway vector that is more efficient
 - h is normalized vector halfway between I and v

h = (I + v)/ | I + v |

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics*, 6th *Ed.*, 2012 © *Addison Wesley* University of Texas at Austin

Using the Half-Way Vector

- Replace $(\mathbf{v} \cdot \mathbf{r})^a$ by $(\mathbf{n} \cdot \mathbf{h})^b$
- b is chosen to match shineness
- Note that halway angle is half of angle between r and v if vectors are coplanar
- Resulting model is known as the modified Phong lighting model
 - Specified in OpenGL standard

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics, 6th Ed., 2012* © *Addison Wesley* University of Texas at Austin

Computation of Vectors

- I and $\ensuremath{\mathbf{v}}$ are specified by the application
- \bullet Can computer r from I and n
- ${\scriptstyle \bullet}$ Problem is determining n
- For simple surfaces is can be determined but how we determine **n** differs depending on underlying representation of surface
- OpenGL leaves determination of normal to application
 - Exception for GLU quadrics and Bezier surfaces

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics, 6th Ed., 2012* © *Addison Wesley* University of Texas at Austin