
CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Lecture 3

Programming with OpenGL +
GLUT

The success of GL lead to OpenGL (1992),

a platform-independent API that was

-!Easy to use

-!Close enough to the hardware to get excellent

performance

-!Focus on rendering

-!Omitted windowing and input to avoid window

system dependencies

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

OpenGL

•!OpenGL core library
-!OpenGL32 on Windows

-!GL on most unix/linux systems (libGL.a)

•!OpenGL Utility Library (GLU)
-!Provides functionality in OpenGL core but

avoids having to rewrite code

•!Links with window system
-!GLX for X window systems

-!WGL for Windows

-!AGL for Macintosh

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

OpenGL Libraries

•!OpenGL Utility Toolkit (GLUT)

-!Provides functionality common to all window

systems
•! Open a window

•! Get input from mouse and keyboard

•! Menus

•! Event-driven

-!Code is portable but GLUT lacks the

functionality of a good toolkit for a specific

platform
•! No slide bars

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

GLUT

GLUT

GLU

GL

GLX, AGL

or WGL

X, Win32, Mac O/S

software and/or hardware

application program

OpenGL Motif

widget or similar

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Software Organization

Immediate Mode

Display

List

Polynomial

Evaluator

Per Vertex

Operations &

Primitive

Assembly

Rasterization
Per Fragment

Operations

Texture

Memory

CPU

Pixel

Operations

Frame

Buffer

geometry

 pipeline

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

OpenGL Architecture

•!Primitives
-! Points

-! Line Segments

-! Polygons

•!Attributes

•!Transformations
-! Viewing

-!Modeling

•!Control (GLUT)

•!Input (GLUT)

•!Query

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

OpenGL Functions

•!OpenGL is a state machine

•!OpenGL functions are of two types

-!Primitive generating
•! Can cause output if primitive is visible

•! How vertices are processed and appearance of primitive

are controlled by the state

-!State changing
•! Transformation functions

•! Attribute functions

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

OpenGL State

•!OpenGL is not object oriented so that

there are multiple functions for a given

logical function

-!glVertex3f

-!glVertex2i

-!glVertex3dv

•!Underlying storage mode is the same

•!Easy to create overloaded functions in C+

+ but issue is efficiency

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Not Object Oriented

glVertex3f(x,y,z)

belongs to GL library

function name

x,y,z are floats

glVertex3fv(p)

p is a pointer to an array

dimensions

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

OpenGL Function Format

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

OpenGL #defines
•!Most constants are defined in the include

files gl.h, glu.h and glut.h
-!Note #include <GL/glut.h> should

automatically include the others

-!Examples

-!glBegin(GL_POLYGON)

-!glClear(GL_COLOR_BUFFER_BIT)

•!include files also define OpenGL data

types: GLfloat, GLdouble,….

Generate a square on a solid background

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

A Simple Program

#include <GL/glut.h>

void mydisplay(){

 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_POLYGON);

 glVertex2f(-0.5, -0.5);

 glVertex2f(-0.5, 0.5);

 glVertex2f(0.5, 0.5);

 glVertex2f(0.5, -0.5);

 glEnd();

 glFlush();

}

int main(int argc, char** argv){

 glutCreateWindow("simple");

 glutDisplayFunc(mydisplay);

 glutMainLoop();

}

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Simple.c

•!Note that the program defines a display

callback function named mydisplay

-!Every glut program must have a display

callback

-!The display callback is executed whenever

OpenGL decides the display must be refreshed,

for example when the window is opened

-!The main function ends with the program

entering an event loop

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Event Loop

•!See website and starter code of Project 1

for example

•!Unix/linux

-! Include files usually in …/include/GL

-!Compile with –lglut –lglu –lgl loader flags

-!May have to add –L flag for X libraries

-!Mesa implementation included with most linux

distributions

-!Check web for latest versions of Mesa and

GLUT

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Compilation Notes

•!simple.c is too simple

•!Makes heavy use of state variable default

values for

-!Viewing

-!Colors

-!Window parameters

•!Next version will make the defaults more

explicit

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Defaults

•!Most OpenGL programs have a similar structure

that consists of the following functions

-!main():

•! defines the callback functions

•! opens one or more windows with the required properties

•! enters event loop (last executable statement)

-!init(): sets the state variables

•! Viewing

•! Attributes

-! callbacks

•! Display function

•! Input and window functions

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

OpenGL Program Structure

5

#include <GL/glut.h>

int main(int argc, char** argv)
{
 glutInit(&argc,argv);
 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);
 glutInitWindowSize(500,500);
 glutInitWindowPosition(0,0);
 glutCreateWindow("simple");
 glutDisplayFunc(mydisplay);

 init();

 glutMainLoop();
}

includes gl.h

define window properties

set OpenGL state

enter event loop

display callback

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Simple.c (revisited)

•!glutInit allows application to get command line
arguments and initializes system

•!gluInitDisplayMode requests properties for the
window (the rendering context)

-! RGB color

-! Single buffering

-! Properties logically ORed together

•!glutWindowSize in pixels

•!glutWindowPosition from top-left corner of display

•!glutCreateWindow create window with title “simple”

•!glutDisplayFunc display callback

•!glutMainLoop enter infinite event loop

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

GLUT functions

7

void init()

{

 glClearColor (0.0, 0.0, 0.0, 1.0);

 glColor3f(1.0, 1.0, 1.0);

 glMatrixMode (GL_PROJECTION);

 glLoadIdentity ();

 glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

}

black clear color

opaque window

fill/draw with white

viewing volume

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Init.c

•!The units in glVertex are determined by the
application and are called object or problem
coordinates

•!The viewing specifications are also in object
coordinates and it is the size of the viewing
volume that determines what will appear in the
image

•!Internally, OpenGL will convert to camera (eye)
coordinates and later to screen coordinates

•!OpenGL also uses some internal representations
that usually are not visible to the application

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Coordinate Systems in OpenGL

•!OpenGL places a camera at the origin in

object space pointing in the negative z

direction

•!The default viewing volume

 is a box centered at the

 origin with a side of

 length 2

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

OpenGL Camera I

z=0

z=0

In the default orthographic view, points are

projected forward along the z axis onto the
plane z=0

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Orthographic Viewing

•!In OpenGL, projection is carried out by a

projection matrix (transformation)

•!There is only one set of transformation functions

so we must set the matrix mode first
 glMatrixMode (GL_PROJECTION)

•! Transformation functions are incremental so we

start with an identity matrix and alter it with a

projection matrix that gives the view volume

 glLoadIdentity();

 glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Transformations & Viewing

•!In glOrtho(left, right, bottom, top,

near, far) the near and far distances are

measured from the camera

•!Two-dimensional vertex commands place all vertices

in the plane z=0

•!If the application is in two dimensions, we can use the

function

 gluOrtho2D(left, right,bottom,top)

•!In two dimensions, the view or clipping volume

becomes a clipping window

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

2D/3D Viewing

void mydisplay()

{
 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_POLYGON);

 glVertex2f(-0.5, -0.5);

 glVertex2f(-0.5, 0.5);

 glVertex2f(0.5, 0.5);
 glVertex2f(0.5, -0.5);

 glEnd();

 glFlush();

}

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Mydisplay.c

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

OpenGL Geometry Primitives

•!OpenGL will only display polygons correctly that are

-! Simple: edges cannot cross

-!Convex: All points on line segment between two points in a

polygon are also in the polygon

-! Flat: all vertices are in the same plane

•!User program can check if above true

-!OpenGL will produce output if these conditions are violated
but it may not be what is desired

•!Triangles satisfy all conditions

nonsimple polygon
nonconvex polygon

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Polygons in OpenGL

•!Attributes are part of the OpenGL state

and determine the appearance of objects

-!Color (points, lines, polygons)

-!Size and width (points, lines)

-!Stipple pattern (lines, polygons)

-!Polygon mode

•!Display as filled: solid color or stipple pattern

•!Display edges

•!Display vertices

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Attributes

•!Each color component is stored separately in

the frame buffer

•!Usually 8 bits per component in buffer

•!Note in glColor3f the color values range from

0.0 (none) to 1.0 (all), whereas in glColor3ub

the values range from 0 to 255

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

RGB Color in OpenGL

•!Colors are indices into tables of RGB values

•!Requires less memory

-! indices usually 8 bits

-!Use when need more colors for shading

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Indexed Color in OpenGL

•!The color as set by glColor becomes part of the
state and will be used until changed

-!Colors and other attributes are not part of the
object but are assigned when the object is
rendered

•!We can create conceptual vertex colors by code
such as

 glColor

 glVertex

 glColor

 glVertex

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Colors & State

•!Default is smooth shading

-!OpenGL interpolates vertex colors across

visible polygons

•!Alternative is flat shading

-!Color of first vertex

determines fill color

•!glShadeModel

(GL_SMOOTH)

or GL_FLAT

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Smooth Color in OpenGL

•!Do not have use the entire window for the

image: glViewport(x,y,w,h)

•!Values in pixels (screen coordinates)

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Viewports

•!In OpenGL, two-dimensional applications
are a special case of three-dimensional
graphics

•!Going to 3D
-!Not much changes

-!Use glVertex3*()

-!Have to worry about the order in which
polygons are drawn or use hidden-surface
removal

-!Polygons should be simple, convex, flat

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

3D Applications in OpenGL

•!Subdivide each of the four faces

•!Appears as if we remove a solid

tetrahedron from the center leaving four

smaller tetrahedra

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

3D Sierpinski Gasket

5 iterations

•!Start with a triangle

•!Connect bisectors of sides and remove central
triangle

#include <GL/glut.h>

/* initial triangle */

GLfloat v[3][2]={{-1.0, -0.58},

 {1.0, -0.58}, {0.0, 1.15}};

void triangle(GLfloat *a, GLfloat *b,

GLfloat *c)

/* display one triangle */

{

 glVertex2fv(a);

 glVertex2fv(b);

 glVertex2fv(c);

}

void divide_triangle(GLfloat *a, GLfloat *b, GLfloat *c,
int m)

{
/* triangle subdivision using vertex numbers */
 point2 v0, v1, v2;
 int j;
 if(m>0)
 {
 for(j=0; j<2; j++) v0[j]=(a[j]+b[j])/2;
 for(j=0; j<2; j++) v1[j]=(a[j]+c[j])/2;
 for(j=0; j<2; j++) v2[j]=(b[j]+c[j])/2;
 divide_triangle(a, v0, v1, m-1);
 divide_triangle(c, v1, v2, m-1);
 divide_triangle(b, v2, v0, m-1);
 }
 else(triangle(a,b,c));
 /* draw triangle at end of recursion */
}

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

2D Triangle Subdivision

void triangle(GLfloat *a, GLfloat *b,

GLfloat *c)

{

 glVertex3fv(a);

 glVertex3fv(b);

 glVertex3fv(c);

}

void divide_triangle(GLfloat *a, GLfloat *b,
GLfloat *c, int m)

{
 GLfloat v1[3], v2[3], v3[3];
 int j;
 if(m>0)
 {
 for(j=0; j<3; j++) v1[j]=(a[j]+b[j])/2;
 for(j=0; j<3; j++) v2[j]=(a[j]+c[j])/2;
 for(j=0; j<3; j++) v3[j]=(b[j]+c[j])/2;
 divide_triangle(a, v1, v2, m-1);
 divide_triangle(c, v2, v3, m-1);
 divide_triangle(b, v3, v1, m-1);
 }
 else(triangle(a,b,c));
} void tetrahedron(int m)

{

 glColor3f(1.0,0.0,0.0);
 divide_triangle(v[0], v[1], v[2], m);

 glColor3f(0.0,1.0,0.0);

 divide_triangle(v[3], v[2], v[1], m);

 glColor3f(0.0,0.0,1.0);

 divide_triangle(v[0], v[3], v[1], m);
 glColor3f(0.0,0.0,0.0);

 divide_triangle(v[0], v[2], v[3], m);

}

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

3D Triangle/Tetrahedron Subdivision

•!Because the triangles are drawn in the order

they are defined in the program, the front

triangles are not always rendered in front of

triangles behind them

get this

want this

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Almost Correct

•!We want to see only those surfaces in front of

other surfaces

•!OpenGL uses a hidden-surface method called

the z-buffer algorithm that saves depth

information as objects are rendered so that only

the front objects appear in the image

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Hidden Surface Removal

•!The algorithm uses an extra buffer, the z-buffer, to
store depth information as geometry travels down the
pipeline

•!It must be

-!Requested in main.c
•!glutInitDisplayMode

 (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH)

-!Enabled in init.c
•!glEnable(GL_DEPTH_TEST)

-!Cleared in the display callback
•!glClear(GL_COLOR_BUFFER_BIT |

 GL_DEPTH_BUFFER_BIT)

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Using the Z-buffer algorithm

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2010

Notes and figures from Ed Angel: Interactive Computer
Graphics, 5th Ed., 2009 © Addison Wesley

Surface/Volume Subdivison

For complete 3D program please see pg. 693 - 695 of text

