
CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, D. Shreiner: Interactive
Computer Graphics, 6th Ed., 2012 © Addison Wesley

Supplement to Lecture 7

3D Smooth /Incremental
Rotations via Trackball

in OpenGL

• The trackball is an “upside down” mouse

• If there is little friction between the ball and the
rollers, we can give the ball a push and it will
keep rolling yielding continuous changes

• Two possible modes of operation
- Continuous pushing or tracking hand motion

-  Spinning

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, D. Shreiner: Interactive
Computer Graphics, 6th Ed., 2012 © Addison Wesley

Physical Trackball

• Problem: we want to get the two behavior

modes from a mouse

• We would also like the mouse to emulate

a frictionless (ideal) trackball

• Solve in two steps

- Map trackball position to mouse position

- Use GLUT to obtain the proper modes

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, D. Shreiner: Interactive
Computer Graphics, 6th Ed., 2012 © Addison Wesley

A Trackball from a Mouse

origin at center of ball

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, D. Shreiner: Interactive
Computer Graphics, 6th Ed., 2012 © Addison Wesley

Trackball Frame

• We can relate position on trackball to

position on a normalized mouse pad by

projecting orthogonally onto pad

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, D. Shreiner: Interactive
Computer Graphics, 6th Ed., 2012 © Addison Wesley

Projection of Trackball

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, D. Shreiner: Interactive
Computer Graphics, 6th Ed., 2012 © Addison Wesley

Reversing Projection

• Because both the pad and the upper

hemisphere of the ball are two-

dimensional surfaces, we can reverse the

projection

• A point (x,z) on the mouse pad

corresponds to the point (x,y,z) on the

upper hemisphere where

y = if r ≥ √ (|x|^2+ |z|^2) ≥ 0

• Suppose that we have two points that

were obtained from the mouse.

• We can project them up to the

hemisphere to points p1 and p2

• These points determine a great circle on

the sphere

• We can rotate from p1 to p2 by finding the

proper axis of rotation and the angle

between the points

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, D. Shreiner: Interactive
Computer Graphics, 6th Ed., 2012 © Addison Wesley

Computing Rotations

• The axis of rotation is given by the normal

to the plane determined by the origin, p1 ,

and p2

n = p1 X p2

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, D. Shreiner: Interactive
Computer Graphics, 6th Ed., 2012 © Addison Wesley

Using the Cross Product

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, D. Shreiner: Interactive
Computer Graphics, 6th Ed., 2012 © Addison Wesley

Obtaining the angle
• The angle between p1 and p2 is given by

• If we move the mouse slowly or sample its

position frequently, then � will be small

and we can use the approximation

| sin �| =

sin � ≈ �

• We will use the idle, motion, and mouse
callbacks to implement the virtual trackball

• Define actions in terms of three booleans

• trackingMouse: if true update trackball
position

• redrawContinue: if true, idle function
posts a redisplay

• trackballMove: if true, update rotation
matrix

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, D. Shreiner: Interactive
Computer Graphics, 6th Ed., 2012 © Addison Wesley

Implementation with GLUT

• In this example, we use the virtual

trackball to rotate the color cube we

modeled earlier

• The code for the colorcube function is

omitted because it is unchanged from the

earlier examples

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, D. Shreiner: Interactive
Computer Graphics, 6th Ed., 2012 © Addison Wesley

Example

#define bool int /* if system does not support
 bool type */
#define false 0
#define true 1
#define M_PI 3.14159 /* if not in math.h */

int winWidth, winHeight;

float angle = 0.0, axis[3], trans[3];

bool trackingMouse = false;
bool redrawContinue = false;
bool trackballMove = false;

float lastPos[3] = {0.0, 0.0, 0.0};
int curx, cury;
int startX, startY;

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, D. Shreiner: Interactive
Computer Graphics, 6th Ed., 2012 © Addison Wesley

Initialization

voidtrackball_ptov(int x, int y, int width,
int height, float v[3]){

 float d, a;
 /* project x,y onto a hemisphere centered
within width, height , note z is up here*/

 v[0] = (2.0*x - width) / width;
 v[1] = (height - 2.0F*y) / height;
 d = sqrt(v[0]*v[0] + v[1]*v[1]);
 v[2] = cos((M_PI/2.0) * ((d < 1.0) ? d

 : 1.0));
 a = 1.0 / sqrt(v[0]*v[0] + v[1]*v[1] +

 v[2]*v[2]);
 v[0] *= a; v[1] *= a; v[2] *= a;
}

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, D. Shreiner: Interactive
Computer Graphics, 6th Ed., 2012 © Addison Wesley

The Projection Step

void mouseMotion(int x, int y)
{
 float curPos[3],
 dx, dy, dz;
 /* compute position on hemisphere */
 trackball_ptov(x, y, winWidth, winHeight, curPos);
 if(trackingMouse)
 {
 /* compute the change in position
 on the hemisphere */
 dx = curPos[0] - lastPos[0];
 dy = curPos[1] - lastPos[1];
 dz = curPos[2] - lastPos[2];

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, D. Shreiner: Interactive
Computer Graphics, 6th Ed., 2012 © Addison Wesley

glutMotionFunc(1)

if (dx || dy || dz)
 {
 /* compute theta and cross product */
 angle = 90.0 * sqrt(dx*dx + dy*dy + dz*dz);
 axis[0] = lastPos[1]*curPos[2] –
 lastPos[2]*curPos[1];
 axis[1] = lastPos[2]*curPos[0] –
 lastPos[0]*curPos[2];
 axis[2] = lastPos[0]*curPos[1] –
 lastPos[1]*curPos[0];
 /* update position */
 lastPos[0] = curPos[0];
 lastPos[1] = curPos[1];
 lastPos[2] = curPos[2];
 }
 }
 glutPostRedisplay();
}

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, D. Shreiner: Interactive
Computer Graphics, 6th Ed., 2012 © Addison Wesley

glutMotionFunc(2)

void spinCube()

{

 if (redrawContinue) glutPostRedisplay();

}

void display()

{ glClear(GL_COLOR_BUFFER_BIT|

GL_DEPTH_BUFFER_BIT);

 if (trackballMove)

 {

 glRotatef(angle, axis[0], axis[1], axis[2]);

 }

 colorcube();

 glutSwapBuffers();

}

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, D. Shreiner: Interactive
Computer Graphics, 6th Ed., 2012 © Addison Wesley

Idle & Display Callbacks

void mouseButton(int button, int state, int x, int y)
{
 if(button==GLUT_RIGHT_BUTTON) exit(0);

/* holding down left button
 allows user to rotate cube */
 if(button==GLUT_LEFT_BUTTON) switch(state)
 {
 case GLUT_DOWN:
 y=winHeight-y;
 startMotion(x,y);
 break;
 case GLUT_UP:
 stopMotion(x,y);
 break;
 }
 }

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, D. Shreiner: Interactive
Computer Graphics, 6th Ed., 2012 © Addison Wesley

Mouse Callback

void startMotion(int x, int y)

{

 trackingMouse = true;

 redrawContinue = false;

 startX = x;

 startY = y;

 curx = x;

 cury = y;

 trackball_ptov(x, y, winWidth, winHeight, lastPos);

 trackballMove=true;

}

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, D. Shreiner: Interactive
Computer Graphics, 6th Ed., 2012 © Addison Wesley

Start Function

void stopMotion(int x, int y)

{

 trackingMouse = false;

 /* check if position has changed */

 if (startX != x || startY != y)

 redrawContinue = true;

 else

 {

 angle = 0.0;

 redrawContinue = false;

 trackballMove = false;

 }

}

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, D. Shreiner: Interactive
Computer Graphics, 6th Ed., 2012 © Addison Wesley

Stop Function

• Because the rotations are on the surface

of a sphere, quaternions provide a more

efficient way to implement the trackball

rotation matrices

• See lecture notes on Quaternions to

generate these rotation matrices from the

(3D axis of rotation, angle of rotation)

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin 2013

Figures from Ed Angel, D. Shreiner: Interactive
Computer Graphics, 6th Ed., 2012 © Addison Wesley

Quaternions

