
Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)Basi
 Graphi
al User Interfa
e Con
epts

� Physi
al input devi
es used in graphi
s� Virtual devi
es� Polling vs event pro
essing� UI toolkits for generalized event pro
essing

The University of Texas at Austin 1

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)Physi
al Devi
es

A
tual, physi
al input devi
es in
lude:� Dials (potentiometers)� Sele
tors� Pushbuttons� Swit
hes� Keyboards (
olle
tions of push buttons
alled \keys")� Tra
kballs (relative motion)� Mi
e (relative motion)� Joysti
ks (relative motion, dire
tion)� Tablets (absolute position)� et
.
The University of Texas at Austin 2

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)Virtual Devi
es

Devi
es
an be
lassi�ed a

ording to the kind of value they return:� Button: returns a Boolean value;
an be depressed or released.� Key: returns a
hara
ter;
an also be thought of as a button.� Sele
tor: returns an integral value (in a given range).� Valuator: returns a real value (in a given range).� Lo
ator: returns a position in (2D/3D) spa
e (usually several ganged valuators).Ea
h of the above is
alled a virtual devi
e.

The University of Texas at Austin 3

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)Polling and Sampling

In polling, the value of an input devi
e is
onstantly
he
ked in a tight loop:� To re
ord the motion of a valuator� To wait for a
hange in statusIf a re
ord is taken, this input mode may be
alled sampling.Generally, polling is ineÆ
ient and should be avoided, parti
ularly in time-sharing systems.

The University of Texas at Austin 4

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)Event Queries

� Devi
e is monitored by an asyn
hronous pro
ess.� Upon
hange in status of devi
e, this pro
ess pla
es a re
ord into an event queue.� Appli
ation
an request read-out of queue:{ number of events{ 1st waiting event{ highest priority event{ 1st event of some
ategory{ all events� Appli
ation
an also{ spe
ify whi
h events should be pla
ed in queue{
lear and reset the queue{ et
.� Queue reading
an be blo
king or non-blo
king.

The University of Texas at Austin 5

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)� The
ursor is usually bound to a pair of valuators, typi
ally MOUSE X and MOUSE Y.� Events
an be restri
ted to parti
ular areas of the s
reen, based on the
ursor position.� Events
an be very general or spe
i�
:{ a mouse button or keyboard key is depressed{ a mouse button or keyboard key is released{ the
ursor enters a window{ the
ursor has moved more than a
ertain amount{ an Expose event is triggered under X whi
h a window be
omes visible{ a Configure event is triggered when a window is resized{ a timer event may o

ur after a
ertain interval� Simple event queues just re
ord a
ode for event (Iris GL).� Better event queues re
ord extra information su
h as time stamps (X windows).

The University of Texas at Austin 6

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)GUI Toolkits

Event-loop pro
essing
an be generalized1. Instead of a swit
h, use table lookup.2. Ea
h table entry asso
iates an event with a
allba
k fun
tion.3. When the event o

urs, the
allba
k is invoked.4. Provide an API to make and delete table entries.5. Divide s
reen into par
els, and assign di�erent
allba
ks to di�erent par
els (X windowsdoes this).
The University of Texas at Austin 7

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)Modular UI fun
tionality is provided through a
olle
tion of widgets.� Widgets are par
els of the s
reen that
an respond to events.� A widget has a graphi
al representation that suggests its fun
tion.� Widgets may respond to events with a
hange in appearan
e, as well as issuing
allba
ks.� Widgets are arranged in a parent/
hild hierar
hy.� Widgets may have multiple parts, and in fa
t may be
omposed of other widgets in ahierar
hy.Some UI toolkits: Xm, Xt, SUIT, FORMS, Tk, GLUT, GLUI, QT, ...

The University of Texas at Austin 8

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)GUI Programming using OpenGL and GLUT

Last time we looked at a simple example with straightforward intera
tion, single windowdisplay.#in
lude<GL/glut.h>void main(int arg
,
har **argv) /*
alls to GLUT to set upwindows, display properties, and event pro
essing
allba
ks*/{ glutInit(&arg
,argv);glutInitDisplayMode(GLUT_SINGLE $|$ GLUT_RGB);glutInitWindowSize(500,500);glutInitWindowPosition(0,0);glutCreateWindow("Fra
tal example");/*display
allba
k that sends graphi
s to the s
reen */glutDisplayFun
(display);/*set up user options*/myinit();The University of Texas at Austin 9

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)/* enter event pro
essing loop for intera
tive graphi
s programs*/glutMainLoop();}
The University of Texas at Austin 10

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)Extensions to GUI using GLUT -I

We shall look at event-driven input that uses the
allba
k me
hanism in GLUT. X-11 windowsystem is more general.� Move event is generated when the mouse is moved with one of the buttons depressed� Passive Move event is generated when the mouse is moved without a button being helddown� Mouse event is generated when one of the mouse buttons is either depressed or released.The mouse
allba
k fun
tion is spe
i�ed usually in the main fun
tion by means of the GLUTfun
tionglutMouseFun
(mouse)The mouse
allba
k has the form below, where we spe
ify the a
tion(s) that we want to takepla
e on the o

urren
e of the eventThe University of Texas at Austin 11

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)void mouse(int button, int state, int x, int y){ if(button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)exit(); /*
auses termination of the program*/}As long as no other
allba
ks are de�ned and registered with the Window system, no responsea
tion will o

ur if any other mouse event o

urs.

The University of Texas at Austin 12

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)Extensions to GUI using GLUT - II

void main(int arg
,
har **argv) /*draw a small box at ea
hlo
ation where mouse is lo
ated when left button is pressed*/{ glutInit(&arg
,argv);glutInitDisplayMode(GLUT_SINGLE $|$ GLUT_RGB);glutCreateWindow("Square");myinit();glutReshapefun
(myReshape);glutMouseFun
(mouse);glutDisplayFun
(display);/* enter event pro
essing loop for intera
tive graphi
s programs*/glutMainLoop();}The University of Texas at Austin 13

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)void mouse(int button, int state, int x, int y){ if(button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)drawSquare(x,y);if(button == GLUT_MIDDLE_BUTTON && state == GLUT_DOWN)exit();}
The University of Texas at Austin 14

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)Extensions to GUI using GLUT - II

The Initialization and Display Fun
tions/*globals*/GLsizei wh = 500, ww = 500; /*initial window size*GLfloat size = 3.0; /*one-half of side length of square */void myinit(void){ /*set viewing
onditions*/glViewport(o,0,ww,wh);glMatrixMode(GL_Proje
tion);glLoadIdentity();gluOrtho2D(0.0, ww, 0.0, wh);glMatrixMode(GL_ModelVIEW);glClearColor(10.0, 0.0, 0.0, 0.0); /*bla
k ba
kground*/glClear(GL_COLOR_BUFFER_BIT); /*
lear window*/The University of Texas at Austin 15

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)glFlush();}void drawsquare(int x, int y){ /*flip as window system has its origin at top left*/y = wh -y;/*pi
k a random
olor*/glColor3ub((
har) rand()%256, (
har) rand()%256, (
har) rand()%256);glBegin(GL_POLYGON);glVertex2fv(x+size,y+size);glVertex2fv(x-size,y+size);glVertex2fv(x-size,y-size);glVertex2fv(x+size,y-size);glEnd();glFlush();}
The University of Texas at Austin 16

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)Pi
king and 3D Sele
tion using OpenGL and GLUT

� Pi
k: Sele
t an obje
t by positioning mouse over it and
li
king� Question: How do we de
ide what was pi
ked?{ We
ould do the work ourselves:� Map sele
tion point to a ray� Interse
t with all obje
ts in s
ene{ Let OpenGL/graphi
s hardware do the work� Idea: Draw entire s
ene, and \pi
k" anything drawn near the
ursor{ Only \draw" in a small viewport near the
ursor{ Just do
lipping, no shading or rasterization{ Need a method of identifying \hits"{ OpenGL uses a name sta
k managed byglInitNames(), glLoadName(), glPushName(), and glPopName(){ \Names" are short integers{ When hit o

urs,
opy entire
ontents of sta
k to output bu�er� Example:The University of Texas at Austin 17

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)glSele
tBuffer(size, buffer); /* initialize */glRenderMode(GL_SELECT);glInitNames();glGetIntegerv(GL_VIEWPORT, viewport); /* set up pi
k view */glMatrixMode(GL_PROJECTION);glPushMatrix();glIdentity();gluPi
kMatrix(x, y, w, h, viewport);glMatrixMode(GL_MODELVIEW);ViewMatrix();glLoadName(1);Draw1();glLoadName(2);Draw2();glMatrixMode(GL_PROJECTION);glPopMatrix();glMatrixMode(GL_MODELVIEW);hits = glRenderMode(GL_RENDER);The University of Texas at Austin 18

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)� What you get ba
k:{ If you
li
k on Item 1 only:hits = 1,buffer = 1, min(z1), max(z1), 1.{ If you
li
k on Item 2 only:hits = 1,buffer = 1, min(z2), max(z2), 2.{ If you
li
k over both Item 1 and Item 2:hits = 1,buffer = 1, min(z1), max(z1), 1, 1, min(z2), max(z2), 2.

The University of Texas at Austin 19

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)� More
omplex example:/* initialization stuff goes here */glPushName(1);Draw1(); /* sta
k: 1 */glPushName(1);Draw1_1(); /* sta
k: 1 1 */glPushName(1);Draw1_1_1(); /* sta
k: 1 1 1 */glPopName();glPushName(2);Draw1_1_2(); /* sta
k: 1 1 2 */glPopName();glPopName();glPushName(2);Draw1_2(); /* sta
k: 1 2 */glPopName();glPopName();glPushName(2);Draw2(); /* sta
k: 2 */The University of Texas at Austin 20

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)glPopName();/* wrap-up stuff here */

The University of Texas at Austin 21

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)� What you get ba
k:{ If you
li
k on Item 1:hits = 1,buffer = 1, min(z1), max(z1), 1.{ If you
li
k on Items 1:1:1 and 1:2:hits = 2,buffer = 3, min(z111), max(z111), 1, 1, 1, 2, min(z12),max(z12), 1, 2.{ If you
li
k on Items 1:1:2, 1:2, and 2:hits = 3,buffer = 3, min(z112), max(z112), 1, 1, 2, 2, min(z12),max(z12), 1, 2, 1, min(z2), max(z2), 2.� In general, if h is the number hits, the following is returned.{ hits = h.{ h hit re
ords, ea
h with four parts:1. The number of items q on the name sta
k at the time of the hit (1 int).2. The minimum z value among the primitives hit (1 int).3. The maximum z value among the primitives hit (1 int).4. The
ontents of the hit sta
k, deepest element �rst (q ints).

The University of Texas at Austin 22

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)� Important Details:{ Make sure that proje
tion matrix is saved with a glPushMatrix() and restored witha glPopMatrix().{ glRenderMode(GL RENDER) returns negative if bu�er not big enough.{ When a hit o

urs, a
ag is set.{ Entry to name sta
k only made at next gl*Name(s) or glRenderMode
all. So, ea
hdraw blo
k
an only generate at most one hit.

The University of Texas at Austin 23

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 4)Reading Assignment and News

Chapter 3 pages 99 - 153, of Re
ommended Text.Please also tra
k the News se
tion of the Course Web Pages for the most re
entAnnoun
ements related to this
ourse.(http://www.
s.utexas.edu/users/bajaj/graphi
s24/
s354/)

The University of Texas at Austin 24

