
Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

Viewing I: Model Transformations

Matrix Representation of Transformations

• Let A0 and A1 be affine spaces.

Let T : A0 7→ A1 be an affine transformation.

Let F0 = (~i0,~j0,O0) be a frame for A0.

Let F1 = (~i1,~j1,O1) be a frame for A1.

• Let P = x~i0 + y~j0 + O0 be a point in A0.

The coordinates of P relative to A0 are (x, y, 1).

This can also be represented in vector form as P =
[

~i0 ~j0 O0

]





x

y

1





The University of Texas at Austin 1



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

• What are the coordinates (x′, y′, 1) of T(P ) relative to F1?

– An affine transformation is characterized by the image of a frame in the domain.

T(P ) = T(x~i0 + y~j0 + O0)

= xT(~i0) + yT(~j0) + T(O0)

– T(~i0) must be a linear combination of~i1 and ~j1,

say T(~i0) = t1,1
~i1 + t2,1

~j1.

– Likewise T(~j0) must be a linear combination of~i1 and ~j1,

say T(~j0) = t1,2
~i1 + t2,2

~j1.

– Finally T(O0) must be an affine combination of~i1,
~j1, and O1, say T(O0) = t1,3

~i1 + t2,3
~j1 + O1.

The University of Texas at Austin 2



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

– Then by substitution we get

T(P ) = x(t1,1
~i1 + t2,1

~j1) + y(t1,2
~i1 + t2,2

~j1) + t1,3
~i1 + t2,3

~j1 + O1

=
[

t1,1
~i1 + t2,1

~j1 t1,2
~i1 + t2,2

~j1 t1,3
~i1 + t2,3

~j1 + O1

]





x

y

1





=
[

~i1 ~j1 O1

]





t1,1 t1,2 t1,3

t2,1 t2,2 t2,3

0 0 1









x

y

1





Using MT to denote the matrix, we see that F0 = F1MT

• Let T(P ) = P ′ = x′~i1 + y′~j1 + O1

The University of Texas at Austin 3



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

In vector form this is

P
′

=
[

~i1 ~j1 O1

]





x′

y′

1





=
[

~i1 ~j1 O1

]





t1,1 t1,2 t1,3

t2,1 t2,2 t2,3

0 0 1









x

y

1





So we see that




x′

y′

1



 =





t1,1 t1,2 t1,3

t2,1 t2,2 t2,3

0 0 1









x

y

1





We can write this in shorthand – p′ = MTp

• MT is the matrix representation of T

– The first column of MT represents T(~i0)

– The second column of MT represents T(~j0)

– The third column of MT represents T(O0)

The University of Texas at Austin 4



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

• Translation

– Points are transformed as
[

x′ y′ 1
]T

= [x y 1]
T

+ [∆x ∆y 0]
T
.

– Vectors don’t change.

– Thus translation is affine but not linear.

If it were linear, we would have T(P + Q) = T(P ) + T(Q), but point addition is

undefined.

– Translation can be applied to sums of vectors and vector-point sums.

– Matrix formulation:





x′

y′

1



 =





1 0 ∆x

0 1 ∆y

0 0 1









x

y

1



 =





x + ∆x

y + ∆y

1









x′

y′

0



 =





1 0 ∆x

0 1 ∆y

0 0 1









x

y

0



 =





x

y

0





– Shorthand for the above matrix: T (∆x, ∆y)

The University of Texas at Austin 5



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

• Example

glTranslatef(.7, .5, 0);

glBegin(GL_LINE_LOOP);

glVertex2f(-1, 0);

glVertex2f(1, 0);

glVertex2f(1,1);

glVertex2f(-1,1);

glEnd();

The University of Texas at Austin 6



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

• Scale

– Linear transform — applies equally to points and vectors

– Points transform as
[

x′ y′ 1
]T

= [xSx ySy 1]
T
.

– Vectors transform as
[

x′ y′ 0
]T

= [xSx ySy 0]
T
.

– Matrix formulation:





x′

y′

1



 =





Sx 0 0

0 Sy 0

0 0 1









x

y

1



 =





xSx

ySy

1









x′

y′

0



 =





Sx 0 0

0 Sy 0

0 0 1









x

y

0



 =





xSx

ySy

0





– Shorthand for the above matrix: S(Sx, Sy)

– Note that this is origin sensitive.

– How do you do reflections?

The University of Texas at Austin 7



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

• Example

glScalef(0.3, 1, 1);

glBegin(GL_LINE_LOOP);

glVertex2f(-1, 0);

glVertex2f(1, 0);

glVertex2f(1,1);

glVertex2f(-1,1);

glEnd();

The University of Texas at Austin 8



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

• Rotate

– Linear transform — applies equally to points and vectors

– Points transform as
[

x′ y′ 1
]T

= [x cos(θ) − y sin(θ) x sin(θ) + y cos(θ) 1]
T
.

– Vectors transform as
[

x′ y′ 0
]T

= [x cos(θ) − y sin(θ) x sin(θ) + y cos(θ) 0]
T
.

– Matrix formulation:





x′

y′

1



 =





cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1









x

y

1



 =





x cos(θ) − y sin(θ)

x sin(θ) + y cos(θ)

1









x′

y′

0



 =





cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1









x

y

0



 =





x cos(θ) − y sin(θ)

x sin(θ) + y cos(θ)

0





– Shorthand for the above matrix: R(θ)

– Note that this is origin sensitive.

The University of Texas at Austin 9



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

• Example

glRotatef(45, 0, 0, 0, 1);

glBegin(GL_LINE_LOOP);

glVertex2f(-1, 0);

glVertex2f(1, 0);

glVertex2f(1,1);

glVertex2f(-1,1);

glEnd();

The University of Texas at Austin 10



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

• Shear

– Linear transform — applies equally to points and vectors

– Points transform as
[

x′ y′ 1
]T

= [x + αy, y + βx, 1]
T
.

– Vectors transform as
[

x′ y′ 0
]T

= [x + αy, y + βx, 0]
T
.

– Matrix formulation:





x′

y′

1



 =





1 α 0

β 1 0

0 0 1









x

y

1



 =





x + αy

y + βx

1









x′

y′

0



 =





1 α 0

β 1 0

0 0 1









x

y

0



 =





x + αy

y + βx

0





– Shorthand for the above matrix: Sh(α, β)

The University of Texas at Austin 11



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

• Example

float ShearMatrix[] = {

1, 1, 0, 0,

0, 1, 0, 0,

0, 0, 1, 0,

0, 0, 0, 1 };

Traspose(ShearMatrix);

glMultMatrixf(ShearMatrix);

The University of Texas at Austin 12



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

• Composition of Transformations

– Now we have some basic transformations, how do we create and represent arbitrary

affine transformations?

– We can derive an arbitrary affine transform as a sequence of basic transformations,

then compose the transformations

– Example — scaling about an arbitrary point [xc yc 1]
T

1. Translate [xc yc 1]
T

to [0 0 1] (T (−xc,−yc))

2. Scale
[

x′ y′ 1
]T

= S(Sx, Sy) [x y 1]
T

3. Translate [0 0 1]
T

back to [xc yc 1] (T (xc, yc))

– The sequence of transformation steps is

T (−xc,−yc) ◦ S(Sx, Sy) ◦ T (xc, yc)

The University of Texas at Austin 13



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

– Example

glTranslate(.7, .5, 0); glRotatef(45, 0, 0, 0, 1);

glRotatef(45, 0, 0, 0, 1); glTranslate(.7, .5, 0);

glBegin(GL_LINE_LOOP); glBegin(GL_LINE_LOOP);

glVertex2f(-1, 0); glVertex2f(-1, 0);

glVertex2f(1, 0); glVertex2f(1, 0);

glVertex2f(1,1); glVertex2f(1,1);

glVertex2f(-1,1); glVertex2f(-1,1);

glEnd(); glEnd();

The University of Texas at Austin 14



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

– In matrix form this is





x′

y′

1



 =





1 0 xc

0 1 yc

0 0 1









Sx 0 0

0 Sy 0

0 0 1









1 0 −xc

0 1 −yc

0 0 1









x

y

1





=





Sx 0 xc(1 − Sx)

0 Sy yc(1 − Sy)

0 0 1









x

y

1





– Note that the matrices are arranged from right to left in the order of the steps.

– The order is important (why)?

The University of Texas at Austin 15



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

• Three Dimensional Transformations

– A point is p = [x y z 1], a vector ~v = [x y z 0]

– Translation:

T (∆x, ∆y, ∆z) =









1 0 0 ∆x

0 1 0 ∆y

0 0 1 ∆z

0 0 0 1









– Scale:

S(Sx, Sy, Sz) =









Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1









– Rotation:

Rz(Θ) =









cos(θ) − sin(θ) 0 0

sin(θ) cos(θ) 0 0

0 0 1 0

0 0 0 1









More on 3D Rotations later, especially using Quaternions!

The University of Texas at Austin 16



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

OpenGL Transformation Matrices
There are three matrices that are part of the OpenGl pipeline, and all are manipulated

by a common set of functions. To select the matrix type on which operations apply use

glMatrixMode function. For example,

glMatrixMode(GL_MODELVIEW); or glMatrixMode(GL_PROJECTION)

• The matrix applied to all primitives is the product of the ModelView matrix and the

Projection matrix.

• Matrix is loaded with function

glLoadMatrixf(pointer_to_matrix)

• Matrix is altered with function

glMultMatrixf(pointer_to_matrix)

• Translation is provided with function

glTranslatef(dx,dy,dz)

• Rotation is provided with function

glRotatef(angle,vx,vy,vz)

The University of Texas at Austin 17



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

• Scaling is provided with function

glScalef(sx,sy,sz)

• All three transformations alter the selected matrix by postmultiplication.

Order of Applying Transformations The rule in OpenGL: The transformation specified last

is the one applied first.

Consider the example sequence to form the required matrix for a 45-degree rotation about a

vector (1,2,3). The object frame’s origin is (4,5,6) and that is its center of rotation. The

sequence is to move the object’s frame to the origin (0,0,0), rotating about the origin, and

finally moving the rotated object back to its original location.

glMatrixModel(GL_MODELVIEW);

glLoadIdentity();

glTranslatef(4.0,5.0,6.0);

glRotatef(45.0, 1.0,2.0,3.0);

glTranslatef(-4.0,-5.0,-6.0);

The University of Texas at Austin 18



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

Projections as an Example of Projective Transformations

Perspective Projection

• Identify all points with a line through the eyepoint.

• Slide lines with viewing plane, take intersection point as projection.

• This is not an affine transformation, but a projective transformation.

Projective Transformations:

• Angles are not preserved.

• Distances are not preserved.

• Ratios of distances are not preserved.

• Affine combinations are not preserved.

• Straight lines are mapped to straight lines.

• Incidence relationships are preserved in a general way.

• Cross ratios are preserved.

The University of Texas at Austin 19



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

Perspective Map

• Given a point P , we want to find its projection P ′.

(0,0) z

Projection plane, z = n

y

p’=(x’,y’,n)

p=(x,y,z)

y

z

y’

n

• Similar triangles: P ′ = (xn/z, n)

• In 3D, (x′, y′, z′) 7→ (xn/z, yn/z, n)

• Have identified all points on a line through the origin with a point in the projection plane.

• Thus, (x, y, z) ≡ (kx, ky, kz), k 6= 0.

• These are known as homogeneous coordinates.

• If we have solids, or colored lines, then we need to know “which one is in front.”

• This map loses all z information, so it is inadequate.

The University of Texas at Austin 20



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

Why Map Z

• 3D 7→ 2D projections map all z to same value.

• Need z to determine occlusion, so a 3D to 2D projective transformation doesn’t work.

• Further, we want 3D lines to map to 3D lines (this is useful in hidden surface removal).

• The mapping (x, y, z, 1) 7→ (xn/z, yn/z, n, 1) maps lines to lines, but loses all depth

information.

• We could use

(x, y, z, 1) 7→ (xn/z, yn/z, z, 1)

Thus, if we map the endpoints of a line segment, these end points will have the same

relative depths after this mapping.

BUT: It fails to map lines to lines

• The map

(x, y, z, 1) 7→

(

xn

z
,
yn

z
,
zf + zn − 2fn

z(f − n)
, 1

)

does map lines to lines, and it preserves depth information.

The University of Texas at Austin 21



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

Mapping Z

• It’s clear how x and y map. How about z?

z 7→
zf + zn − 2fn

z(f − n)
= P (z)

• We know P (f) = 1 and P (n) = −1. What maps to 0?

P (z) = 0

⇒
zf + zn − 2fn

z(f − n)
= 0

⇒ z =
2fn

f + n

Note that f2 + 2f > 2fn/(f + n) > fn + n2 so

f >
2fn

f + n
> n

The University of Texas at Austin 22



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

• What happens as map z to 0 or to infinity?

lim
z→0+

P (z) =
−2fn

z(f − n)

= −∞

lim
z→0−

P (z) =
−2fn

z(f − n)

= +∞

lim
z→+∞

P (z) =
z(f + n)

z(f − n)

=
f + n

f − n

lim
z→−∞

P (z) =
z(f + n)

z(f − n)

=
f + n

f − n

The University of Texas at Austin 23



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

8
88

8

0 n
2 f n
f + n f

+ z

f + n
f - n

1-1 0

_

_

+ P(z)

The University of Texas at Austin 24



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

• What happens if we vary f and n?

lim
f→n

P (z) =
z(f + n) − 2fn

z(f − n)

=
(2zn − 2n2)

z · 0

which is not surprising, since we’re trying to map a single point to a line segment.

lim
f→∞

P (z) =
zf − 2fn

zf

=
z − 2n

z

• But note that this means we are mapping an infinite region to [0,1] and we will effectively

get a far plane due to floating point precision,

lim
n→0

P (z) =
zf

zf

= 1

The University of Texas at Austin 25



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

i.e., the entire map becomes constant (again, we are mapping a point to an interval).

• Consider what happens as f and n move away from each other.

– We are interested in the size of the regions [n, 2fn/(f +n)] and [2fn/(f +n), f ]

.

– When f is large compared to n, we have

2fn

f + n

.
= 2n

So
2fn

f + n
− n

.
= n

and

f −
2fn

f + n

.
= f − 2n

But both intervals are mapped to a regions of size 1.

– Thus, as we move the clipping planes away from one another, the far interval is

compressed more than the near one. With floating point arithmetic, this means we’ll

lose precision.

The University of Texas at Austin 26



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

– In the extreme case, think about what happens as we move f to infinity: we compress

an infinite region to an finite one.

– Therefore, we try to place our clipping planes as close to one another as we can.

The University of Texas at Austin 27



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

Region Mapping

8_ 8
-18 8

0 n f

7

2 8

12

1 4 10

115

3 6 9

4 7 10 3

5 8 11 2

6 9 12 1

+1

The University of Texas at Austin 28



Department of Computer Sciences Graphics – Fall 2005 (Lecture 6)

Reading Assignment and News

Chapter 4 pages 200 - 212, of Recommended Text.

Please also track the News section of the Course Web Pages for the most recent

Announcements related to this course.

(http://www.cs.utexas.edu/users/bajaj/graphics25/cs354/)

The University of Texas at Austin 29


