
Department of Computer Sciences Graphics – Fall 2005 (Lecture 10)

Curves, Surfaces and Recursive Subdivision

• Conics: Curves and Quadrics: Surfaces

– Implicit form

– Parametric form

• Rational Bézier Forms

• Recursive Subdivision of Curves

• Recursive Subdivision of Surfaces
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Conic Curves

Conic Sections (Implicit form)

• Ellipse
x2

a2
+

y2

b2
= 1 a, b > 0

• Hyperbola
x2
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−

y2

b2
= 1 a, b > 0

• Parabola

y
2
= 4ax a > 0
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Conic Sections (Parametric form)

• Ellipse

x(t) = a
1 − t2

1 + t2

y(t) = b
2t

1 + t2
(−∞ < t < +∞)

• Hyperbola

x(t) = a
1 + t2

1 − t2

y(t) = b
2t

1 − t2
(−∞ < t < +∞)

• Parabola
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x(t) = at
2

y(t) = 2at (−∞ < t < +∞)
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Constructing Curve Segments

Linear blend:

• Line segment from an affine combination of points

P
1
0 (t) = (1 − t)P0 + tP1
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Quadratic blend:

• Quadratic segment from an affine combination of line segments
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Cubic blend:

• Cubic segment from an affine combination of quadratic segments
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• The pattern should be evident for higher degrees

The University of Texas at Austin 8



Department of Computer Sciences Graphics – Fall 2005 (Lecture 10)

Geometric view (de Casteljau Algorithm):

• Join the points Pi by line segments

• Join the t : (1 − t) points of those line segments by line segments

• Repeat as necessary

• The t : (1 − t) point on the final line segment is a point on the curve

• The final line segment is tangent to the curve at t
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Subdivision of Polygons

Four Point Scheme
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Four point scheme: the filled circles are the level j control points, the filled squares are the

level j + 1 control points.

For four-point scheme we need to consider only 7 control points; these 7 points completely

define the piece of the curve around a control point. We can consider a set of 7 control

points on any subdivision level, as we do not care how small our piece of the curve is.

Note that we can compute the positions of the seven control points on level j + 1 from the

positions of similar seven control points on level j, using a 7 × 7 submatrix S of the infinite

subdivision matrix.
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The local subdivision matrix for the four-point scheme is:
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Quadric Surfaces

Implicit form

Parametric form
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Constructing Surface Patches

Triangular deCasteljau:

• Join adjacently indexed Pijk by triangles

• Find r : s : t barycentric point in each triangle

• Join adjacent points by triangles

• Repeat

– Final point is the surface point P (r, s, t)

– final triangle is tangent to the surface at P (r, s, t)

• Triangle up/down schemes become tetrahedral up/down schemes

Properties:
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• Each boundary curve is a Bézier curve

• Patches will be joined smoothly if pairs of boundary triangles are planar as shown
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Tensor Product Patches

Tensor Product Patches:

• The control polygon is the polygonal mesh with vertices Pi,j

• The patch basis functions are products of curve basis functions

P (s, t) =

n
∑

i=0

n
∑

j=0

Pi,jB
n
i,j(s, t)

where

B
n
i,j(s, t) = B

n
i (s)B

n
j (t)
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Smoothly Joined Patches:

P

P

P

Q

P

Q

Q

P

PP

P

Q

Q

Q

Q

Q
02

11

21

20

23

03 00

01

12

31

13

10

32

22

30

33

• Can be achieved by ensuring that

(Pi,n − Pi,n−1) = β(Qi,1 − Qi, 0) for β > 0

(and correspondingly for other boundaries)
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Rendering via Subdivision:

• Divide up into polygons:

1. By stepping

s = 0, δ, 2δ, . . . , 1

t = 1, γ, 2γ, . . . , 1

and joining up sides and diagonals to produce a triangular mesh

2. By subdividing and rendering the control polygon
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Subdivision for Polyhedra

Regular Polyhedra (Platonic Solids)

• Tetrahedron

• Octahedron

• Icosahedron

• Hexahedron (Cube)

• Dodecahedron
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Catmull Clark

Refinement rule used by Catmull-Clark subdivision scheme is as follows. New vertices are

added on each edge and in the center. When connected, 4 new level j + 1 quadrilaterals are

produced from the single level j quadrilateral.
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Catmull-Clark subdivision scheme. Circles are the j level and Squares are the j + 1 level.

The vertex rule, edge rule and face rule are shown in the following figure. Each black circle
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represents a vertex at level j; we compute the position of the vertex at level j + 1 marked

by the black square. Note that for the vertex rule, the control vertex with weight 9
16 and the

new vertex aren’t necessarily aligned as they are in the figure.
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• Vertex rule:
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• Edge rule:
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• Face rule:
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Arbitrary Meshes

We have defined Catmull-Clark scheme on quadrilaterals; it can be extended to handle

arbitrary polygonal meshes. Observe that if we do one step of refinement, splitting each edge

into two and inserting a new vertex for each face (see below Figure), we get a mesh which

has only quadrilateral faces. On all other steps of subdivision standard rule described above

can be applied.

Splitting a hexagon into quadrilaterals.
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Reading Assignment and News

Chapter 11 pages 569 - 583, of Recommended Text.

Please also track the News section of the Course Web Pages for the most recent

Announcements related to this course.

(http://www.cs.utexas.edu/users/bajaj/graphics25/cs354/)
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