DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 18)

Textures and Bumps

Two dimensional texture pattern T'(s, t)

The independent variables s and t are known as texture coordinates. At this point we can
think of T" as continuous, although, in reality, it is stored in texture memory as an n X m
array of texture elements called texels.

A texture map associates a unique point of 7" with each point on a geometric object that

is itself mapped to screen coordinates for display.
’h—

IS
Np !

A=

THE UNIVERSITY OF TEXAS AT AUSTIN 1

DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 18)

Difficulties:

1. We must determine the map from texture coordinates to geometric coordinates.

2. Due to the nature of the rendering process, which works on a pixel-by-pixel basis, we are
more interested in the inverse map from screen coordinates to texture coordinates.

3. Because we calculate the shade for pixels, each of which generates a color for a small

rectangle on the display surface, we are interested in mapping not points to points, but
rather area to areas.

THE UNIVERSITY OF TEXAS AT AUSTIN 2

GrAPHICS — FALL 2005 (LECTURE 18)

DEPARTMENT OF COMPUTER SCIENCES

Xs

»
1

A

THE UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 18)

Given a parametric surface, we can often map a point in the texture map T'(s, t) to a point
on the surface p(u, v) with a linear map of the form

u = as + bt + c,
v=ds+ et + f.

t Xs

(r max; Smax)

[| T (Umax; Vimax)
/7 o

77— (Fmin} Smin) (Umin Vinin)

S Y

As long as ae # bd, this mapping is invertible. Linear mapping makes it easy to map
a texture to a group of parametric surface patches. The patch determined by the corners
(Smins tmin) and (Smax, tmax) corresponds to the surface patch with corners (wmin, Ymin)

THE UNIVERSITY OF TEXAS AT AUSTIN 4

DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 18)

and (Umax, Umax), then the mapping is

S — Smin
U = Umin + (Umax — Umin),
Smax — Smin
t — tmin
UV = VUmin + (Umax - vmin)-
max ~ Umin

Another approach to the mapping problem is to use a two-part mapping. The first step maps
the texture to a simple three-dimensional intermediate surface, such as a sphere, cylinder, or
cube. In the second step, the intermediate surface containing the mapped texture is mapped
to the surface being rendered.

Suppose that our texture coordinates vary over the unit square, and that we use the surface
of a cylinder of height h and radius r as our intermediate object.

x = rcos(2wu),
y = rsin(2wu),

z=wv/h,

THE UNIVERSITY OF TEXAS AT AUSTIN 5

DEPARTMENT OF COMPUTER SCIENCES

GrAPHICS — FALL 2005 (LECTURE 18)

and u and v vary over (0, 1). Hence, we can use the mapping

Back

Left

Bottom|

Right

Top

THE UNIVERSITY OF TEXAS AT AUSTIN

Front

DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 18)

If we use a sphere of radius r as the intermediate surface, a possible mapping is

x = cos(27u),
y = sin(27u) cos(27v),

z = sin(27u) sin(27v),

We can also use a rectangular box. Here, we map the texture to a box that can be unravelled,
like a cardboard packing box. This mapping often is used with environment maps.

The second step is to map the texture values on the intermediate object to the desired
surface.

1. We take the texture value at a point on the intermediate object, go from this point in
the direction of the normal until we intersect the object, and then place the texture value
at the point of intersection.

2. Reverse this method, starting at a point on the surface of the object and going in the
direction of the normal at this point until we intersect the intermediate object, where we
obtain the texture value.

THE UNIVERSITY OF TEXAS AT AUSTIN 7

DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 18)

3. If we know the center of the object, draw a line from the center through a point on
the object, and to calculate the intersection of this line with the intermediate surface.
The texture at the point of intersection with the intermediate object is assigned to the

corresponding point on the desired object.

Intermediate object

(a) (b) (c)

THE UNIVERSITY OF TEXAS AT AUSTIN

GrAPHICS — FALL 2005 (LECTURE 18)

DEPARTMENT OF COMPUTER SCIENCES

THE UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 18)

Texture Mapping in OpenGL

Two-dimensional texture mapping starts with an array of texels. Suppose that we have a
512 X 512 image my_texels that was generated by a program, or perhaps was read in from
a file into an array

my_texels[512] [612];

We specify that this array is to be used as a two-dimensional texture (usually as part of
initialization) by

glTextImage2D (GL_TEXTURE_2D, 0, 3, 512, 512, O,
GL_RGB, GL_UNSIGNED_BYTE, my_texels);

More generally, two-dimensional textures are specified through the function

glTextImage2D (GL_TEXTURE_2D, level, components, width, height,
border, format, type, tarray);

THE UNIVERSITY OF TEXAS AT AUSTIN 10

DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 18)

The texture pattern tarray is stored in the width X height array. The components value
is the number (1 through 4) of color components (RGBA) that we wish to affect with the
map. The parameters 1level and border give us fine control over how texture is handled.

The texture map has two coordinates, s and ¢, both of which normally range over the interval
(0.0, 1.0). For our example, the value (0.0, 0.0) corresponds to the point my_texels[0] [0],
and (1.0, 1.0) corresponds to the point my_texels[511] [511].

Assign texture coordinates to vertices through
glTexCood2f (s, t);

We must set the texture coordinate before we specify a vertex. If we want to assign our
texture to a quadrilateral, then we use code such as

glBegin (GL_QUAD) ;
glTexCood2f (0.0, 0.0);
glVertex2f (x1, y1, z1);
glTexCood2f (1.0, 0.0);
glVertex2f (x2, y2, z2);

THE UNIVERSITY OF TEXAS AT AUSTIN 11

DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 18)

glTexCood2f (1.0, 1.0);
glVertex2f (x3, y3, z3);
glTexCood2£ (0.0, 1.0);
glVertex2f (x4, y4, z4);

glEnd () ;
E B EEEEBER BN B B
S g
e e
e g
e e
e
e e
L. B EEE
)

—
Y]

OpenGL has something called mipmapping. For objects that project to an area of screen
space that is small compared with the size of the texel array, we do not need the resolution
of the original texel array. OpenGL allows us to create a series of texture arrays at reduced
sizes; it will then automatically use the appropriate size. For a 64 X 64 original array, we can
set up 32 X 32, 16 X 16, 8 X 8,4 x 4, 2 X 2, and 1 X 1 arrays through the GLU function

gluBuid2DMipmaps (GL_TEXTURE_2D, 3, 64, 64, GL_RGB,

THE UNIVERSITY OF TEXAS AT AUSTIN 12

DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 18)

GL_UNSIGNED_BYTE, my_texels);

We can also set them through a set of GL functions. These mipmaps are invoked automatically
if we specify

glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST_MIPMAP_NEAREST) ;

THE UNIVERSITY OF TEXAS AT AUSTIN 13

DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 18)

Interaction Between Texture and Shading

For RGB colors, there are two options. The texture can modulate the shade that we would
have assigned without texture mapping by multiplying the color components of the texture
by the color components from the shader. Modulation is the default mode; it can be set by

glTexEnv(GL_TEX_ENV, GL_TEX_ENV_MODE, GL_MODULATE);

If we replace GL_MODULATE by GL_DECAL, the color of the texture determines the color of
the object completely — a technique called decaling.

A growing technique for modulating the shade of textures (e.g. shadow on textured objects)
is to use multi-texture units available on most current graphics cards.

Environment mapping is a form of texture mapping where the texture is derived from
the environment. Once we obtain the required texture—either by scanning an image or
through projecting a scene—OpenGL can automatically generate the tangent coordinates for
a spherical mapping.

THE UNIVERSITY OF TEXAS AT AUSTIN 14

DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 18)

Bump Maps

The technique of bump mapping varies the apparent shape of the surface by perturbing
the normal vectors as the surface is rendered; the colors that are generated by shading then
show a variation in the surface properties.

We could perturb the normals in many ways; the following procedure for parametric surfaces
is an efficient one. Let p(u, v) be a point on a parametric surface. The unit normal at that
point is given by the cross product of the partial derivative vectors:

~ Pu X Po
[Pu X Po
where

oz ok
gu gv
Pu — 3_3 Pv = 8_5
oz 9z
ou ov

Suppose we display the surface in the normal direction by a given function called the bump

THE UNIVERSITY OF TEXAS AT AUSTIN 15

DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 18)

function, d(u, v), which is assumed known and small (|d(u, v)| < 1):
p=p+d(u,v)n.

We would prefer not to display the surface; we just want to make it look as though we have
displaced it. We can achieve the desired look by altering the normal n, instead of p, and
using the perturbed normal in our shading calculations.

The normal at the perturbed point p’ is given by the cross product
/ / /
n =p, Xp,.
We can compute the two partial derivatives by differentiating the equation for p’, obtaining

p; = Py + dyn + d(U, ’U)l’lu,
p, = py + dyn + d(u, v)n,.

THE UNIVERSITY OF TEXAS AT AUSTIN 16

DEPARTMENT OF COMPUTER SCIENCES

Bump space

b(s1)

THE UNIVERSITY OF TEXAS AT AUSTIN

N’

(Perturbed normal)

GrAPHICS — FALL 2005 (LECTURE 18)

N

(True normal)

17

DEPARTMENT OF COMPUTER SCIENCES

THE UNIVERSITY OF TEXAS AT AUSTIN

GrAPHICS — FALL 2005 (LECTURE 18)

18

DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 18)

Reading Assignment and News

Chapter 8 pages 399 - 418, of Recommended Text.

Please also track the News section of the Course Web Pages for the most recent
Announcements related to this course.

(http://www.cs.utexas.edu/users/bajaj/graphics25/cs354/)

THE UNIVERSITY OF TEXAS AT AUSTIN 19

