
Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 19)Textures and Bumps

Two dimensional texture pattern T (s; t)The independent variables s and t are known as texture
oordinates. At this point we
anthink of T as
ontinuous, although, in reality, it is stored in texture memory as an n �marray of texture elements
alled texels.A texture map asso
iates a unique point of T with ea
h point on a geometri
 obje
t thatis itself mapped to s
reen
oordinates for display.

The University of Texas at Austin 1

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 19)

DiÆ
ulties:1. We must determine the map from texture
oordinates to geometri

oordinates.2. Due to the nature of the rendering pro
ess, whi
h works on a pixel-by-pixel basis, we aremore interested in the inverse map from s
reen
oordinates to texture
oordinates.3. Be
ause we
al
ulate the shade for pixels, ea
h of whi
h generates a
olor for a smallre
tangle on the display surfa
e, we are interested in mapping not points to points, butrather area to areas.The University of Texas at Austin 2

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 19)
t

s

z

y

x

sx

y
s

v

u

The University of Texas at Austin 3

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 19)Given a parametri
 surfa
e, we
an often map a point in the texture map T (s; t) to a pointon the surfa
e p(u; v) with a linear map of the formu = as+ bt+
;v = ds+ et+ f:
t

s

x

y

s

s

(rmax; smax)

(rmi n; smi n)
(Umin ; Vmi n)

(Umax; Vmax)

As long as ae 6= bd, this mapping is invertible. Linear mapping makes it easy to mapa texture to a group of parametri
 surfa
e pat
hes. The pat
h determined by the
orners(smin; tmin) and (smax; tmax)
orresponds to the surfa
e pat
h with
orners (umin; vmin)

The University of Texas at Austin 4

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 19)and (umax; vmax), then the mapping isu = umin + s� sminsmax � smin(umax � umin);v = vmin + t� tmintmax � tmin(vmax � vmin):

Another approa
h to the mapping problem is to use a two-part mapping. The �rst step mapsthe texture to a simple three-dimensional intermediate surfa
e, su
h as a sphere,
ylinder, or
ube. In the se
ond step, the intermediate surfa
e
ontaining the mapped texture is mappedto the surfa
e being rendered.Suppose that our texture
oordinates vary over the unit square, and that we use the surfa
eof a
ylinder of height h and radius r as our intermediate obje
t.x = r
os(2�u);y = r sin(2�u);z = v=h;

The University of Texas at Austin 5

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 19)and u and v vary over (0; 1). Hen
e, we
an use the mappings = u;t = v:

t

s

Back

Left Right Top

Front

Bottom

t

s

The University of Texas at Austin 6

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 19)If we use a sphere of radius r as the intermediate surfa
e, a possible mapping isx =
os(2�u);y = sin(2�u)
os(2�v);z = sin(2�u) sin(2�v);

We
an also use a re
tangular box. Here, we map the texture to a box that
an be unravelled,like a
ardboard pa
king box. This mapping often is used with environment maps.The se
ond step is to map the texture values on the intermediate obje
t to the desiredsurfa
e.1. We take the texture value at a point on the intermediate obje
t, go from this point inthe dire
tion of the normal until we interse
t the obje
t, and then pla
e the texture valueat the point of interse
tion.2. Reverse this method, starting at a point on the surfa
e of the obje
t and going in thedire
tion of the normal at this point until we interse
t the intermediate obje
t, where weobtain the texture value.The University of Texas at Austin 7

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 19)3. If we know the
enter of the obje
t, draw a line from the
enter through a point onthe obje
t, and to
al
ulate the interse
tion of this line with the intermediate surfa
e.The texture at the point of interse
tion with the intermediate obje
t is assigned to the
orresponding point on the desired obje
t.

n

nn

n

n n

(a) (b) (c)

Intermediate object

The University of Texas at Austin 8

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 19)

The University of Texas at Austin 9

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 19)Texture Mapping in OpenGL

Two-dimensional texture mapping starts with an array of texels. Suppose that we have a512� 512 image my_texels that was generated by a program, or perhaps was read in froma �le into an arraymy_texels[512℄[512℄;We spe
ify that this array is to be used as a two-dimensional texture (usually as part ofinitialization) byglTextImage2D(GL_TEXTURE_2D, 0, 3, 512, 512, 0,GL_RGB, GL_UNSIGNED_BYTE, my_texels);More generally, two-dimensional textures are spe
i�ed through the fun
tionglTextImage2D(GL_TEXTURE_2D, level,
omponents, width, height,border, format, type, tarray);The University of Texas at Austin 10

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 19)The texture pattern tarray is stored in the width � height array. The
omponents valueis the number (1 through 4) of
olor
omponents (RGBA) that we wish to a�e
t with themap. The parameters level and border give us �ne
ontrol over how texture is handled.The texture map has two
oordinates, s and t, both of whi
h normally range over the interval(0.0, 1.0). For our example, the value (0.0, 0.0)
orresponds to the point my_texels[0℄[0℄,and (1.0, 1.0)
orresponds to the point my_texels[511℄[511℄.Assign texture
oordinates to verti
es throughglTexCood2f(s, t);We must set the texture
oordinate before we spe
ify a vertex. If we want to assign ourtexture to a quadrilateral, then we use
ode su
h asglBegin(GL_QUAD);glTexCood2f(0.0, 0.0);glVertex2f(x1, y1, z1);glTexCood2f(1.0, 0.0);glVertex2f(x2, y2, z2);The University of Texas at Austin 11

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 19)glTexCood2f(1.0, 1.0);glVertex2f(x3, y3, z3);glTexCood2f(0.0, 1.0);glVertex2f(x4, y4, z4);glEnd();

(a) (b)

OpenGL has something
alled mipmapping. For obje
ts that proje
t to an area of s
reenspa
e that is small
ompared with the size of the texel array, we do not need the resolutionof the original texel array. OpenGL allows us to
reate a series of texture arrays at redu
edsizes; it will then automati
ally use the appropriate size. For a 64� 64 original array, we
anset up 32� 32, 16� 16, 8� 8, 4� 4, 2� 2, and 1� 1 arrays through the GLU fun
tiongluBuid2DMipmaps(GL_TEXTURE_2D, 3, 64, 64, GL_RGB,The University of Texas at Austin 12

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 19)GL_UNSIGNED_BYTE, my_texels);We
an also set them through a set of GL fun
tions. These mipmaps are invoked automati
allyif we spe
ifyglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,GL_NEAREST_MIPMAP_NEAREST);

The University of Texas at Austin 13

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 19)Intera
tion Between Texture and Shading

For RGB
olors, there are two options. The texture
an modulate the shade that we wouldhave assigned without texture mapping by multiplying the
olor
omponents of the textureby the
olor
omponents from the shader. Modulation is the default mode; it
an be set byglTexEnv(GL_TEX_ENV, GL_TEX_ENV_MODE, GL_MODULATE);If we repla
e GL_MODULATE by GL_DECAL, the
olor of the texture determines the
olor ofthe obje
t
ompletely | a te
hnique
alled de
aling.A growing te
hnique for modulating the shade of textures (e.g. shadow on textured obje
ts)is to use multi-texture units available on most
urrent graphi
s
ards.Environment mapping is a form of texture mapping where the texture is derived fromthe environment. On
e we obtain the required texture|either by s
anning an image orthrough proje
ting a s
ene|OpenGL
an automati
ally generate the tangent
oordinates fora spheri
al mapping.The University of Texas at Austin 14

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 19)Bump Maps

The te
hnique of bump mapping varies the apparent shape of the surfa
e by perturbingthe normal ve
tors as the surfa
e is rendered; the
olors that are generated by shading thenshow a variation in the surfa
e properties.We
ould perturb the normals in many ways; the following pro
edure for parametri
 surfa
esis an eÆ
ient one. Let p(u; v) be a point on a parametri
 surfa
e. The unit normal at thatpoint is given by the
ross produ
t of the partial derivative ve
tors:n = pu � pvjpu � pvjwhere pu = 24�x�u�y�u�z�u
35 pv = 24�x�v�y�v�z�v
35Suppose we display the surfa
e in the normal dire
tion by a given fun
tion
alled the bump

The University of Texas at Austin 15

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 19)fun
tion, d(u; v), whi
h is assumed known and small (jd(u; v)j � 1):p0 = p+ d(u; v)n:We would prefer not to display the surfa
e; we just want to make it look as though we havedispla
ed it. We
an a
hieve the desired look by altering the normal n, instead of p, andusing the perturbed normal in our shading
al
ulations.The normal at the perturbed point p0 is given by the
ross produ
tn0 = p0u � p0v:We
an
ompute the two partial derivatives by di�erentiating the equation for p0, obtainingp0u = pu + dun+ d(u; v)nu;p0v = pv + dvn+ d(u; v)nv:

The University of Texas at Austin 16

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 19)
Bump space

(True normal)

(Perturbed normal)

b(s,t)

N

N’

P

p’

The University of Texas at Austin 17

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 19)

The University of Texas at Austin 18

Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 19)Reading Assignment and News

Chapter 9 pages 487 - 492, of Re
ommended Text.Please also tra
k the News se
tion of the Course Web Pages for the most re
entAnnoun
ements related to this
ourse.(http://www.
s.utexas.edu/users/bajaj/graphi
s25/
s354/)

The University of Texas at Austin 19

