
Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 24)Aliasing and S
ene Sampling

In our digital world (in
luding human vision) we dis
retely sample a 
ontinuous S
ene.Aliasing Artifa
ts:� Jaggies (See Le
ture-Pix)� Moire (See http://www.mathematik.
om/Moire/)� Fli
kering small obje
ts� Sparkling highlights� Temporal strobingPreventing aliasing or antialiasing:1. Filtering2. Uniform super-sampling3. Non-uniform or sto
hasti
 re-samplingThe University of Texas at Austin 1



Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 24)Filtering: Use of the A

umulation Bu�er

The a

umulation bu�er has the same resolution as the frame bu�er, but has greater depthresolution. We 
an use the additional resolution to render su

essive images into one lo
ationwhile retaining numeri
al a

ura
y.In OpenGL, we 
an 
lear the a

umulation bu�er as we do any other bu�er, and then 
anuse the fun
tion glA

um either to add or to multiply values from the frame bu�er into thea

umulation bu�er, or to 
opy the 
ontents of the a

umulation bu�er ba
k to the frame.For example, the 
odeglClear(GL_ACCUM_BUFFER_BIT);for (i=0; i < num_mages; i++){ glClear(GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT)display_image(i);glA

um(GL_ACCUM, 1.0/(float) num_images);}glA

um(GL_RETURN, 1.0);The University of Texas at Austin 2



Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 24)uses the user's fun
tion display_images to generate a sequen
e of images into the framebu�er. Ea
h is added into or a

umulated into the a

umulation bu�er, with a s
ale fa
tor 1over the number of images. At the end, the a

umulated image is 
opied ba
k to the framebu�er.We 
an 
ombine use of the a

umulation bu�er with pixel mapping to perform variousdigital-�ltering operations. Suppose that we start with a distan
e image. We 
an representthe image with an N �N matrix A = [aij℄;of s
alar levels. If we pro
ess ea
h 
olor 
omponent of a 
olor image independently, we 
anregard the entries in A as either individual 
olor 
omponents or gray (luminan
e) levels. Alinear �lter produ
es a �ltered matrix B whose elements arebij = mXk=�m nXl=�n aklhi�k;j�l:We say that B is the result of 
onvolving A with a �lter matrix H. In general, the valuesof m and n are small, and we 
an represent H by a small 
onvolution matrix.For ea
h pixel in A, we pla
e the 
onvolution matrix over aij, and take a weighted average ofthe surrounding points. The values in the matrix are weights. For example, for n = m = 1,The University of Texas at Austin 3
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ien
es Graphi
s { Fall 2005 (Le
ture 24)we 
an average ea
h pixel with its four surrounding neighbors using the 3� 3 matrix

H = 15 240 1 01 1 10 1 035 :This �lter 
an be used for antialiasing. We 
an use more points and 
an weight the 
entermore heavily with H = 116 241 2 12 4 21 2 135 :Note that we must de�ne a border around A if we want B to have the same dimensions.Other operations are possible with small matri
es. For example, we 
an use the matrix

H = 24 0 �1 0�1 �4 �10 �1 0 35 ;to dete
t 
hanges in value or edges in the image. If a matrix is k � k, we 
an implement a�lter by a

umulating k2 images in the a

umulation bu�er, ea
h time adding in a shiftedversion of A using a di�erent �lter 
oeÆ
ient in glA

um.The University of Texas at Austin 4
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ien
es Graphi
s { Fall 2005 (Le
ture 24)We 
an also use the a

umulation bu�er for �ltering in time and depth. For example, ifwe jitter an obje
t and render it multiple times, leaving the positions of the other obje
tsun
hanged, we get dimmer 
opies of the jittered obje
t in the �nal image. If the obje
tis moved along a path, rather than randomly jittered, we see the trail of the obje
t. Thismotion-blur e�e
t is similar to the result of taking a photograph of a moving obje
t using along exposure time. We 
an adjust the 
onstant in glA

um so as to render the �nal positionof the obje
t with grater opa
ity, or to 
reate the impression of speed di�eren
es.

The University of Texas at Austin 5



Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 24)Aliasing and Antialiasing

If the s
ene 
ontains frequen
ies greater than the Nyquist Frequen
y, then we have an aliasingproblemResults of aliasing:� Jaggies� Moire� Fli
kering small obje
ts� Sparkling highlights� Temporal strobingPreventing aliasing or antialiasing:1. Analyti
ally pre�lter the signal2. Uniform supersampling and resample3. Nonuniform or sto
hasti
 samplingThe University of Texas at Austin 6
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Spe
tral Analysis / Fourier Transforms

Spe
tral representation treats the fun
tion as a weighted sum of sines and 
osinesEa
h fun
tion has two representations� Spatial (time) domain { normal representation� Frequen
y domain { spe
tral representationThe Fourier transform 
onverts between the spatial and frequen
y domain

SpatialDomain =)
(=

F (!) = Z 1�1 f(x)e�i!xdx

f(x) = 12� Z 1�1 F (!)ei!xd!
=)

(= Frequen
yDomain

The University of Texas at Austin 7



Department of Computer S
ien
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ture 24)Convolution

De�nition h(x) = f 
 g = Z f(x0)g(x � x0)dx0Convolution Theorem: Multipli
ation in the frequen
y domain is equivalent to 
onvolutionin the spa
e domain f 
 g  ! F �GSymmetri
 Theorem: Multipli
ation in the spa
e domain is equivalent to 
onvolution in thefrequen
y domain f � g  ! F 
G

The University of Texas at Austin 8
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ture 24)Fourier transform pairs
$

Spa
e
$

Frequen
yThe University of Texas at Austin 9
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Square $ Sin
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 Square $ Sin
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e
$ Sin
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ture 24)1-D Sin
 Fun
tion
sin
 x = sin �x�xsin
 0 = 1

-5 -4 -3 -2 -1 1 2 3 4 5

1
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s { Fall 2005 (Le
ture 24)2-D Sin
 Fun
tion
sin
 (x; y) = sin
 (x) sin
 (y)
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ture 24)Nyquist Sampling Theorem

A signal 
an be re
onstru
ted from its samples without loss of information, if theoriginal signal has no frequen
ies above 1/2 the sampling frequen
yFor a given bandlimited fun
tion, the rate at whi
h it must be sampled is 
alled the NyquistFrequen
y
The University of Texas at Austin 15
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Nyquist Sampling Theorem (Part 2)

We 
an re
onstru
t a 
ontinuous fun
tion f(x) from its samples ffig by the formulaf(x; y) = 1Xi=�1 fi sin
 (x� xi):

The two-dimensional version of the re
onstru
tion formula for a fun
tion f(x; y) with idealsamples ffijg is f(x; y) = 1Xi=�1 1Xj=�1 fij sin
 (x � xi) sin
 (y � yi):

The University of Texas at Austin 16
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ture 24)Ideal Re
onstru
tion

Ideally, use a perfe
t low-pass �lter { the sin
 fun
tion { to bandlimit the sampled signal andthus remove all 
opies of the spe
tra introdu
ed by samplingUnfortunately,� The sin
 has in�nite extent and we must use simpler �lters with �nite extents. Physi
alpro
esses in parti
ular do not re
onstru
t with sin
s� The sin
 may introdu
e ringing whi
h are per
eptually obje
tionable
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ture 24)Antialiasing by Pre�ltering

Ideally, low-pass with a perfe
t �lter (a sin
 fun
tion) to bandlimit the fun
tion to the Nyquistsampling rate.Unfortunately, the sin
 has in�nite extent and we must use simpler �lters (like a box �lter,or area average).Pra
ti
ally:� Constant 
olored polygonal fragments doable� Complex environments not doable
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ture 24)Uniform Supersampling

In
reasing the sampling rate moves ea
h 
opy of the spe
tra further apart, potentiallyredu
ing the overlap and thus aliasingResulting samples must be resampled (�ltered) to image sampling rate

u u u uu u u uu u u uu u u u
Samples

Pixel =Xs wsSamples z
Samples
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ture 24)Non-uniform Sampling

Uniform sampling� The spe
trum of uniformly spa
ed samples is also a set of uniformly spa
ed spikes� Multiplying the signal by the sampling pattern 
orresponds to pla
ing a 
opy of thespe
trum at ea
h spike (in frequen
y spa
e)� Aliases are 
oherent, and very noti
ableNon-uniform sampling� Samples at non-uniform lo
ations have a di�erent spe
trum; a single spike plus noise� Sampling a signal in this way 
onverts aliases into broadband noise� Noise is in
oherent, and mu
h less obje
tionable
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ture 24)Reading Assignment and News

See Sampling, Aliasing and A

umulation Te
hniques pg 437 - 443 in Re
ommended Text.Please also tra
k the News se
tion of the Course Web Pages for the most re
entAnnoun
ements related to this 
ourse.(http://www.
s.utexas.edu/users/bajaj/graphi
s25/
s354/)
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