DEPARTMENT OF COMPUTER SCIENCES GRrAPHICS — FALL 2005 (LECTURE 24)

Aliasing and Scene Sampling

In our digital world (including human vision) we discretely sample a continuous Scene.

Aliasing Artifacts:

e Jaggies (See Lecture-Pix)

e Moire (See http://www.mathematik.com/Moire/)
e Flickering small objects

e Sparkling highlights

e Temporal strobing
Preventing aliasing or antialiasing:

1. Filtering
2. Uniform super-sampling

3. Non-uniform or stochastic re-sampling
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Filtering: Use of the Accumulation Buffer

The accumulation buffer has the same resolution as the frame buffer, but has greater depth
resolution. We can use the additional resolution to render successive images into one location
while retaining numerical accuracy.

In OpenGL, we can clear the accumulation buffer as we do any other buffer, and then can
use the function glAccum either to add or to multiply values from the frame buffer into the
accumulation buffer, or to copy the contents of the accumulation buffer back to the frame.
For example, the code

glClear (GL_ACCUM_BUFFER_BIT) ;
for (i=0; i < num_mages; i++)

{
glClear (GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT)
display_image (i) ;
glAccum(GL_ACCUM, 1.0/(float) num_images);

}

glAccum(GL_RETURN, 1.0);
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uses the user's function display_images to generate a sequence of images into the frame
buffer. Each is added into or accumulated into the accumulation buffer, with a scale factor 1
over the number of images. At the end, the accumulated image is copied back to the frame
buffer.

We can combine use of the accumulation buffer with pixel mapping to perform various
digital-filtering operations. Suppose that we start with a distance image. We can represent
the image with an N X N matrix

A = [ay],
of scalar levels. If we process each color component of a color image independently, we can
regard the entries in A as either individual color components or gray (luminance) levels. A
linear filter produces a filtered matrix B whose elements are

m n
bij = E g aphi—k i1

k=—ml=—n

We say that B is the result of convolving A with a filter matrix H. In general, the values
of m and n are small, and we can represent H by a small convolution matrix.

For each pixel in A, we place the convolution matrix over a;;, and take a weighted average of
the surrounding points. The values in the matrix are weights. For example, forn = m =1,
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we can average each pixel with its four surrounding neighbors using the 3 X 3 matrix

Lo 10
H=-[1 1 1
1o 1 o0

This filter can be used for antialiasing. We can use more points and can weight the center
more heavily with

1 2 1
H=— |2 4 2
1611 2

Note that we must define a border around A if we want B to have the same dimensions.
Other operations are possible with small matrices. For example, we can use the matrix

[0 —1 0]
H=|-1 -4 -1

[0 —1 oJ’

to detect changes in value or edges in the image. If a matrix is £ X k, we can implement a
filter by accumulating k2 images in the accumulation buffer, each time adding in a shifted
version of A using a different filter coefficient in glAccum.
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We can also use the accumulation buffer for filtering in time and depth. For example, if
we jitter an object and render it multiple times, leaving the positions of the other objects
unchanged, we get dimmer copies of the jittered object in the final image. If the object
is moved along a path, rather than randomly jittered, we see the trail of the object. This
motion-blur effect is similar to the result of taking a photograph of a moving object using a
long exposure time. We can adjust the constant in glAccum so as to render the final position
of the object with grater opacity, or to create the impression of speed differences.
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Aliasing and Antialiasing

If the scene contains frequencies greater than the Nyquist Frequency, then we have an aliasing
problem

Results of aliasing:

Jaggies
Moire

[ ]
[ ]
e Flickering small objects
e Sparkling highlights

°

Temporal strobing
Preventing aliasing or antialiasing:

1. Analytically prefilter the signal
2. Uniform supersampling and resample
3. Nonuniform or stochastic sampling

THE UNIVERSITY OF TEXAS AT AUSTIN 6



DEPARTMENT OF COMPUTER SCIENCES

Spectral Analysis / Fourier Transforms
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Spectral representation treats the function as a weighted sum of sines and cosines

Each function has two representations

e Spatial (time) domain — normal representation

e Frequency domain — spectral representation

The Fourier transform converts between the spatial and frequency domain

Spatial

Domain

F(w) = /Z flz)e "“*da

1 > W
f(x) :E/OOF(w)e dw
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Convolution

Definition
h(z)=f®g= f(z)g(z —z)da’
Convolution Theorem: Multiplication in the frequency domain is equivalent to convolution

in the space domain
f®g+— F X

Symmetric Theorem: Multiplication in the space domain is equivalent to convolution in the

frequency domain
fXg+——> FQRG
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Fourier transform pairs

VLA L
VIV
UL

A

Space Frequency
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Space
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Sinc
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1-D Sinc Function

sinc

sinc O

Sin T

T
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2-D Sinc Function

sinc (z,y) = sinc (x) sinc (y)
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Nyquist Sampling Theorem

A signal can be reconstructed from its samples without loss of information, if the
original signal has no frequencies above 1/2 the sampling frequency

For a given bandlimited function, the rate at which it must be sampled is called the Nyquist
Frequency
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Nyquist Sampling Theorem (Part 2)

We can reconstruct a continuous function f(x) from its samples { f;} by the formula

o0

fz,y) = fisinc (z — x;).

1=—00

The two-dimensional version of the reconstruction formula for a function f(x, y) with ideal
samples { fi;} is

flx,y) = fijsinc (x — x;) sinc (y — y;).

1=—00 J=—00
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Ideal Reconstruction

|deally, use a perfect low-pass filter — the sinc function — to bandlimit the sampled signal and
thus remove all copies of the spectra introduced by sampling

Unfortunately,
e The sinc has infinite extent and we must use simpler filters with finite extents. Physical

processes in particular do not reconstruct with sincs

e The sinc may introduce ringing which are perceptually objectionable
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Antialiasing by Prefiltering

|deally, low-pass with a perfect filter (a sinc function) to bandlimit the function to the Nyquist

sampling rate.

Unfortunately, the sinc has infinite extent and we must use simpler filters (like a box filter,

or area average).

Practically:

e Constant colored polygonal fragments doable

e Complex environments not doable
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Uniform Supersampling

Increasing the sampling rate moves each copy of the spectra further apart, potentially
reducing the overlap and thus aliasing

Resulting samples must be resampled (filtered) to image sampling rate

[ [ J [ J [ J
e Pixel = wsSample, ®
e o o o s
[ [ J [ J [ J
Samples Samples
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Non-uniform Sampling

Uniform sampling

e The spectrum of uniformly spaced samples is also a set of uniformly spaced spikes

e Multiplying the signal by the sampling pattern corresponds to placing a copy of the
spectrum at each spike (in frequency space)

e Aliases are coherent, and very noticable

Non-uniform sampling

e Samples at non-uniform locations have a different spectrum; a single spike plus noise
e Sampling a signal in this way converts aliases into broadband noise

e Noise is incoherent, and much less objectionable
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Reading Assignment and News

See Sampling, Aliasing and Accumulation Techniques pg 437 - 443 in Recommended Text.

Please also track the News section of the Course Web Pages for the most recent
Announcements related to this course.

(http://www.cs.utexas.edu/users/bajaj/graphics25/cs354/)
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