
Department of Computer Sciences Graphics – Spring 2004 (Lecture 9)

Coding L-Systems

Rewriting Rules

For example:

Axiom: F

Rule 1: F + F - - F + F

Applying rule 1 twice on the axiom gives us:

F + F - - F + F + F + F - - F + F - - F + F - - F + F + F + F - - F + F

F means move forward one unit and draw a line segment.

+ means turn left by an angle π/3,

− means turn right by an angle of π/3.

So the string

The University of Texas at Austin 1



Department of Computer Sciences Graphics – Spring 2004 (Lecture 9)

- F - - F - - F

is a Koch snowflake.

Code the rewriting rule is as a recursive function.

drawbump(i) {

if (i==0) {

draw line()

} else {

drawbump(i-1)

turn left()

drawbump(i-1)

turn right()

turn right()

drawbump(i-1)

turn left()

drawbump(i-1)

}

}

The University of Texas at Austin 2



Department of Computer Sciences Graphics – Spring 2004 (Lecture 9)

And an initial triangle is the function that calls the recursion:

drawflake(i) {

initialize()

turn left()

drawbump(i)

turn right()

turn right()

drawbump(i)

turn right()

turn right()

drawbump(i)

}

The University of Texas at Austin 3



Department of Computer Sciences Graphics – Spring 2004 (Lecture 9)

Branching structures

L

L → F [−L][+L]

The single L is the axiom, and there’s one rule. Left “[” means “push” and right “]” means

“pop”. Say L is a leaf, and F is a branch. Then we can interpret the L-system graphically

as a primitive plant.

To make it look nicer, we made the trunk get taller as the plant grows. A flexible way to

incorporate scale is to use a function that scales the object coordinate system.

F → RF

Axiom: L

L → r F [−L][+L]

F → RF

Let’s write this system in pseudocode. Here is the rule for L, the rule for F and the axiom:

drawleaf(i) {

The University of Texas at Austin 4



Department of Computer Sciences Graphics – Spring 2004 (Lecture 9)

if (i==0) {

actually draw leaf()

} else {

shrink()

drawbranch(i-1)

pushState()

turn right()

drawleaf(i-1)

popState()

pushState()

turn left()

drawleaf(i-1)

popState()

}

}

drawbranch(i) {

if (i==0) {

actually draw branch()

} else {

The University of Texas at Austin 5



Department of Computer Sciences Graphics – Spring 2004 (Lecture 9)

grow()

drawbranch(i-1)

}

}

drawplant(i) {

initialize()

drawleaf(i)

}

Notice that the “actually draw branch” procedure changes the turtle position, while

“actually draw leaf” procedure does not.

Various Stack Implementations

OpenGl Stack

pushMatrix()

turn right()

drawleaf(i-1)

popMatrix()

The University of Texas at Austin 6



Department of Computer Sciences Graphics – Spring 2004 (Lecture 9)

with a call to a new function, for instance

drawrightleaf(i)

The recursive function “drawrightleaf(i)” using the program recursion stack should look

something like:

drawrightleaf(i) {

double[9] savedMatrix;

copy(C,savedMatrix)

turn right()

drawleaf(i-1)

copy(savedMatrix,C)

}

Here we’ve designed “drawrightleaf()” not to change C. Notice that some L-system

procedures do change C; in particular, “turn left”, “turn right”, “shrink”, “grow” and

“drawbranch”, which cause a translation.

The University of Texas at Austin 7


