
Chanderjit Bajaj 

Department of Computer  Science, 
Purdue University,  West  Lafayette, IN 47907 

Abstract: We describe an efficient parallel solution for the prob- 
lem of jinding the shortest Euclidean path between two points in 
three  dimensional space in the presence of polyhedral obstacles. 
We consider the  important  case  where  the order in which the 
obstacles are encountered  in this shortest path is known. Inpar- 
ticular for this case we describe an eficient  parallel numerical 
iterative method on a concurrent-read exclusive-write synchro- 
nous shared-memory model. The iterations are essentially con- 
vergent non-linear block Gauss-Seidel. For special relative 
orientations of the, say n ,  polyhedral obstacles, we further 
describe a direct method  that gives the exact solution in 
O (log n )  time  using n processors. 

1. Introduction 
The problem of finding the shortest Euclidean path 

between two points in 3-dimensions, bounded by a finite 
collection of polyhedral obstacles is a special case of the 
more general problem of planning optimal collision-free 
paths for a given robot system. In Euclidean 2-space (the 
Euclidean plane) the problem is easy to solve and the shor- 
test path is polynomial time computable, Lozano-Perez, 
Wesley [4]. This problem for Euclidean 3-space is difficult 
and known shortest path sequential computations are of 
exponential time, Sharir, Schorr [7]. 

In this paper we are concerned about the efficient use 
of parallelism for solving this fundamental motion planning 
problem. We consider the important subproblem where the 
order in which the obstacles are encountered in this shortest 
path is known. Even this is seemingly intractable. The 
shortest path solution for this problem in general has been 
shown to be not solvable by radicals, and furthermore an 
exact solution is shown to be  not possible even under 
models of computation where you additionally allow use  of 
the non-solvable roots of the general fifth degree polyno- 
mial equation, Bajaj [l]. This rules out exact algorithms 
under various powerful models of computation and leaves 

primarily the possibility of numerical or symbolic approxi- 
mation methods to the computation of the shortest path, 
Bajaj [2]. A (I+&) polynomial time approximation scheme 
was recently given in Papadimitriou [6] This paper 
describes an efficient parallel numerical iterative method 
for this problem. As our model we use the concurrent-read 
exclusive-write synchronous shared-memory parallel 
machine model where on each step each processor can do a 
single rational addition, subtraction, multiplication, divi- 
sion or compute a square-root. 

The shortest path between two given points, in the 
presence of polyhedral obstacles, is known to be polygonal 
lines (piecewise straight lines, as  for  the planar 2- 
dimensional problem), with break points that lie on the 
edges of the given polyhedral obstacles. Since the edges of 
the polyhedral obstacles are arbitrary lines in Euclidean 3- 
space, the problem of determining the points of contact of 
the shortest path with these edges can without loss of gen- 
erality be versed as follows. 

Given a sequence L=(L1,L2;  , , L,) of lines in 3- 
dimensional  space , find the shortest  path  from a 
source point X to a destination  point Y constrained  to 
pass through interior  points of each of the  lines 
L lJz.  . I . A,, in this order. 

We identify three different cases of the relative positions of 
the lines. All the various configurations of the n lines in 
3-space consist of combinations of these basic orientations 
between adjacent pairs of lines, Li, i=l..n-1. 

(a) Pairwise lines are parallel to each other. 

(b) Pairwise lines are not parallel but intersect. 

(c) Painvise lines are skew and do not intersect. 
In 8 2, we show that when the lines are oriented as a 

combination of the cases (a) and (b), then the shortest path 
solution can be computed exactly in time 0 (log n )  using n 
processors. This corresponds to the solution being 

CH2282-2/86/0000/1897$01.00 0 1986 IEEE 
1897 



algebraically simple, [I]. However in 0 3, for the case ( c )  
of skew lines we describe an efficient parallel numerical 
iterative method. The iterations are essentially convergent 
non-linear block Gauss-Seidel, [5 ] .  

2. Exact  Direct Method 
Between pairs of lines in 3-space which are parallel to 

each other there exists a unique plane which contains both 
of them. The same applies to pairs of lines in 3-space 
which intersect. Also a point and a line in 3-space define a 
unique plane between them. The problem of finding the 
shortest path between X and Y in 3-space for cases (a) and 
(b), then reduces to a constrained 2-112 dimensional space 
problem as follows. Let the point X and line ll define the 
plane P I ,  the lines Li and Li+l define  the planes Pi+l, 
i=l..n-I, and  the line I,, and the point Y define the plane 
P,+1. The original problem is now reduced to finding the 
shortest path between two points X and Y in 3-space with 
the path constrained to the planes Pi, i=l..n+l. Then the 
points of contact of the shortest path with the lines Li, the 
edges of the planes, are determined by first unfolding all the 
planes Pi so that they  all lie on the common plane defined 
by say, plane P I  containing point X. In practice we com- 
pute for each plane Pi the displacement di and orientation Bi 
defining its position in the common plane PI, relative to 
some standard fixed plane representation of Pi. The shor- 
test path joining X and Y now  becomes  the shortest plane 
path that is the straight line, connecting X and Y!, (the 
transformed point Y now on the common plane P1 and thus 
coplanar with X ) .  The points of intersection of this straight 
line with the unfolded lines Lf, when transformed back, 
give the points of contact with the lines Li of our original 
problem. To prove correctness we note that  the length of 
the the shortest path is kept invariant under  such simple 
planar unfoldings and thus these unfoldings give the unique 
shortest path. 

The unfoldings can be done in O ( b g  n) parallel time 
using n processors as follows. Initially there are a 
sequence of n planes Pi, i=2..n, which  need  to  be unfolded 
onto the chosen common plane P1. There is a processor mpi 
assigned to each plane, In the  first pass every adjacent pair 
of planes pi ,  is unfolded to become coplanar with Pi. In 
practice processor mpi+l computes the displacement di and 
orientation Oi defining the new position of Pi+l, essentially 
solving a quadratic equation independent of n. At the end 
of the pass there are now a sequence of I n/2 1 planes which 
need to be unfolded. The process is repeated at most 
I log n I times when all the planes become unfolded on to 
the common plane PI. As each pass requires O(1) time per 
processor the entire unfolding is complete in O(log n)  time 

using n processors. Each processor mpi now computes 
under the shared-memory model in O(1) time  the  point of 
intersection of the straight line shortest path  with the 
unfolded line Lf, and then transforms it back to give the 
points of contact with the original lines Li all in a grand 
total of O(log n )  time. 

3. Iterative Numerical Method 

Whenever any two adjacent lines LL and are skew 
to one another, there exists no common plane containing 
both of them. Looking at it differently, the locus (or 
envelope) of all possible straight line segments connecting 
skew lines Li and Li+l no longer defines a planar surface but 
a 3-dimensional volume. Hence the above exact unfolding 
method does not work. Nevertheless when  the lines are 
skew there exist generalized unfoldings which  however 
provide iterative approximations of the shortest path solu- 
tion, Bajaj, Moh  [3]. Here we describe a parallel numerical 
iterative method where  each iteration is essentially a con- 
vergent non-linear block Gauss-Seidel iteration and  takes 
only O(1) time and I n/2 I processors. 

Let the interior points of each of the given (skew) 
lines Li of the shortest path solution which needs to  be 
determined, be respectively Xi, i=l..n. Each of the points X i  
is a vector in 3-dimensional space. Further let l i  be the 
corresponding unit vectors along the lines L; and the vec- 
tors Xo,X,,+l equal the initial given 3-dimensional points X 
and Y respectively. , We wish to minimize  the function 
D(x,, ...X,) :R"-+R' defined below, subject to the X i  con- 
strained to their respective lines Li. 

Were the d(X;Xi+l) = l/Xi-Xi+lll, the Euclidean distance 
between the tWQ points. The above function is strictly con- 
vex,  (see also [7]) and hence the  unique  solution is given 
by the following necessary and  sufficient conditions, For 
i=l . .n 

The above optimality conditions can be interpreted 
geometrically. For each i, the vectors (Xi-l-Xtl and 
subtend equal angles at the lines Li for the shortest path 
solution. As Xi is Constrained  to the line Li with  unit vector 
li we let Xi=aill+pi, where ai is a scalar and pi is  some  vec- 
tor point on the line L;. On substituting this in (2)  and sim- 
plifying (see Appendix A), we obtain for each i=l..n, 

.;a," + biai + c; = 0 (3) 

1898 



where the ai, bi and ci are at most fourth degree polynomial 
functions of Xi-.' and Xi+' as shown below. 

ai = ((Xi-1-PJ.W2 + CPt-Xi+l).CPi-Xi+l) 

- ((Pi-Xi+1)JJ2 - (Pi-Xi-l).(Pi-Xi-l) 

bi = 2((Xi-l-Pi).li)[((Xi-l-Pi).W((pi-Xi+l>) 

- (Pi-Xi+l)~(Pi-Xi+l)I 
-2((Xi+l-Pi>.li)[(Xi+l-Pi).W((Pi-Xi-l).W 

- (Pi-Xi-1).(Pi-Xi-1)1 

ci = ((Xi-1-Pi).W2(Pi-Xi+l).(Pi-Xi+l) 

- ((Xi+l-Pi).W2(Pi-Xi-1).(Pi-Xi-l) 

We  now obtain our parallel iterative computation of 
the Xi, i=l..n, as follows. (In  the following let m take on all 
the odd values from l..n and n take on all the even values 
from I..n.) Given initial values of each of the X;, in the 
general k th iteration, 

(1) Compute for all the m in parallel, the values a,"' and 
set x,"~ = a,"'~, + P,, 

(2)  Then compute for all the n in parallel, the values a?' 
and set X:' = a~'Z,, + Pa. 
Each of the ai is governed by a quadratic equation (3) 

above and can be computed exactly by the quadratic for- 
mula. The two solutions of ai obtained is a direct conse- 
quence of the squaring of equation (a) in Appendix A dur- 
ing simplification of (2) to remove the square roots of the 
Euclidean distance norm. One of these solutions 
corresponds to the right hand side of equation (a) being 
taken positive and the other to the right hand side being 
taken negative. We  of course at each stage, conforming to 
our original minimality condition (2), select the ai solution 
corresponding to the positiye right hand  side of the equa- 
tion  (a). The correctness of the above parallel algorithm 
follows directly from the fact that  each of the ai is a func- 
tion  of only Xi-l and Xi+l. 

From Ortega, Rheinboldt [5, ~2191, we obtain the. fol- 
lowing facts. If F :  Rn--+ R" has componentsfl, . . . ,fn then 
the basic step of the non-linear Gauss-Seidel iteration is to 
solve the i th equation 

fi(Xf+'( ... x::; XixL' ,... $;x,", = 0 

for Xi and then to set X?' =Xi. Thus in order to obtain all 
the X k + l  from the X k  we solve successively the n one- 
dimensional non-linear equations above for i=I..n. Since in 
our case each of the fi is a function of only Xi-', Xi and Xi+' 

and since all thefi are identical, we can solve I n/2 I of them 
in parallel at a time. Also as is the Gauss-Seidel principle 
of using new information as soon as it is available, in OUT 

case step (2) of the algorithm uses the most recent iterate 
values of the Xi. To draw the analogy tighter between the 
above parallel algorithm and the Gauss-Seidel method, 
consider further the non-linear block Gauss-Seidel pro- 
cedure, Ortega, Rheinboldt [S, ~2251. In this a complete 
iteration requires the. solution of s non-linear system of 

dimension qi, i=l..s. The components fi of F are grouped 
into mappings F,: Rn --+ Rq', and the X partitioned into 
(X1, , . . ,Xs) with Xi€ RqB. Then 

Fi((X'),"+' ,..., (Xi),"+l,(Xi+')," ,..., (Xs),") = 0 

The above algorithm is thus non-linear block Gauss-Seidel 
for qi = I n/2 I and rn = 2, the  two blocks being the systems 
for the odd and even values of i=l..n of (3) above. 

ala? + blal + c1 = 0 

a& + b3a3 + c3 = 0 

a5$ + bsa5 + cg = 0 

a 2 4  + b2a2 + c2 = 0 

a4c4 + b4a4 + cq = 0 

a6d+b&+cg=O 

The above iterative parallel procedure was imple- 
mented and efficiently converged to the optimal solution 
for a variety of input skew lines and various values of pre- 
cision and error bounds. The results are summarized here 
for both the Zl and the I, error norms. The initial values for 
these iterations were computed in a single parallel step 
using equation (3) and  in each case letting Xi-' = X 0  and 
Xi+' the two given input points. 

Acknowledgements: I wish to thank Walter Gautschi for 
enlightening discussions in numerical analysis. 

4. References 
[ l l  Bajaj, C., The  Algebraic  Complexity of Shortest  Paths 

in Polyhedral  Spaces, Proc. 23rd Allerton Conference 
on Comm., Control and Computing, p510-517, 1985. 

[2]  Bajaj, C., Limitations to Algorithm  Solvability: Galois 
Methods and Models of Computation, Purdue Univer- 
sity Computer Science Tech. Report, TR-567, 1986. 

1899 



Bajaj, C., and Moh, T., Generalized Unfoldings for 
Shortest  Paths in Euclidean  3-Space, Purdue Univer- 
sity Computer Science Tech. Rept., TR-526, 1985. 

Lozano-Perez, T., and Wesley, M.A., An algorithm 
for planning collision free  paths among polyhedral 
obstacles, CACM 22, p560-570, 1979. 

Ortega, J., and Rheinboldt, W., Iterative Solution of 
Nonlinear  Equations in Several Variables, Academic 
Press, New York, 1970. 
Papadimitriou, C., An Algorithm for Shortest  Path 
Motion in Three  Dimensions, Information Processing 
Letters, 20, p259-263, 1985. 

Sharir, M., and Schorr, A., On shortest  paths in 
polyhedral  spaces, Proceedings 16th STOC, p144- 
153,1984. 

~ ~ b : ~  1:  Sum1Ill-y ,.,r,Lx::iis ur1ticr thc 1 1  Ilunli 

Appendix A 

We now rationalize and simplify the optimality equation 
(2) of the text. 

As Xi is constrained to the line Li with  unit vector li we let 
Xi=aiZi+Pi, where ai is a scalar and Pi is some vector point 
on the line L;. On substituting this in (a) and simplifying 
we obtain 

1900 


