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ABSTRACT

The problem of determining shortest paths in the presence of
poiyhedra[ obstacles between two points in Buclidean 3-space stems
from the general problem of obtaining optimal coliision free paths in
robot systems. For the special case when paths are constrained to the
surfaces of 3-dimensional objects, simple planar unfoldings are used to
obtain the shortest path. For the general case when patis are aot con-
strained to lie on any surface, we show the existence of generalized
unfoldings wherein the shortest path in 3-space again becomes a
straight line. These unfoldings consist of multiple rotations about the

edges of the polyhedral obstacles.
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1. Introduction

The problem of finding the shortest path between two points in Euclidean 3-
space, bounded by a finite collection of polyhedral obstacles is a special case of the
more general problem of planning optimal collision-free paths for a given robot sys-
tem. In Euclidean 2-space (the Euclidean plane) the problem is easy to solve and the
shortest path is polynomial time computable, Lozano-Perez, Wesley [2]. The shortest
path is still polynomial time computable if the allowed paths are constrained to lie on
surfaces of polyhedral objects, Sharir, Schorr [5], and O’Rourke, Suri, Booth [4]. This
is generally considered to be a problem in 2-1/2 dimensional space as it has aspects of
3-dimensionality while stiil confining the path to a two-dimensional surface. To com-
pute the surface constrained shortest path the polyhedral surfaces are unfolded onto
a common plane wherein the shortest path becomes a straight line. Such planar
unfoldings have also been studied in the past to obtain surface constrained shortest

paths for a variety of solid objects, Lyusternik [3].

The problem for Euclidean 3-space is much harder and known shortest path
computations require doubly exponential time, Sharir, Schorr [5]. In Euclidean 3-
space the shortest path between two given points, in the presence of polyhedral obs-
tacles, can again be shown to be polygonal lines (piecewise straight [ines, as for the
planar 2-dimensional problem), with break points that lie on the edges of the given
polybedral obstacles. In this paper, we show the existence of generalized unfoldings
wherein again the piecewise polygonal shortest path in 3-space becomes a straight
line. These unfoldings consist of multiple rotations about the edges of the

polyhedral obstacles.

Since the edges of the polyhedral obstacles are arbitrary lines in Euclidean 3-
space, the problem of determining the points of contact of the shortest path with
these edges can without loss of generality be versed also as follows.




Shortest Path Problem
iGiven a sequence L=(l,05, - -+ ;) of lines in 3-dimensional space , find the shor-
!
test path from a source point X to o destination point Y constrained to pass through

F'inrerior points of each of the lines 4,05, - - - I in this order.
]

We identify three different cases of the relative positions of the lines. All the vari-
ous confipurations of the r lines in 3-space consist of combinations of these basic

orientations between pairs of lines.

(a) Lines are parallel to each other.

{(b) Lines are not parallel but intersect.
(¢} Lines are skew and do not intersect.

In § 2, we show that when the lines are oriented as a combination of the cases
(a) and (b), then the shortest path problem in Euclidean 3-space reduces to a 2-1/2
dimensional space problem where paths are constrained to a sequence of planar sur-
faces. Hence planar unfoldings suffice, that is unfoldings onto a common plane
where the shortest path becomes a straight line. Simple polynomial time exact algo-
rithms which use these planar unfoldings have been known and used in the the past
to determine surface constrained shortest paths, Lyusternik [3], O’Rourke, Suri,
Booth [4] and Sharir, Schorr[5]. Furthermore for these cases (a) and (b), the shortest

path solution has also been shown to be constructible’, Bajaj [1].

Next, in § 3, for the case {c) of non-intersecting skew lines, where the above
planar unfoldings fail, we show the existence of generalized unfoldings wherein the
shortest path in 3-space again becomes a straight line. These unfoldings consist of
multiple rotations about the skew lines. For this general case however, the shortest
path solution has been shown to be not constructible and furthermore nor solvable
by radicals*®, Bajaj [1]. This proves there exists no exacr algorithm for this shortest
path problem in general, under models of computation where the root of an alge-
braic equation is obtained using arithmetic operations and the extraction of k%
roots. This also rules out any apriori calculation of the amount the skew lines need

to be rotated via the generalized unfolding scheme, such that the piecewise linear

T By consiructible we mean straight-edge and compass constructible. The complexily of
straight-edge and compass consiructions has been known (o be equivalent to the geometric
solulion being expressible in terms of (+,-,*,/,3/) over @, the field of raticnals.

¥ A rcal number @ is expressible in terms of radicals if therc is a sequence of expressions
By, . . .. Bp, where Bye@, and cach B; is cither a rational or the sum, difference, product,
quoticnt or the & root of preceding B's and the last B, is .




-3

path becomes an approximate straight line. (This compared to the planar unfoldings
of & 2 where such apriori calculations are possible). Hence this only leaves numeric

or symbolic approximation methods to obtain the shortest path solution.

In § 4, we elaborate on a numerical procedure of Sharir, Schoir [5] and illus-
trate the iterative approximations to the solution for skew lines by using generalized
unfoldings. We show how we could iteratively rotate the lines under the generalized
unfolding scheme till the piecewise linear path becomes a straight line. Furthermore
we see that simultaneous iterative improvements of segments of the piecewise linear
path are possible, corresponding to simultaneous rotations of lines in the generalized

unfoldings.

2. Planar unfoldings

Theorem I: When the n lines are oriented as a combination of the cases (a) and (b),

then the problem can be solved by planar unfoldings.

Progf : Between pairs of lines in 3-space which are parallel to each other there exists
a unique plane which contains both of them. The same applies to pairs of lines in 3-
space which intersect. Also a point and a line in 3-space define a unique plane
between them. The problem of finding the shortest path between X and ¥ in 3-space
for cases (a) and (b), then reduces to a constrained 2-1/2 dimensional space problem
as follows. Let the point X' and line /, define the plane P, the lines /; and /; ., define
the planes P;4y, =1.n—1, and the line /, and the point ¥ define the plane P, ..
The original problem is now reduced to finding the shortest path between two points
X and Y in 3-space with the path constrained to the planes P;, i =1..n+1, (Figure 1).
Then the points of contact of the shortest path with the lines /;, the edges of the
planes, are determined by first unf olding all the planes P; so that they all lie on the
common plane defined by say, plane P, containing point X. This can be done itera-
tively by first unfolding P, to be coplanar with P, followed by unfolding P, till its
coplanar with P; and P, and so on. The shortest path joining X and ¥ now becomes
the shortest plane path that is the straight line, connecting X and Y*, (the
transformed point ¥ now on the common plane P; and thus coplanar with X). The
points of intersection of this straight line with the transformed lines !/, when
transformed back, give the points of contact with the lines {; of our original prob-
lem, (Figure 1). To prove correctness we note that the length of the the shortest
path is kept invariant under such simple planar unfoldings and thus these unfoldings

give the unique shortest path. O
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Figure 1: Planar Unfoldings

The unfolding procedure sketched in the proof of Theorem 1 above is essen-
tially an efficient algorithm to precisely determine the points of contact of the shor-
test path with the obstacle edges /;. The time complexity being a polynomial in , the
number of obstacle edges. This polynomial time planar unfoldings algorithm has
been known and used in the the past to determine surface constrained shortest
paths, Lyusternik [3], O’'Rourke, Suri, Booth [4] and Sharir, Schorr {5].

The above unfolding also links shortest paths to what are known as geedesic
paths on surfaces. In very general terms a path ¢ is called geodesic on a surface if at
each point of g the principal normal coincides with the normal to the surface. For
our shortest path problem, a path g from X to Y which passes through the lines
{yda, -+ - ok, is geodesic if for each i=1.n, the path ¢ enters and leaves /; at equal

angles. On unfolding all the planes P; to a common plane P, the straight line
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connecting X and Y* clearly subtends equal angles at each of the lines /. Such angles
remain invariant under the above unfoldings and thus the shortest path from X to ¥
which passes through the given sequence of lines [; is geodesic and furthermore
unique. For cylindrical and conic surfaces the shortest path between two points on
the surface is a geodesic curve which subtends equal angles with the generators of
the curved surface. On unfolding the surface to a plane this geodesic curve becomes

a straipht line, Lyusternik [3].

3. Generalized Unfoldings

The notion of geodesic paths extends to the case of skew lines as well. Hence
for shortest paths in Euclidean 3-space the points of contacts on the lines /,, .. ., [,
are such that the piecewise straight line shortest path enters and leaves [; at equal
angles. To see this consider the straight line segments IN (i) of the shortest path
incident on line {;. The line segment IN (i) together with the line {; define a plane.
The same applies to the line {; and its outgoing straight line segment OUT (i) of the
shortest path. On unfolding these planes about their common edge [; the two seg-
ments IN (f) and OUT (i) must be collinear (the straight line being the shortest path
in the plane) and thus subtend equal angles at the line {;. Suffice it is to note that
the length of the segments of the path as well as the subtended angles are invariant
under the planar unfelding. A similar argument applies to the ingoing and ontgoing

straight line segment at each of the lines /;.

However whenever any two adjacent lines {; and /;,, are skew to one another,
there exists no common plane containing both of them. Hence the straight line seg-
ment OUT (i) = IN (i +1) is no longer constrained to a planar surface and the planar
unfolding fails. In fact the line segment OUT (i} = IN (i +1) is the intersection of two
planes, one containing {; and OQUT (i) and the other containing IN (i +1) and /;,,.
Locking at it differently, the locus {or envelope) of all possible straight line segments
connecting skew lines /; and [;, is no longer a planar surface but a 3-dimensional
volume.

Nevertheless there still exists an unfolding of planes about lines [;, i=1..n

wherein the piecewise straight line segments of the shortest path all become col-

linear.

Theorem 2: If the lines are skew there exists an unfolding where the shortest path

becomes a straight line.




Figure 2: Case of 2 skew lines

Proof : Consider first the case of two non-intersecting skew lines /, and {, and the
two points X and Y in 3-space, Figure 2. Line /, and point X define a unique plane
P;. Similarly line {, and point ¥ define the unique plane F,. Also let X’ and Y* be
respectively the transformed points when planes P, and P, are rotated about their
corresponding lines {, and /,. These two independent rotations are the generalized

unfoldings.

Choose a point Z on line {;. Then line {, and point Z define a plane P;. By
rotating the plane P, about line /, we can make it coplanar with P,. Thus there is a
straight line L connecting ¥* and Z and passing through a point in /, and through
the point Z on !;. By rotating the plane P; about the line /, the line L can be
brought onto the plane P,. By choosing points Z on line !, appropriately the line L
can be made to span all the points on the plane of P, via the double rotation about
the lines /; and /,. Hence there exists a point Z on [, wherein the straight line L
passes through the point X*. That is there is a straight line connecting points X* and
Y™ passing through interior points of lines /; and {,. Since under that unfolding the
straight line is the shortest distance between X' and Y*' and the rotation of the
planes keeps the length of the lines invariant such a polygonal path with break points
on the lines /,, /, must be the shortest path connecting the original points X and ¥ .

For the general case of n lines we prove the theorem by induction on n. The
generalised unfolding consists of rotations of planes P, and P, (as defined above)

about the lines {; and I, respectively and rotations of each line /; about line /;_,,




i=3..n. In total rn rotations. The base case of n=2 is as above. For the inductive step
choose again a point Z on line /,. This point Z and /, define a plane P,. Then by
invoking the inductive hypothesis on the n—1 lines {3, ..., [, there exists a piecewise
straight line connecting ¥, to Z and passing through the interior points of lines {,,
.., I, which becomes a straight line on »—1 rotations about these lines. The rota-
tions consist of the planes P, and P, about the lines {, and [, respectively and the
rotations of {; about {;_,, i=4..n. Also such a line exists for all points Z on /,. By a
rotation of plane P, about line /4 the line L can be brought to the plane P, and thus
span all points on A, in particular point X'. Since the rotations again keeps the

length of the paths invariant, our theorem fellows. D

4. Tterative Approximsations

For the peneral case of skew lines, the shortest path solution has been shown to
be nor constructible and furthermore nor solvable by radicals, Bajaj [1]. This proves
there exists no exact algorithm for this shortest path problem in general, under
modelg of computation where the root of an algebraic equation is obtained using
arithn-letic operations and the extraction of k™ roots. This also rules out any apriori
calculation of the amount the skew lines need to be rotated via the generalized
nnfolding scheme, such that the piecewise linear path becomes a straight line. (This
compared to the planar unfoldings of § 2 where such apriori calculations are possi-
ble). Hence this only leaves numeric or symbolic approximation methods to obtain

the shortest path solution.

A peneral numerical procedure is given in Sharir, Schorr [5]. Initially a piece-
wise linear path is passed through an arbitrary sequence of points one on each of the
given lines. Then this path is iteratively improved by replacing each contact point at
which the incoming and outgoing angles are not equal by another point on the same
line at which these angles become equal, (without changing the other contact poiats).
Eacl:'l such iterative step shortens the length of the path and the sequence of paths
thus! obtained will converge to a path of iocally minimal length and hence to the
desired shortest path. This because the shortest path from X to Y is unique, the
lenpgth of the shortest path as a function of the contact points has one global

minimum and no other local extremum.

We claborate on this numerical procedure and illustrate the iterative approxi-
mations to the solution for skew lines by using generalized unfoldings. We show

how we could iteratively rotate the lines under the generalized unfolding scheme till




the piecewise linear path becomes an approximate straight line. Furthermore we see
that simultaneous iterative improvements of segments of the piecewise linear path
are possible, corresponding to simultaneous rotations of lines in the generalized

unfoldings.

Case of 2 skew lines

Figure 3: Iterative Approximations for 2 skew lines

Consider first the case of n =2 skew lines /; and [, and the two points X and ¥
in 3-space, Figure 3. Line /; and point X define a unique plane P,. Similarly line [,
and point Y define the unique plane P,. Let the line [, intersects the plane P, at
the unigque point ¢y. Since g, and ¥ lie on the same plane P,, there exists the
straight line q,Y which intersects [, at a point we call r,. The points g, and r, are
the initial approximations to the points of contact on the lines /, and [, respectively,
of the shortest path connecting the points X and Y. The initial approximation to the
shortest path is thus the piecewise linear path consisting of the segments Xq,, g7,
and r Y. In subsequent iterations we refine the approximations by using the above
generalised unfoldings till the time that this piecewise linear path becomes a straight
line. From Theorem 2 we know that under these generalised unfoldings this straight
line path gives us the unique shortest path solution connecting X and Y.

For the case of two skew lines we recall that the independent rotations of the
planes P; and P, about their corresponding lines !/, and [, are the generalized
unfoldings. The iterative improvement of the piecewise linear path is as follows.

Rotate plane P, about line {, till the point r, becomes the new intersection of the
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rotated plane P} with the line {,. Now since points r; and X' lie on the same plane
PY, there exists the straight line X ‘r; which intersects /, at the point we call g,. This
point is now a refinement of the contact point g, on line [, since the length 1X%g,1
+ lgors| < the length 1X'g41 + lgyr,!, (Euclidean triangle inequality). Now rotate
plane P, about line [, till the point g, becomes the new intersection of the rotated
plane P} with the line ;. Next since points g; and Y’ lie on the same plane P!,
there exists the straight line g,¥" which intersects /, at the point we call r,. This
point is a refinement of the contact point r; on line {, since the length Iqu,l +
Ir,¥*! = the length lgyrql + 1r ¥, (triangle inequality). The updated contact
points g4 and r, are thus the new approximations after the first iteration. Repeating
the independent rotations of the planes P, and P, about their corresponding lines /,
and [, we iteratively improve the piecewise linear path till it eventually becomes a

straight line.

Lt )
X MY

Figure 4: Simultaneous rotations for 2 skew lines

We point out however an important distinction for the above case. We could
consider simultaneous rotations of the two planes P, and P, about their respective
lines. We have the unique point g; which is the intersection of the line /; with the
plane P, and the unique point r; which is the intersection of the line {; with the
plane P;. Since g; and Y lic on the same plane P, , there exists the straight line ¢,
which intersects {, at a point we call r,. Similarly since r; and X lic on the same
plane P, there exists the straight line Xr; which intersects [, at a point we call q,.
Changing ry to r, is achieved by rotating plane P, about line {; till the point r,

becomes the mnew intersection of the rotated plane P§ with the line /.
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- Simultaneously changing g, to g, is achieved by rotating plane P, about line [, till
the point g, becomes the new intersection of the rotated plane P with the line /,.
However in general such simultaneous rotations of the two planes P, and P, about
thier respective lines does not achieve an improvement of the piecewise linear path.
An example of this is shown in Figure 4. Since the length Ig.r;1 can be made arbi-
trarily close to the length Ig,r;| and thereby the length 1Xgy + gory +r,¥ | =
IXq, - gy +riY 1.

The general case of n skew lines

In the general case, initial approximations g/ are taken on each of the lines L;
i =1..n, respectively. Alternatively they may be taken to be the intersection of the
lines /; with the planes Py or P,. As before line /; and point X define the unique

plane P, and the line [, and point ¥ define the unique plane P,.

An iterative improvement of the contact points consist of two phases. Let
i=1mod 2and j=0mod 2,1=1i,j=n in the following. In the first phase each of the
points g;! on the odd numbered lines /; are replaced by new points g;2. These new
peoints are obtained from the points qjl on the even numbered lines /;, as follows.
Each point qjl defines a unique plane P; with the line /;_;. Further the point qjl
defines a unique plane P;,y with the line /4, (except for j=n—1 for n=o0dd and
j=n for n=even). The planes P, are unfolded so as to become coplanar with the
planes P, ;. This is achieved by rotating planes P, and P, about their respective lines
{y and [, and further rotating lines /; about the lines ;;, (except for j=n—1 for
n=odd and j=n for n=even). The points g are the intersections of the straight
lines ¢;'g/,; with the lines {; after the unfoldings. In the second phase each of the
points qj] on the even numbered lines {; are replaced by new points qu. These new
points are obtained from the points q,-2 on the odd numbered lines {;, by use of simi-
lar unfoldings as above. We note that the computations involving all the unfoldings
(rotations) in each phase can be performed simultaneously and hence the new points
g can be computed simultaneously in the first phase as can the new points q_,-z in the
second phase. The new contact points g5, k=1.n at the end of an iteration are
improved approximations to the solution since each of the above unfoldings shortens
the length of the entire path (straightforward triangle inequality). Repeating the
above two phases of unfoldings we iteratively improve the piecewise linear path till it

eventually becomes a straight line (approximately).
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Figure 5: Iterative Approximations and Generalized Unfoldings

We now further illustrate the generalized unfoldings and in particular the rota-
tion of a line /; about the line /;_; in the general case procedure with the case of
n=3 skew lines. Consider the n=3 skew lines {4, {5 and /, and the two points X and
Y in 3-space, Figure 5. For the case of three skew lines we recall that the indepen-
dent rotations of the two planes P, and P, about their corresponding lines {, and [,
respectively and the line /, about line /,, comprise of the generalized unfoldings. As
before let the line /; intersect the plane P, at the unique point g, and the line /,
intersect the plane Py at the unique point s;. We assume an initial contact point r,
on the line /,. Alternatively we could take it to be the intersection of the plane P,
or P, with the line {,. The points g3, ry and s, are then the initial approximations to
the points of contact on the lines {4, [, and [, respectively, of the shortest path con-
necting the points X and Y. The initial approximation to the shortest path is thus

the piecewise linear path consisting of the segments Xg, g7, rys; and s4Y .

The iterative improvement of the piecewise linear path is as follows. Rotate
plane P, about line /, till the point r, becomes the intersection of the rotated plane
P} with the line /,. Now since points ry and X’ lie on the same plane P, there
exists the straight line X*r; which intersects [, at the point we call g,. This point is
now a refinement of the contact point ¢; on line [, since the length 1X"g51 + lgory|
= the length 1X"g,! + Igyrql, (triangle inequality). Also rotate plane P, about line
ln, (this could be done simultaneously with the earlier rotation) till the point r

becomes the intersection of the rotated plane P with the line /. Now since points
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ry and Y* lie on the same plane P;, there exists the straight line ¥'r, which inter-
sects [, at the point we call s,. This point is now a refinement of the contact point s,
on line [, since the length 1Y s51 + lsory| = the length (Y sl + [syr,1, (triangle
inequality). Now, the rotation of the line /; about the line /, describes a circle C
having center r; and radius vector rys,. The the unique plane, call it P,, defined by
line [, and point g,, intersects with the circle C at a point we call s5. Since points g,
and s5 lie on the same piane P,, there exists the straight line g,s5 which intersects I,
at the point we call r,. This peint r, is now a refinement of the contact peint ry on
line I, because Irys,1 = Irysh | and the length Igoryl + Irs 1 < the length Ig,r,l
+ Ir,s5 1 (triangle inequality). Hence the Iength lg,ry] + Irys;l = the length
lg,ral + Irys,|. Note that s and Y‘Yare the new transformed points of s, and Y*
under the above rotation, wherein 1s,Y%1=1s¥* is maintained. The updated con-
tact poinls g4, r2 and s, are thus the new approximations after the first iteration.
Repeating the above generalised unfoldings we iteratively improve the piecewise
linear path till it eventually becomes a straight line.
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