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ABSTRACT

Suppose we are given a set § of n (possibly intersecting) simple
objects in the plane, such that for every pair of objects in S, the intersec-
tion of the boundaries of these two objects has at most o connected com-
ponents. The integer & is independent of n, i.e. =0 (1). We consider the
problem of determining whether there exists a straight line that goes
through every object in S. We give an O (nlogny(n)) time algorithm for
this problem, where ¥(n) is a very slowly growing function of n. If o<3
then our algorithm runs in O (nlogn) time. Previously, only special cases
of this problem were considered: In [6] the case when every object is a
straight-line segment, in (2] the case when the objects are equal-radius cir-
cles and in [5] the case when objects all maintain the same orientation.
All these cases follow from our general approach, which places no con-

straints on the size and/or configuration of the objects in S.
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1. Introduction

Consider being given a set § of n simple objects in the plane. By simple objects we
mean those that have an O (1) storage description each, and that are such that, for every
pair of such objects,” constant time suffices to compue their intersection, common
tangents, etc. Typical examples of such objects are polygons with a constant number of
edges, discs, ellipses, sectors of discs, etc. We seek straight lines, if they exist, that inter-
sects all members of S. Such straight lines are called common transversals or stzbbing
lines of the set §. Since there exists a common tansversal for n possibly non-convex
objects iff there exisis a common transversal for the n convex hulls of these objects, we
can replace every input object by its convex hull (this takes O (1) time per object since
we are considering simple objects). We assume thart this has already been done, i.e. from

now on we assume that each of the n objects in S is convex.

Throughout the paper, we use ¢ to denote the iargest number of connected com-
ponents that the intersection of two object boundaries can have, and we assume that o is

4 constant independent of # (i.e. «=0 (1)).

Algorithms for determining transversals are known, however in special cases only.
Straightforward solutions arise from results in combinatorial geometry, Danzer, Gruen-
baum, Klee [3] and Hadwiger, Debrunner [9], which give rise to worst case time bounds
of O (n"‘), k23. Edelsbrunner, Overmars, Wood [7] have a general method for visibility
problems in the plane which can be used to determine transversais, however in time
0 (n*ogn). O(n logn ) time algorithms were given for the special cases of line segments
[6] and for circles of equal radius {2]. Efficient algorithms were then given by
Edelsbrunner [5], who reduced transversal problems for a set of homothets of a simple
planar object to convex hull problems. Though this gives O (nlogn) time algorithms to
determine transversals for a wide class of objects, it applies to only special constrained
configurations of the set S of objects. In particular, homethety which involves only scal-

ing and translation, forces all objects to maintain the same orientation.

In this paper we give efficient O (nlogny(n)), (and, if a<3, O (nlogn)), time algo-

rithms to determine transversals of simple planar objects without any constraints on the
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size of the objects or constraints on the configuration of the set of objects, S. Our algo-

rithm actually computes a description of all transversals of S,

1.1. Some Preliminaries

Let the functions f 1, - * - ,f,, be real-valued, continuous functions of a parameter r,
where each f; has an O (1) storage description. Suppose we want to compute the point-

wise Min of these functions, defined by h(t) = Min f;(t). Note that £ itself is continu-
1<i<n

ous and is typically made up of "pieces" each of which is a section of one of the f;’s.
More formally, a piece of 4 is the portion of a function f; over an intervat [z,,7,] such
that (i} # is identical 10 f; over that interval, (i) / is not identicai to any f; over an inter-
val which properly contains {z,,75]. The storage representation of such a piece consists
of the index i together with the interval [z),,] (so a piece has an O (1) storage descrip-
tion). (Detail: If f; and f ; are identical over the interval {¢),r,] then we break the tie
arbitrarily, e.g. by taking min(i,j).) The desired description of & is a list of the descrip-
tions of the successive pieces that make it up. The next lemma bounds the number of
pieces that make up 4 if no two distinct functions f; and f ; intersect more than s times
(f; and f ; intersect p rimes iff the set of real values of ¢ for which f; (£)=f () consists of

p disjoint intervals oa the real line).

Lemma 1. Let f), - -/, be continuous, real-valued functions of variable ;. Every f ;
has an O (1) storage description and can be evaluated at any ¢ in O (1) time. Every two
distinct functions f; and f ; intersect at most s times where s=0 (1); furthermore, these
(at most 5) intersections can all be computed in O (1) time. Let A be the pointwise Min

of the f;'s; ie. A(t) = Min f;(t). Then the descrption of 4 can be computed in
igizn

O (nlogn) time if 5 <3, in O (nlogny(n}) if s 23, where y(n) is an extremely slowly grow-
ing function of n.

Proof: Recursively compute the description of the pointwise Min of £, fa;, and
that of the pointwise Min of £, 0.1, - * f,. Each of these two descriptions, as well as
the description of the desired &, has O (n) pieces if s <3 [4], O (ny(n)) pieces if $23 (for

details about y(n ), see the note that follows). These two descriptions are then combined
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to obtain that of h, giving the following recurrence for the time complexity T'(n):
T (n)=2T (n/2)+(number of pieces). Thus T (»)=loga.(number of pieces). O

Note: Let log" n denote the smallest integer { for which exp;(1)>n, where exp,(x)=e*

1) The function log*n grows extremely slowly with n and is

and exp; (x)=e
"almost” a constant for all practical values of n, ¢.g. log” (10!®)=4. Szemeredi proved
an upper bound of O (log"= n) for ¥(n) [15], and sharper upper bounds were later given by

Hart and Sharir [10] and Sharir and Livne [14].

2. Common Transversals

Consider the 1~1 geomerric transformation which transforms a line /g in the x -y

plane into a pair (py,8;), a point in the p — 8 parametzr space, [Figure 1].

v,
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Figure 1 Geomewic Transformation

We illu:stratc our method by first giving an O (nlogn) time algorithm for the case of
a set S consisting of n arbitrary circles in the plane (in [2] only the case where all the
radii are equal was considered). To determine whether they permit a common transversal
or stabbing line we use the above geometric transformation as follows. Each circle C; is
defined by a radius »; and a center whose polar coordinates are (p; ,8;). To obtain all pos-
sible stabbing lines for C; consider a general line defined by the pair (p,0). As shown in

Figure 2, this line stabs C; if p;Cos(8—6;)—r; <p £p;Cos(®—8;) +r;.



Y

Figure 2 Stabbing Line

Furthermore, the line defined by (p,8) is a stabbing line to all »n circles or a2 common
transversal iff

PiCos(0 —9)) —r) £p < p;Cos(6 -8, + ry|

p2C05(9 - 92) -7 < p < p2C05(8 - 82) + Ta

PnCos(®-9,)—r, <p<p,Cos(8-8,)+r,

which implies that (p,8) is a common transversal iff

=]
=i =R

Max f;(8) <p £ Min 2,(8)
1si<n 1<i<
where
fi(®) =p;Cos(8-6;) — r;

g;(e) = piCOS(e —_ B‘) + r;
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Now, observe that every point (p,8) in the intersection of | f; and f i (ie.
p=f;(0)=f;(0)) defines a line which is tangent to both C; and C;, and is such that C; and
C; are on the same side of that common tangent. If C; and C; are distinct circles, then
there are at most two such common tangents, and hence f; and f j intersect at most twice.
If C; and C; coincide, then f;=f; and hence f; and f ; intersect once. Hence by Lemma
I, the description of the pointwise Max of the f;'s (call it f) can be computed in
O (nlogn} time. Similar remarks holds for g; and g;» and the pointwise Min of the g;’s
(call it §). Onee f and § are known, we have a complete description of all the stabbing
Lines of the C;’s, viz.,, every point (p,0) in the region below the graph of § and above
that of f defines a stabbing line of the C;’s (if that region is empty then there is no stab-
bing line).

The above method generalizes for planar objects such as ellipses, ovals,etc., whose
boundaries consist of a single smooth closed curve. The method also generalizes for a
larger variety of planar objects whose boundary consists of piecewise smooth curves,
such as sectors of discs, k—gons etc. The only restriction is that the intersection of any
pair of object boundaries must have no more than & connected componeats, where
=0(1). When 023, we obtain O(nlogny(n)) time performance (rather than
O (nlogn)). The rest of this section skeiches this generalization when each object is a
convex A —gon, where k=0 (1).

For a set S of n convex k—gons consider again the i object of the set, 0;. We
need to obtain the functions f; and g; for every object O; (as for the circles before).
These funct@ons are still continuous, but they are no longer smooth everywhere; instead
they are pi-ecewise smooth, with angular points separating the smooth pieces. The
descriptions of f; and g; are computed as follows. We first compute, for every O;, the
set P; of all antipodal pairs of vertices [13]. This takes O(1) time per object.
Corresponding to each antipodal pair (p ,q )& P; there exists a range of angles [8,,8,] such
that any line L=(p,0) for which 0,<6<0, stabs O, iff it stabs the straight-line segment pg.
Therefore within each such range [6,,8,] the functions f; and g; are smooth and easily

defined. Since O; has O (k) antipodal pairs, each of f; and g; consists of O (k) such




smooth pieces.

As before, a straight line defined by (p,8) in parameter space is a stabbing line for
the object O; iff f;(8) < p < g;(0). Further the line (p, 8) intersects all » objects iff
Viji=1,..,n, we have f;(8) <p < £i(0). Again, this implies that line (p,0) is a

transversal of the n objects iff

Max f1(8) S p < Min g;(0)

1€i<n

The piecewise smooth envelope Meax f;(8) is compurad using Lemma 1. However,
l€isn

in order to be able to use this lemma, we must first show that £; and f ; intersect O(1)
tmes. Actually, they intersect at most 2k times. To see this, note that there are as many
such intessections as there are common tangenis between O; and O}, and that there are at
most 2k such common tangents (where by common tangent we mean one, such that both

objects are on the same side of it).

The other piecewise continuous envelope Min £i(0) is computed analogously. The
1€<isn

region below the Min envelope and above the Max envelope describes all the transver-

sals of §.
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