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Abstract

We describe algorithms to obtain rational parametric equations, (a polynomial equation
divided by another), for degree two curves (conics) and degree two surfaces (conicoids), given
the implicit equations. We further consider the rational parameterizatons over t2 fields of
rationals, reals and complex numbers. In doing so, solutions are given 10 important subproblems
of finding rational, real or complex points on the given conic curve or conicoid surface. Polyno-
mial parameterizations are obtained whenever they exist for the comics and conicoids. These
algorithms have been implemented on a VAX-780 using VAXIMA.
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1. Introduction

General curves and surfaces can be represented by parametric or implicit equations. For
various reasons related to efficient computability, ( greater freedom in controlling shape and
direct ease in performing transformations ), the dominant means of representing curves and sur-
faces in geometric modeling is the parametric equation [4]. A general (degree two) conic implicit
equation is given by J (x,y) = ax® + by® + cxy + dx + ey + f =0, and rational parametric equa-
tions given by x = p(t)ig(t) and y = k(¢)/L(¢), where p, ¢, k and | are univariate polynomials.
Further a general (degree two) conicoid implicit equation is given by 7(x,y,z) = ax? + by? + cz®
+dxy + exz + fyz + gx + hy + iz + j = 0, with corresponding rational parametric equations
x=p(s.0)qs.t), y =k(s,t)l(s.t), and z =m(s,t)/in(s.t). Advantages of parametric equa-
dons also accrue from the fact that these forms are the adequate description for drawing curves on
a plotter or graphics display screen and that the two parametric variables of surfaces also supply
the coordinate grid on which embedded curvzs may be defined. They also prove useful in obtain-
ing efficient algorithms for generating, with rational parametri«: representations, the surface boun-
dary of configuration space obstacles arising from the collision frez moton of guadric cbjects

amongst physical obstacles, defined by patches of quadric surfaces, [3].

Both conics and conicoids always have a rational parameterization. In § 2 and § 3 of this
paper we describe algorithms to obtain rational parametric equations for the conics and conicoids,
given the implicit equations. Polynomial parameterizations are also obtained whenever they exist
for the conics and conicoids. These parameterizations are over the field of Reals, or the field of
Complex numbers when real solutions do not exist. Further in § 4 we consider the rational
parameterizations over the fields of rationals, reals and complex numbers. Cubics (degree 3)
plane curves and cubicoids (degree 3) surfaces do not always have 2 rational parameterization.
However they always have a parameterization of the type which allows a single square root of
rational functions. In a subsequent paper [2], we show how to obtain the rational and special

parametric equations for cubics and cubicoids.
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2. Conmics
The general conic implicit equation is given by /(x,y) = ax® + by? + oy +de +ey +f =

0. The non-trivial case is when both @ and b are non-zero. Otherwise one already has one vari-

able in linear form and expressible as a rational polynomial expression of the other, and hence a

rational parameterization. To obtain the rational parameterization all we need to do is to make

I'(x,y) non-regular in x or y. That is, eliminate the x? or the y2 term through a coordinate

transformadon. For then one of the variable is again in linear form and is expressible as a

rational polynomial expression of the other. We choose to eliminate the y? term, by an appropri-

ate coordinate ransformation applied to / (x,y). This is always possible and the algorithm is now
described below. (The entire algorithm which also handles all trivial and degenerate cases of the
comic is implemented on a2 VAX-780 using VAXIMA, a listing of which is provided in the appen-

dix.)

(1) 1IfI{x,y) has a real root at infinity, a linear transformation of he type x =ax + b o +cq
and y = azx + byy + ¢ will suffice. If 7(x,y) has no real root at infirity, we must use a
Jractional linear transformation of the type x = (@yx + by + c)(azx + by + ¢3) and y
=axx +byy + cf{awx + bay + c3). This is equivalent 1o a homogeneous linear transfor-
mation of the type X = a X +bY+¢c1Z, ¥ = aX +byY +¢2Z and Z =
asX + b3Y + c3Z applied to the homogeneous conic / (X,Y .Z) = aX? + b¥Y? + cXY + dXZ
+e¥Z + fZ22=0.

(2) Points at infinity for 7(x,y) correspond to linear factors of the degree form (highést degree
terms) of /. For the conic this corresponds to a real root at infinity if c? = 4ab . For other-
wise both roots at infinity are complex , (complex roots arise in conjugate pairs). Further
¢? =4ab corresponds to a polynomial parameterization for the conic, as then the degree
form is a perfect square,

(3) Applying a linear wansformation for ¢2 > 4ab, gives rise to /(x,y) = I( a\x + by +cy,
ax +byy +¢y). To eliminate the y% term we need to choose b, and b, such that
ab? + cbby + bbF = 0. Here both the values of b, and b, can always be chosen to be
real.
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(4) Applying a homogeneous lincar transformation for ¢? < 4ab, gives rise to /(X,¥ Z) =
IaX +bY +c1Z,a:X +byY +¢2Z,a3X + byY + ¢3Z). To eliminate the Y2 term we
need to choose b;, b, and b3 such that ab? + bb# + cb by + db b3 + ebsby + f63 = 0.
This is equivalent to finding a point (b;, b3, b3) on the homogeneous conic. The values of
b, and b, are both real if (cd—2ae) is not less than the geometric mean of 4af — d? and
4ab - c2.

(5) Finally choose the remaining coefficients g;’s, ¢;'s, ensuring that the appropriate transfor-
mation is well defined. In the case of a linear transformation, this corresponds to ensuring

dg bl

that the matrix is non-singular. Hence ¢;'s canbe chosentobe Qand @, =1, a,

az by
= 0. In the case of a homogeneous linear transformation, one needs to ensure that the

a by ¢y
matrix | a3 by ¢o |isnon-singular. Here 2) =1, ¢ =1 and the rest set to O suffices.

a3 bicy

3. Conicoids

The case of the conicoid is a generalizatdon of the method of the conic. The general con-
icoid implicit equation is given by /(x y.z)=ax? + by + cz® +dxy +exz + fyz + gx + hy + iz
+ j = 0. Again the main case of concem is when a2, b and ¢ are all non-zero. Otherwise one
already has one variable in linear form and expressible as a rational polynomial expression of the
other two, and hence a rational parameterization. To obtain th2 rational parameterization all we
neced to do again is to make /7 (x,y ,z) non-regular in say, y . That is, eliminate the 32 term through
a coordinate transformation. For then y is in linear form and is expressible as a rarional polyno-
mial expression of the other two. We eliminate the y2 term by an appropriate coordinate transfor-
mation applied to I{x,y,z). This is always possible and the algorithm is now described below.
(The entire algorithm which also handles all trivial and degenerate cases of the conicoid is imple-

mented on a VAX-780 using VAXIMA, a listing of which is provided in the appendix.)
(1) If !(x,y,z) has a real root at infinity, a linear transformation of the type x =
ayx +bhy+ciz+d;, Yy =ax +byy +cyz +dyand z = asx +bay +c3z +dy will

suffice. If I(x,y,z)} has no real root at infinity, we must use a fractional linear
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(4) Applying a homogeneous linear transformation for ¢? < 4ab, gives rise 0 /(X,¥.Z) =
I{@X +b1Y +¢,Z,a2X + baY + 32, 23X + bsY +¢3Z). To eliminate the ¥2 term we
need to choose by, by and by such that ab? + bbF + cbba + db1bs + ebabs + b7 = 0.
This is equivalent 1o finding a point (b,, b2, b2) on the homogeneous conic. The values of
b, and b, are both real if (cd—2ae) is not less than the geometric mean of 4af — d2 and
4ab - ¢2,

(5) Finally choose the remaining coefficients g;’s, r.;,- 's, ensuring that the appropriate transfor-
mation is well defined. In the case of a linear transformation, this corrésponds 10 ensuring

a, b

that the matrix is non-singular. Hence ¢;'s can be chosentobeOand g, =1, a,

as by
= . In the case of a homogeneous linear ransformation, one needs to ensure that the

ay by ¢y
mamix | a3 bo ¢ | is non-singular, Here gy = 1, ¢, =1 and the restset 1o 0 suffices.
a3 b3 ¢a

3. Conicoids

The case of the conicoid is a generalization of the method of the conic. The general con-
icoid implicit equation is given by /(x .y, 2) =ax? + by’ + cz? + dxy + exz + fyz + gx + hy + iz
+ j = 0. Again the main case of concem is when &, & and ¢ are all non-zero. Otherwise one

ady has one variable in linear form and expressible as a rational polynomial expression of the
other two, and hence a rational parameterization. To obtain the rational parameterization all we
need to do again is to make 7 (x,y .2) non-regular in say, y . That is, eliminate the y2 term through
a coordinate-transformation. For then y is in linear form and is expressible as a rational polyno-
mial expression of the other two. We eliminate the y2 term by an appropriate coordinate transfor-
mation applied 10 f(x,y.z). This is always possible and the algorithm is now described below.
(The entire algorithm which also handles all mivial and degenerate cases of the conicoid is imple-

mented on a VAX-780 using VAXIMA, a listing of which is provided in the appendix.)
(1) If I(x,y,z) has a real root at infinity, a linear transformation of the type x =
ax +by +c1z+d, Yy = ax +bay +eqz +ds and z = ayx +bay + 632 +d5 will

suffice. If /(x,y.z) has no real root at infinity, we must use a jfractional linear
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3

@

3

-5-

rransformation of the type x = (agyx +byy + 1z +d\)(agx +bay +cqz +dy), y
asx +bay + oz +dx)ax + by +caz +4dy). and z =
(@3x +bay +c3z +dy)(agx + bay + ¢4z +dg). This is equivalent 10 a homogeneous
linear  transformation of the type X = aX+b¥Y+c¢ Z+dW, Y =
a2X +ba¥ +c2Z +daW, Z = a3X +biY +¢3Z +dW and W =
asX +bgY +¢4Z + d,W applied to the homogeneous conicoid / (X ,¥,Z W) = aX2 + b2
+ 22+ dXY + eXZ + fYZ + gXW + hYW + iZW + W2=0,

Points at infinity for /(x,y) correspond to linear factors of the degree form (highest degree
terms) of /. For the conicoid this corresponds to the roots of the homogeneous conic equa-
tion C(x,y.z) = ax?®+ by? + dxy + exz + fyz + cz2=0. Also, here the simultaneous truth
of d> =4ab, e = 4ac and > =4bc corresponds to the existence of a polynomial parame-

terization for the conicoid, as then the degree form is a perfect square.

Apply a linear transformation if 2 real root (r,,ry.r;) exists for the homogeneous conic

Clryz) of (2). This gives rise to J(xyz) = I( ax +by+ €1z +dy,

@xx +bayy +c3z +dy, agx +byy + ¢z + d3). To eliminate the y? term we can take (b,

b2, b3)=(rz.ry.r;), the real point on C (x,y,z).

Apply a homogeneous linear ransformation if only complex roots exist for the homogene-

ous conic C(x,y,z) of (2). This gives rise to /X, Y Z,W)=1(a X +b,Y +¢c,Z + dw,

X +boY +oZ +daW, asX +b3Y +c3Z +d3W, aX +bY +¢4Z +dW). To

eliminate the ¥Z term we choose ba=1and (b4, by to be a point on either the conic ax? +

by? + dxy + gxz + hyz + jz* = 0 with b5 =0 or a point on the conic ax? + by? + dxy +

(e+g)xz + (f+h)yz + (c+i+j)z* =0 with b3 = 1. Real values exist for b, and b, if there

exists a real point on either of the above conics.

Finally choose the remaining cocfficients ;’s, ¢;’s, and d; s, ensuring that the appropriate

transformation is well defined. In the case of a linear transformation, this corresponds o
a, by

ensuring that the matrix | @; b3 ¢ | is non-singuiar. Here the d;’s can be chosen 1o be 0.
as bs ¢,

Furthera;=1,¢c3=1if byisnon-zeroorelse @y =1, c3=1 il b, is non-zero orelse @; = 1,

¢y =1, with the rest set to . In the case of a homogeneous linear transformation one needs




a; by c) d;

asz by ¢y dy

to ensure that the matrix is non-singular. Herea; =1, c3 =1, dy =1 with

a3 by c3dsy
a4 b.q Cy d4

the rest set to 0 suffices.

4, Rational Fields

As seen from the previous sections one obtains parameterizations over the reals or the com-
plex numbers if the comresponding coefficients of the appropriate transformations are over the
fields of reals or complex numbers respectively., The coefficients themselves comespond to
finding real or complex points on various conic equations. Thus essentially the question of
whether the parameterization for conics and conicoids is possible over the field of rationals,
reduces to the question of whether there exists a rational root.of a certain conic equation with
integral coefficients, (or an integral root of the homogenized conic equation). The answer to the
larter question is given by an existence criterion in [5]. When such an integral root exisis one can
obtain it by solving an appropriate diophantine equation of the type x2 - D*y? = N, for integer D
and N, (a diophantine equation which has come 1o be known as Pell’s equation, though could

also be called Bhaskara’s equation [1]).

To compute an integral point on a homogeneous conic, C(X,Y,Z) = aX? + bY? + cXY +
dXZ + eYZ + fZ2 =0, one could find the point at infinity (Z = 0), or at finite distances (Z = 1).
Such a point exists at infinity if ¢2 — 4ab is a perfect square. Finding integral points at finite dis-
tances is equivalent to finding rational points of the dehomogeneized conic C(X,¥,1). This
corresponds to  finding a  radopal  solution  (b,by) of the equation,
abt + (cbp+d)by + (bb3+ebo+f ) = 0. Such a solution exists when the discriminant of the equa-
tion is a perfect square, (equal to y2 for integer y). This reduces to finding a rational solution of
the equation, (c2—4ab)b? +2(cd—2ae)b, + (d*-4af —y%) =0, where such a solution again
exists when its discriminant is a perfect square, (equal to x? for integer x). Hence we need 10
solve the equation x2 - D*y2 = N, for diophantine solutions x and y, with D = c2 — 4ab and N =
(cd — 2ae)? — (c? — 4ab)(d? - 4af ). 1f D is negarive or a perfect square there are only a finite

number of solutions to this equation. If D is positive, solulions can be obtained by simple



continued fractions.

To compute an integral point on a homogeneous conicoid, /(XY ,Z W) = aX2 + b¥2 + cZ2
+ dXY + eXZ + fYZ + gXW + hYW + iZW + jW? = 0, one could again find the point at infinity
(Z =0), or at finite distances (Z = 1). Finding an integral point at infinity reduces to the above
case of finding an integral root of a homogeneous conic aX? + bY? + dXY + eXZ + f¥Z + cZ2=
0. Finding integral points at finite distances also reduces to Lhe earlier case of solving for a
rational point of a conic ax? + by? + dy +gx + hy + j" = 0, or a rational point of the conic ax?

+ by? +dxy + (e+g)x + (f+h)y + (c++/)%=0.
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Appendix: A Listing of Yaxima Code

6. Curve Real Complex Point (CRCPNT)

crepnt(a,b,e,d.e,f) =
block([bl1,b2,b3],
if "2 »>=4 * a * b then /* Real point at infinity */
block(
b3:0,
ds :sqri(c2-4*a*h),
sl : (-c +ds)/ (2*a),
s2: (-c - ds) / (2*a),
ifc < Othenbl : sl
else bl : 52,
b2:1

else /* point at finite distance */
block(
b3:1,
if (c*d -2*a*e)"2 < (4*a*f-d"2)(4*2*b-c"2)
then print("sorry complex™),
bl : -(c*b2 +d)/2*a
b2 : ((c*d-2*a*e) + sqrt((c*d-2*a*e) 2 -(4d*a*b-c"2)(d*a*(-d"2)))/(2*a),

)
[b1,b2,b3]
)%
7. Curve Implicit To Parametric (CITOP)

citop (poly, xp, yp. flag) =
block ([a, b, c, d, e, f, x, ¥, bl, b2, b3],

&

** Calculate and print coefficients of poly.

*/

a : ratcoef(poly, x°2, 1),

b : ratcoef(poly, y°2, 1),

¢ : ratcoef(poly, x¥*y, 1),

d : ratcoef(ratcoei{poly, x, 1), y, 0),

e : Tatcoef(ratcoef(poly, y. 1), x, 0),

f : rarcoef(ratcoef(poly, y. 0), x, 0,

print("a =", a), prini("b =", b), print("c =", ),

print("d =%, d), print("e =", &), print("{ =", ),
/*

** Determine which case we need to handle

*

if a < O then block(a:-a,b:-b,c:-c,d:-d,e:-e,f:-f),

if a# 0 and b # O then /* make non-regular in x ory */
if (€2 -4*a*b)=0andd=0and e=0then
block(
if £ > 0 then print("sorry complex"),
ifc<Othensgn: lelsesgn: -1,
x : sgn*sqri(b/a)*t + sqri(-f/a),
y:t



)

else
block(
x :crepnt(a,b,c.d.ef),
bl : pari(x,1), b2 : part(x,2), b3 : pari(x,3),
if b3 =0 then /* linear transformation */
block(
yi-(@¥t2 +d¥t+ £/
({(2*a*b1 + ¢c*b2y*1 + (d¥bl +e*b2)),
x: ((a*bl +c*b2)*1"2 +e*b2*t -fbl)/
((2*a*b1 + c*b2)*t + (d*b1 +e*b2))

else /* homogeneous linear ransformation */
block(
if flag # O then block{ bl : xp, b2 : yp ),
X -((a*bl + c*b2 + d*b3)*12 + (2*b*b2 + e*b3)*1 -b*b1Y
(b3*(a*L"2+c*t+b)),

y: (@*b2*1"2 - 2*a*bl + d*b3)*1 - (b*b2 + c*bl + e*b3)Y/
(b3*(a*1"2+c*t+h))

else /* already non-regular iny */

if a# 0 then
if¢=0and e=0then
block(

if d°2 - 4*%a*{ < 0 then print("sorry complex™),
x: (-d-sqrt(d"2-4¥a*f))/(2*a),
y.t
)

else

block(
y:-(@*%2 + d*t+ D)/ (c*t +e),
Xt

else /* already non-regular in x */
ifb#0then
ifec=0and d =0 then
block(
if €°2 - 4*b*f < 0 then print("sorry complex"),
y: (-e-sqri(e™2-4*b*£))/(2*b),
x L

)
else
block(
X:-(F2+e*t+ D/ {c*t +d),
y:t

else
ifc#0ord#0then
block(
X: -(e*t + Di(c*t + d),
y.t

else
ife # 0 then block( y: -ffe ,x: 1)
else block( print("constant value"), x:t, y:t),
print("eval=", ratsimp(a*x"2 +b*y"2 +c*x*y +d*x +e*y +f)),
[x,y]
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%
8. Surface Real Complex Point (SRCPNT)

srepnt(a,b.c.d.e.f,ghij) =
block({b1,b2,b3,b4,x],

if (d"2 >=4 * a3 ¥ b) or ((d*e -2*a*f)"2 >= (d*a*c - e"2)(4*a*b - d"2)) then
block( /* Real point at infinity */

b4 : 0,

X :crcpnt(a,b,d.efc),

bl : part(x,1), b2 : part(x,2}), b3 : part(x,3)

else
block( /* point at finite distance */
01,
if ((@*g -2*a*h)"2 >= (4*a*j-g"2)(4*a*b -d"2)) then
block(

x :crepnt(a,b,d,gh.j),
bl : part(x,1), b2 : part(x,2),b3 : 0

else
block(
x :crepnt(a,b,d,(e+g),(f+h),(c+i+i)),
bl : part(x,1),
b2 : part(x,2),
b3:1

)
[b1,b2,b3,b4]
)3

2. Surface Implicit To Parametric (STTOP)

sitop (poly, xp, yp, zp, flag) :=
bIOCk ([ar bl c! d, el fl g| hl il jl xl }'|l Z! bl! bz! b3v b4]l
/*
** Calculate and print coefficients of poly.
¥/
: ratcoef(poly, x2, 1),
: ratcoef(poly, y°2, 1),
: ratcoef{poly, z°2, 1),
: ratcoef(poly, x*y, 1),
: ratcoef(poly, x*z, 1),
: ratcoef(poly, y*z, 1),
: ratcoef(poly, x, 1) - d*y - e*z,
: ratcoef(poly, y, 1) - d*x - f*z,
i : ratcoef(poly, z, 1) - e*x - Py,
j : rarcoef(ratcoef(ratcoef(poly, x, 0), y, 0}, z, Q),
print{"a =", a), prAnt("b =", b), print("c =", ¢), print("d =", d}, print("e =", e,
prnt("f =", f), print("g =", g), pant("h =", ), print("t =", 1), pont("j =", j),

ag Hh o CL O O R

/*

*x Determine which case we need to handle

*/
al:0,a2:0,a3:0,
cl1:0,c2:0,¢3:0,
dl1:0,d2:0,d3:0,
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if a < 0 then block( a:-a,b:-b,c:-c,d:-d e:-e.f:-f,g:-g . h:-h,i-i,§:-5),

if a# 0 and b # 0 and ¢ # 0 then /* make non-regular in x or y or z ¥/
block(
cndl : 0,
ifd > Othen if e > 0 and f> O then block( sgnt:-1, sgn2:-1)
elseife<Oand f< 0
then block( sgnl:-1, sgn2:1) else cnd1:1
else if e > 0 and f < O then block( sgnl:1, sgn2:-1)
elsecife<0andf>0
then block( sgnl:1, sgn2:1) else cnd1:1,
cnd2 : (d"2 = 4*a*b) and (e"2 = 4*a*c) and ("2 = 4¥b*¢),

ifcnd1 =0and cnd2 and g=0and h=0and i = 0 then
block(
if j > O then prini("sorry complex™),
X : sgni*sqrt(b/a)*t + sgn2*sqrt(c/a)*s + sqri(-jfa),
Y.t
Z:5S
)
else
block(
x : srcpnt(a,b,c,d,ef,gh,i,j),
bl : pari(x,1), b2 : part(x,2), b3 : part(x,3), b4 : pari(x,4),
if b4 = 0 then /* linear transformation */
block(
if bl # u'then block(a2:1,¢c3:1)
else if b2 #0 then block(al : 1,¢3: 1)
else block(al: 1,¢2: 1),

yy :-((a*al"2 +b*a2"2 +c*a3~2 +d*al*a2
+e¥al*a3 +*a2*a3)*1™2
+(a¥*c1"2 +b*c2"2 +¢*c3"2 +d*c1*c2
+e¥cl¥c3 +f*c2*c3)*s"2
+(d*al*c2 +d*cl*a2 +e*al*c3 +e*cl*a3
+Pka?¥c3 P2+ a3) kg%
+(g*al +h*a2 +i*a3)*t +(g*cl +h*c2 +i*c3)*s
+)/
((2*a*al*bl +2¥p*a2*b2 +2*c*a3*b3 +d*al*b2
+d*bl*a2 +e*al*b3 +e*bl*a3 +f*a2*b3 +f*b2*a3)*t
+(2*a*bl¥cl +2¥b*b2*c2 +2¥c*b3*c3 +d*c1*b2
+d*bI*c2 +e¥*c1*b3 +e¥*b1¥c3 +%c2%b3 +P*b2%c3)%s
+ g*bl +h*b2 +i*b3),

x : ratisimp(al*t + bl*yy + cl¥s),
y : ratsimp(a2*t + b2*yy + c2*s),
z : ratsimp(a3*t + b3*yy + ¢3*s)

else /* homogereous linear ransformation *{
block{al:1,c3:1,d2:1,
if flag # O then block( bl : xp, b2 : yp, b3 : zp),

yy i -(a*(al*t +cl*s +d1)"2
+b¥*(a2¥t +c2%s +d2)"2
+c*(a3*t +¢3*s +d3)°2
+d*(al*t +cl*s +d1)*(a2*t +c2*s +d2)
+e¥(al*t +cl*s +d1)*(a3*t +c3*s +d3)
+f*(a2*t +c2%s +d2)*(a3*t +¢3%s +d3)




-12-

)/

((2%a*b1 +d*b2 +e*b3)*(al*t +c1*s +d1)
F(2%b*b2 +d*b] +1*b3)*(a2*t +c2¥%s +d2)
+(2¥C*b3 +e*b] +P*b2)*(a3*t +c3*s +d3)),

X : ratsimp((t + b1*yy)/yy),
: ratsimp((1 + b2*yy)/yy),
: ratsimp((s + b3*yy)/yy)

(SR

)
)

)
else
if a =0 then /* already non-regular in x */
ifd=0and e=0and g =0then
block(
print("conic"},
xx : citop(b¥x"2 + c*y"2 + Px¥y + h*x + i*y +j,0,0,0),
X5,
y : part(xx,1),
Z : part(xx,2)

)
else
block(
1= (B¥172 +0¥5"2 +PRs*C +M + s + ) / (d¥t +e*s + g),
Tt
s

Dl YRR

else
if b=0then /* already regular iny */
ifd=0and i=0and h=0then
block(

print("conic™),

XX : citop(a¥*x"2 + ¢*y"2 +e*x*y +g*x +i*y +,0,0,0),
Y5,
X : part(xx,1),
Z ; part(xx,2)

else
block(

y o - (a*L°2 +c*s"2 +e*tks +g*t + i*s + j) / (d*t +T*s + h),

X1,

Z:§

else /* already regular in z %/
ife=0and f=0and i =G-then
block(

print("conic™),

xx : citop(a*x"2 + b*y"2 +d*x*y +g*x +h*y +j,0,0,0),
z:5,
X : part{xx,1),
y : part(xx,2)

else
block(

2 - (a*1"2 +b*s"2 +d*s*t +g*t + h¥s + j) / (¥t +¥s + i),

Xt

¥:§

)
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prini("eval=", ratsimp(a*x"2 +b*y"2 +c¥2"2 +d*x*y +e*x¥z +fFy¥z 4o +¥y +i%z 4j)),

[x,y.2]





