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Abstract: Solid Modeling has reached a plateau that cannot be elevated unless a
nwnber of basic computational problems in mathematics are solved efficiently and
robustly. This paper focuses on these problems and shows how the merging of
results from algebra, geometry and approximation theory, into effective tools, shall
lead to a higher level of performance in solid modeling.

1. INTRODUCTION
Current research in solid modeling has diversified into four interrelated activit.iesi.

(I) Constructing robust operations for existing solid modelers, which are primarily
polyhedral or restricted to a special class of surfaces, [14, 30, 32, 33, 39, 47, 58, 60].

(I) Increasing the geometric coverage to include modeling operations on arbitrary curved
surfaces. Extensions to non-rigid surfaces are also considered, [5-9, 11-22, 27-29,
31, 34, 37, 38, 40, 44, 49, 51, 52, 54-57, 63].

(IlI) Improving the user interface with graphical as well as textual languages for describ-
ing, editing and displaying object parts, [13, 22, 37, 50].

(IV) Using solid models in engineering analysis (heat flow, stress analysis) and dynamic
simulations (kinematics with interference checking) for design and process
verification, [13, 16, 38, 40, 52).

In this paper, we shall only delve into areas (I) and (II) and describe efficient computa-
tional techniques that are being developed to eliminate traditional bottlenecks in modeling
operations. Solid modeling operations involve problems in solid intersections [14, 21, 22, 44,
51), offset generation [15, 17, 18, 31), topological reconstruction [39, 521, meshing of surface
parches [55, 61, 63], interrogation of models [16, 19, 21] and the computation of volumetric

T Rescarch supporied in part by NSF grant MIP 85-21356 and ARO contract DAAG29-85-C-0018 under
%omcl.UMSI.
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propertes of solids [52, 64]. In designing efficient and robust solutions for these problems, per-
taining to solids with curved surfaces, much use is made of algebraic geometry, differential
geometry, analysis and approximation iheory. In the next section we shall show how effective
mathematical techniques such as (i) singularity analysis and resolution, (ii) parameterization and
implicitization, (iif) residue computation and chinese remaindering, (iv) evaluation and interpo-
lation, (v) power series computations and localization, and (vi) membership within Ideals (i.e.
special sets of polynomials), have had and shall have in the future, a significant impact on solid
modeling.

2. MATHEMATICAL TECHNIQUES

2.1 Singularity Analysis and Resolution

A fundamental technique of algebraic geometry has been the resolution of singularities for
algebraic curves and surfaces (and in general algebraic varieties). In in its simplest version by
resolution is meant the birational transformation (i.e. by an almost one-to-one algebraic transfor-
mation) of every irreducible singular algebraic variety V, defined over some ground field X, into
nonsingular ones. In the concrete viewpoint of algebraic geometry, a variety is something given
by a finite number of polynomials (or power series) in several variables. Further to make 2 bira-
tional transformation means to substitute new variables for the old and see what effect this has
on the original polynomials. In other words, the interest is in transforming systems of polyno-
mizal equations via simple substitutions into related polynomial systems with no singularities.

The resolution problem has so far been settled affirmatively in the following cases: for
curves (dimension one variety), the solution is classical; for surfaces (dimesnion two variety)
and X = the field of complex numbers, after several geometric solutions by the Italian geometers
such as Albanese, Levi, etc., [65, Chapter 1], the first rigorous solution was given by [62].
Walker’'s solution is function theoretic and makes use of the local solution (i.e., solution of the
local uniformization problem, which is a localized version of the resolution problem) given by
Jung in [41]. Then, Zariski introduced the tools of local algebra and valuation theory into alge-
braic geometry, and thereby obtained a solution to the resolution problem for all varieties upto
dimesnion three and X = a field of characteristic zero; at that time he also obtained a local solu-
tion for arbitrary dimension varieties and X = a field of characteristic zero. Subsequently, Abhy-
ankar gave a solution for surfaces and K = a perfect field of nonzero characteristic, see [1] for a
survey and references. Finally, Hironaka settled the resolution problem for arbitrary dimension
varieties and K = field of characteristic zero. Hironaka’s solution is especially marked by a
vigorous induction and by his ability to deal with several simultaneous equations [36].
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In solid modeling operations such as intersection, topological reconstruction, the need for
effective singularity analysis is all pervasive and of paramount importance. Self intersections of
curved surfaces and space curves give rise to singularities. These singularities occur frequently
in practice. For example, when sweeping an object along a spacc curve, singular surface points
are easily generated, [16-18, 31]. When intersecting two objects with curved surfaces, the inter-
section curves may have singularities even though none of the intersecting surfaces have singu-
lar points. Occurring singularities must be determined explicitly, for in the vicinity of a singu-
larity, most algorithms needed to implement modeling operations will fall, {14, 51].

Though much progress has been made towards singularity resolution of varieties in this
century, algorithmic procedures for singularity analysis and resolution are scant. Max Noether
in 1876 gave a procedure of resolving the singularities of a curve in the complex plane by qua-
dratic transformations. Resolution via quadratic and monoidal transformations is achieved by a
process of locally "blowing up" the curve such that the various branches of the curve at the
singular point are separated. It is not required that the curve be irreducible, but the branch 1o be
traced must not be multiply contained. Noether's procedure can be generalized to include fields
of nonzero characieristic, and also to the ‘“*mixed characteristic case'’, see [3]. Algorithmic
proofs have also been given for surfaces in characteristic zero (4], however a truly constructive
version yet needs to be developed. An effective singularity analysis and resolution technique
also needs to be developed that works directly for space curves rather than for its planar projec-

tions [9]. To achieve this one needs the Idcal theoretic methods of section 2.5.

Desingularization yields enough information so that afl the singularities of a variety can be
analyzed. For curves there can only exist a finite number of point singularities and these can be
systematically located together with the number of branches of the curve at each singular point.
This in tumn coupled with numerical tracing procedures, gives a robust and complete tracing pro-
cedure for algebraic curves, see [14). A constructive version of the curve desingularization
theorem has also been effectively used in the topological reconstruction of the offset of non-
convex planar models [15, 19]. Determination and complete analysis of curve singularities also
proves essential in computing the parametric equations of curves from their implicit representa-
tions [6-9]. More details are given in section 2.2. Surfaces may contain both isolated singular
points as well as curves of singular points. A complete analysis of them is more difficult, [65],
however an algorithmic analysis procedure similar o curves would allow easy topological
reconstruction of solids with singular surface boundaries and remove the usual forced choice of

smooth surfaces made by present day solid modelers.




2.2 Birational Mappings

Computing the parametric equations for implicitly defined algebraic curves and surfaces is
very attractive in solid modeling, since the parametric form lends itself to curve tracing, generat-
ing curves on surfaces, greater ease for transformation and shape control and also for linearly
ordering points along a regular segment of a curve on the surface. Recently, various efficient
methods have been given for obtaining the parametric equations for special low degree raticnal
algebraic curves and surfaces: degree two and three curves and surfaces [6, 7, 57], the rational
space curves arising from the intersection of certain degree two surfaces (44, and the rational
space curves arising from the intersection of two rational surfaces (46]. The above rational
parametric equations, together with their inverse, form a birational mapping (near one to one)
between points on the curve and a line, or alternatively between points of a surface and a plane.
Such birational mappings shall increasingly prove useful in solid modeling since they allow the
solution of problems on complex geometries to be obtained from simpler ones. The above
parameterization algorithms have also been extended to algebraic plane curves of arbitrary
degree [8], and as well as the irreducible intersection curve of two algebraic surfaces [9].

For surfaces of degree higher than three, no rational parametric forms exist in general,
although parametrizable subclasses can be identified. These methods can be specialized to work
over rational or real fields, (both of characteristic 0). It is also important to obtain explicit
parametrizations over fields of nonzero characteristic. Consider remark in conjunction with tech-

niques of section 2.3.

Though all algebraic curves have an implicit representation only irreducible algebraic
curves with genus = 0 are rational, i.e., have a rational parametric representation. Genus, 2 bira-
tional invariant of the curve, measures the deficiency of singularities on the curve from its max-
imum allowable limit. Tt is also equal to the topological genus (i.e. the number of handles)
when the algebraic curve is viewed as a closed manifold in four dimensional real space. By
being able to compute the genus one is able to determine whether a given implicit algebriac
curve permits a rational parametric form. A variety of (complicated) algorithms have been
presented for computing the genus of algebraic curves: by counting the number of linearly
independent differentials of the first kind (without poles) [27], the computation of the Hilbert
function [48], and the computation of ramification indices [29]. The method of (8] uses affine
quadratic transformations and is noteworthy for its simplicity. For algebraic surfaces there
exists a necessary and sufficient condition for rationality, namely, Castelnuovo’s criterion :
“‘simultancous vanishing of the arithmetic genus and the second plurigenus’’. However a com-

plete algorithmic method for the computation of these genera has yet to be developed.

For rational plane curves, there is also a subclass of polynomially parameterizable curves.
Polynomial Parametrization is related to whether the rational curve has one or more places at
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infinity. Abhyankar has obtained an algorithmic irreducibility criterion for determining when a
rational curve has one place at infinity which thereby determines when a rational curve has also
a permissible polynomial parametrization, see [5]. The algorithmic irreducible criterion and
resultant problem both have a bearing on the Jacobian conjecture in algebraic geometry, see [2].
Thus the interplay between computational algorithms and the underlying mathematics 1s clearly
going to prove mutually beneficial.

In contrast to the parametric form, the implicit form is preferred for testing whether a
point is above, on, or below the surface, where above and below is determined relative to the
direction of the surface normmal. The reverse problem then of converting from parametric (o
implicit equations for algebraic curves and surfaces, called implicitization is achieved by elimi-
nation methods, i.e., the computation of polynomial resuliants, see [11, 56]. Efficient computa-
tion of the resultant of two polynomials, also known as the Sylvester resultant, has been con-
sidered by various authors: for univariate polynomials, (53], for multivariate polynomials [20,
26]. For simultanepusly eliminating two variables in three polynomials or in general for elim-
inating n — | variables from » polynomials, the multivariant resultant is needed [45]. Comput-
ing the multivariate resultant by taking the resultant of two polynomials at a time leads to
extraneous factors that cannot be avoided. In practice, this means that the resulting implicit
form describes not only the parametric surface, but in addition, other surfaces. The efficient
computation of the multivariate resultant has yet 0 be undertaken. The multivariate resultant
proves useful in deriving the implicit equation of a parametric surface without extraneous fac-
tors, for computing the inverse formulas for 1-1 rational mappings, the convolution of algebraic

curves and surfaces, the common intersection points of three surfaces, etc.

23 Modular Techniques

In interrogating or manipulating solid models with algebraic curve and surface boundaries
one is essentially reduced to finding the solution of systems of polynomial equations. This can
be achieved by computing polynomial resuitants and polynomial GCD's. For such applications
amongst others, as we shall discuss below, it is convenient to do efficient integer and polyno-
mial arithmetic in ‘*modular’’ form, i.e., over fields of prime characteristic p = 0. That is,
instead of representing an integer by a fixed radix notation, we represent the integer by ils resi-
dues modulo a set of primes. Ifpy,p2,..., p, are prime integers and p =p; ps --- p,. Lhen
we can represent any integer g, 0 < ¢ <p, uniquely by the set of residues 4;, 42.,..., 4r
where g; = g modulo p;, for 1 < i < r. Resultants analogous to those for integers, hold for poly-
nomials. Let f; ,..., f, be (univariate) irreducible polynomials and let f=f, f2 - f and
d=dy +dy+ - +d, where d;=deg f; = degree of f;. Then cach polynomial g with
deg g < d, can be represented uniquely by the sequence g1, g2 , . . ., g, OF remainders obtained
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by dividing g by each f;. That is, g; is the unique polynomial with deg g; <d; such that
g = f; 5; + g; for some polynomial s;. We wrile g; = g modulo f;, in complete analogy with
integer modular arithmetic.

The advantage of modular representation is chiefly that substantial portions of the arith-
metic can be done simultaneously, since calculations are done for each modulus independently
of the others. On parallel computers, they allow many operations 10 take place simultaneously
resulting in substantial speed increases. Modular arithmetic can be a significant advantage even
for addition, subtraction and multiplication. The same kind of decrease in execution time could
not be achieved by conventional techniques, since carry propagation must be considered. ‘*Real
time'’ calculations make the inherent parallelism of modular arithmetic even more significant.
Further decreases in computation time result from the bound on the size of integers. In 2 field
with prime characteristic p the only integers allowed are less than p. Finally, the modular tech-
nique (treating the given floating point coefficients as exact rational numbers) gives a method
for obtaining ‘true’ answers in less time than conventonal methods can produce reliable

‘‘approximate’’ answers.

The disadvantage of ‘'modular’” representations 1s that it is comparatively difficult to test
whether or not one number is greater than another. It is also difficult to test whether or not
overflow has occurred as the result of an addition, subiraction or multiplication. The use of
modular representations is, however, justified when fast means of conversion into and out of
modular representation are available,

Thus in order to use modular arithmetic, algorithms are needed to convert from radix nota-
tion to modular notation and back, To go from radix notation to modular is easy as this entails
computing a number of residues (modulus) with respect to primes. For polynomials one com-
putes the residue of each of the polynomial coefficients.

The problem of converting from medular notation 10 radix notation requires a process
known as Chinese remaindering. Suppose we are given relatively prime moduli pj,
pP2....,pr and the residues ¢;, g2 ,..., g, and we wish 1o find the integer g such that g
corresponds 1o (91, 42 +.. ., gr). We may do so by the integer analog of the Lagrangian inter-
polation formula for polynomials. Let y; be the product of all the p;'s except p; (that is
yi =plp; where p=p; ps - p,). Let z; = 1/y; modulo p; (that is y; z; =1 modulo p; and
0<z; <p). Theng=y,zy1491+y222q2+ - +¥ z; g modulo p. The above holds for
polynomials modulo fy, f2,..., f, as it does for integers. Suppose f1(x), f2(x),.... fi(x)
are pairwise coprime univariate polynomials. Let d =d, + -+ +d, where d; =deg fi(x) =
degree of f;(x). Then given any polynomials g(x), g2(x), ..., g{x) where deg g:(x) < d; for
1 < i £ r, there exists an algorithm to compute the unique polynomial g (x) of degree less than 4
such that g (x) corresponds to (g,(x), g2(x),. .., g(x)). For details see (10, 42].
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An important special case occurs when all the moduli have degree 1. If f; = x —g; for
1<i<r, then the residue (the g;'s) are constants. If g(x)=g; modulo (x —a;) then
g(x)=s(x) (x —a;)+ g;. Hence g(a;) = g;. Thus the unique polynomial of degree < d such
that g(x) corresponds to (g1, g2 +.--. &) is the unique polynomial of degree < d such that
g(a;)=g; foreach i, 1 <{ <r, ie., the interpolating polynomial. We can thus do polynomial
arithmetic such as addition, subtracion and multplicaton by evaluaiing polynomials at »
points, performing the arithmetic on the values at these points and then interpolating a polyno-
mial through the resulting values. If the answer is a polynomial of degree d — 1 or less, this
technique will yield the correct answer.

An efficient ‘‘modular’’ algorithm is possible for the exact calculations of the Sylvester
resultant of rwo multivariates polynomials with integer coefficients, see [26]. The algorithm
applies modular homomorphisms and the Chinese remainder theorem, evaluation homomor-
phisms and interpolation, in reducing the problem to resultant calculation for univariate polyno-
mials over finite fields of prime characteristic p, viz., GF(p), whereupon a polynomial remainder

sequence is used.

The modular homomorphisms allow computations 10 occur with polynomials over GF(p;)
with reduced coefficients restricted to be less than various prime moduli p;. By the Chinese
remainder theorem, if the computations are performed for sufficiently many prime moduli, the
actual resultant can be computed. The number of moduli needed depends on a bound for the
coefficients of the resultant which can be easily determined. Evaluation homomorphisms allow
specializations of muliivariate polynomials with the final resultant being computed by interpola-
tion. Here an easily determined bounded m on the degree of the final resultant allows for
unique interpolation from the computations on m + 1 different specializations. See also {20]
where modular techniques together wilh efficient divide and conquer methods for resuitants of
univariate polynomials yields an asymptotically faster algorithm.

Similar techniques as above can also be used to calculate the GCD of polynomials: GCD
[u(x), v(x)] =w(x). If the bound on the coefficients is so large that single-precision primes p
are insufficient, we can compute w(x) modulo several primes p until it has been determined via
the Chinese remainder algorithm, see [23). Alternatively, as suggested by Moses and Yun (see
(421), we can use Hensel's method [35], to determine w(x) module p¢ for sufficiently larpe e.
Hensel's construction appears computationally superior to the Chinese remainder approach, but

is valid only when either GCD [w(x), :—((g-} =1 or GCD [w(x), %] =1,



2.4 Power Series and Localizations

Polynomials and rational functions describe the global geometry of curves and surfaces.
On the other hand, power series capture the local phenomenon. The use of power series in solid
ntodeling has seen only limited use, sce [14, 28], for adaptive step size selection for curve trac-
ing methods. Power series, on the other hand, have been extensively studied in computer alge-
bra, where efficient algorithms have been defined the addition, multiplication, division and rev-
ersion of power series, see {43]. Their application in solid modeling is only a matter of time.

The use of power series in solid modeling arises whenever local properties need to be
computed, such as the behaviour of a curve at a singular point or the behaviour of a surface
along a singular curve or at a singular point. Power Series expansions are possible in singular
neighborhoods and in fact give a complete description of the various branches meeting together
at the singularity. This then together with techniques for computing Pade’ rational function
approximants, can be used to provide efficient techniques for computing approximate implicit
and parametric representations of local neighborhood of curves around simple and singular
points, see [12].

Along with power series comes the power of localizations or local rings, which allow two
surfaces meeting along a space curve to be viewed locally as two curves meeting at a point.
Localizations have seen scant use so far, however with their inherent power of simplification
they should prove very useful in solid modeling. Especially for the difficult and cumbersome

task of analysing singular surface intersections.

2.5 Ideal Theoretic Methods

‘While plane curves and surfaces are represented by a single implicit equation, space curves
require two or more. In the parametric definition in fact, there are no exceptions, all curves and
surfaces require more than a single equation. In dealing with implicitly defined space curves or
parametric curves and surfaces and applying operations on them, the usual equational methods
are at times inappropriate and cumbersome, Here ideal theoretic methods which work directly
with the ideals of geometric entities prove useful, see [24, 59]. These methods provide con-
structive solutions to many problems dealing simultaneously with two or more equations by
reducing them to determining the membership of a certain polynomial in the Ideal of other poly-
nomials. The impact of these methods on solid modeling has been limited because of their
extremely prohibitive worst case behaviour [46). However the practical significance of these
powerful techniques for simple cases in solid modeling, remains to be fully explored. More
research is needed to investigate the efficiency of these algorithms in the specific contexts of
problems such as: analysis and resolution of singularities, implicitization, inversion of birational

mappings, etc.



2.6 Approximations

The effictency of almost all computational methods for problems dealing with curves and
surfaces depend primarily on the algebraic degree of the equation being manipulated. Using
lower degree surface approximations for the higher degree surfaces generated, e.g., for complex
blending surfaces, is therefore a very attractive possibility that must be explored. In such an
approach to modeling, one chooses a family of low degree rational algebraic surfaces that give
sufficient flexibility in controlling shape so as to enable close approximations of high degree
surfaces. Choosing a good family of approximating algebraic surfaces requires extensive exper-
imentation and good graphics toois. It also requires research to find efficient computational
methods for obtaining close approximations by rational parametric patches. Rational parametric
surfaces represent a wider class of algebraic surfaces than those represented by polynomial
parameiric paitches. Most of the work in the past has focussed on the approximation of func-
tions, or the approximation of curves and surfaces by polynomial parametric patches, see (21].
Work reporied by [54, 55, 61, 63], amongst others, which apply approximation, meshing and
interpolation techniques directly to curves and surfaces in their implicit form, needs to be
further pursued.

3. CONCLUSIONS

We have considered a spectrum of mathematical techniques and tried to indicate their use-
fulness in the various operations in solid modeling. Much more remains to be researched. Two
major omissions in this paper of relevant mathematical areas are those of differential geometry
and probability theory. Differential geomeiry essential concems itselfs with local invariants of
analytic varieties and consequently their techniques prove useful in constnuctive algorithms for
convex decompositions of curves and surfaces, computing principal and geodesic curvature lines
on surfaces, etc. Probabilistic computations on the other hand have yielded fast algorithms
modulo some insignificant yet controllable error probability, for various verification and interro-
gation problems see [25, 53). Their application to speeding up solid modeling operations

remains one of the more significant open areas.
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