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Abstraet

This paper presents a scan curve algorithm for evaluating the face area of solids
in constructive solid geometry (CSG) representation. Compared to previous methods,
the algorithm is more accurate and computationally faster. The applicable domain is
limited to solids bounded by three classes of surfaces: all quadric surfaces, cylindrical
surfaces, and surfaces of revolution which are algebraic surfaces with rational
parametric equations for their generating curves. The algorithm has been
implemented in FORTRAN 77 on a VAX 11/780 machine. The extensions of this
algorithm may also be applied to the solution of the following three problems: (1)
Boundary representation (BREP) evaluation from CSG; (2) Face area evaluation for

solids in BREP; and (3) Triangulation of the faces of solids in CSG or BREP.



1. Introduection

Solid modeling is concerned with the representation of physical objects on a
comnputer. Particular to 2 certain solid model representation, algorithms are
developed to analyze the property and plan the behavior of the physical objects,
Solid models thus play a key role in computer aided design and manufacturing.
Several solid mode! representations have been developed and have been surveyed [1,
2]. Among these representations, constructive solid geomeiry (CSG) is very popular

because of its simple and efficient user interface.

In a CSG scheme, a workpiece is represented as a tree of regularized Boolean
operations [3] on several primitive objects which may be solids or half-spaces. The
regularized Boolean operators are modified set operations which include union,

intersection and subtraction. The primitive solids are simple solids such as cuboids,

__spheres, cylinders, etc., and are also constructed from the infersection of several half-

spaces.

The problem discussed in this paper can be briefly stated as follows: Given a
solid in CSG representation, compute the area of all its b;:)unding faces. The domain
of associated surfaces of the boundary faces of the solids are limited to three classes:
quadrie surfaces, cylindrical surfaces, surfaces of revolution, where the last two classes

are algebraiec surfaces with rational parametric equations for their generating curves

14].

Several studies in face area evaluation have been done previously. These works
can be classified into two groups. One group studies face area evaluation for solids
given by an explicit boundary representation {5, 6, 7, 8]. These papers all apply
Green’s Theorem [9] to transform a surface integral into a line integral and make

appropriate approximations respectively in evaluating the integral. Requiring explicit



boundary information, these methods cannot be directly applied to solids with a CSG

representation.

The other group including this work considers the face area evaluation of solids
in CSG representation [10, 11]. These methods are of a divide-and-conquer paradigm
[12] and vary in the different ways of face patch decomposition. Each boundary face
of the primitive solids is decomposed into a set of face patches. From each face
patch, a point is randomly chosen and checked whether it is on, inside or outside the
final resulting solid described by the CSG representation. If the point is on the
resulting solid, its associated face patch is taken as a qualified patch. Each patch is
individually tested and the face area of the qualified patches are summed up to get

the face area of the final solid.

The patch decomposition methods are good but deficient in accuracy and speed.

In summing up face patches, the overall area of a face may be either overcounted or

undercounted. For example, a face patch lying partially on the resulting solid may
either be considered as lying fully or not at all on the resulting solid. To mprove
accuracy, the number of decomposed face patches would have to be increased which
correspondingly increases the computation time. On the other hand, if the
decomposed patches are made exceedingly small, their areas would have to be

summed up in multiple precision to reduce the effect of round-off error propagation.

The objective of this paper is to present an algorithm which irnproves the
accuracy and reduces the computfation time in evaluating the face area of solids in
CSG representation. We also briefly describe the extensions of this algorithm for the
solution of three other problems: (1) CSG to BREP evaluation; (2) BREP face area
evaluation; (3) face triangulation for BREP or CSG.



T.he paper is organized as follows. Section 2 develops the basic idea of this
algorithm and its components. Sections 3, 4, and 5 discuss each component of the
algorithm. The complexity analysis and the implementation results of this algorithm
are presented in Section 6. Section 7 reviews the advantages of this approach and a

certain embellishment. Section 8 discusses the extensions of this algorithm.
2. Basic Idea of This Algorithm

The basic idea of this algorithm is to use “strip decomposition” rather than
“patch decomposition’ as in previous approaches. As shown in Figure 1, our method
decomposes the face of each primitive solid into a set of strips bounded by “scan
curves”’. These curves may also intersect with faces of other primitive solids and
thereby decompose their associated strips into several sub-strips. Each sub-strip is

either fully on the solid or not at all. Thus, the face area of the solid can be

calculated by summing up the face area of all the sub-strips on the solid. )

To calculate the face area of a sub-strip, we need to classify the scan curves with
respect to the solid. In particular, each portion of the scan curve should be classed as
to whether it i3 “on”, *‘inside”, or “outside’” the solid. The sub-strips bounded by
““on’’ portions of the scan curves constitute the faces of the solid. Thus, they should

be identified and their areas evaluated.

In summary, this algorithm consists of three different components: (1) scan curve
generation; (2) scan curve/solid classification; and (3) contributing sub-strip

identification and area evaluation.

This approach has two major distinctions from prior approaches to face area
evaluation. One distinction stems from using elongated strips rather than patch as in

decomposing the primitive solid. A strip is based on the scanning curve for the



surfaces. Given the same resolution, the number of decomposed strips is less than
that of decomposed patches and thus often requires less computation time in

evaluating the face area of the solid.

The other distinction is classifying the strips analytically. Thus, each
contributing sub-strips is fully on the solid, rather than for patches which may be
partially on the solid. This charaecteristic makes the face area evaluation more

accurate.
3. Scan Curve Generation on Surface of Primitives

This section discusses the first component of this algorithm: generating scan
curves for the surfaces on each primitive solid. The scan curves generation methods
are applicable to all quadric surfaces. Yet, cylindrical surface and surfaces of

revolution are restricted to those which are algebraic f (z,y,2) =0, and have

equation for a generating curve is given by =z =kh()/g(t), v =p(t)/e(t),

z =s(t)/r(t).

The determination of sean curves is by the following criteria. First, the area of
each decomposed strip should be easy to evaluate. Second, the scan curves should be
as simple as possible so as to be easily classified with respect to the solids. Third, the

decomposed strips should not overlapping.
3.1. Sean Curve Determination of Cylindrical Surfaces

A cylindrical surface is a surface generated by moving a straight line along a
fixed plane curve so that the direction of the moving line remains parallel to the
original straight line. The fixed curve is called the generating curve and the moving

line is called the generator of the cylindrical surface.

- rational parametric equations for their generating curves. A rational parametric



By its moving characteristic, the scan curves of the cylindrical surfaces are
determined as the lines parallel the generator shown in Figure 2. Each scan line
passes through a point on the generating curve. These passed points can be
sequentially traced from the parametric equation of the generating curve by

increasing its t value with a fixed step.

Tracing points sequentially for an algebraic curve in implicit form is somewhat
more complicated [13]. Thus, the domain of cylindrical surfaces is restricted to those
with generating curves having rational parametric form. This also simplifies
computing the curve/surface intersections during curve/solid classification. However,

some algebraic curves can be rationally parameteized [14, 15].
3.2. Surfaces of Revolution

A surface of revolution is a surface generated by revolving a plane curve about a

-fixed-line-on-the-same-plane.~The-fixed-line-is-called—the~axis—of revolution-and—the—

given curve is called the generating curve. For example, torus, a popular primitive
solid in most solid modelers, is a special case of the surfaces of revolution, whose

generating curve is a circle.

According to the revolution nature of the surface, the scan curves are determined
as the set of circles with the center on the axis as in Figure 3. Each circle passes
through a point on the the generating curve, where each point can be sequentially
traced from its rational parametric form of the curve. Like cylindrical surfaces, the
domain of surfaces of revolution is thus restricted to those with generating curves
having rational parametric form. However, a surface of revolution may become a
cylindrical surface if the generating curve is a line. In this case, the modeling scan

curves become [ines rather than circles.



3.3. Quadric Surfaces

A quadric surface is a surface which has a second degree equation of the

following form.

Az® + By + C2® 4 2Dry 4+ 2Fyz + 2F22 + CX + HY +IZ +J =0 (1)

Given its implicit equation, the quadric surface can be classified into one of the
following eight groups {4]: (1) degenerate cases which may be an empty set, a point or
a line; (2) second degree cylinders; (3) elliptic paraboloids; (4) hyperbolic paraboloida;s
(5) elliptic cones; (6) ellipsoid; (7) hyperboloids of one sheet; and (8) hyperboloids of
two sheets. By this grouping, all the surfaces in a given group are similar in shape

and require the same type of scan curves.

By choosing appropriate sectioning planes for the quadric surfaces, we obtain

_ '—"—‘Sectioning:cutwes;of:deg-ree:one:oritwo,——whihh——m'a'y:b—e—}m' '_es,—para—b_ﬁ-]a-s—m’ "i-aes—ei’ iI}_fTSE_S—__ — -

and hyperbolas. Each group of quadric surfaces usually has two types of sectioning
curves. For example, the sectioning curves of elliptic paraboloids may be parabolas or

ellipses.

From the two types of sectioning curves on a quadric surface, the one which
mekes non-overlapping strips is chosen as sean curves. See the elliptic paraboloid in
Figure 4, choosing parabola as scan curves makes overlapping strips; while choosing
ellipses as scan curves makes non-overlapping strips. Among all scan curves which
yield non-overlapping strips, the choice is also dictated by the scan curves with
simpler parametric form. For each group of quadric surface, the possible sectioning

curves and the selected scan curves are summarized in Table 1.




4. Scan Curve/Solid Classification

This section discusses the second component of this algorithm, scan curve /solid
classification. The problem can be stated as follows: Given a scan curve C' and the

solid § in CSG representation, determine which segment of C is ‘on inside”, or
“outside” the solid S. This problem is solved in two phases: (1) classifying scan
curves with respect to each primitive solid; and (2) merging classification results of

scan curve/primitive solids to classify scan eurves with respect to the solid.
4.1. Scan Curve/Primitive Solid Classification

Classifying a scan curve/primitive solid means that the curve is decomposed into
a set of segments, where each segment has a unique classification property of “‘on",
“inside”, or “‘outside”. In this approach, the first step is determining the intersection

points of the scan curve and the surfaces of the primitive solid. As shown in Figure 1,

= '*_“‘th‘e‘—‘i—'ﬂﬁérsectibﬁ—'pT:iEt’s':dﬁide—the—sca:n—ctrrve—ir_rﬁ—severailairve—s‘e‘gm‘e_nts. On each

curve segment, all points except end points thus have the same classification property.
Further, neighboring curve segments which have the same classifications are merged

into a larger segment.

In computing the intersection points of scan curves and surfaces, surfaces are
represented in implicit polynomial form, F(z,y,z) = 0. and curves are represented in
rational parametric form, 2 = f(t)/g(t), vy = p(¢)/a(t), z = h{t)}/s(t). By inserting
the parametric form into the implicit form, the implicit form becomes a gingle
variable polynomial, F(z(t),y(t), z(¢t)) = 0. The intersection points of the curve and
the surface can be obtained by solving this single variable polynomial. Each real root
of the polynmomial corresponds to a real intersection point of the curve and the

surface.



4.2. Scan Curve/Resulting Solid Classification

After classifying scan curve /primitive solids, the results can be merged to classify
scan curve/solid. The merging rules for various operators and classification results
are listed in Table 2, where "‘in' means inside, “on” means on the boundary and
“out” means outside the combined solid. These merging rules can be proved by set
theory [18]. As noted in the table, the merging of classification results may be
ambiguous when two classification results of a region are all “on" situations. Figure 5
illustrates a case where merging 2 “on/on” region may generate “in" or *‘on”

gsituations.

In the previous patch decomposition approach, the on/on ambiguities also occur
in classifying a point with respect to the solid. Sarraga [10] partially solves this
problem by including the point neighborhood information developed by Tilove [18].

Yet, this neighborhood method is easy to apply for points on the interior of faces but__

not for points on edges of solids. In the previous approach [10], the on/on ambiguities
still exist for points on edges of solids but are treated as an “‘edge’ case which means

‘“‘not on' and may cause error classification.

In this scan curve approach, the on/on ambiguities on the interior of faces are
resolved by introducing the neighborhood information of scan curves. The curve
neighborhood information is represented by splitting the “on’ case as two cases,
either “onl” or ‘“on2". For a scan curve on a surface of a primitive solid, if the
direction of the interior side of the primitive solid is the same as the normal direction
of the surface, it is termed as the “onl” case. If these two sides are on opposite sides,

it is termed as the ‘“on2" case. The merge rules for “onl" and “on?2" are listed in

Table 3.




The on/on ambiguities on edges of solids are resolved by scanning virtu.a.l scan
curves. A virtual scan curve i3 a newly generated scan curve with an infinitesimal
distance with the original scan curve on edges of solids as in Figure 6. The
intersection points are determined by the original scan curve. Yet, the classification
properties of the original scan curve are determined by the virtual sean curves. In this
situation, the on/on ambiguities on edges of solids disappear while preserving the

appropriate classification for scan curve/solid.
b. Sub-strip Identiflcation and Area Evaluation

This section discusses the third component of this algorithm: contributing sub-
strips identification and area evaluation. The problem can be stated as follows:
Given a strip having been segmented as set of sub-strips by the intersection curves of

two surfaces, identify which substrips are “on” the solid and evaluate their area.
s Oy b8 "Gontributing‘Sub=stripS‘I'dentiﬂc'a.t.ion—' T T T e e T

A contributing sub-strip is bounded by two scan curve segments which are
classified as “on" with respect to the solid. As shown in Figure 7, two consecutive
scan curves usually have similar classification and intersection patterns, namely, with
same number of curve segments, similar classification properties, similar sequences of
intersections with surfaces. Taking curve A, B in Figure 7 as an example, there are
five curve segments which are sequentially classified as “out”, “on”, “out”, “on” and
“out”. Further, the surfaces intersected by the curves are sequentially surfaces S and
T. In this case, to identify the contributing sub-strips, one only needs to consider the
“on’’ regions on the first scan curves and the corresponding regions on the next scan

curve.
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However, two comsecutive scan curves may have different classification and
intersection patterns. As shown in Figure 8, the cases may be: (1) with different
number of regions as curves A, B; (2) with different classification properties as curves
C and D; and (3) with different sequences of intersections with surfaces as curves E
and F. Referring to Figure 8, the change of classification and intersection patterns
come from the “‘singular intersection points’ which exist in between two sean curves.
The singular intersection point may be either an intersection point of three or more
surfaces as point P, or a tangent point of a scan curve with a surface on the primitive

solid as point Q.

To identify the contributing sub-strips for the strip including singular points, we
further divide the strip into a number of, say, ten smaller strips by scanning more
curves within the strip as shown in Figure 9. Iu'these smaller strips only some
contain the singular points. The other smaller strips do not include singular points
~—and-their-contributing sub:strips-can-be-identified 25 stated above. The strip division ~

procedure is recursively repeated until a desirable resolution is achieved.

Note that the intersection points a, b, ¢, d in Figure 8c, where the intersection
sequences change, are close to the singular point p and may serve as good candidates

for starting points in a numerical search.
b.2. Contributing Sub-strip Area Evaluation

The area evaluation of contributing sub-strips may require some suitable
approximation. See Figure 10, 2 contributing sub-strip is bounded by four curves, two
scan curves and two intersection curves of the surfaces of two primitive solids. The
equations of the intersection curves may be complicated. For example, the
intersection curve of degree two and degree three surfaces may be a space curve of

degree six and may not be rational [15]. In this case, the sub-strip area is evaluated
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by calculating two virtual substrips, where one is bigger and the other is smaller as
shown in Figure 10, and finally the average is taken. The intersection curve is thus

approximated by the curve which evenly divides 2 small patch into two regions.

The error included by this approximation is the difference between the real
intersection curve and the approximated curve as shown in Figure 1la. Tt is much
less than that of previous approaches, in which the error is the difference between the
real intersection curve and the patch boundary, 2s shown by the shaded area in

Figure 11b.

The sub-strip area evaluation is basically evaluating a double integral which may
or may not be represented by an analytic form. If an analytic form exists, the strip
area evaluation takes the same amount of computation time irrespective of the sirip

length. In this situation, the scan curve approach takes less computation time than

_the pateh decomposition approach. If there is mo anslytic form, the strip area

evaluation requires some numerical computation. The scan curve approach again in
general takes less computation time than the patch decomposition approach which

requires more sub-divisions during numerical integration [17).

8. Complexity Analysis and Implementation

8.1. Complexity Analysis

The computational complexity of the proposed scan curve algorithm and the
previous patch decomposition algorithm are analyzed and listed in Table 4. The -scan
curve approach is better than the patch decomposition approach in computational
complexity. It shows that the complexity of the scan curve algorithm is O(Nle\d’)
and that of the patch decomposition algorithm is O(N2F2M'), where NV is the number
of scan curves in each primitive solid, M is the number of primitive solids, and F is

the number of surfaces on each primitive solid.
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68.2. Implementation

This program has been implemented in FORTRAN 77 on a VAX 11/780; the
program uses two IMSL [18] routines ZRPOLY and DBLIN. ZRPOLY is a routine for
cé.lcula.ting the roots of a single variable polynomial, and is used in determining the
intersection points of scan curves and surfaces. DBLIN performs evaluating double

integration, and is used in calculating the strip area and its resolution parameter,

AEER, which is set to 1075,

There are four main subroutines in this program. Subroutine GENSCAN
generates the scan curves for each face of the primitive solids. Subroutine INTCVSD
calculates and sorts the intersection points of scan curves and primitive solids to
divide each scan curve into a set of curve segments. Subroutine PCLASFY classify

each scan curve segment with respect each primitive solid. Subroutine MCLASFY

merges the pr_i;:uitivg_classi_&g.tion regults to classify scan curve with respect to the

solid. Subroutine ARSTIRP identifies the contributing sub-strips and calculates their

area.

The testing solids were constructed by three primitive solids, a cylinder, 2 sphere
and an ellipsoid as in Figure 12. The regularized Boolean combination of these three
primitive solids generate nine different kinds of testing solids. For each testing solid,
we computed the face area of its bounding faces respectively and summed them up to
give the total face area of the testing solid. These results were obtained by scanning
200 curves on the faces of each primitive solid. The calculated face area are listed in
Table 5. For the nine festing solids, the average CPU time for each component of the

algorithm is listed in Table 6.

From Table 6, we see that evaluating strip areas takes the longest computation

time if there is no analytic form for the double integration formula, such ag strips on
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the ellipsoid surface. Scan curve/solid classification is the second major item in
computation. Strip area evaluation ranks the third and scan curve generation takes

the least time.
7. Conclusion and Discussion

Compared to previous approaches, there are three main advantages of this scan
curve approach. First, it needs less computation time. Second, its results are more
accurate than the decomposition approach if the resolution of decomposition is the
same. Third, the on/on ambiguities occurring on edges of solids are appropriately
treated by the proposed virtual scan curves concept, which had been ignored in

previous approaches.

The computation time of this algorithm can be improved by certain

embellishments. One of these is by detecting if two primitive solids intersected with

— ———each—other--before --computing—the- scan -curve/primitive—solid —¢lassification. — For -
example, if two primitive solids are not intersected and far apart, then there is no
need to compute the scan curve/primitive solid classification, where the classification

properties are all “‘out”.
8. Extensions of This Algorithm

The above algorithm may also be extended to the solution of the following three
problems: (1) Boundary representation evaluation from CSG; (2) Face area
evaluation for solids in Boundary representation; and (3) Triangulation of the faces of
solids in CSG or BREP, where BREP is a solid modeling scheme [1] which describes a

solid by representing its faces, edges and vertices explicitly.
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8.1. BREP evaluation from CSG

The first problem can be solved by merging the contributing sub-strips. As
stated and shown in Figure 7, two consecutive scan curves have similar classification
and intersection patterns if there are no singular points within their bounding strip.
Singular points are either tangent points or intersection points of three surfaces which

imply that they are on the boundary of two faces.

The BREP evaluation algorithm may be applied as follows: tracing subsequent
scan curves sequentially, the corresponding contributing sub-strips of every two
consecutive scan curves are on the same face of the solid if they do not meet singular
points. After meeting singular points, the corresponding contributing sub-strips jump

to another face of the solid.

To explicitly represent the face of the solid, one only requires to sequentially

‘merge the corresponding sub-strips on the face. The bounding edges of the faces can

thus be represented by the set of intersection points on the contributing sub-strips.
The wvertices are the intersection points of three or more surfaces and can be

determined numerically.
8.2. Face Area Evaluation for Solids in BREP

The second problem can be solved by scanning curves on each face of solids in
BREP. Each scan curve should be classified with respect to its associated face to
11 113

determine which portions are “in", “out” or ‘“‘on’ the face. The "on” strips bounded

by the scan curves contribute the area of the face.

Classifying scan curve/face requires the caleulation of the intersection points of
scan curve and the bounding edges of the face. The bounding edges are on the

intersection curve of two surfaces, one of which fully contains the face and the scan
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curve, and the other intersects the scan curve. Thus, the intersection points of the
scan curve and the bounding edges can be determined by calculating the intersection

points of curve/surface as shown earlier.
8.3. Triangulation of the faces of solids in CSG or BREP

The third problem often occurs in applying the finite element analysis method,
which usually requires the decomposition of the bounding faces of solids into a set of
triangular patches. This problem can be solved by decomposing each contributing
sub-strip as two or more triangular patches. As stated, each contributing sub-strip is
fully on the solid; thus its decomposed triangular patches are also fully on the solid.
There are several methods to decompose a strip into a set of triangular face patches.
One of these is by introducing a curve which diagonally connects the two points on
the contributing sub-strips. This curve is the intersection of the strip and a plane
~which .is._defined by two. points_and.a_ normal_direction.. Note that_the-triangulation.
process is applicable to solids in CSG or BREP, because the contributing sub-strips

can be derived from both schemes.
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Table 1: Concerned Surfaces and Corresponding Scan Curves

Surface Type

Sectioning Curves

Sean Curves

Cylindrical Surface

line

Surface of Revolution

circle

Quadric Surfaces

Sectioning Curves

Scan Curves

2nd Degree Cylinder line, 2nd degree curve line
Elliptic Paraboloid ellipse, parabla ellipse
Hyperboli Paraboloid parabola, hyperbola parabola
Elliptic Cone ellipse, line line
Ellipsoid ellipse ellipse
Hyperboloids of 2 sheets ellipse, hyperbola ellipse
Hyperboloid of 1 sheet ellipse, hyperbola ellipse




Table 2: Merge Classification Results

U‘ on in | out
on ambiguous | in on
in in in in
out on in | out
=
— on in out
on ambiguous | out on
in on out; in
out on out out
N on in out
on ambiguous on out
J-in. | _on_.. _|_in—{ out-
out on out | out




Table 3: Merge Classification for Two "on" Cases

U‘ onl on2
onl | onl in
on2 in on2

ﬂ* onl | on2
onl onl out
on2 out on2

= onl on2
onl out onl
on2 on2 out




Table 4: Computational Complexity of Each

Component of This Algorithm

Scan Curve Patch Decomposition

Approach Complexity | Approach Complexity
Scan Curve Patch Generation

Generation O(MF) Generation O(MF)
Curve /Solid Point /Solid

Classification O(NF?M) | Classification O(N?F2 M)
Strip Area Patch Area

Evaluation O(NFM) | Evaluation O(N*FM)

N: number of scan curves in each face
F: number of faces in each primitive solid

M: number of primitive solids in the CSG solid




Table 5: Face Area of Each Face of the Testing Solids

Solid Cylinder | Sphere | Ellipsoid | Plane Total
(AU B)U C | 59.2192 | 7.3983 | 4.4221 | 6.2831 | 77.3227
(AN B)U C | 20087 | 4.1851 | 10.3311 | 0.0000 | 17.4249
(A—B)U C | 50.2192 | 4.1851 | 8.8693 | 6.2831 | 78.5567
(AUBN'C| 03600 | 0.5035 | 7.7976 | 0.0000 | 8.6611
(ANB)Y C| 03387 | 0.4791 | 1.8887 | 0.0000 | 2.7065
(A—"B)N C | 0.3600 | 0.4791 | 3.3502 | 0.0000 | 4.1893
(AU B)— C | 50.2192 | 7.3983 | 7.7976 | 6.2831 | 80.6982
(AN B)—"C | 29087 | 4.1851 | 1.8887 | 0.0000 | 8.9825
(A—"B)— C | 58.2192 | 4.1851 3.3508 | 6.2831 | 73.0382




Table 8: Average CPU Time in Seconds of Each Component
of the Algorithm for Each Face of the Nine

Testing Solids

Component of Algorithm | Cylinder | Sphere | Ellipsoid
Scan Curve Generation 0.4 0.4 0.4
Curve/Solid Classify 2.7 11.8 11.0
Strip Area Evaluation 0.6 5.4 180.3
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Figure 1:  Scan curves of primitive solids and their subtrips,
the resulting CSG solid is the union of two spheres
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Figure 2 : Cylindrical surface

Figure 3: Surface of revolution,
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Figure 4: Non-overlap sfrips by scanning ellipses and
overlap strips by scanning parablas for
elliptic paraboloid
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Figure 6: Virtual scan curve
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Figure 8:

Strip including singular points have different
clagsification and intersection patterns, (a)
different numbers of curve segments (b} different
classification pattern (c) different intersection
patfern
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Figure 9: Decomposing a strip which including singular points
into a set of smaller strips
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Figure 10: Ewvaluating the face area of a strip by taking
the average of two strips, where one is bigger
and the other is smaller than the original strip.
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Figure 11: Error in area evaluation of (2) seczan curve approach
(b) patch decomposition approach
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Figure 12: - Testing solids consisting of three primitive solids
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