TRACING SURFACE INTERSECTIONS

C. L. Bajaj
C. M. Hoffmann
J. E. Hopcroft
R.E.Lynch

CSD-TR-728
December 1987

This report supercedes CSD-TR 637 and CSD-TR 684.



Tracing Surface Intersections

C. L. Bajaj"
C. M. Hoffmannt
J. E. Hopcroftt
R. E. Lynch§

Abstract

We consider the problem of tracing the intersection of surlaces given
either implicitly or parametrically. We give a numerical tracing pro-
cedure in which a third-order Taylor approximant is constructed for
taking steps of variable length, and the points so found are improved
by Newton iteration. We show how this construction relates to local
parameterizations of the curve at singularities, and discuss our expe-
rience with the method. For plane curves, given implicitly, we show
how desingularization techniques can be incorporated to frace correctly
through all types of singularities. An implementation of this method
is also discussed.

1 Introduction

A basic operation recurring in geometric modeling is the evaluation of space
curves given as the intersection of two surfaces. Existing geometric mod-
eling systems typically restrict the geometric coverage, that is, the allowed
faces may be planar [26], natural quadries [21], arbitrary quadrics [14, 18],
or parametric patches of various types [6, 17]. With such specializations
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many good techniques can be developed fhat take advantage of the specific
restrictions.

In this paper, we consider the evaluation of surface intersections in gen-
eral. The infersecting surfaces may specified implicitly as fi(z,y,2) = 0
and fo(z,y,2) = 0, where fi and f2 are smooth functions, or paramet-
rically as (z = Gy1(u1,%),¥ = Gaa(ur,n1),2 = Gay(u1,v1)) and (z =
G12(uz,v2),¥ = Gao(uz, v2),z = Gaa(uz, v2)), where the G, i = 1,2,3,
j = 1,2, are smooth functions. In full generality, tracing the intersection
curve is a difficult problem, and one of our objectives is to explore the scope
of a purely numerical approach. {20] reviews several such methods. A com-
mon problem stems {rom the inherent geometric complexity of high degree
algebraic curves that arise as curves of intersection. In particular, such a
curve may possess singular points where the curve has an abrupt chanze
of normal direction (cusps), multiple self-intersecting branches (nodes), or
self-tangent branches (tacnodes). In the neighborhood of a singularity the
determinant of the linear system used to approximate the curve locally ap-
proaches zero. Purely numerical tracing schemes have great difficulties in
this situation: As the singularity is approached, these programs may fail.
Even if they trace through the singularity without mishap, they may identiy
the curve branches incorrectly.

It is not known how to rectify all these difficulties with a single numerical
method. Nevertheless, it is our experience that a carefully crafted numerical
tracing routine is capable of handling many of the difficulties characterized
above. We propose here such a scheme in which the intersection curve is
locally approximated by a low degree Taylor polynomial interpolant, and
a new curve point estimate is derived from it by taking steps of variable
lengths. Newton iteration is then used to refine this new point estimate.

A strength of the method lies in its ability to consolidate the compu-
tation needed for the Newton iteration with the computation determining
the power series expansion. Moreover, as we show, there is a close corre-
spondence of the computational machinery needed by the method with an
algebraic procedure for analyzing the curve at singular points. Although
this correspondence is not exploited in this paper, it permits a fairly sim-
ple extension to cope directly with a large class of singularities. Another
advantage of the approach is that we can construct higher order approxi-
mants to the intersection of parametric surfaces directly. Previously, only
piecewise linear techniques have been used that are constructed either from
subdivision methods [7], or directly from the equations. In the latter case,




a step length constraint is added to avoid solving an underdetermined sys-
tem [20]. However, as we have found, there is no difficulty in solving the
underconstrained system and the step length constraint is artificial.

Next, we consider the special case of tracing plane algebraic curves de-
fined implicitly as f(z,y) = 0. Tracing plane curves which are given para-
metrically simply amounts to evaluating the parametric equations for several
distinct parameter values. So, one could try to obtain a rational parameter-
ization of f. Ounly curves of genus zero possess a rational parametric form,
however, For algorithms to test whether and how implicitly defired plane
curves can be rationally parameterized, see {4].

The tracing of implicitly defined plane curves arises in solid modeling in
a number of ways:

1. When the faces of a model are parametric patches, with known implicit
equations, edges bounding these patches can be represented as plane
curves in the parameter plane of one of the faces, see [9).

2. When intersecting two implicit surfaces f1(z,¥,2) = 0 and fo(z,y,2) =
0, one of them, say f;, may possess a rational parameterization. By
substituting the parametric equations of f; into the implicit equation
of f2, 2 plane curve in the parameter plane is obtained that is in bi-
rational correspondence with the intersection curve of f; and fa. For
efficient algorithms to test whether and how an implicit quadric or
cubic algebraic surface can be parameterized, see |2, 3]

3. When intersecting nonrational implicit surfaces fi(z,y,z) = 0 and
f2(z,y,2) = 0, one can always find 2 rational surface f3(z,y,2) =0
containing the intersection curve of f; and f;. After fa has been
found, it is easily parameterized, and we can obtain a plane curve by
substituting as in 2 above. For methods to achieve this for irreducible
algebraic space curves see [5,12,22],

Here, birational correspondence means that in each direction rational maps
exist. In consequence, a tracing procedure for plane algebraic curves yields
a tracing procedure for algebraic space curves. Note, however, that the cor-
responding plane curve might have more singularities than the space curve.
Moreover, the degree of the curve is the product of the surface degrees, so
that tracing the corresponding planar curve is numerically more delicate. If
the birational map is not derived carefully, finally, the degree of the plane



curve may be even higher. Thus, for simple singularities, the purely numer-
ical approach remains attractive.

‘We show that for plane algebraic curves the correct branch connectivity
can be achieved by utilizing results from algebraic geometry. The trace of
f(z,y) = 0 commences at a given input point with a desired direction. At
noncritical segments, we proceed numerically as before. When the condition
number of the system becomes very large, we try to locate a nearby curve
singularity. Then, by applying quadratic transformations, the branch of f
we trace is birationally mapped to a branch of a transformed curve g that
has no singularities. The transformed branch is traced and the points of ¢
are mapped to corresponding points of f. The trace of g continues until we
have passed the singularity of f. In this way, correct branch connectivity is
achieved.

2 Notation and Definitions

Partial derivatives are written by subscripting, for example, fr = 8f/8z,
fzy = 8*f/(8z8y), and so on. Since we consider analytic curves and sur-
faces, we have fz, = f,; etc.

Vectors and vector functions are denoted by bold letters. The inner
product of vectors a and b is denoted a - h. The length of the vector a is
lal = va=.

The gradient of f is the vector Vf = (fz, fy, fz). The Hessian of f is

the symmetric matrix
f:z fzy fzz
Hey=| fyr foy Jfuz
f:z fzy =z

The intersection of f; and fa is denoted by r(s) and Is a vector function
of the argument s, typically the arc length measured from some point on
the curve. Derivatives of r(s) are denoted r', r¥,...,r{™,

A point p = (=,y,2) is regular on f if the gradient of f at p is not
null; otherwise the point is singular. A point p of tle intersection r(s) is
regular if p is regular on both f; and fo and if the gradients Vf; and V f;
are linearly independent. That is, the surfaces are not singular at p and
intersect transversally.




If one of the surfaces is a plane, then a simple coordinate trensformation
reduces the problem to tracing a plane curve f(z,y) = 0. Assume that
this curve contains the origin and is algebraic. Then the order form is the
homogeneous polynomial F(x,y) consisting of the terms of lowest degree in
f. It contains information about the curve’s behavior at the origin. If the
order form is linear, then the curve has a simple point at the origin, i.e.,
the curve is not singular at the origin. If the order form is nonlinear, then
the origin is a singularity. The degree of F is then called the order of the
singularity. Moreover, the linear factors of F are equations of the tangenis
of the curve at the origin.

An important concept from algebraic geometry, used to study the local
curve structure, is that of place, e.g., [25]. Briefly, a place of f(z,y) = 0is
a pair of power series

z(s) = ag + @15 + az5% + ...

y(s) =bg+ b5+ bgsz + ...

such that f(z(s),y(s)) is identically zero. The place is said to be cenfered
at the point (z(0),%(0)) of the curve. It is always possible to choose the
place such that z(s) = s*, for some k. Intuitively, a place is a local pa-
rameterization of the curve, centered at (z(0),y(0)), with a certfain radius
of convergence that varies with the place.

If the center ¢ is not a singular point, then the place is equivalent to the
Taylor series about e. If the e is singular, then the curve may have more than
one distinct place centered at ¢, each corresponding to a distinct branch of
the curve.

The order of a place centered at the origin is the lowest exponent with
a nonzero coefficient in the power series. For example, the order of

z(s) = s*

y(s) = §°
is two, whereas the order of

z(s)=s

y(s) =s+6%/2—5/8 + — ...

is one.



Centered at every nonsingular point, the curve has exactly one linear
place, i.e., a place of order one. At a singular point the curve has one or
more places which may or may not be linear. However, if there is only one
place at a singular point, then this place must be nonlinear.

3 Nonsingular Curve Points on Surface Intersec-
tions

We consider first tracing the intersection of implicit surfaces, fi(z,y,2) =0
and fs(z,¥,2) = 0, given an initial curve point and a direction. In the sim-
plest situation we trace the intersection in a neighborhood in which both
f1 and f2 are regular and their gradients are linearly independent. Geo-
metrically this means that the surfaces intersect transversally and are not
singular in the vicinity. We formulate a system of equations from which
both the local approximation as well as the Newton iteration are derived.
Under the assumption of linearly independent gradients, we have a system
of linear equations of rank 2. The choices made when solving the system
correspond to parameterizing the approximant by arc length.

We then sketch how this approach can be directly transferred to tracing
the intersection of parametric surfaces, (G1,1(u1, 1), G21(u1,v1), Gaa(u1, n))
and (G]_‘z(uz,Uz),Gz‘g(uz,vz),Ga‘g(ug,vg)), with the G,'_j, i=1,2,3,7=
1,2, as smooth functions, given an initial curve point and a desired di-
rection. Again, higher order approximants are easily constructed and are
useful for estimating a safe step length. Under the assumption of linearly
independent gradients, we now have a system of linear equations of rank 3.
It is clear that the approach generalizes to tracing the intersection of n — 1
hypersurfaces in n-dimensional space.

3.1 Equation for the Intersection

We treat the case that the intersection r is a function, having at least four
continuous derivatives, of a parameter s. Then

r(s) = r(0) + sr'(0) + %‘"(0) + fsir"'(ﬂ) +e(s) =p(s)+els), (1)

where p is the cubic Taylor interpolant to r at s = 0 and e is its error, or
remainder. Below we give a numerical procedure for finding values of the




derivatives, given a point qq on the intersection. Since e(s) = O(s?) in a
bounded interval containing s = 0, a sufficiently small s makes the value
p(s) of the cubic an accurate estimate of r(s). Using p(s) as an initial
estimate, one can then obtain another point, q; on the intersection with a
very few steps of Newton iteration. The process then repeats. In this way
a sequence of points, q,, n = 0,1,2,---, on the intersection is determined.

The derivatives are necessarily not unique because the parameterization
of r by s is nonunique. We choose s as arc length. Ther the unit tangent
t, the unit principle normal n, 2nd the unit binormal b are related by the
Frenet-Serret formulae [10, p. 107}

dt db dn

—_— =K —_— - —_— Tb - K 2

75 = 5 s Tn, s Kt, (2)
where £ = 1/p is curvature and T = 1/ is torsion. The vectors t, n, and b
form an orthonormal triad with n = bxt. With s arc length, the derivatives
of r are given by

at
6Y — negy = &8 _
r'(s) =t, r‘(s) = 75 = A
r(s) = [—-(;i (kn) = dd—jn + n——j: _—] £'n+ sTh — k%t. (3)

3.2 Implicit definition

First suppose that points on the curve are defined as solutions of filz,y,2) =
fi(r) =0, j = 1,2. The Taylor expansion of fi(x(s)) in powers of 5 is

ofds  8fdy ofd
Fi(e(8)) = 5 (0)) + [%EJF %:%J, 'a_fﬁ] e

= F(EO) + V5 -¥(0 @
2
+ S0VS5 O + 2 Q) Hyy #O) 4, =12

where V f; is the gradient of f; and H s; 1ts Hessian, both evaluated at r(0).

Since the intersection satisfies f;(r(s)) = 0, the coefficient of each power
of s in (4) must be zero. Given 2 point q = r{0)} on the intersection, the
m-th derivative of r then satisfies

V(@) x™(0) = bjm, 5=1,2. (5)




The quantities b;m are expressed in terms of the partial derivatives of fi
and lower-order derivatives of r; e.g.:

bj1 =0, bj2 = —r'(U) - H.fj ) r’(o)l i=12;

for bja, see Appendix A.l. For each m, (5) is a pair of equations for the
three components of r(“‘)({]). Appendix A.2 details how to solve this system
with numerically stable techniques.

It follows {rom the independence of the gradients that there is a unit
vector t which is perpendicular to both gradients:

Vfi-t=Vft=0, t-t=1

Except for sign, t is unique. Any vector can be written as a linear combi-
nation of these three; in particular

'™ = aut + BV 1 + 1V fo
Direct substitution into (3) yields
BV ;i Vi1 +1mVf;-Viy=bjm, F=12 (6)
There Is a unique solution, B, Ym, of this system and, therefore,
r(™ = amt + Bu¥ f1 + ¥V f2, (7

with oy, arbitrary, is the general solution of the system (5).

Because by; = b3 = 0 makes ) = 9 = 0, we have r'(0) = at. The
choice oy, = 1 makes r'(0) a unit vector tangent to the intersection. For very
small s, the term s1r'(0) in (1) determines the orientation of the intersection
and we choose the sign of t so as to maintain the orientation when s is
positive. Specifically, let r],_; denote the derivative at the (n — 1)-th point
on the intersection. After t is computed for the n-th point, if rf_, -t < 0,
then we replace t with —t.

For m = 2, the unique solution of (6) and the choice a; = 0 leads to a
unique vector r”(0). Then with « the positive square root of r(0) -r”(0), we
have r""(0) = xn, where n is the unit principle normal to the intersection.

Finally, by taking a:z = —&2, we have obtained the first three derivatives
of r related as in (3).



3.3 Parametric definition

Next suppose that points on the surfaces are given in terms of parameters
(ug,vx), £ =1,2:

(@& s 1) = (Grp(2hs V1), Go (2, 08 ), Gag(up, vr))
where the G are giver smooth functions. The intersection is defined by
G;1(ur,m) = Gj2(u2,»), 7 = 1,2,3, a system of three equations in four
unknowns. Once the unknowns have been determined as functions of s,
points r{s) on the intersection are obtained by direct evaluation:

r(s) = (Grx(ur(s), v(s)), Gox(ua(s), ve()), Gap(ur(s),ve(s)))  (8)
where % is either 1 or 2.

Let R be the vector with four components defined by R. = (1, v1, 4z, v2),
and set

FJ(R) = G.f.l(ul'!vl) - G',Z(u?-! 1}2), 7=1,2,3. (9)
Then F;(R(s)) = 0, and the Taylor expansion of F;(R(s)) is
Fi(R(s)) = F3(R(0)) + sV F; - R'(0) (10)

2
+f2_[VFJ ) R”(U) + RI(O) ! HF} ) R’(O)] +--y I= 1, 2r31
so that if Q is a solution of (9), then
VF;(Q)-R™(0) = Bjpm, j=1,2,3. (11)
If the set of three gradients is linearly independent, then the general solution
of (11) is
R(™ = 0T + B VF1 + 1mVF2 + 6V F3, (12)

Wwhere T is a unit vector orthogonal to the three gradients, and .y is arbi-
trary.

Comparing equations (4), (5), and (7) with (10), (11), and (12), respec-
tively, one sees that the only difference between the implicit and the para-
metric determination of the intersection is (a) the number of components
of the vectors and (b) the number of equations. Thus, a general numerical
method for one also applies to the other with minor modifications. In ocur
Fortran implementation of the implicit formulation, this is accomplished by
changing the size of some arrays and including the evaluation of points on
the intersection with (8). Moreover, it should be evident that the method
generalizes to tracing the intersection of n — 1 smooth hypersurfaces in n-
dimensional space assuming transversal intersections.




3.4 Newton Approximation

Given an initial point pp near the curve, we find a point q on the curve
by generating a sequence of points p1,ps,--- -+ q. We set f;(r(s))) = 0,
r(0} = px and sr’(0) = Ay, in (4), and neglect the terms with higher powers
of s to get Newton's method. Thus we solve

vfj(Pk) CAp = "'f.".'(Pk)v J=12 (13)

Equatjon (13) is the same as equation (5). When the pair of gradients is
linearly independent, the general solution is

Ag = art + BV fi(pe) + 1V fo(pi), (14)

and the values of S and -y are determined uniguely. Because t is orthogonal
to both surfaces, a change of py in the direction of t changes the values of
f; only negligibly, and we set ¢ = 0, thereby obtaining a unique solution
for Ay, We then set pyy1 = p + Ay.

Once the point q is found with acceptable accuracy, the approximation
of r(s) with r(0) = q is determined as described above.

3.5 Step Length

We use the higher order derivatives of r to estimate the accuracy of the
low-order terms in the Taylor approximation. With this estimate, a step
size is chosen such that the contribution of the second and third order terms
together is at most 1/5 of the first order term. That is, we require that both

I2e"(0)/2 and  JR(0)/6]

are smaller than ||sr’(0)[[/10 = |s|/10. For an example see Section 3.7 below,
Since the step sizes could become arbitrarily small, a minimum step size is
specified also.

3.6 Traunsformations of the Equations
The intersection of f; and f; is also the intersection of

h=a fitasfy end  f=aafitenf

10




where a;,. are constants satisfying a; 1832 ~ 12021 # 0. Thus we can solve
the equivalent system

ij(q) : r(m)(o) =ej1bim+ej2bom F=1,2,

where the b;,, are as before.

By choosing the constants a;x suitably, we can, for example, formulate
equivalent systems in which V f; and V f, are orthonormal or some of the
intrinsic curve parameters, such as curvature radius, appear explicitly on the
right side. This shifts the programming work to finding proper constants.
Moreover, some of these choices parallel an algebraic approach to finding a
local approximation at a singular curve point, as explained in Section 4.

3.7 Implementation

We have implemented the numerical tracing procedure in Fortran. Figures
3.1 through 3.8 show some examples of curve traces that were produced with
this program and a standard graph utility under Berkeley Unix. The plane
curves have been traced as the intersection of f(z,y) = 0 with z = 0, without
any program modifications. As described further in the appendix, the linear
system is solved using singular value decomposition [11, 23). This approach
is numerically very stable and increases the reliability in near-singular cases
considerably.

At certain singularities, e.g., for the nodal singularity in Figure 3.5,
the curve orientation Vfi x V fz reverses. This is a global property that
depends on how the curve branches intersect at the singularity. If one were
to determine its presence in this way, a complete analysis of the singularity
would be required. To avoid this, we have added a heuristic that reverses
the tracing direction whenever the oriented tangent changes by more than
a maximum angle, say 90 degrees. In consequence, a cuspidal singularity
cannot be traced with this algorithm.

In our experience, nodal singularities cause no problems as long as the
tangent directions of the intersecting branches are sufficiently separated.
Many tacnodes are also handled reliably, e.g., Figure 3.4. However, there
are situations where branclies may be confused. For example, both the curve
Ch : y*—zi—y? = 0 (Figure 3.7) and the curve Cy : 32—~ z8—3® = 0 (Figure
3.8) are traced as if they had two real components meeting tangentially at
the origin. While this is correct for €4, it is not correct for Cs, since Cs

11




consists of a single real component with two branches at the origin, each
having an inflection at the singularity. Note that the tangent computation
of Section 4.1 or the singularity analysis of [19] does not suffice to distinguish
the two cases.

The table below shows a short sample trace of z + %> — 23 N z 4+ z%.
The curve is shown graphically in Figure 3.2. The initial point estimate is
(0.2,0.2,—0.1). The step length is determined adaptively as described. In
addition to point coordinates, both the next step length and the number of
Newton iterations needed to determine the point to within 10~2° are shown.
For simplicity, only 5 decimals are given. At this singularity the orientation
reverses and is reflected in the change of sign of the step length.

Point Iter Next Step
(4-0.199682 +0.218711 -0.039873) 3 -0.27637
(+0.015686 +0.015808 -0.000246) 2 -0.19340
(-0.124761 -0.116720 -0.015565) 2 +0.16081
2
2

(-0.245628 -0.213339 -0.060333) +0.15031
(-0.358096 —0.286903 -0.128233) +0.15308

Since the third derivative r" is not necessarily perpendicular to r/, the point
distance does not always correspond to the step length.

4 Singular Curve.Points

Consider now the intersection curve when the surfaces are given implicitly
by f1 and f2. At a singularity p, the Taylor expansion of r does not exist
in the ordinary sense. Nevertheless, System (5) remains formally valid and
can be used to determine approximants to r at p. This fact is less attractive
than one might suspect at first, since the equations no longer are linear and,
thus, become more difficult to solve. A point p is singular on r(s) for one
of the following reasons:

1. The gradients V f; and V f2 are linearly dependent.
2. One of the gradients, say V f; is zero, but the other is not.

3. Both gradients V f; and V f; are zero.

12




4.1 Tangents at Singular Points

We consider Case 1, i.e., linearly dependent surface gradients. From Section
3.6 it follows that this case is in substance the same as Case 2, and we
demonstrate how the familiar tangent cone construction corresponds to an
elementary simplification of the Equation System (3).

When the gradients are linearly dependent, the tangent planes of f; and
f2 are the same. We assume without loss of generality that the point p is
the origin and V f; = (0,0,1). Thercfore, we may write

h=z+f=0
fa=pz+ f2=0

where the polynomials fi and /5 consist of terms of degree 2 or higher.

Now the intersection of fi and fs is also the intersection of f; and fa =
fo — pfi. We determine the curve tangent(s) from f; and fi. The terms of
lowest order in f3 comprise a homogeneous form F that approximates the
surface f3 = 0 in the neighborhood of the origin and has degree 2 or higher.
F(z,y,2) = 0 is a cone with the origin at its vertex. It intersects the plane
tangent to f; = 0 only at the origin or in a set of lines through the origin
that are tangent to the branches of r, the intersection of f; and f.

It is possible that F is divisible by z. In that case the computation must
be iterated; i.e., we must determine a fy by subtracting from f3 2 multi-
ple of z* f;, where % is suitably chosen. [16] proves that this computation
terminates.

We determine the tangents to the intersection at the origin by substi-
tuting z = 0 in F. This yields the homogeneous polynomial F(z,y,0) in
two variables. The roots of F'(z,y,0) are (0,0) and (Au, Av) where not both
= and v are zero and A # 0. The root (0,0) is an improper solution for G
and is excluded. If there are no other rezl roots, then the cone intersects
the plane z = 0 only in the origin, a case that does not arise when tracing
a curve branch.

For every other real root (Az,Av) we obtain a corresponding tangent
vector r' = (Au,Av,0) to r at the origin. Here ) is chosen such that the
vector has length 1.

We demonstrate by example that this tangent computation is equiv-
alently done by elementary manipulation of the equations of System (5).
The deeper reason for this is further clarified below and rests on the cor-

13




respondence of the Taylor series at regular curve points with formal power
series expansions of r at singularities.

Example -
Consider the intersection of the two cylinders f; = 2 + 22 + 2z = 0 and
f2 = y*+ 2% + 4z = 0 which is irreducible and has a nodal singularity at the
origin, as shown in Figure 3.1. The curve is equivalently the intersection of
f1 with the elliptic cone fa = f,—2f; = y2—2z2 — z2. For this cone F = f3.
Therefore the tangents at the origin are given by the roots of y2 — 222, i.e.,

they are the lines (},v/2A,0) and (—X,+/2),0).

Next, when we formulate the equations of System (5) for f; and f; and
write (z(s), y(s), 2(s)) for r(s), we obtain at the origin

2:'(s) = 0

4z'(s) = 0
2:" = —92z% - 9"
47" = -2y — 2.7

By subtracting the third equation twice from the fourth and dividing by
two, we obtain the equation

0 - 23!2 — y:2 + 2!2

Note the similarity between this equation and the tangent cone of f3. Thus,
solving System (5) for r’ is equivalent to determining the tangent directions
from f; and fi.

4.2 Algebraic Correspondence

We assume that r(0) is the origin and write

r(s) = 2 (ai, bi ci)s’

i>1

where (a;,b:,¢;) is a vector, e.g., [25, Ch. IV.2, V.5]. The formal derivative
of r by s is defined as

r'(8) = 3 _(@ig1,bip1, ciga )(i 4 1)s°
i>0

14



The power series must satisfy identically f(r(s)) = 0. Substituting the series
of r(s} into f and collecting terms, we obtain a formal series

> Kns™=0

i>1
This leads to a system of equations
Emn=0, m=123,...

where Kr, is the coefficient of s™ in the resulting series. A similar system of
equations is obtained for g{r(s)) = 0. Because the formal derivative above
has all the familiar properties of derivatives, these equations are formally
the same as System (5).

Because of this algebraic correspondence, it is possible to approximate
the curve at a singular point by formulating the system of equations as before
and solving it for the unknown coefficients. In contrast to the nonsingular
case, however, the system no longer is linear and thus is more difficult to
solve. We explain the procedure by an example:

We consider the intersection of the surfaces fi = z + y® —z3 and f; =
z+z* with a nodal singularity at the origin, as shown ir Figure 3.2. We set

z(s) = @154 aas®+aas®+---
y(s) = bls + b252 + basa o
2(8) = e15+ o8t +ess?+ -

where (a3,b1,¢1) = r’(0), (az, b2, c2) = r"(0)/2, 2nd s0 on. The equations of
System (13), or equivalently, of System (5), are thus

a =

ez + U

e2 + af

c3+ 2aaz

ca + 2bybs + b2 — 3alay

es + 2a;83 + af

o o0 O O o O

As before, the system is underconstrained. It is possible to choose the
independent quantities such that one of the series is +s* {25). Here s need
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not correspond to arc length. We choose ¢z = —land ez = ¢4 = --- = 0.
Then the following two solutions are obtained:

z(s) = s
2 s
wo) = st3-%
z2(s) = —s
and
z(s) = s
2 .3
) = o fifa
2(s) = -5

The series correspond to the local parameterizations of the two intersecting
branches. For remarks about their convergence see, e.g., [24, p. 52}

Because the equations are nonlinear, this approach is difficult to imple-
ment. The degree of the equations depends on the order of the singularity.
In the simplest cases this is two. However, higher order singularities can
occur that may make it difficult to solve_the equations and to identify sub-
sequently a solution that parameterizes the traversed path.

5 Plane Curves

We now consider tracing a segment of the plane algebraic curve f(z,) = 0,
beginning at an initial point (%o, o) at which tracing commences in a speci-
fied direction. For simplicity, we assume that the initial point is not singular.
With this assumption, the trace direction is simply specified as positive, fol-
lowing the tangent vector (—fy, fz), or negative, tracing in the opposite
direction. If the initial point is singular, a more complicated specification
procedure is required that identifies the intended branch and a direction on
it. Such specifications can be worked out without difficulty, based on the
desingularization techniques described below. See also [13] for a discussion
of this problem in the context of solid modeling.
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5.1 . Desingularization

Desingularization of plane curves is based on the following classical theorem,
proved by Riemann and Cayley:

Theorem: Every plane curve can be birationally transformed into a
curve devoid of singularities.

Among the different proofs of the theorem are constructive versions
that derive the needed birational transformation from a sequence of sim-

ple quadratic transformations, e.g., {1, 24, 25). Two transformations are
needed:

Ti: 20 = ¢z
v = y/z

T2: 2 = z/y
¥ = g

The inverse transformations are, respectively, z = z’, y = 23, and z = z'y’,
¥ = . The basic properties of transformation 17 can be summarized as
follows:

1. Al points (z,¥) with = # 0 are mapped 1-1 to the z’-y' plane.
2. All points (0,y) with y # 0 are mapped to infinity.

3. As we approach the origin on a branch, the limit of the image points
is the image of the origin on the branch. This limit depends on the
direction of approach, hence the pencil of directions through the origin,
except the y-axis, are mapped to finite points on the y’-axis.

In particular, 77 maps irreducible curves to irreducible curves. The line
z’ = 0 is called the ezceptional line of T;. The properties of T are analogous.
The exceptional line of T3 is ' = 0.

In intuitive terms, the transformations separate curve branches that in-
tersect with different tangent directions. This is plausible since the line
¥ — mz = 0 through the origin is mapped to the line 3’ ~ 7 = 0 that in-
tercepts the ¥’ axis at distance m from the origin. Moreover, branches that
are in higher order contact, such as tacnodes, are mapped to singularities in
the z’-y' plane at which the contact order is reduced. Finally, the order of a
nonlinear branch through the origin is also reduced. The latter two facts are
not easily seen, as they depend on structural properties not readily apparent
from the graph of f and the elementary concepts such as tangent direction,
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curvature, etc. Nevertheless, given a suitable measure for the complexity of
a singular point, it can be shown that every application of T3 or T} simplifies
the complexity of the point, so that the topology of the singularity is even-
tually resolved into a tree structure, each of whose leaves corresponds to a
nonsingular curve branch. For example, [1] defines such a measure based
on the structure of the order form, [25] uses a measure related to the curve
genus, whereas [24] uses the intersection multiplicity of the branch with the
polar form as a measure of complexity.

Since 77 maps a branch with the y-axis as tangent to infinity, such a
branch must be desingularized using 75. Likewise, 7} must be applied to
branches each of whose tangent is the z-axis. For the intermediate tangent
positions we choose T3 if the slope of the tangent has magnitude 1 or less;
otherwise T3 is chosen. Figures 3.1 through 5.3 show some examples of curve
desingularization. It will be noted that for more complex singularities the
transformations have to be applied repeatedly. Moreover, since we trace a
particular branch, it will not concern us if a different branch is mapped to

infinity.

5.2 Tracing with Desingularization

The tracing method consists of a numerical part used to trace noncritical
parts of the curve. Upon detecting an impending singularity, the branch
is transformed by 73 or 7%, and the transformed branch is traced. This
secondary trace continues until we are safely past the singularity, at which
point tracing returns to the original curve. The procedure is recursive when
the transformed branch in turn is singular. Its central steps are as follows:

1. When the system determinant approaches zero, locate the singular
point g expected to lie close to p by the iteration described below.
Record the order of the singularity, as obtained by this iteration pro-
cedure,

2. Translate the coordinate system to bring the singularity to the origin.
Eliminate low order terms as required by the order of the singularity.

3. Depending on the tangent direction at the singularity, apply 7} or
T3 to obtain the transformed curve g. Establish on g the point p’
corresponding to p and the appropriate direction of traversal.
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4. Trace g until the exceptional line is reached. Then trace an equal
number of steps beyond that point.

5. Map the points traced on g back fo f and return {o tracing f after
establishing the correct traversal direction.

Our implementation applies designularization recursively as needed.

5.3 Locating the Singularity

When the system determinant approaches zero at Py, we locate a singularity
in the vicinity. The singular point is defined as the common intersection of
f =0, fz =0and f, = 0. Using a Newton iteration, we construct a sequence
of points Py, P1, P, ... converging to the singularity. Let Pyy = P;+ (62, ).
Then we solve the linear system

fz fy 8 _f
f:z f:cy ( 52 ) = "‘f:
fzy fyy ¥ _fy

This is an overconstrained system and may be solved using a least-squares
approach, thus solving
ATAA = AT,

where A is the coefficient matrix of the overconstrained system, A is the
vector (4z,8y), and b is the right hand side.

If the singularity has order higher than 2, then the two by two matrix
AT A does not have full rank, and the three partials frz, foy and fyy also
vanish. In this case we must augment A by higher order derivatives. In
particular, for a third order singularity we have

4 f
f== fz'y ﬁr
—_ f’:y fyy —_ _ ¥
A= fore Fomy b=-1 fo.
fz:l:y f.ryy f-l-y
f"_‘yy fyy.‘f fW

Since possibly only some of the next order partials vanish, we proceed adap-
tively as follows:

19




Whenever the partial & in the matrix A vanishes, then A is
augmented by the row (hz,ky) and ¥ the entry —h.

In this manner a matrix AT A of full rank is obtained.

I the partial f;,» vanishes at the singularity p, it {ollows that f cannot
contain the term cziy*, ¢ # 0, after the origin has been translated to p.
Since the translation of f to the origin incurs numerical errors, it is possible
that f contains such a term with a very small coefficient c. Such terms must
be eliminated.

5.4 Direction of Traversal

At nonsingular points, we give a standard orientation by the tangent vec-
tor (—fy, fz), as shown in Figure 5.4, The orientation is not intrinsic since
—f(z,y) = 0 results in the opposite orientation of the curve. At a singular-
ity, curve segments locally belonging to the same analytic branch may be
oriented in an opposite direction, as shown in Figure 5.5. So, we establish
a relationship between the orientation of the curve f and the orientation of
its proper transform g.

Whether the branch orientation reverses at a singularity depends on
the structure of the singular point. Since the gradient Vf = (fz, f,) al-
ways points away from the area of negative points (a,b), i.e., points such
that f(a,b) < 0, the branch orientation reverses precisely when this branch
intersects an even number of other branches. Two examples, Figures 5.6
and 5.7, show the curve in the neighborhood of the singularity as well as a
schematic diagram of the topological structure of the singularity.

We now quantify the correspondence between the orientation of f and
its proper transform g and derive a simple method for detecting orientation
reversal without having to analyze the topological struciure of the singular-
ity in detail. Let p = (ao, bo) be 2 nonsingular point of f, where aq # 0.
Let

z(s) = ag + €15 + axs% + ...

y(s) =bg + bls + 5282 + ...

be the place of f centered at p. The place defines a branch orientation by
increasing s that need not agree with the standard orientation (- fy, fz).
Centered at the corresponding point p; = (ag, bpfao), the transformed curve
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g has the place
z1(s) = z(s)
v1(s) = co + c15 + 5% +- ...

Since z(s) = x1(s), the curve and its transform are oriented the same way.
Moreover, since 1,(s) = y(s)/2(s), we divide the two power series to obtain

Cp = bg/&g

& = (blao - ﬂlbo)/ﬂ%

and so on. Now p and p; are not singular. Consequently, the Taylor series
exists, @1 is proportional to —f, and —g,, by is proportional to f;, and
¢1 15 proportional to g-. Thus, the sign of the proportionality factor «
relates the orientation of the Taylor series with the standard orientation.
Therefore, given the direction of tracing f, we obtain the corresponding
tracing direction of g from

gy = afy
9= = (2 fz + yfy) /=
Conversely, given the tracing directior of g, we obtain the corresponding
tracing direction of f in the same way.

In consequence, the following procedure is used to maintain a consistent
tracing direction through singularities:

1. We traverse f in the direction u(—fy, fz), where u =1 or u = —1.

2. When approaching a singular point, the proper transform g of f is
calculated. Let p be a point on f traversed before the singularity,
and let p be the corresponding point on g. The partials of f and
g are evaluated at these points, and the factor a of proportionality
determined as described above.

3. If @ > 0, the transform g is traversed in the direction u(~gy, g.);
otherwise, it is traversed in the opposite direction.

The same traversal correlation is established when leaving the vicinity of

the singularity, reestablishing the proper traversal direction on f from the
traversal direction on g.
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5.5 Implementation

We have implemented the algorithm on a Symbolics 3650 Lisp machine and
traced the curves shown in Figures 5.8 through 5.15. In our experience
with the program, it is possible to trace through complex singularities. A
problem for the present implementation is locating the singularity accu-
rately. For example, locating the cuspidal singularity of the family of curves
y? — 2™+ = 0 becomes increasingly more difficult as m grows. Another
problem arises when a curve is almost singular, as in the case of the family
of curves 4% — 12 — 2% — ¢ = 0. For very small values of ¢ the curve has very

high curvature in the vicinity of the origin and appears to be singular.
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Appendix: Computational Details

We describe in more detail the derivation of the quantities bim, 1=1,2,

Bjrm’

Jj=1,2,3 and the use of the singular value decomposition to solve

the linear system of Section 3.

A.1 Derivation of the b;,, and B;,

The expressions for b; ,, are developed from the Taylor expansion of f; and
f2 of Section 3.2. For f; we obtain

filz,4,2) = fi(zo+ Az, y0 + Ay, 20 + AZ) = Z f,-l_.,-,kAz'-Ay’-Azk,

1.3k
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where

1 itk
Fiik = g azfayfazkf‘(m"’y"’z“)'
We set Az = z's + 2752 /24 253 /6 4+ <+, Ay = ¢'s + y"s%/2+ - - -, ete.
Then
(Az)? = (2/)2s + 2253 + - -, (Az)® = ()33 + -+,

AxAy = I'y"32 + (zﬂ'y! 4 mryn)b.a/z e, AmAyAz — zlylzfsa 4,

and so on. Substituting into the Taylor’s series for f; and equating to zero
the coefficients of s™, m = 1, 2, 3, we get the equations

f,00% + for,0¥" + fopa2’ =0,

fr1,00%" + for,08" + foo12"
= =2[fa00(z")2 + .i"o,z,o(’:)"')2 + fo,o,z(z')2
+fr1.02'Y + fro12'2 + for,19'2],

fi002™ + foa,08" + fopaz"
= —6[f2,00%'s" + fo2,00'y" + fo0,22'2" + fino(z"y + z'y")/2
+f1.0,1 (3”2' + z"z")/2 + fo1a (?J”?-" + ?}’ZH)/Q
+ fa0,0(z')2 + fo3,0(¥') + foa(=)3
+f2,1,0(z")%Y + 207" (¥ + fr0a(z)22
+f1.025 (2" + fo2a(¥)2% + fo1.20'(2') + fiaaa'y'2).

They are the equations
Via-r'=0, Vh-r"=ba, Vha-t"=ba

of Section 3.1. The explicit form above is used for computing b2 and b, 3
in the program. A similar set of formulae is obtained for computing bz,2 and
b2 3 when f; is replaced with f,.

The expressions for B; , are developed, in an analgous fashion, from the
Taylor expansion of F}, F» and F3 of Section 3.3.

A.2 Singular Value Decomposition

Both Newton’s method for refining a point estimate and the determination
of the curve approximant entail solving a linear system

ATw = z,
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For the implicit case A is a 3-by-2 matrix whose columns are the gradients
of fi and f2, and where w and z are column vectors of length 3 and 2,
respectively. For the parametric case A is a 4-by-3 matrix whose columns
are the gradients of 7, F; and F3, and where w and z are column vectors
of length 4 and 3, respectively.

When the pair of gradients is linearly independent, then the general
solution of this system was written in Section 3.2 as

w=aVf+ Vg+t
and in Section 3.6 as
w=aVF+8VG+yVH +(t.
This is not the general solution at a singularity where the pair of gradients

is linearly dependent.

To treat all cases in a uniform way with a computationally stable process,
we compute the singular value decomposition of A [11, 23]. (We linked the
thoroughly tested routines of Linpack [8] to our program.) Thus, we factor
Aas A=UZVT, where U € R®*® and V € R**? for the implicit/implicit
case are orthogonal matrices and ¥ € R3*? is diagonal. For the paramet-
tic/parametric case U € R**? and V € R¥*3 are orthogonal matrices and
3 € R**3 is diagonal. The system Aw = z now becomes

VaTUTw =2z

and we write its solution as
w=o'Uy + Uz +4'Us,

where U; denotes the j-th column of U. Since the gradients V f; and V f;
and the vector t are not generally orthonormal, and since the U; are, the
quantities o', #‘, and +' differ from their counterpart in Section 3.1.

There are three cases:

(i) If the pair of gradients is linearly independent, then £, ;1 > 0, 222 > 0,
and the first two columns of U span the same space as the pair of
gradients. In that case,

a' = (Vsz)/EI,I: f = (V?.Tz)/zz,za

and 7' is arbitrary.
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(ii) If the pair of gradients is linearly dependent and at least one is nonzero,
then &3 > 0, Xo2 = 0, and the first column of U spans the same
space as the pair of gradients. If V272 £ 0, then there is no solution;
otherwise

Ct’ = (V]_TZ)/E]_.],

and #’ and ¢’ are arbitrary.

(iif) If both gradients are zero, then so is &. If z # 0, then there is no
solution; otherwise o/, §#’, and 7' are arbitrary.

This is now used as {ollows.

Newlon’s method. We always choose 4" = 0. In Case (ii), 8’ is also set to
zero. In Case (iii), the initial guess is perturbed and the iteration restarted.
Usually two or three iterations suffice. If the singular value decomposition is
not recomputed at each iteration, the number of iterations typically doubles.

Finding the Approzimant. The solutions to the linear systems are deter-
mined using the Frenet-Serret formulae [10, p. 107}

dt db dn

75 = E:—Tn, E:Tb-—xt,
where s is arc length, t is the unit tangent, n is the principle normal, b is
the binormal, & = 1/p is curvature, and T = 1/7 is torsion. The vectors t,
n, and b form an orthonormal triad with

n=byxt.

At a point r(s) on the curve, we have
dt
e = neey = S8
r'(s) = t, r(s) = 7o = KN,

r(s) = ;—s(nn) = j—:n + ni—j = r&'n + &Tb — k1.

In Case (i) we obtain r' = 9{Ujz using 7] = 1. For the first point on
the curve, the sign of 4; is an input parameter; for other points, the sign of
41 is chosen to be the sign of r’(O)TUa at the previous point r'(0). To get
r’(s), we use 75 = 0, so that r' and r” are orthogonal. The length of r*(s)
gives the curvature . To get r(s), we choose 74 = —&2.
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In Case (ii), we project r’(0) into the plane spanned by Us, Ug, and then
normalize the projection to get r'(s); an input vector is given if & = 0. For
r", we choose f; and v to make r” and r’ orthogonal; r'” is chosen as above.

In Case (iii), we return to the preceding point and double the computed
step length.
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Figure 3.1
Cylinder - Cylinder Intersection
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Figure 3.2
Nodal Singularity
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Figure 3.3
Tacnode Singularity
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Figure 3.4
Tacnode and Nodal Singularities
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Figure 3.5
Projection of Figure 3.2 onto the Plane z = 0
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Figure 3.6
Projection of Figure 3.4 onto the Plane z = 0
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Figure 3.7
Two Real Components Touching
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Figure 3.8
One Self-Intersecting Real Component
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Figure 5.1

Desingularization of a Nodal Singularity
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Figure 5.2
Desingularization of a Cuspidal Singularity



Desingularization of y2 —x0 — y6 =0
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Figure 5.3
Recursive Desingularization
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Figure 5.4
Standard Curve Orientation



Figure 5.5
Orientation Reversal at a Singularity
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Figure 5.6
Schematic of Curve Topology at the Singularity
Noncrossing Branches
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Figure 5.7
Schematic of Curve Topology at the Singularity
Crossing Branches
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Figure 5.10
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Figure 5.11
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Figure 5.12
2z —3z%y +y* -2 +vyi=0




4

9
x4 +x%y?

— 2x2y —xy? +y?

Window 35

Figure 5.13
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Figure 5.14
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Figure 5.15
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