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1 Introduction |

Preliminaries

An algebraic plane curve of degree = is implicitly defined by a single polynomial equation
f(z,y) = 0 of degree n. A rational algebraic curve of degree n can additionally be defined by
rational parametric equations which are given as (z = Gy(%),y = Ga(u)), where G, and G, are
rational functions in = of degree 7, i.e., each is a quotient of polynomials in u of maximum degree
n. An algebraic space curve, defired by the intersection of two algebraic surfaces’ can be given
either as a pair of polynomial equations (fi(z,¥,z) = 0 and fao(z,9,z) = 0) or as two sets of
parametric equations (z = Gy a(u,m),¥ = Ga1(u,11),2 = Gan (uy,v1)) and (z = Gra(ug,22),¥ =
Ga2(t2,v2), 2 = Ga2(ua,v2)), where the Gij, ¢ = 1,2,3, j = 1,2, are rational functions. Rational
algebraic space curves are additionally representable as (z = G1(u),¥ = Ga(u),z = Gs(u)), where
(G1, Gz and G3 are rational functions in u.

Rational curves are only a subset of implicit algebraic curves of the same degree. While all
degree two curves (conics) are rational, only a subset of degree three (cubics) and higher degree
curves are rational. In general, a necessary and sufficient condition for the global rationality of an
algebraic curve of arbitrary degree is given by the Cayley-Riemann criterion: a curve is rational
if and only if g = 0, where g, the genus of the curve is a measure of the deficiency of the curve’s

singularities from its maximum allowable limit [18].
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The Problem

Here we wish to consider all algebraic curves, and specifically of genus higher thanr zero. For
all these curves we wish to compute rational parameterizations in the local neighborhood of a
point on the curve. This is always possible. At simple points of the curve a straighforward Taylor
series expansion, followed by a truncation or a rational Padé approximation, proves sufficient. At
a curve’s singular point the problem is slighlty more complex, as the Taylor series is not defined.
Nevertheless, the curve can be factored into a finite number of power series at the singular point,

and rational approximations can be constructed from those.

In particular then our problems are:

s For an implicilty defined algebraic plane curve, compute an approximate rational parametric
representation (z = Hy(t),y = Ha(t)), for each real branch incident at a point p = (ao, bo)

on the curve, where H;(t), H2(t) are rational functions over the Reals.

o For a parameterically defined algebraic plane curve, compute an approximate implicit repre-
sentation f(z,y) = 0, and an inverse relation ¢ = F(z,y) valid about a point p = (ao, bo) on

the curve, where f(z,¥) is a polynomial and F(z,¥) s a rational function over the Reals.

o Foran implicitly defined algebraic space curve, compute an approximate rational parametric
representation (z = Hi(t),y = Ha(t),z = Ha(?)), for each real branch incident at a point

p = (aq, ba, co) on the curve, where H;(1), Ho(t), H3(t) are rational functions over the Reals.

e For a parameterically defined algebraic space curve, compute an approximate implicit repre-
sentation (fi(z,¥,2) = 0, fo(z,v,2) = 0), and an inverse relation ¢ = F(z,y,z) valid about a
point p = (ao, by, ¢o) on the curve, where (fi(z,y,2) = 0, fo(2,¥,2) = 0) is a polynomial and

F(z,y,z) is a rational function over the Reals.

Applications:

Rationality of the algebraic curve or surface is a restriction where advantages are obtained
from having both the implicit and rational parametric representations (5], (L5]. While the rational
parametric form of representing a curve or surface allows greater ease for transformation and shape
control, the implicit form is preferred for testing whether a point is on the given curve or surface

and is further conducive to the direct application of algebraic techniques. Simpler algorithms are

possible when both representations are available. I'or example, a straightforward method exists for




computing curve - curve and surface - surface intersections when one of the curves, respectively
surfaces, is in its implicit form and the other in its parametric form. Global parameterization

algorithms for plane curves of genus zero, are presented In [1].

There are also numerous applications where explicit local parameterizations, implicitizations,

and inversion formulas, which we present here, prove useful in an essential way:

1. Determining the topological type of a real algebraic curve, see for e.g. [3, 11].
2. Adaptive stepping, for curve tracing through singularities, see for e.g [6].
3. Local intersection representation, see for e.g. [14].

4. Piecewise rational approximation for non-rational algebraic curves, i.e., curves of positive

genus, see for e.g. [16, 17].

Prior Work

In (6, 14], power series are constructed to locally approximate plane algebraic curves and surface
intersections. The methed of [14] technically relies on the Implicit Function Theorem, seeking to
represent a curve branch explicitly in one coordinate as function of the other coordinate(s), while [6]
uses a Taylor series expansion. Both these methods however do not seem to have a natural extension
that handles singular points. Further, {16, 17] also present techniques for curve approximation which

work only for special cases.

Methods for computing local branch parameterizations at singular points have been presented in
{10, 11, 12], both based on the Newton polygon, see for e.g., [18]. We instead use the iterative lilting
technique of Hensel together with the fast univariate Padé algorithm of [7]. Local implicitization is
considered in [9] extending the technique of [14] of reducing it to solving a linear system of equations.
Our techniques are much more direct, requiring only the efficient power series composition and

reversion of [8, 13] and straightforward rational function simplification.

Iesults:

In this paper we present a combination of both algebraic and numerical techniques to achieve
local parameterizations about singular points of algebraic curves. We show how to obtain real
Weierstrass and Newton power series factorizations using the technique of Hensel lifting. These,

together with rational Padé approximations, are used to efficiently construct locally approximate,



rational parametric representations for all real branches of an algebraic plane curve about its singu-
larities. Next we use power series composition and reversion techniques together with rational Padé
approximations to efficiently construct locally approximate implicit and inverse representations for
parametric algebraic plane curves. Extensions are then given to construct locally approximate, ra-
tional parameterizations, implicitizations and inversions for branches of surface intersection space

curves. Implementations of these methods and our experiences with them are also discussed.

2 Power Series Computations

2.1 Hensel Lifting

Consider f(z,¥) of degree n. Assume it is monic in y . Otherwise, factor out the largest common

power of z amongst the terms of f.
fz,y) = hly) + AWz + - + fly)zs® + -

We wish to compute real power series factors g(z,y) and h(z,y) where f(z,y) = g(z,¥)h(z,¥).

The technique of Hensel lifting allows one to reconstruct the power series factors

9z,9) = g¥) + aly)s + -~ + gyt + ---
Aa,y) = ho(¥) + m@)e + o+ Ai()e + - (1)

from initial factors f(0,%) = fo(¥) = go(y)ho(y)-

Consider the factorization of f(0,%) = fo(y) as the base case of & = 0. Assume fo(y) is of
degree 7. Choose real coprime factors go(y) of degree p and ho(y) of degree g satisfying: p+ ¢ = n.
Real coprimeness is achieved by ensuring that go and ko contain distinct real roots of fp and that
complex conjugate pairs are not split up. For the case n = 2 however, it may arise that the only
coprime factors of fo are complex, i.e., the distinct roots are complex conjugates. In that case
there only exist complex power series solutions. Since GCD(ga(y),ho(y)) = 1 using the fast GCD
algorithm we can also compute a(y) and (y) such that a(y)go(y) + Bwho(y) = 1

In the iterative Case of & > 1, we compute gx(y) and hg(y) of the desired factorization (1),

with degree of gi(y) < pand degree of hi(y) < g, as follows. We note from (1) that

A = Y. gilwhi()

i+ =k
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and additionally

) - Y a(mhi(v) = go(w)hi(y) + ho(w)ei(y) (2)
1 < kA < k
Hence,
ry) = @Al - D, @@®hi)]
P < kaj < k
aly) = BWHW - X @@k
i< kg < k

If degree R5(y) > g then compute hx(y) = hi(y) mod ho(y) and set gi(y) = 7(¥)go(y) + gi(¥)
where hi(y) = 7(¥)ho(y) + Aily)-

A - Y ahi®) = so@)he) + holv)an() (3)

i< kAj < k
Clearly degree hy(y) is < g. Additionally in (3) the degree of gx(y) must also be < p. This is so
because in (3) the degree of the LHS is < n and since degree go(y}hi(y) is < » and degree ho(y) is

= g, it must be that degree gr(y) Is < p.

Similarly if degree gi(y) = p then compute gi(y) = gi(¥) mod go(y) and set Ax(y) = §(¥)ho(y)+
h;(y) where gz(¥) = 6(3)90(y) + g(¥). Again, from similar degree arguments as above, is easily

seen that the degree bounds of hr(y) and gr(y) are met.

2.2 ‘Weierstrass Factorization

Consider f(z,y) with degree » and ordy f(0,y) = & < oco. Anord, f(0,y) = oo corresponds
to f(0,y) = 0. This can easily be rectifid by a simple linear transformation of Ff(z,), which yields
a nonzero f(0,¥)} and hence a finite ord, £(0,3). We wish to compute a power series factorization

of the form f(z,7¥) = g(=, ) (°* + aq_1(z)y?t + .-+ + ap(z)) where g(z,y) is 2 unit power

h(z,9)
series, i.e., g(0,0) 5 0 while h(z, ) is 2 polynomial in y with coefficients a;(z}, ¢ =0...n — 1 being

non-unit power series, i.e., ¢;(0) = 0. Such a factorization is known as a Weierstrass preparation
and is always possible as we now show.

The Weierstrass preparation can efficiently be achieved via Hensel Lifting. Given
fz,y) = fo@) + Alp)z + - + fly)z" + -+

with

f0,9) = foly) = (@0 + @y + ) ¥
go(y) ho(y)




in general for ¥ > 1, we wish to compute k(y) and g(y) using Hensel, yielding factors similar to

to (1) such that

A - Y a@hiy) = so@he(y) + vior(y)
T < RAF <k
with degree h(y) < d.

Tel) — 2ot < waj < x5i(}R5(0)
go(v)

of A(y) with degree < d and gr(y) = Terms of A(y) with degree > d.

and then set hg(y) = Terms

To achieve this we compute A(y) =

2.3 Newton Factorization

Consider f(z,y), a monic polynomial in y of degree n, with coefficients polynomial or power series

or meromorphic series in z
f(z,9) = ¥ + anea(@)y" + -+ + ao(3)
Then it is possible to factor f{z,y) into linear factors

flz,y) = TL, (v — »(?))

with £ = ™ and m a positive integer and 7;({) power series or meromorphic series. This
factorization can also be achieved via Hensel lifting. We precondition the curve so that it admits

a non-trivial base factorization, i.e. having at least two coprime factors which can be lifted.
Step 1: Make a,_1(z) = 0 via substitution § = y + “—“‘n‘—m
Step 2: Ensure some an—;{(0) # 0fori > 2 via substitution § = ;ﬁr with A = mingi>n) T
and @; = ordzaqn-i(z). Then f(0,%) = fo(#) has at least two distinct roots.
Step §: Now use Hensel lifting to lift the factorization fo(§) = go(Dha(P) to f(z,¥) = gz, Hh(=, H)-

Repeat Steps 1-3 until all factors are linear or all real factors are obtained.

3 Local Parameterization

Consider an implicit plane algebraic curve f(z,y) = 0, with a singularity at the origin. (A singu-
larity can be translated to the origin by a straightforward linear transformation). To compute 2

focal parametric approximation of each of the curve’s branches incident at the origin, we execute

the following steps:



1. Compute a Weierstrass power series factorization of f(z,y) into f = gh, where g((z,y)) is 2
unit power series and A{(z))(y) is a polynomial in y with coefficients non-unit power series
in z. The equation A = 0 corresponds to the curve’s branches at the origin while the power

eries equation g = 0 corresponds to the portion of the plane curve away from the origin.

2. Recursively apply the Newton factorization to h((#))(y) till all factors are linear in y or
all real factors are obtained. FEach of these power series factors represent a local branch
patemeterization of the type z = t* and y = b;((#)) where b; is 2 power series. The minimum
of k and ordy(6;), say d, is known as the order of the branch, with ¢ > 1 implying a singular

branch or "place” of the curve.

3. For each distinct branch power series parameterization y = b;{(t)), compute a Padé€ rational

function approximation.

Consider next an algebraic space curve C, defined implicitly by two equations (fi(z,¥,2) = 0
and f3(z,¥,z) = 0), and having a singularity at the origin. To compute a local parametric

approximation of each of the curve’s branches incident at the origin, we execute the following
steps:

1. Using birational projection techniques of [4], construct a projected plane curve P : fa(z,y)

and an inverse rational map z = F(z,y) from points on P to points on C.

2. Apply the steps 1., 2., and 3., of the plane curve parameterization algorithm above, to P, to
compute all branch parameterizations and local rational Padé approximants. Next use the

inverse rational map to yield the local parameterizations of all branches of the space curve at

the origin.

4 Local Implicitization

Consider a rational parametric plane curve given by (z = Hi(t), y = Hz(?)) where H, and

H, are rational functions over the Reals. To compute a local implicit approximation of the curve

around the origin, we execute the following steps:

1. Let 75 = z = H (1) wherek = ordy(H;) = power of the lowest degree term of the power

series expansion of the rational [unction. (Wlg we assume ord,H: = k > ordiHy = ¢, for

otherwise we can switch the roles of z and y ).



2. Compute 7 = (H;)M*F = q((t)) = power series of order 1.

3. Next invert the power series equation 1 = g1((2)) to yield ¢ = g7*((r)) . This yields
(z = %, y = Hag7'((7))) = 9((7)), where ord, gz = ord Hs = L.

4. Now if £ = 1 then invert y = g2((r)) to yield 7 = g;'((v)), and construct a suitable

Padé rational function approximant + = Hz(y). The local implicit approximation is then

z— H3(y)=0.
_ . 12 gm{l
5. When £ > 1 then let m = least common multiple of £ ard k, and compute %ﬂ' =

=x=(1+ ¢7 + - )™ = g3((r)), a power series of order 1. Note T and T are
both integers. Next, compute the inverse power series, 7 = g3 1{(x)), followed by the
rational Padé approximant computation to yield r = G{(x) = G(y™*}z™/*) where G is a
rational function. The local implicit approximation is then the polynomial simplification of

the expression ¢ — G¥(x) = 0.

Next, consider a rational parametric space curve given by (z = Hi(#), y = Ha(t), z = Hs(?))
where Hy, H, and H3 are rational functions over the Reals. To compute a local implicit approx-
imation of the curve around the origin, we execute the steps 1. to 5. of the above algorithm for
the plane curve case, twice. Once for (z = Hi(t), ¥ = Ha(t)) to yield a local implicit equation
fi(z,y) = 0, and then for (z = Hi(2), z = Ha(t)) to yield a local implicit equation fz(s,z) = 0.
Of course steps 1. and 2. are not repeated. The implicit equations f, =0 and fz = 0 are cylinders,

containing the space curve C, locally about the origin.

5 Local Inversion

To locally invert a parameterization (z = Hi(?), ¥ = H2(t)) a2bout the origin we compute the

following:

1. First execute steps 1., 2. and 3. of the last section. Then, as before, let (z = *, y = Ha(o7 (7))

= go(())) Tepresent a branch of the curve through the origin and let ¢ = ordyg2((7))-

2. Now if £ = 1 then jnvert y = g2((7)) toyield 7 = gz ((»)) = g3((¥))- Furthermore,
r = z2g%((y)) = zGa(y), where gi((y)) is the reciprocal power series of ga, and Ga(y) an

appropriate Padé approximant of gk. Now, {rom step 3. of the last section we know that



t = g7}{(r)), from which we construct a suitable Padé rational function approximant
t = Gy(r). The local inversion formula is then t = G1(Ga(2,%)) = G(z,y), where G is a

rational function.

- : . mie gl
3. When £ > 1 then let m = least common multiple of £ and k, and compute X0x = =
=xk=(1 + ar + -y = g5((r)), a power series of order 1. Note 7 and F are
both integers. Next, compute the inverse power series, 7 = g51((x)), as well as construct

t = g7(g5 (())). This is followed by the rational Padé approximant computation to yield

the local inversion formula t = G(x) = G{y™/! /z™/%) where G is a rational function.

Next, consider a rational parametric space curve given by (¢ = H (1), y = Ha(t), z = H3(?))
where Hy, Hy and Hz are rational functions over the Reals. To compute a local inversion formula of
the curve around the origin, we execute the steps 1. to 3. of the above algorithm for the plane curve
case, twice, without repeating any identical substeps. Once for (z = Hi(2), y = Ha(2)) to yield a
local inversion formula ¢ = G,(z,%), 2nd then for (z = Hi(f), # = Hs(1)) to yield alocal inversion

formula t = Gy(z,7). A local inversion formula for the space curve then is ¢ = gE- = G(z,y)

6 Implementation Issues

The algorithms of sections 3, 4, and 5 have been implemented as part of an interactive algebraic
geometry package, on a Symbolics Lisp machine using Common Lisp and C. The Hensel power
series computations of section 2.1, as well as its use in sections 2.2, and 2.3 are based on a robust
implementation of the fast euclidean HGCD algorithm [2, 7]. Rational Padé approximants are also
computed based on the same HGCD algorithm, [7]. Power Series aze stored as truncated sparse
polynomials, as are the original algebraic curves, viz., a list of degree, variable list and term list,
with nonzero terms stored as coefficient and exponents. Floating point coeflicients are allowed
in the input curve representations, which are then converted to rational numbers for the GCD
and power series computations. In Newton factorizations, user options are provided to compute
only real branch factorizations. This is achieved by not allowing complex conjugate roots of the

appropriate univariate polynomial, to split in tlie base case of the Henselian computation.

Examples from the software implementation, are shown in Figures 1. 2. and 3. at the end of
the paper. Figure 1.1 shows an implicitly defined quartic plane curve with a tacnodal singularity at

the origin. The corresponding Figure 1.2 shows the local parameterization of the two real branches




at the origin, as well as a (2,3) Padé approximations. Figures 2.1 and 2.2 and Figures 3.1 and 3.2

are other similar examples of quartic and sextic curves.

7 Conclusions and Future Research

The results of this paper are being extended to deal with power series computations in two or more
variables. These would yield a faster solution to the branch factorizations and local parameteriza-
tion of space curves, since the power series expansions of an implicit algebraic surface, about a point
of interest, can then be directly substituted into the_other implicit surface equation of the implicitly
defined space curve. Note, that the methods of section 2. work even if the input equations are

power series, as would be the case then.

In particular then, our future goals are to efficiently compute

1. Power series expansions about singular points and curves on surfaces, to yield bivariate local

parameterization, implicitization and inversion algorithms.

2. Generate suitable expansion points and curves for a piecewise rational surface approximation.

Acknowledgements: 1 wish to thank Professor Abhyankar for many useful explanations on singu-
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2. Y o 1,0¢T -B.56652397¢T"2

-8.57733@3 -@,.56108614T -@.25552162¢T
~2 +0.816538000:1°3
Ke 1,007

3. Y = 1.0sT +0.56652397¢7"2

@.5773503 ~9.061AB614eT +0.2555310241
"2 +b. uummummmw-)mq
R = Bt

HIL

o.v_:az.__.n Em_u _.,..u nm:n.w 3

Hindou 19

To aap othar commancla, prons Shift, tontrol, Hetn-5Shitt, or Supar.

[Had 4 Oct 9152:55] bsjaj CL USER)

User Inpuk

Figure 2.2
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Uindauw 5

(zz + 3."2)3 _ 4223’,2 =10

Figure 3.1




i8

1.

;L L X 5 X < X <= x
n

¥o

x
n

1.8e7
=1.4142135¢T
1.8¢7172
1.4142135:%
1.8:772
-1.4142135:7
-1,2x7"2
1.41421352T
=1.e7 2

1,827"2

-1

+0.530330061T"3 +D.165720

=6,53933005: 173 -0.165728

+8,528330B6t1"3 +B,1E65728

-08.53033006¢T"3 -0.165728

$$54 Mould you 1ike ko continue?
{Yes er Ho) Yes

The corresponding (3,3) Pade appronimants are

2.0
1.007

1.0:772

-2.9
1.8:F

1.8¢T7 -B,E87433942T73

-0.7071868 +0,22897BE5tT"2

1.0x7°2

1.92T -B.68749994x7°3

0.7071068 -0.22097005:T°2

1.88T7°2

1.8¢T -B8.6087499942T7"3

-8,7871960 +0.22097005¢T"2

1.80772

-1.8

1,017 -@.6074599427"3

©.78718608 -0,22097005¢T°2

1.00772

-1.8

Dynamic Lisp Liatener 3
Houso=A: Manu.

To see okthar commuonds, prooo Shift, Control, Meta=Shitt, or Supar.

[(Hed 4 Dek 3158:19]

Kayboard CL UEER1

Uaer Input

Figure 3.2






