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For an irreducible algebraic space curve C that is implicitly defined as the intersection of two algebraic
surfaces, f(x, v, 2) = 0 and g(x, ¥, 2) = 0, there always exists a birational correspondence between the
points of C and the points of an irreducible plane curve P, whose genus is the same as that of C. Thus
C is rational iff the genus of P is zero. Given an irreducible space curve C = (f N g), with f and g not
tangent along C, we present a method of obtaining a projected irreducible plane curve P together
with birational maps between the points of P and C. Together with [4], this method yields an
algorithm to compute the genus of C, and if the genus is zero, the rational parametric equations for
C. As a biproduct, this method also yields the implicit and parametric equations of a rational surface
S containing the space curve C.

The birational mappings of implicitly defined space curves find numerous applications in geometric
modeling and computer graphics since they provide an efficient way of manipulating curves in space
by processing curves in the plane. Additionally, having rational surfaces containing C yields a simple
way of generating related families of rational space curves.

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Complexity]:
Numerical Algorithms and Problems—computations on polynomials; 1.1.2 [Algebric Manipula-
tion]: Algorithms—algebraic aigorithms; 1.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—geometric algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Computer-aided design, parametric curves

1. INTRODUCTION

Consider an irreducible algebraic space curve C that is implicitly defined as the
intersection of two algebraic surfaces f (x, v, z) = 0 and g (x, y, z) = 0. We concern
ourselves with space curves defined by two surfaces since they are of direct
interest to applications in geometric modeling and computer graphics (e.g., [7]).
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Irreducible space curves in general, defined by more than two surfaces, are
difficult to handle equationally, and one needs to resort to computationally
intensive ideal-theoretic methods [9]. However general space curves is a topic
with various unresolved issues of mathematical and nnmnnfnhgnal interest and
an area of important future research (e.g., [1]).

Now for an irreducible algebraic space curve C as above, there always exists a
birational correspondence between the points of C and the points of an irreducible
plane curve P whose genus is the same as that of C (see [19] and [20]). Birational
correspondence between €' and P means that the points of C can be given by
rational functions of points of P and vice versa (i.e., a 1-to-1 mapping, except for
a finite number of exceptional points of C and P).

In this paper we show how, given an irreducible space curve C, defined implicitly
as the transversal intersection of two algebraic surfaces f and g (i.e., f and ¢ are
not tangent along C), one is able to construct the equation of a plane curve P
and birational maps between the points of P and C. These birational maps,
together with the method of computing the genus and rational parameterization
of algeuraic pu‘ii‘le curves [L: j, then grv'es an mgOﬁbhul to compute the genus of
the space curve C, and if genus = 0, the rational parametric equations of C.

As a first attempt in constructing P, we may consider the projection of the
space curve C along any of the coordinate axes yielding a plane curve whose
points are in correspondence with the points of C. Projecting C along, say, the
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them as polynomials in z, yielding a single polynomial in x and y, the coefficients
of f and g. The Sylvester resultant eliminates one affine variable, in this case z,
from two polynomial equations (e.g., [15]). Efficient methods are known for
computing this resultant for polynomials in any number of variables (e.g., [11]).
The Sylvester resultant of f and g thus defines a plane algebraic curve P, However,
this projected plane curve P in general is not in birational correspondence with
the space curve C. For a chosen projection direction it is quite possible that most
points of P may correspond to more than one point of C (i.e., a muitipie covering
of P by C), and hence the two curves are then not birationally related. See
Figures 1, 2, and 4. This approach may be rectified, as explained in Section 2, by
choosing a valid projection direction that yields a birationally related, projected
plane curve P. See Figures 1 and 3. Further, the inverse rational map from the
projected plane curve P to the original space curve C can also be efficiently
constructed. Let the proper projected plane curve P be defined by the polynomial
h(%, ). The map from C to P is linear and is given trivially by ¥ = x and y = y
(or related by a linear transformation as shown in Section 2). T'o construct the
reverse rational map one only needs to compute z = I(%, y) where [ is a rational

function. We show in Section 3 how it is alwavs possible to construct this rational
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function by use of a polynomial remainder sequence along a chosen valid
projection direction. In fact the resultant is no more than the end result of a
polynomial remainder sequence (see [6] and [14]).

The reverse rational map, z = I(%, y) where I is a rational function, is also the
rational parametric equation of a rational surface containing the space curve C.

Hence, constructing a birational mapping between space and plane curves that
always exist, also yields an explicit rational surface containing the space curve.
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Fig. 1. SpacecurveC: (f=z2+x2=~1Ng=2+y%-1).
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. 2. Y axis projection P: (x? + 22 — 1)?

By an explicit rational surface we mean one with a known or trivially derivable
rational parameterization. For irreducible space curves C, a method of obtaining
an explicit rational surface containing C is given (without proof) in [18]. Garrity
and Warren [12] have also recently presented a general method of constructing
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tiation arguments. The techniques presented in this paper differ in their choice
of birational projections, as well as in their use of subresultant polynomial
remainder sequences, to efficiently construct both a reverse rational map as well
as an explicit rational surface containing C.
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Fig. 3. Birationally projected P: (8y% — 4x,3, + 5x} —
9)(8y% + 12x,y, + Hx¥—- 1) = 0.

Note additionally, that knowing the rational parametric equations of a rational
surface containing a space curve also yields a birational mapping between points
on the space curve and a plane curve. Namely, if one of the two surfaces f or g
defining the space curve C, or actually any known surface in I(C) = I(f, g), the
Ideal® of the curve C generated by f and g, is rational and with a known rational
parameterization, then points on C are easily mapped to a single polynomial
equation h(s, t) = 0 describing a plane curve P in the parametric plane s — ¢
of the rational surface. This mapping between the (x, y, ) points of C and the
(s, t) points of P is birational with the reverse rational map from points on P to
points on C being given by the parametric equations of the rational surface. For
space curves C that have a quadric or a rational cubic surface in its Ideal, the

plane curve P and the rational mapping from points on P to C are then easily
constructed by using known techniques for parameterizing these rational surfaces
(see [2], [3], and [17]).

The rest of this paper is structured as follows. Section 2 describes a method of
choosing a valid direction of projection for the space curve C. This yields a
projected plane curve P in birational correspondence to C. Using these results,

Section 3 describes a method of constructing the reverse rational map between

noints on the n]nnn curve P and noints on
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2. VALID PROJECTION DIRECTION

To find an appropriate axis of projection, the following general procedure may
be adopted. Consider the general linear transformation x = ayx; + by + 12y,
¥ = @x; + by + €224, and z = asx; + by, + c€32,. On substituting into the
equations of the two surfaces defining the space curve, we obtain the transformed

YI(f, 8) = {hi(x, ¥, 2) | h = af + B¢ for any polynomials a(x, y, 2) and 8(x, , 2)}.
ACM Transactions on Graphics, Vol. 8, No. 4, October 1989.



Fig. 4. Z axis projection P: (y? — x2)2 = 0.

equations f;(xy, y1, 21) = 0 and gi(x,, ¥, z1) = 0. Next compute the Res, (f,, g1),
which is a polynomial h(x;, y,) describing the projection along the Z axis of the
space curve C onto the z = 0 plane.

Since C is irreducible and f and g are not tangent along C, the order of
h(x,, ¥,) is exactly equal to the projection degree (see [1] and [20]). By order
of h(x;, v,) we mean k if h(x;, ¥1) = (g(x1, ¥1))% see Figures 1 and 4. For a
birational mapping we desire a projection degree equal to one; see Figures 1 and
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(2) the equation of the projected plane curve h(x;, y;) is not a power of an
irreducible polynomial. This can be achieved by ensuring that the discrimi-
nant Res, (h;, h.) is nonzero.
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Note, a random choice of coefficients, or coefficients with sufficient bit length,
would also work with probability 1 since the set of coefficients that make the

determinant and Res., (A1, k. ) equal to zero are restricted to the points of a lower
dimensional hypersurface. See [16] where the notion of randomized computations
with algebraic varieties is made precise. A suitable random choice of coefficients
thus ensures that the projected irreducible plane curve given by h(x;, y;) is in
birational correspondence with the irreducible space curve and thus of the same
genus. The parameterization methods of Abhyankar and Bajaj [4] for algebraic
plane curves are now applicable and thereby yield a genus computation as well

as an algorithm for rationally parameterizing the space curve.

Example 2.1 Let the given irreducible space curve C be defined as the
transversal intersection of two equal radius circular cylinders f = 22 + x? — 1
and g = 2% + y® — 1. The curve is irreducible and consists of two intersecting
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ellipses in the planes y = x and y = —x; see Figure 1. The resultant Res,(f, g) =
(y? — x*)* = 0 is the equation of the projected plane curve P and consists of two
lines y — x = 0 and y + x = 0 both repeated twice; see Figure 3. The projection
map between C and P here is thus two to one and not a valid projection. This
occurs since the z axis, our axis of projection, is contained in the planes containing
the curve C. Similarly, projecting along the y axis yields the plane curve P given

he: Roaag (£ o) = {.,2 4 22 1\2 =0 whish aoain not 2 valid nealentinn Ha
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two ellipses of the space curve C overlap in the projected plane curve P to again
yield a two-to-one mapping between C and P. See Figure 2. A suitable linear
transformation,

x=x—2*+2z, y=y1+2z, and z=2x 2
yields

£ = Q . — 1 and 4 2 L0 4 oa o a2
J1 = O % & L aliu - v 1T & F y1 * &) J1
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whose resultant
Res, (f1,8) =64 xyi+64xx, Y3+ 32+ 27+ yI—80+yi+40xx3xy,
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=8xyl —4+xxy +5xxi—9)(Bxy} +12xx;xy, + 528~ 1),

defines two distinct ellipses in the plane, that is, a projection map which is one
to one. Note, the projected plane curves are ellipses of different shape since we
are not restricted to using only orthogonal linear transformations.

n AMAIOTI NTIALS TLIE DINATIARIAL RAAD
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We choose a valid projection direction by using the method described in the

ear] ier section. Without loss of generality let this direction be the Z axis. Let the
urfaces f(x,y,2) =0 and g{x, y, z) = 0 be of degrees m, and m; in z, respectively.
Again, without loss of generality, assume m; = m,. Let F;, = f(x, v, 2z) and

F, = g{x, v, z) be given by

Fi=fez™+ fiz™m 7+ oo + fr 12 + fm,
(1)
Fo=gozm™ + 2™ + -+ + gnp12 + 8m,
where f;, (j =0 --- m,y) and g, (# = 0 --- my) are polynomials in x, y. Then
there exist polynomials Fi.»(x, v, 2) for i = 1 --. r such that B, Fi., = A F; —
Q.F:.1, where m;,,, the degree of z in F,.,, is less than m,,,, the degree of z in
F;,,, for certain polynomials A;(x, y), Bi(x, v), and Q:(x, ¥, 2). The sequence of
polynomials F;, i = 1, 2, ..., k is naturally known as a generalized polynomial
(

remainder sequence PQ\
37

mainder sequence (PR
describe.

Let lc(F) denote the leading coefficient of a polynomial F(x, v, z), viewed as a
polynomial in 2, (i.e., a coefficient of term with highest z degree). Further let c;
ACM Transactions on Graphics, Vol. 8, No. 4, October 1989.
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denote lc(F;). To compute F;,, from F; and F;,, we first begin with R? = F; and
then,

for k=1,...,m—mia +1
iflc(RF) =0
(2)
then R! = R

else R* = ¢;,,R¥™" — zm ™t~k (RF ) Fiy,y

The polynomial R~ ™+*! ig known as the sparse pseudoremainder of F; and
F;.;. Using Collin’s reduced PRS method [10], one constructs the polynomial
Fip=RPmn*1/d;_ where do = 1 and d; = c2 ™+ ", Using Brown’s subresultant

PRS scheme [8], one constructs the polynomial
Fiyp = (1) ™ mn* (R mim ™ o B mim),

where E,,, = 1 and E,,, = ¢"™/ERi-~™~ As shown by Loos [14], both the
above methods, as well as others, follow naturally from the subresultant theorem
of Habicht [13].

Thus starting with polynomials F, and F;, one constructs the polynomial
remainder sequence, F,, F,, F;, ... F;, ... F, such that m, = the 2z degree of
F = 0 (i.e., F, being independent of z). We choose the subresultant PRS scheme

for its computational superiority and also because each F; =S, _,, 1 =i=<r,
whora Q. 10 tha bth cithraciiltant af B. and E. {caso IR T1D1 and [121)

where S, is the kth subresultant of F; and F; (see [8], [10], and [13]).

Now foranyi=1,...,r—2,if F; and F;,, are of degree greater than two and
F,. is independent of z, then the Z axis is not a valid projection direction. This
may be seen as follows. Since the Z axis was chosen as a valid projection direction,
the Res.[f(x, ¥, z), g(x, ¥, 2)] = Res,[F1, F;] = S, is nonzero and not a multiple
of some irreducible polynomial. This holds for any two surfaces F; and F,.; in
the PRS, all elements in the Ideal of C, generated by f and g. If any of the
elements F; of the PRS are multiples of some irreducible polynomial then so
would the resuitant, which is impossibie. To complete the argument, it remains
to see that by induction, if F;., and F; are of say degree three and two respectively
and F,.; is independent of z, then the Res,(F;—;, F;) is equal to some hi(x, y),
which is impossible.

Hence in the PRS, for a valid projection axis, there exists an element that
is linear in z, that is, Fi_y = 28,{(x, ¥} — ®,{x, y) = 0. Thus on computing the
PRS and obtaining F,_;, one is able to construct the required inverse map, z =
®,(x, y)/¥:(x, y), which is also a rational surface containing the space curve.
The rational parameterization of this rational surface is trivially given by x = s,
y =t, and z = ®,(s, t)/®i(x, t). Note that the two coefficients &, and &, of
F._, cannot have a common factor divisible by the resultant F,, for then F,,
which is the pseudoremainder of F,_, and F,_,, would again contain a factor
raised to a certain power.

Example 3.1 Let the given irreducible space curve C be defined as the
transversal intersectionof f=F, =2°+ 4+ z+ y*andg=F, =2+ 2 x 2 + x%;
see Figure 5. Computing the subresultant PRS yields F; = (8 — %) = 2 +
@Qsx2+y)and F,=y*+ 6+ x2»y2— 16 * y® + x® — 8 = x* + 32 = x% The

ACM Transactions on Graphics, Vol. 8, No. 4, October 1989.
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Fig.5. Spacecurve C: (f=2+4z+y?Ng=2%+ 2z + x2).
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Fig. 6. Birationally projected P: y* + 6x%y% — 16y? + x° — 8x* + 32x2
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resultant Res,(f, g) = F; = 0 is the equation of the projected plane curve P and

is square free; see Figure 6. The rational surface containing the curve C is
F.=0or n]fnrnaﬁvnly given by (x=sy= t,andz= (2 » s 4+ tz)//(g — tz))

L3 VUL QLLTlIlauivVe J

Example 3.2 Let the given irreducible space curve C be defined as in Example
2.1. For the given f=F, = 2> + x> — 1 and g = F, = 2> + y? — 1 computing

the subresultant PRS yields F3 = 0 * z + (—x2 + y?), and hence the z axis is
not a valid projection direction. For the transformed space, under the linear

transformation
x=2x— 2=z, y =y + 2, 2=2=2z,
i=F =82 —4+x, %2 +xi—1,
and

sGi=F=5+22+2«y; x 2 +y?—1.
ACM Transactions on Graphics, Vol. 8, No. 4, October 1989.
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The subresultant PRS yields
F3=20*x+16*y) xz+ (-5 xxZ2+8+y2—3)
and
F,=64 xyt+64+x +y3+32+x2+y2—80+y3+40x*x3*y
—104*x1*y1+25*x§f—50*x§+9

=8sxyl—4+x,+y +5+xf—9)8 « 12*x1*y1+5* xf—1)

PRUTETS IR DIDRUII U LY SR IR MY U o o) PRI . N [N . NIRRT . SIS 4Ll curve
LI esulidnt Of 1 dnua g, as pelore. 11ne ratione Ulldbc bUIlLdllllllg e Cury
Cis Fy = 0, or alternatively given by (x =s, y=t,and z = (=5 + s2 + 8 + 2 —

3)/(20 * s + 16 * t)).

4. CONCLUSION

The assumption that the above space curve C is irreducible stemmed from our
primary motivation of parameterizing implicitly defined space curves. However,
the irreducibility assumption is not necessary for the methods of Sections 2 and
3, and the algorithms presented there for constructing birational maps apply
directly for reducible space curves as well. One chooses a valid projection direction
as before b 0y making the discriminant of the pIOjGCocu yu’ine curve P to be
nonzero, which also ensures that two or more space curve components do not get
projected over the same plane curve component. (See again Example 2.1 of
Section 2).

One limitation of our method, however, is the assumption of nontangency of
the surfaces f and g meeting along the space curve C. This has recently been
removed by the method of Garrity and Warren [12] using bivariate polynomial
GCD and division computations to achieve squarefree polynomials for the pro-
jected plane curve P. However, the problem of finding computationally efficient
algorithms to construct birational maps for space curves, defined implicitly as

the intersection of two parametric surfaces, remains open.
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