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Abstract

Research in geometric modeling is currentiy engaged in increasing the geometric coverage to
allow modeling operations on arbitrary algebraic surfaces. Operations on models often include
Boolean set operations (intersection, union), sweeps and convelutions, convex hull computa-
tions, primitive decomposition, surface and volume mesh generation, caleulation of surface area
and volumetric properties, ete. From these arise a number of basic problems for which effective
and robust solutions need to be obtained. We need to devise methods lor unambiguocus algebraic
surface model representations, for converting between alternate internal algebraic curve and sur-
face representations such as the implicit and the parametric, for intersecting algebraic surfaces
and topologically analyzing the inherent singularities of their high degree curve components,
for sorting points along algebraic curves, for minimum distance and commeon tangent compu-
tations between algebraic curves and surfaces, for containment classifications of algebriac curve
segments and algebraic surface patches, etc. Computationally efficient algorithms for all these
problems necessitate combining results from algorithmic algebraic geometry, computer algebra,
computational geometry and numerical approximation theory. In this paper we present and
discuss various such algorithms and approaches for geometric models with algebraic surfaces.
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contract N00014-88-K-0402. Invited Paper at ?The Mathematics of Surfaces III", Oxford University, Oxford, UK,
September 19 - 21, 1988.



1 Introduction

While the geometric capabilities of modeling systems have evolved over the years, current day mod-
elers are nevertheless beset by common problems stemming from the use of inadequate algerithms,
ill-conditioned numerical calculations and inconsistent topological decisions. Part of these woes
arise from a naive choice of the modeling curve and surface elements. To combat poor approxima-
tions and achieve greater accuracy, geometric modeling systems either restrict the algebraic degree
of its allowed surfaces to be planar [23, 102] at the expense of enormous size complexities of model
descriptions [37] ; or quadrics [60, 65, 72], however, with the inability of allowing quadric - quadric
intersection surface blends {30, 100] ; or parametric patches of various types [25, 32, 35, 46, 47, 63,
68, 78] . The restriction only to parametric surfaces, a subset of algebraic surfaces, leads one to
model at times with prohibitively higher degree surface elements than necessary and furthermore
the non-closure of parametrics under sweep and convolution operations [19], necessitates approxi-
matjons for modeling the results of such operations. For example, designers using only parametric
surfaces usually jump to the flexibility of bicubic parametric patches (possibly of algebraic degree
18) for various smoothness and tangency requirements, on finding that planar, quadratic and cubic
parametric patches (of algebraic degrees 1, 4 and 9, respectivley) are inadequate, see [85]. Not con-
sidering general {non-rational) algebraic surfacé of intermediate degree, is clearly too restrictive a

design limitation.

In this paper we present the computational viability of geometric operations on models of
solid physical objects with arbitrary algebraic surface boundary patches. The class of algebraic
surfaces [104], a subset of arbitrary analytic surfaces, provide encugh generality to accurately
model almost all complex rigid objects. Additionally, algebraic curves and surfaces have compact
storage representations and form a class which is complete under all common operations required
by a geometric modeling system. Further representing physical objects with algebraic surfaces
encompasscs all prior modeling approaches [71].

Geometric modeling with algebraic surfaces requires effective and robust algorithms for a wide
variety of basic operations. In this paper we present effective methods for urambiguous model
representations, for converting between alternate internal representations of algebraic curves and
surfaces such as the implicit and the parametric, for computing solutions of systems of polynomial
equations, for intersecting algebraic surfaces and analyzing the inherent singularities of their high

degree curve components. etc. These algorithms combine techniques from algorithmic algebraic




geometry, computer algebra, computational geometry and rumerical approximation theory.

Section 2 details definitions and mathematical preliminaries on algebraic curves and surfaces
relevant to algorithms in later sections. In Section 3 we present conversion algorithms between
implicit and parametric forms as a way of harnessing the advantages of both representations. In
Section 4 we consider the computation of solutions of systems of polvnomial equations. These arise
from the topological tracing of algebraic plane curves, the display of algebraic surfaces, the inter-
section of two algebraic curves or a pair of algebraic surfaces, the decomposition of algebraic curves
into convex segments, the intersection of three algebraic surfaces, etc. In Section 3 we present un-
ambiguous representations of solid models with algebraic surface patch boundaries. These include
an algebraic boundary model, a general constructive semi-algebraic description using boolean set
operations and a representation of the piecewise tangent space of a convex, algebraic-boundary
model, In Section 6 we consider the various algorithms invelving numerical calculation and topo-
logical reconstruction needed to execute boolean set operations on algebraic boundary models. In
Section 7 we deal with various decompostions of a complex, algebraic boundary model into simpler
and primitive pieces. In one form it also involves the question of converting from a boundary
description to a constructive geometry representation. Section 8 concerns the computation of the
smallest enclosing convex model (the convex hull) of an algebraic boundary model. Finally, Sec-
tion 9 presents algebraic algorithms for computing the sweep and convolution of convex algebraic
models and Section 10 highlights the numerous other geometric operations on solid models which

are worthy of greater attention and detail.

2 Mathematical Preliminaries

We present some details on the representation of algebraic curves and surfaces, together with some
fundamental elimination formulas for systems of polynomial equations. Facts on algebraic curve
and surface representations and information on their rationality can be gleaned from numerous
books and papers on analytic geometry, algebra and algebraic geometry, see for example { 2, 80,

81, 92, 97, 99, 104].



2.1 Algebraic Curves and Surfaces

An algebraic plane curve is implicitly defined by a single polynomial equation f(z,y) = 0. A
rational algebraic curve can additionally be defired by rational parametric equations which are
given as (z = Gy(u).y = Ga(u)), where Gy and G, are rational functions of u, i.e., each is
a quotient of polynomials in u. Similarly, an algebraic surface is implicitly defined by a single
polynomial equation f(z,¥y,z) = 0 and a rational algebraic surface is described by rational para-
metric equations (z = Gi(u,v),y = Ga(u,v),z = Ga(u,v)) where the G;, i = 1,2,3, are rational
funcrions. Finally, an algebraic space curve, defined by the intersection of two algebraic surfaces
can be given either as a pair of polynomial equations (fi(z,y,z) = 0 and fa(z,y,2) = 0)
or as two sets of parametric equations (z = Gi1(u1,m ),y = Gaa(u1,%),2 = G3a(u,v1)) and
(z = Gi2(u2,%2),y = Gaoo(ta, 1),z = Ga2(uz,v2)), where the G;;, i = 1,2,3, j = 1,2, are

rational functions.

Rational algebraic space curves are additionally representable as (z = Gi{u),y = Ga(u),z =
Ga(u)), where Gy, G2 and Gj3 are rational functions in z. In modeling the boundary of physical
objects it suffices to consider only space curves defined by the intersection of two surfaces. Space
curves in general can be defined by several surfaces, however this representation is difficult to
handle equationally and one needs then to resort to computationally less efficient ideal-theoretic
methods, see [27]. General space curves is a topic with various unresolved issues of mathematical

and computational interest and an area of future research, see [1}.

Rational curves and surfaces are only a subset of algebraic curves and surfaces of the same
degree. We illustrate this with some examples and also figures, see Figure 2.1.1, 2.1.2. Algorithms
dealing with rationality is the subject of Section 3. All degree two algebraic curves (conics), are
rational. For degree three algebraic curves (cubics): while all singular cubics are rational, the
nonsingular cubics only have a parameterization of the type which allows a single square root of
a rational function. Only small subsets of degree four and higher algebraic curves are rational.
For example, degree four curves (quartics) with a triple point or three double points and degree
five curves {quintics) with two triple points or six double points, etc., are rational. In general, a
necessary and sufficient condition for the rationality of an algebraic curve of arbitrary degree is
given by the Cayley-Riemann criterion: acurve is rational iff § = 0, where g, the genus of the
curve is a measure of the deficiency of the curve's singularities from its maximum allowable limit

[99). There exist algebraic curves of arbitrary genus, with (—d:-”zﬂ"—g—] being the maximum genus for




a plane curve of degree d.

It is sometimes useful and efficient to process a given algebraic space curve C by a corresponding
plane curve P if there is an invertible map between C and P. Fortunately there exists a birational
correspondence between the points of any algebraic space curve C and the points of a corresponding
plane curve P, whose genus is the same as that of C, see [1, 91, 99]. Birational correspondence
between C and P means that the points of C can be given by rational functions of points of P and
vice versa (i.e a 1-1 mapping, except for a finize number of exceptional points, between points of
C and P). Hence the genus of a space curve and its criterion for rationality is the same as that of

a birationally equivalent plane curve.

Exarnples of rational algebraic surfaces of degrees two, three and four are ilustrated in Figure
2.1.3, 2.1.4. All degree two algebraic surfaces are rational. All degree three surfaces, except the
cylinders of nonsingular cubic curves and the cubic cone, have a rational parameterization, with
the exceptions again onlv having a parameterization of the type which allows a single square root
of rational functions. Most algebraic surfaces of degree four and higher are not rational, although
parameterizable subclasses can be identified. For example, degree four surfaces with a triple point
such as the Steiner surfaces or degree four surfaces with a double curve such as the Plucker surfaces
are rational. In general, a necessary and sufficient condition for the rationality of an algebraic
surface of arbitrary degree is given by Castelnuovo’s criterion: F, = P, = 0, where P, is the

arithmetic genus and P, is the second plurigenus [104].

2.2 Desingularization

Often local information, say near the origin, about an algebraic plane curve f(z,y) = 0 curve is
useful. The order form of f contains information about the curve’s behavior at the origin, It is
the homogeneous polynomial F(z, ) consisting of the terms of lowest degree in f. When the order
form is linear, then the curve f is said to have a simple point at the origin. Otherwise the curve
is singular at the origin. When the order form is nonlinear then the order of the singularity at the
origin is the degree of F. Moreover, the linear factors of F are equations of the tangents of the
curve at the origin. For example, if f(z,y) = 2 +22%y% + y* + 322y — ° then F(z,y) = 32y — ¢°
and the singularity at the origin is of the third order. Further the equations of the tangents of the

curve at the origin are y = 0, vV3z —y = 0 and v3z + y = 0. See also Figure 2.2.1 for 2 graph of

the curve f.



Of course non-singular curves are easier to analyze and more tractable in practical applications.
Fortunately, there is a method of transforming a curve so that a singular point on it becomes a sim-
ple point. Such desingularization of plane curves is based on the following classical Cayley-Riemann
Theorem: Every plane curve can be birationally transformed into a curve devoid of singularities.
For practical applications, there are proofs of this theorem which are constructive and actually de-
rive the needed birational transformation. This process is accomplished by a sequence of elementary

quadratic transformations, cf. [3, 99]. The quadratic transformation is:
T: z =r
y =rs (1)

with inverse

3 =y/z (2)

The basic properties of the above transformation can be summarized as follows: All points (z,¥)
with £ # 0 are mapped one-to-one to the r-s plane. All points (0,y) with y # 0 are mapped to
infinity. The pencil of directions through the origin, except the y-axis, is mapped to finite points
on the s-axis. Figure 2.2.2 illustrates an example of the quadratic_tra.nsformal'.ion T, applied to the
singular plane curve in Figure 2.2.1.

Space curves are the intersection of two surfaces and the point singularities of such curves are

cbaracterized from one or more of the following situztions ;
» The gradient of the two surfaces are parallel, e.g., at the origin for surface 2+ y* ~z3 =10
intersected with surface z + 22 — 32 — y° = 0.

¢ One of the surface gradients is zero, e.g., at the origin for eylinder y2 —z2 — £3 = 0 intersected

with the plane z = 0.
 Both the surface gradients are zero, e.g., at the origin for the cylinder y* — 22 — 23 = 0

intersected with the surface z2 — z% - 43 = 0.

Singular points on space curves are desingularized by transforming the defining surfaces, again

using quadratic transformations of the type



y =78

z =rt (3)

This quadratic transformation simplifies the origin, mapping it onto the plane z = 0. More compli-
cated singularities are simplified by applying these transformations repeatedly, together with linear

transformations,

2.3 Sylvester’s Resultant

Consider two homogeneous polynomials in X;, Xs, with degrees m > 0 and n > 0 respectively and
with coefficients from any euclidean ring!, i.e., sets which are closed under +, *, / and elements of

which have unique factorizations as well as greatest common divisors.

Fi(X1,X2) = @moX1™ + 8(mo)nX1™ ' Xo + - agm X" =0
F(X,X2) = bhioi"+ b[n—l).lxln_lxz 4t bgaX2" =0 (4)

In many situations one needs to know whether or not there are common solutions of F; and
Fy. For example, F1 and F% might represent two curves in the plane or two surfaces in space
and we may interested to know if they have any intersections. One can ascertain the existence
of common solutions by computing the Sylvester resultant SR(F,F,) of F; and F2. This SR is
det( M), the determinant of the (m + n) x (m + n) matrix M below, derived by multiplying F7 and
F, with suitable monomials leading to a linear system of equations in the unknown monomials;
it is a polynomial in the coefficients of F; and F, (see also for e.g., [80]). The vanishing of the
Sylvester resultant, i.e., SR{F},F2) = 0, is both a necessary and sufficient condition that Fy and

F5 have a common solution.

1Example euclidean rings are the rationals @, the real nﬁmbers IR, the complex numbers € and multivariate polyno-
mials defined over them Q[X], R{X], €[X]
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Efficient symbolic computation of the Sylvester resultant SR({F},F2), has been considered by
various authors: for real or complex coefficients see [26, 83] and for multivariate polynomial coeffi-

cients see [22, 33].

2.4 DMacaulay’s Resultant

If Fy, ..., F; are homogeneous polynomials in n variables, then the multivariate resultant MR (Fy, ..., Fy,)

is a polynomial in the coefficients of the F; that vanishes if and only if all the F; have a commeon
zero (see for eg., [98]). Geometrically, the multivariate resultant vanishes if and only if the n

hypersurfaces (F; = 0) have 2 common intersection in complex projective space [104].

In deriving the resultant, the F; are multiplied by suitable monomials to translate the problem
of determining whether the polynomials have a common zero, into a problem in linear algebra. A
matrix D is constructed whose entries are the coefficients of the Fj,..., Fr. However the derived
linear equations are not all independent and consequently the determinant of the matrix D properly
contains MR. Specifically, Macaulay in [62] shows that det{ D)} = dei(A)xMR. where A is an easily

derivable submatrix of D. Hence Macaulay’s resultant MR. is da‘%}.

In evaluating the resultant for particular values of the coefficients, the quotient must first be
computed symbolically, treating the coefficients as indeterminates. However, for thase values for
which the denominator de?(A) does not vanish, the symbolic coefficients may be specialized before
dividing. Additionally, using differentiation arguments, see [75], one may specialize the coefficients

and not encounter the problem of the vanishing denominator.

We now adapt from the method in [62] and show how the matrix D and the submatrix A

can be derived for the special case of three homogenous polyromials Fy, £5, F3 in three variables



X, X9, and X3. Let the degrees of Fi,f2 and F3 bem > 0, n > 0 and p > 0 respectively.
The need for the multivariate resultant for the case of three homogeneous polynomials arises in
computing the intersection points of three algebraic surfaces, in intersecting two parametric surfaces,

or implicitizing a parametric surface, as we shall see in Sections 3 and 4.

Define an ordering X3 < X2 < X3 and imagine a correspondence to exist between the variables
Xi, X2 and X3 and polynomials Fi, F; and F3 respectively. Let a homogeneous polynomial
F(X1,Xs, X4). with no monomial X;°X,7 Xa* divisible by X;™, be said to be reduced in X;. If
further F' has no monomials divisible by X2", it is said to be reduced in X; and X5 and so on. A

reduced polynomial F is one which is reduced in two of the three variables.

Nowlet d = m+ n+ p— 2. Form the homogeneous polvromial @ = 151 + F252 + Fa93 of
degree d, where §; is a polynomial of degree n 4+ p — 2, 57 is a polynomial of degree m + p — 2
reduced in X; and S3 is a polynomial of degree m + n — 2 reduced in X; and X;. Construct a

square matrix D of the coefficients of Fy, F3 and Fj as follows. Matrix D is of size N X V where the
m+ntp
2
. Multiply Fi, F2 and Fz in turn with each monomial from S5y, 52 and S3 respectively and write the

columns correspond to all the ¥ monomials of degree d. It is easily seen that ¥V =

corresponding coefficients under their corresponding monomials, thus giving a row of the matrix.
The number of rows is equal to the total number of monomials together in Sy, S2 and 3. This

number is also equal to N.

Finally, the submatrix A is obtained by deleting columns of D corresponding to monomials
reduced in any two of X7, X2 or X3 and the rows corresponding to £, F» and F; for all multipliers
reduced in X, , X3 for Fj, and X, X; for F3 and X, X, for F5. Stating it differently, A consists of

the rows and columns which correspond to the non-reduced multipliers and monomials, respectively.

3 Parametric v.s. Implicit Representations

Rationality of the algebraic curve or surface is a restriction where advantages are obtained from
having both the implicit and rational parametric representations [41, 45, 87]. While the rational
parametric form of representing a curve or surface allows greater ease for transformation and shape
control, the implicit form is preferred for testing whether a point is or the given curve or surface
and is further conducive to the direct application of algebraic techriques. Simpler algorithms are

possible when both representations are available. For example, a straightforward method exists for




computing curve - curve and surface - surface intersections when one of the curves, respectively

surfaces, is in its implicit form and the other in its parametric form.

3.1 Parameterization

Determining the rational parametric equations of implicitly defined algebraic curves and surfaces,
is a process known as parameterization. We present a sketch of the algorithms of degree two
and degree three curves and surfaces and give available references to published algorithms for
higher degree rational curves and surfaces. All of the described algorithms yield global rational
parameterizations in the traditional power basis. However, one may convert them, for instance, to
an equivalent Bernstein form by using appropriate power to Bernstein conversion algorithms, see

for instance [44].

3.1.1 Plane Curves

The idea of parameterizing a conic is to fix a simple point on the conic and take a one parameter
family (pencil) of lines through that peint. These intersect the conic in only one additional variable
point, vielding a rational parameterization. The intersection of lines through a point on the conic
can be efficiently achieved by a linear transformation, mapping the point to infinity along one of
the coordinate axis directions. The rational parameterization obtained then is of degree at most
2 and with parameter ¢ corresponding to the slopes of the lines through the point on the conic.
Further £ ranges from (—oo,c0) and covers the entire curve. Details of this algorithm are given in
[4).

The idea for parameterizing singular cubics is to take lines through the singular point on the
cubic. The actual algorithm is again based on mapping a point on the cubic to infinity, achieved by
simple transformations and furthermore the siﬁgula.r point is never explicitly computed. We sketch

some details : The general cubic implicit equation is given by
C(z, y) = az® + bz?y + cxy® + dy® + ez + fy* + goy + hz + iy + 5 (6)

The y? term can be eliminated through a linear coordinate transformation and using another linear

substitution tle cebic equation can be reduced to the form

2 = (%), degree g(z) < 4 (7)

=

10



We only need to analyze (7) and see if we can obtain a parametrization for £ and 7, for then using
the earlier linear transformations we can construct the parameterization for z and y. For the case

when ¢(Z) has multiple roots, we do the following. Suppose
d
7 = @ - w)3), d=1or2 (8)
i=1

so each root u; occurs an even number of times and Q%) has no multiple roots. Then if we let

o g
y = 1_[?:1(E - B ®
equation (7) reduces to
P = 9z) (10)

Note degree Q(Z) < 2, and the above equation is a conic and a rational parametrization is
always possible, as shown before. When g(Z) has all distinct roots, the cubic curve can be seen
to be nonsingular and hence does not have a rational parametrization. Non-singular cubics are
known as elliptic curves or curves of genus 1. However, by solving equation (7), quadratic in § a
parameterization for the non-singular cubic is obtained of the type that includes a single square

root of rational functions. Additional details of this algorithm are given in [5].

A method of computing the genus of algebraic plane curves of arbitrary degree is presented in [6}
together with parameterization algorithms applicable for curves of genus = 0. The parameterization
techniques, essentially, reduce to solving symbolically systems of homogeneous linear equations and

the computation of Sylvester resultants. Tests for the faithfulness of these parameterizations are

given in [8, $6].

3.1.2 Space Curves

Algorithms {or parameterizations have been given for intersection space curves of two quadric
surfaces in [60] where use is made of the fact that a pencil of quadrics contains a ruled surface and
in [65] where the algorithm is based on the the computation of eigenvalues of matrices of quadratic
forms.

The parameterization algorithms presented in (7] are applicable for irreducible rational space
curves C arising from the intersection of two algebraic surfaces of arbitrary degree. The technique
presented in [7] is essentailly 2 method of constructing a plane curve P along with a birational

mapping between the points of £ and the given space curve C. This together witl: 1ie results in [6)

11




gives an algorithm to compute the genus of C' and if genus = 0 the rational parametric equations
of C. Together with [8] it also gives a test for the faithfulness of space curve parameterizations.
A different method for computing a birational map between a plane curve P and a space curve C
as defined before, is also given in {43]. These methods are extended in [15] to compute birational
maps between a space curve C, defined by the intersection of two parametric surfaces and a plane

curve P in the parametric plane of one of the two surfaces.

3.1.3 Surfaces

The idea of parameterizing quadrics (or conicoids) is identical to the conics. The intersection of
lines through a point on the conicoid can again be efficiently achieved by a linear transformation,
mapping the point to infinity along one of the coordinate axis directions [4]. This method also
straightforwardly generalizes to yield the rational parameterization of conicoid hypersurfaces in

arbitrary n-dimensional space.

To construct the rational parametric equations of the cubicoid we need to generate two rational
curves (straight lines, comics or singular cubics) on its surface. Note all cubicoids, except the
eylinders of nonsingular cubic curves and the cubic cone, are rational. One algorithm for obtaining
two different rational curves on the cubicoid is to use the tangent plane intersection method of
[5], for two different simple (non-singular) points on the cubicoid. Alternatively, one can generate
two non-intersecting straight lines from the twenty seven lines on a cubicoid [88]. All possible
confizurations as well as the number of real and imaginary straight lines on cubicoids have been

accurately classified, see [24, 53, 89).

Let « and v correspond to independent parameterizations of two computed rational curves on
a cubicoid. Then the two parameter family (net) of lines defined by two varying points v and » (a
variable point z on one rational curve and a variable point v on the other), intersect the cubicoid
in one additional point. The equations describing the coordinates of this additional intersection
point are the rational parametric equations of the cubicoid. For two non-intersecting lines on the
cubicoid with independent parameterization parameters  and v, a point {z,y, z) on the rational
cubic surface can be seen to correspond to a single pair (u, v} yielding what is known as 2 faithful
parameterization or a 1-fold covering of the plane. Higher fold coverings are obtained for arbitrary
choices of rational curves on the cubicoid.

A method to test for the faithfulness of surface parameterizations is given in {15]. The tangent

12



planre algorithm also generalizes to parameterizing arbitrary degree d hypersurfaces (which are not

cylinders or cones), in n-dimensional space for d < n [13].

3.2 Implicitization

Y¥e now present algorithms for determining the implicit equation of parametrically defined algebraic
curves and surfaces, a process known as implicitization. The implicitization techniques described

here are general, and a2pply to arbitrary degree rational curves and surfaces.

3.2.1 Plane Curves

The implicitization of parametrically defined plane algebraic curves is achieved by eliminating the
parameter {rom the two parametric equations, see [36, 45, 76, 87]. More specifically, consider the

rational parametric representation of an algebraic plane curve:

. _ AW
f3(?)
0]
v = f3(t)

Here f3, fa and f3 are polynomials in ¢. To find the implicit equation kh{z,y) = 0 corresponding to
the above two equations we first homogenize the polynomials fi{f), f2(2), fa(f) with a homogeniz-
ing parameter w to yield homogeneous polynomials fi (2, w), fo(t,w), fa(t,w) and then construct

polynomial equations

A(t,w) = filt,w)e - fii{t,w)=0
fatw)y ~ fFa(t,w) = 0

]

Fg(i, w)

Then the implicit equation k(z,y) = SR({F}, F;). To see why, remember that SR(F},F;) =0 if
and only if Fi(¢,w) = 0 and F5(t,w) = 0 have common ¢ and w solutions. Note then that whenever
the implicit equation A(z,y) = 0, there is a value for the parameter ¢ that simultaneously satisfies
the paramctric equations for z and y. The coefficients of polyncmials ¥} and F; from which the
curve implicit equation is derived, are special — namely, they are at most lirear in = and y. If the
degree of F) and F5 in t is dy and d2, the degree of the implicit equation in z and y is at most
degree Max(dy,d>). This from the known degree bound, see for e.g. [80], where the coefficients of

Iy (respectively I) appear in SR with the degree of Iz (respectively, degree of /.
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One addtional fact to rememeber in using the Sylvester resultant (a homogeneous projection),
for the affine operation of implicitization, is that one needs to divide out in certain cases by the

extraneous component at infinity. See [10] for details.

3.2.2 Surfaces

The implicitization of parametrically defined algebraic surfaces requires the simultaneous elimina-
tion of two parameter variables from the three parametric equations. Eliminating two variables
from three equations by taking the Sylvester resultant of groups of two polynomials leads to ex-
traneous factors. In practice, this means that the resulting implicit form, describes not only the
parametric surface, but in addition, other surfaces. Various simultaneous eliminants of many vari-
ables, known as multivariate resultants, have also been defined in the literature: by Cayley [80], by

Hurwirtz, see[98], and by Macaulay [62] as explained in Section 2.3.

More specifically, consider the rational parametric representation of an algebraic surface:

fl(srt)
.f-l('glt)
;X))

fa(s. 1)
fa(s, 1)
f.;(S, t)

Here fi, fo, f3 and f4 are polynomials in s,¢ To find the implicit equation h(z,y,z) = 0 corre-

T =

-
4 =

sponding to the above three equations, we first homogenize the polynomials fi(s, ), fa(s. t), fa(s, 1},
fa(s,t) with a homogenizing parameter w to yield homogeneous polynomials A8 t,w), fa(s,t,w),
fa(s,t,w), fa(s,t,w) and then construct polynomial equations

F(s,t,w) = fus,t.w)z — fi(s,2,w) =0

Fy(s, t,w) = fals,t,w)y— fa(s,t,w) =0

F(s,t,w) = fis,t,w)z— fals,,w) =0 (11)
Then the implicit equation A(z, y,z) = MR(F}, F2, F3). Tosee why, remember that MR(F}, F2, Fa)
0 if and only if Fy(s,?,w) = 0, Fy(s. 1, w) = 0 and F5(s, ¢, w} = 0 have common s, ¢ and w solutions.
Next, note that whenever the implicit equation k(z,y,z) = 0, there is a value for the parameters
s and ¢ that simultaneously satisfies the parametric equations for z, y and z. If the degrees of

polynomials Iy, F% and F3 in s and { are 4y, d» and da respectively, then the degree of the im-

plicit equation in =, ¥ and z is at most degree M az(dyds, d\d3, dadz). This from the known degree

14



bound, see for e.g. [62], where the coefficients of F; (respectively 3 and F3) appear in MR with
the product of the degrees of F> and Fj (respectively, product of degrees of F} and Fj, product of
degrees of /7 and F3).

There is then again the problem of the extraneous component at infirity when using it for im-
plicitizing. Similar to the Sy¥lvester resultant, the Macaulay multivariate resultant is homogeneous
and for the affine operation of implicitization, requires the elimination of the projected component
at infinity [10]. In the affine case it is useful to circumvent the division step for the multivariate
resultant by the use of a single variable perturbation of the highest degree terms of the parametric

equations and the computation of characteristic polynomials [29].

4 Solutions of Systems of Polynomial Equations

Numerical operations on geometric models with algebraic surface boundaries reduce to computing
the solutions of various instances of systems of polynomial equations. We shall also encounter this in
the geometry processing operations of Sections 5 to 9. Here we consider the relevant special cases of
the general problem, sketching solution procedures using the polynomial resultants of Sections 2.3
and 2.4. Analogous algorithms can also be devised using the elimination (triangulation) procedure

of the Grobuer basis computation under appropriate variable orderings, see [27}.

4,1 Polynomials in One Variable

1. Real and Complex Roots
flz)=0

The fundamental problem of computer algebra, as it is often referred to, is that of determining
all the real and complex roots of a polynomial equation f(z) = 0. Several solutions have been
offered over the years, some restricted to only the determination of real roots. Both numerical and
. symbolic techniques exist, where the goal is to determine the solutions to within eé-approximations
of the true solutions. Stable numerical techriques for determining the real and complex roots of
f with real coefficients is presented in [34] and the roots of f with complex coefficients in (53].

Symbolic root isolation techniques using Sturm sequences for the real roots are given in [84] while

[7] also considers the case of complex roots.



s Common Roots ?

fH(z)=0
fz)=10

Common roots of f; and f; exist iff SR(f1, fo) vanishes identically. The common roots them-
selves are computed from the polynomial GCD{f1, f2}. Remember, GCD is the Greatest Common

Divisior. For GCD computations see for e.g. [26, 84].

¢ Common Roots 77

f(z)=10
f2(z)=0
fa(z)=10

To check for the existence of common roots of f;, f> and f3 one may use the Kronecker method of
indeterminates, see [98]. On choosing indeterminates uy, u2, 43 and vy, v3, v3 one sees that common
roots of the above three polynomials exist iff SR{uy fi + uafo + uafz, 11 fi + v2f2 + vaf3) vanishes

identically. Again the common roots can be obtained from polynomial GC D computations.

4.2 Polynomials in Two Variables

e Display Algebraic Curves

f(z.y)=10

Here by a solution is meant a correct topological trace of prespecified unambiguous real parts
of the algebraic plane curve f(z,y) = 0. At times one may also desire a trace of all closed real
components of f within a spe-ciﬁed region of the plane. In full generality, the robust tracing
of algebraic plane curves is a difficult problem. In [69], Pratt and Geisow review several such
methods. A common problem stems from the inherent geometric complexity of singularities of high
degree algcbraic curves. In particular, such a curve may possess singular points where the curve
has an abrupt change of normal direction (cusps), multiple self-intersecting branches (nodes), or

self-tangent branches (tacnodes).

One solution which applies for the case of rational (genus = 0) algebraic curves is to first

construct the rational parametric equations of the curve, cf., Section 3.1.1. Tracing plane curves
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which are given parametrically, then simply amounts to evaluating the parametric equations for
several distinct parameter values. Appropriate choices of distinct parameter values can be made to
vield a curvature dependent tracing of the curve, suitable for graphics [66]. See also Figure 2.1.1

and 2.1.2, where such a tracing procedure was adopted.

For the case of implicit (non-rational) algebraic curves, [44, 79] proposes subdivision. Briefly, the
curve f(z,y) = 0 is conceptualized as the intersection of z = f(z,¥) and z = 0, and after translating
z = f(=z,y) into Bernstein form, several subdivision schemes are proposed for evaluating the curve
in small regions in which it is well behaved. Although the method can cope with many singularities,
no analysis is made to identify branch connectivity or to give an analysis of the structure of the
singularity. In [37], power series are constructed to locally approximate plane algebraic curves and
surface intersections. The method technically relies on the Implicit Function Theorem, seeking to
represent a curve branch explicitly in one coordinate as function of the other coordinate(s). The
advantage of such a representation, is that it allows simple stepping techniques. On the other hand,
the quality of approximation is limited by a more stringent convergence criterion, and the method
does not handle singular points. See [12] where extensions to compute power series expansions at

singular points are presented.

There are also algorithms for analyzing the topology of real algebraic curves in the plane, e.g.,
[9]. Based on cylindrical algebraic decomposition, [34, 84}, these algorithms make extensive use of
symbolic computation and root isolation to locate critical curve points, that is, singularities and
points whose tangents are parallel to one of the coordinate axes. Thereafter, the critical points are
connected with curve segments that are simple to trace. There however remains the non-trivial task
of assuring correct branch connectivity at the critical singular points having various intersecting

and tangential branches, a problem we now address.

For plane alzebraic curves, [17] shows that correct branch connectivity can always be achieved
by utilizing results from Section 2.2. The trace of f(z,y) = 0 commences at a given input point
with a desired direction. At noncritical segments, one proceeds numerically, using a scheme in
which the curve is locally approximated by a low degree Taylor polynomial interpolant and a new
curve point estimate is derived from it by taking steps of variable lengths. Newton iteration is then
used to refine this new point estimate. When the condition number of the system becomes very
large, one tries to locate a nearby curve sin;rula.rity. Then, by applying quadratic transformations

of Section 2.2, the branch of f to be traced is birationally mapped to a branch of a transformed
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curve g that has no singularities. The transformed branch is traced and the points of g are mapped
to corresponding points of f. The trace of g continues until we have passed the singularity of f.
In this way, correct branch connectivity is achieved. See again the Figures 2.2.1 and 2.2.2, which

were traced using this procedure.

s Intersection Points of Curves
_f]_(.?:, y) =0

f2(‘rr y) =0

A number of alternative ways exist for computing the finite number of point intersections of two
plane curves {36, 75]. The number of intersection points is bounded by the product of the degrees
of the polynomials f; and f;. The most promising is the method of computing birational maps
using the Sylvester resultant of Section 2.3. Here one of the two variables, say ¥, is eliminated
(birationally) using SR( fi, f2). This yields a polynomial p(z). Further, the eliminated variable y
can be expressed as rational functions of the variable #. Hence, computing the roots of a univariate

polynomial p(z), in turn, efficiently yields the coordinates of the intersection points.

For the case where one of the two curves is rational, we may alternatively intersect them by first
constructing the rational parametric equations of the rational curve, cf., Section 3.1.1. Substituting
these parametric equations into the implicit equation of the other curve yields a polynomial in a

single variable, the roots of which again give the coordinates of the intersection points.

Finally, we note that there may be an entire common curve component, a case of excess in-
tersection. This occurs iff SR( f1, f2) vanishes identically. The commor curve component can be

recovered by computing the GCD{(fy, fz).

s Curves Intersect ?

fl('r!y) =0
fa(z,y)=0
e =1

Common points of intersection of three plane curves exist iff MR( f1, fa, fa) vanishes identically.
Alternatively, one may use the Kronecker method of indeterminates and Sylvester resultants. On :

choosing indcterminates wy,uz2,us and vy, vz, ¥3 One sees that common roots of the above three
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polynomials exist iff SR{uyf1 + uz fo + uafa,v1 fi + v2f2 + v3f3) vanishes identically. The common
intersection points can be obtained by computing the common roots of any two of the above three

equations. Next one verifies which of those roots also satisfy the remaining third equation.

There may also be an entire common curve component, a case of excess intersection. This

occurs iff the GCD( f1, f2, fa) is non-trivial.

4.3 Polynomials in Three Variables

o Display Surfaces
flz,3,2)=0

Methods have been proposed here in computer graphics literature for the display of real implicit
surfaces . These include techniques for ray tracing, and surface polygonalization or meshing, see
for e.g. [64].

For rational implicit surfaces an alternative is to first construct a rational parameterization of
f(z,y,2), as sketched in Section 3.1.3. The algorithms essentially require either one or two simple
points on the algebraic surface, to construct a rational parameterization. Generating many more
points on the algebraic surface then simply amounts to evaluating the parametric equations for
several distinct parameter values. See the Figures 2.1.3 and 2.1.4 which were displaved using this
procedure. It is an interesting open problem to appropriately choose distinct parameter values to

yield curvature dependent plots ol the surface, suitable for graphics.

o Intersection Curve of Algebraic Surfaces
fulz,y,2) =0

f?(:‘:!y:z) =0

Here again, by a solution is meant a correct topological trace of prespecified unambiguous parts
of the real intersection curve of two implicitly defined algebraic surfaces. Also at times one may
desire a trace of all closed real components of the real curve, within a specified region of space.
This approach to surface intersection curve tracing applies dircctly to boolean set operations on
algebraic boundary models. Moreover, when rendering curved faces, silnouette curves need to be

determined and these are the intersection of two surfaces.
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It is worth noting that a tracing procedure for plane algebraic curves can yield a tracing proce-

dure for the intersection curve of algebraic surfaces.

1. When the faces of a model are parametric patches, with a-priori known implicit equations,
edges bounding these patches can be represented as plane curves in the parameter plane of

one of the faces. Here, the surface implicitization techniques of Section 3.2.2 prove useful.

2. When intersecting two implicit surfaces fi(z,¥,z) = 0 and fo(z,y,2) = 0, one of them, say
f1, might possess a rational parameterization. If so, the parametric form can be determined
in certain cases, see Section 3.1.2. By substituting thereafter the parametric equations of
f, into the implicit equation of f2, a plane curve in the parameter plane is obtained that
is in birational correspondence with the intersection curve of f; and f>. Here, birational

correspondence means that in each direction rational maps exist.

3. When intersecting nonrational implicit surfaces fi(z,y,z) = 0 and f2(c,y,z) = 0, one can
always find 2 rational surface fs(z,y,z) = 0 containing the intersection curve of f; and fo.
This, by using the Sylvester resultant of Section 2.3, SR(f1, f2), where one can construct
a birational map to a projected plane algebraic curve and which, as part of the map so

constructed, determines f3, see [7, 43].

Note, however, that in all of the above cases the corresponding plane curve might have more sin-
gularities than the space curve. Moreover, the degree of the curve is the product of the surface
degrees, so that tracing the corresponding planar curve is numerically more delicate. If the bira-
tional map is not derived carefully, finally, the degree of the plane curve may be even higher. Thus,

for simple singularities, a numerical approach remains attractive.

The numerical part of the tracing procedure for plane curves of Section 4.2 can alse be gener-
alized directly to the tracing of the intersection curves of two algebraic surfaces. The intersecting
surfaces fi(z,y,2) = 0 and f2(z,¥,2) = 0, can in fact be arbitrary smooth functions. A strength of
the method lies in its ability to consclidate the computation needed for the Newton iteration with
the computation determining the power series expansion. Moreover, therels a close correspondence
of the computational machinery needed by the method with an algebraic procedure for analyzing
the curve at singular points. This correspondence permits it to cope directly with a large class of

space curve singularities. An example of such a trace is shown in Figure 4.3.1. Details can be found

in [L7].
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Finally, we note that there may also be an entire common surface component, a case of excess
intersection. This ocecurs iff SR( f1, f2) vanishes identically. The common surface component can

be recovered by computing the GCD(fi, f2)-

s Intersection Points of Algebraic Surfaces
fl(za ¥y z) =0

fg(I,y,Z) =0

IS(I'! y,Z) =0

Solutions of different dimensions may arise, viz., points (dimension 0), curves (dimension 1) and
surfaces (dimension 2).

For the case where the solutions are all points, the number of intersections are finite and
bounded by the product of the degrees of the polynomials f;, fo and f3. The method to be used
here is popularly known as the U-resultant technique [98]. A linear equation fy = u1x + w2y + usz
is additionally taken, involving new indeterminates u;, 2, ¥3. When commeon intersection points
exist, the polynomial MR( fi. fo, f3, fi), (of Section 2.4), in the new indeterminates, decomposes
into linear factors from which the coordinates of the solution points can again be reconstructed,
see [28, 29, 58, 73].

There may also be an entire common curve component in the selution, a case of excess intersec-
tion. This occurs iff MR.(f1, fa. f3, f4), eliminating the three variables (z, , z), vanishes identically.
The common curve component can be recovered by computing 2 birational planar projection of

the space curve using SR(uy fi + uzfz + u3f3,v1f1 + v22 + vaf3) and additionally expressing the

eliminated variable as rational functions of the plane curve variables. Details of computing such

birational maps can be found in {14].

There may also be an entire common surface component, a worse case of excess intersection.

This occurs T the GCD( fi, f2. f3) is non-trivial.

4.4 Polynomials in Four Variables

o Display Hypersurfaces in 4D
f(z,9,2,0) = 0
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For rational implicit hypersurface surfaces (for example when its degree is less than or equal to
four) an alternative is to first construct a rational parameterization of f(z,y,z,w), see for e.g., [13].
The parameterization algorithm essentially requires computing some simple points on the hypersur-
face, Generating many more points on the algebraic hypersurface surface then simply amounts to
evaluating the parametric equations for several distinct parameter values. Additionally for general

hypersurfaces one may use generalized methods of ray tracing and hypersurface triangulation.

¢ Intersection Surfaces in 4D

fl(z:yazew) = 0

fg(I,y,Z,W) =0

Using the Sylvester resultant SR of Section 2.3 to eliminate w, the common solution of dimen-
sion 2 of f; and f2 can be represented by the projected surface in (z,y, z) space, together with w
equal to a rational function in z,y, z, which maps points on the surface to points on the hypersur-
face. Explicit points on the hypersurface can then be computed using the rational map together
with algorithms of Section 4.3 for computing points on surfaces. Techniques are presented in [14]

to construct these rational maps.

There may also be an entire common hypersurface component (dimension 3), a case of excess
intersection. This occurs iff SR fi, f2) vanishes identically. The common surface component can

be recovered by computing the GCD(f1, f2).

s Intersection Curve of Parametric Surfaces
fi(z,y,2,) =0
fg(._r,y,z,w) =0
f3(zvy:z:w) =0
The solution for this case is again a trace of the real intersection curve of two parametric
surfaces given by (z = Gi1a1(u1,t1),y = Gza(u1,v1),2 = Gaa(z,v1)) and (z = Grz(u2, m2),y =
Gaa(ta, 1),z = Gzalua,ve)), where the G;;, i = 1,2,3, 7 = 1,2, are rational functions. The

intersection is defined by f;(u1, v, u2,v2) = Gj1(wr, v1) — Gi2(u,22), 5 = 1,2,3, a system of three

equations in four unknowns. The tracing procedure is exactly the same as the one in Section 4.2,

with details in [17].
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Using the Macaulay resultant of Section 2.4, MR f1, f2, f3), one may also construct a birational
map to 2 plane algebraic curve, which is the projection of the space curve into the parametric plane

of either of the two parametric surfaces [15].

5 Solid Model Representations

5.1 Algebraic Boundary Model

By far the most natural and comprehensive representation of solids enclosing finite volume is by
an enumeration of its finite number of boundary components. The boundary geometric elements
consist of point vertices, curved edges and bounded surface patches. This, together with the
capability of boolean set and other geometric solid operations of Sections 6 to 9, generalize both
traditional B-rep and CSG based models into 2 single hybrid representation scheme, see [71, 101]. In
specialized schemes some solids may be chosen as primitives and stored with explicit parameterized

boundaries, instantiated by certain select parameters.

A comprelensive boundary representation of an object with general algebraic surfaces, thus

consists of the following:

¢ A finite set of vertices usually specified by Cartesian coordinates.

o A finite set of directed edges, where each edge is incident to two vertices. Typically, an edge
is specified by the intersection of two faces, one on the left and one on the right. Here left and
right are defined relative to the edge direction as seen from the exterior of the object. Further
an interior point is also provided on each edge which helps remove any geometric ambiguity
in the representation for high degree algebraic curves, [71]. Geometric disambiguation may

also be achieved by adding tangent and higher derivative information at singular vertices,

[51].

o A finite set of faces, where each face is bounded by a single directed cycle of edges. Each face
also has a surface equation, represented either ir implicit or in parametric form. The surface

equation has been chosen such that the gradient vector points to the exterior of the object.

In addition edge and face adjacency information are provided in the form of cyclically sorted edges

about a vertex and faces about an edge. Additional conventional assumptions, for non-ambiguity
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and non-degeneracy, are also made, e.g., edges and faces are non-singular, two distinct faces intersect
only in edges, an auxiliary surface is specified for each edge where adjacent faces meet tangentially,
etc. We restrict our representations to solids which enclose non-zero, finite volume. Hence non-
regularities such as dangling edges and dangling faces which depending on one’s viewpoint enclose

zero or infinite volume, are not permitted.

A planar geometric model with algebraic boundary curves has a similar though specialized

boundary representation consisting of:

A single simple directed cycle of algebraic curve edges, where each edge is directed and incident
to two vertices. Each edge also has curve equations, which are implicit and/or rational parametric.
Further an interior point is also provided on each implicitly defined edge which helps remove any
geometric ambiguity in the case of vertices which are singularities of the algebraic curve. Finally,

each vertex is exactly specified by Cartesian coordinates.

The curve equations for each edge are chosen such that the direction of the normal at each
point of the edge is towards the exterior of the object. For a simple point on the curve, the normal
is defined as the vector of partials to the curve evaluated at that point. For a singular point on
the curve we associate a range of normal directions, determined by normals to the finite number of
tangents at the singular point. Finally, the orientation of the cycle of edges is such that the interior

of the object is to the left when the edges are traversed.

5.2 Gaussian Models

For particular geometric model operations such as sweep and convolution it is very useful to have
an additional, alternate model representation. For the restricted class of convex solid objects
this representation, variously known as the Gaussian model [49], explicitly captures the piecewise

tangent space description of the solid’s boundary elements.

Let §2 be the unit sphere in R3, and Bdr{T) be the boundary of a convex set T C R3. For any
set X C Bdr(T), weshall define a set N(T, k) C 5? as follows. A pointe € 52 belongs to N(T, K)
if there exists a point p € K and a tangent plane L, at p such that e is the exterior normal to L,.
This set N( T, K) is called the Gaussian Image of K. The function N(T,-) : P(Bdr(T)) — P(S?)
is called the Gaussian Map of T, where P(Hdr(T)) and P(5?) are the power sets of Bdr{T) and S*.
It is 2 bijeclive map and its inverse N=Y(T, ) : P(§%) — P(Bdr(T)) is called the Inverse Gaussian
Map of T. For any set G C §2, the Inverse Gaussian Image of G is defined by N~YT,G). The
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Gaussian Curvature of p € Bdr(T) is the limit of the ratio (Area of V(T,K)) / (Area of K) as &
shrinks to the point p, see [67]. Gaussian curvature at a point on a surface is also the product of

the two principal curvatures at that point [49].

Now a convex, algebraic boundary model is one which consists of boundary surface patches,
where at all points on each patch, the Gaussian curvature is > 0. Additionally, the set of all
points enclosed by the model, is a convex set. The Gaussian Image of such a convex, algebraic
boundary model covers 52 completely and partitions 52 into a set of generic faces (surface patches)
as described below. Certain generic faces on $? degenerate to curves and points. Using the
adjacency graph of vertices, edges and faces of the boundary model, the generic faces of S? are
connected with the same topology. In particular the Gaussian Model of 2 convex algebraic boundary

model consists of a finite set of vertices, edges and faces on the surface of 2 unit sphere S* as follows:

o Consider first, the boundary faces. A face is an algebraic surface patch which is either elliptic
(Gaussian Curvature is positive at each point), ruled or planar (Gaussian Curvalure is zero
at each point). For an elliptic face F, the Gaussian Image N(T,F) is a patch of §% with
its boundary curves determined by the normals to the tangent planes of F at the boundary.
That is, the boundary of N(T, F) consists of the set of points Hg%'f for p € UgerE, where
f = 01is the surface equation of F and T is the set of boundary edges of F. For a ruled surface

face F, N(T, F) is a degenerate curve on 52 and for a planar face F, N(T, F) is a degenerate

point on 52.

» Consider next, an edge £ defined by two intersecting faces F and G, where F' and G meet
either transversally or tangentially along . When F and G meet transversally along E, each
point p € E determines two different points np and ng on S? determined by the exterior
normals of the tangent planes of F' and G at p. Then N(T,p) is the geodesic arc (part of a
great circle) 4, connecting nr and ng on $2 and N(T, E) = Upesvp is a patch of 52. The
set ¥(T, E) has 4 boundary curves given by the set of points ﬁgj’%}]’[ for p € E, the set of
points ﬂ—g-;-{-:—;'” for p € E, and the geodesic arcs ¥pg and 7,, where f = 0 and g = 0 are
the surface equations of F' and G, and ps and pg are the starting and ending vertices of E.
When F and G meet tangentially along E, N(T, E) is a degenerate curve on §%. In particular,
N(T,E) is the common boundary cuive of ¥N(T, F) and N(T,G). That is, it is the set of
points @ = LB g5 b e B When F and G are planar faces, E is a linear edge and

M — M¥alal

N(T,E) is 2 degenerate geodesic arc v connecting ng and ne on $2, where np and ng are
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the exterior normals of ¥ and &.

e Consider finally, a vertex p defined by % adjacent faces Fy, F,..., F} intersecting at p (ordered
via their normals at p in a counter—clockwise direction). Each face F; corresponds to a point
n; on §? determined by the normal of F; at p. Let 4; (¢ = 1,...,k) be the geodesic arc
on 5% connecting n; and mi;; where ngyy = n1. Then N(T,p) is the convex patch on 5?2
bounded by the cvcle of geodesic arcs 41,72,-. -,k When F; and Fi;; are tangent at p, ¥; is
a degenerate point n; = n;31. In the special case of all & faces being tangent at p. the entire
set N(T,p) is a degenerate point. The set N(T,p) can also be a degenerate geodesic arc on

$?% when Bdr(T) is locally smooth at p except along a curve which is tangent at p.

Figure 5.2.2 shows the Gaussian Model for the convex object in Fig. 5.2.1. In Figure 3.2.1, face
F3is a ruled surface and face F; is a planar patch. The corresponding Gaussian Images degenerate
into a curve and a point respectively. Further since faces F; and F3 are tangent to each other along

E3, the Gaussian Image of E» also degenerates into a curve.

5.3 Constructive Semi-Algebraic Models

In certain applications, an implicit representation of solids may also be used, consisting essentially
of finite boolean combinations of geometric elements defined by algebraic inequalities or semi-
algebraic sets of arbitrary degree. Contrary to explicit boundary representations, the solids are
modeled here together with the volume they enclose. The enclosed volume is allowed to be both
finite or infinite, with the allowed geometric elements themselves also exhibiting both properties.
In special cases, simplifying assumptions in the type of allowed geometric elements may also be
made, for e.g., the algebraic boundary of the semi-algebraic sets may be assumed to be smooth,
connected, not of mixed dimensions, etc. See [11, 28, 34, 71, 84] for some details of the various
properties and operations applicable to such general representations. Representations of this type
are very compact and simple. However, due to inherent time-intensive computation requirements,
they have not yet made an impact on geometric modeling practices. Whether specialized versions

will eventually be competitive in space or time remains to be seen.
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6 Boolean Operations on Models

The ability to compute the union, intersection and difference of two geometric models and yield
a third model with the same representation, provides a geometric modeling system at once with
a sophisticated way of synthesing and creating models of physical objects with various complex
geometries. The same boolean operations also provide a way of doing static interference checks to

confirm if two different models occupy a common region in space.

It is quite simple to observe that boolean operations cause dangling edges and faces and hence
destroy the regularity of input model representations. Modified boolean operations, i.e. regularized
union, intersection and difference, are thus used instead with the property of preserving regularity
[73]. Also the operation of complementation, especially for boundary representations, which reduces
simply to an orientation change of directed face-edge cycles, causes one to concentrate only on the
boolean set operation of intersection, with the operations of union and difference being then defined

in terms of intersection and complementation using De Morgan's laws.

The intersection of two algebraic boundary models consists of two major algorithmic subparts.
There are the extensive numeric caleulations of pairwise boundary curve and surface intersections
or incidences. This is followed by a containment classification for boundary vertices, edges and faces
and a topological reconstruction of the resulting solid’s boundary representation. These subparts
are prone to errors in numerical calculation, [42], as well as errors in topological decisions based
on approximate numerical solutions, [52, 95]. A host of robust algorithmic paradigms need to
be incorporated before efficient and error-free boolean operations become possible. See [57] for a

sample approach in the domain of polyhedral models.

We now detail some of the intersection operations for algebraic boundary models required for

each of the two algorithmic subparts discussed above.

6.1 Intersections, Incidences and Containment Classifications

A wide spectrum of intersection and incidence tests with algebraic curves and surfaces need to be

accomplished, as listed below. In particular, one needs to compute the intersection of:

e two surfaces, defined implicitly or parametrically .
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o three surfaces, which is also equivalent to the simultaneous intersection a space curve with a

surface, with surfaces defined parametrically or implicitly.

e four surfaces, which is also equivalent to the simultaneous intersection of two space curves,

both defined as the intersection of implicit or parametric surfaces.

The numeric computation of these tasks trivially reduce to the computation of solutions of systems
of polynomial equations of Section 4.

The boundary elements of the model are edges and faces which are pieces of algebraic curves
and surfaces, respectivelv. To decide whether intersections occur between edges and faces, as well
as for later topological decisions, one additionally requires "in/out” classification tests. Specifically,

the containment of :

» a vertex "in/out” of edges and faces.

e an edge "in/out” of faces.

The "infout” containments are various applications of a sorting procedure for points along an
algebraic curve, see [36]. The algorithms of many of these classification tests also reduce to the

sorting of :

e edges about a vertex.

e faces about an edge.

6.2 Boundary Topology Reconstruction

One of the main subtasks is the determination of the nesting structure of face loops, consisting of
a closed chain of piecewise curves on a surface . These loops arise from the intersections between
the element curves and surfaces of the intersecting solids, as detailed in the previous subsection.
Knowing the nesting structure, i.e., the inner and outer intersection curve loops allows for the
correct reconstruction of the resulting solid. Algorithmic solutions for this problem consist of a
generalized sweep of a curve on a surface, see for e.g, [103]. For the case of rational surfaces, a

planar sweep in the parametric plane, also sufficies. For algorithms using planar sweeps, see for

e.g., [30. 39)].
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For robust computations which always yleld consistent boundary topologies, one needs to make
specific topological decisions based on imprecise numerical data, [52, 95]. The methodology we
adopt is to live with uncertainity. Namely, the choices that ¢ is negative, zero or positive, are equally
likely. Decision points, where several choices may exist, are to be considered either "independent”
or "dependent”. At independent decision points, any choice may be made from the finite set of
possibilities while the choice at dependent decisions points ensures the invariant state of global
consistency. This consistency, for now, is achieved by means of topological reasoning and is specific

to each problem and its desired goals.

For these topological consistency checks, we require the minimum distances between pairs of
vertices, edges and faces of the model, to decide degenerate incidences. Specifically, one needs to

compute minimum distances between:

e a vertex and an edge, or a vertex and a face
e two edges

s two faces

A significant time is also spent in the analysis of intersection curve singularities, see for e.g.. {3, 17,

73],

7 Decomposition Operations on Models

The main purpose behind decomposition operations is to simplify a problem for models with com-
plex geometries into a number of subproblems dealing with models having simple boundaries. Sim-
plifications are possible for instance in geometric point location and intersection detection problems.
In most cases 2 decomposition, in terms of a finite union of disjoint convex pieces is useful and this
is always possible for polyhedral models, see for e.g., [30). However a similar decomposition is in
general, impossible for curved models, not even for simple curved modeis in the plane. Arnular
disks or toruses, serve as examples of this complication. Additional complexities in decompositions
for the curved world also arise from the rature of the boundary curves and surfaces. It is possi-
ble, although non-trivial, to decompose an algebraic surface into elliptic surface patches (all points
having Gaussian curvature > 0), hyperbolic surface patches ( all points having Gaussian curvature

< 0) and parabolic curves (all points having Gaussian curvature = 0) {49]. This, in analagy with
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algebraic curves, which can always be decomposed into convex curve segments (curvature > 0),
concave curve segments (curvature < ) and flex points (curvature = 0). See for example, [21, 50]

where procedures to achieve such a curve decomposition, are presented.

Ior curved models with algebraic surface boundaries, a number of alternative decompositions
have been proposed. It is possible to decompose algebraic boundary models into the disjoint union
of certain primitive pieces. In the case of the "cylindrical algebraic decomposition” of [34], the
primitive pieces are cells over which a set of real polynomials, (derived from a boolean formula
of polynomial inequalities), has constant sign. In the proposed "funnel decomposition” of [31],
the decomposition is coarser, and each cylindrical cell of the decomposition has constant spatial
description. The latter decomposition is geometrically motivated, where individual cells possess
monotonicity and vertical visibility properties, as opposed to the former decomposition of [34],
which is algebraic, where individual cells possess algebraic sign invariance properties. There also
exist closest point "Voronroi decompositions” and " Whitney stratifications™ of algebraic boundary
models [28], which similar to [31, 34], decompose the entire ambient three dimensional space along

with the models,

The funnel decomposition is a three dimensional generalization of the horizontal-vertex-visibility
decomposition of a simple polygon in the plane [96]. In {38] the horizontal-vertex-visibility decom-
position is generalized to a visibility decomposition of a planar curved model. See Figure 7.1 for
an example. This visibility decomposition, next allows a simple decomposition of the curved model
into a union of menotone pieces and also into a union of differences of unions of possibly overlapping
convex curved pieces. In [21] a different algorithm is presented, to construct a simple characteristic
carrier polyzon of planar geometric model. A characteristic carrier polygon is a simple polygon
which differs from the original object by convex regions each of which is either totally contained
in the interior of the object or in its exterior. See Figure 7.2. By refining this carrier polygon
further, one is able to construct an inner polygon (resp. an outer polygon) which is a simple poly-
gon totally contained in (resp. totally containing) the geomeiric model. Using the simple inner,
outer and characteristic polygons, the following can be computed (1) a convex decomposition of
the geometric model as a difference of unions of disjoint convex models, (2) a decomposition of the

geometric model as a union of disjoint certain primitive models.

A number of subtasks, requiring techniques from Section 4, need to be performed to achieve

such planar model decompositions. These include:
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1. The intersection of 2 line and a curve segment.
2. The computation of the tangent line to a curve segment from a point .

3. The computation of the common tangent line between two curve segments.
For three dimensional decompositions we additionally need:

1. The intersection of two surfaces
2. The projection of intersection space curves, to form the base curves of cylinders

3. The computation of singular and extremal, points/curves of surfaces

8 Convex Hull Operations on Models

The convex hull computation is a fundamental one in computational geometry. There are numerous
applications in which the convex hulls of complex models can be used effectively to make certain
geometric decisions easier. For example, a null intersection between the convex hulls of two models
implies a null intersection between the original models. Since intersection testing for convex models
is easier than for non-convex models, convex hulls intersection is used as an efficient first test in
a general object intersection-detection algorithm. Additional motivation arises from the use of
convex hulls for heuristic collision-free motion planning of general objects among obstacles. Motion

planning is easier for convex objects and obstacles, see for e.g., [19].

Several efficient algorithms for computing the convex hull of simple planar polygons are known,
see for eg [39, T0). These algorithms for planar polygons are iterative and vertex—based, i.e., the
computation in each step depends on the region where the next vertex lies. By generalizing to an
edge—based algorithm, [82] extended the planar polygon results to an algorithm for planar geometric
models. Paper {93] also suggests ar efficient convex hull algorithm based on a bounding polygon
approach. In [21] another efficient algorithm is presented for computing the convex hulls of objects
bounded by algebraic curves. The algorithm, which is partly a generalization of [§9], reflects
various practical considerations such as simplicity of implementation and flexibility to heuristic

modifications.

A number of subtasks are again required to construct the convex hull of a curved model.

All the subtasks required for the decomposition computation of planar geometric models, listed
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in the previous section, are also needed here. Besides these geometric operations, a monontone
segmentation of the boundary curves of the planar model is also computed, as a pre-processing
step to convex hull generation. The monotone segmentation requires adding singular points, flex
points and extreme points on the boundary curves as extra vertices, [21]. Singularities, flex points
and extreme point computations require straightforward computation of zero-dimensional point

solutions of systems of polynomial equations, cf. Section 4.

Numerous algorithms for computing the convex hull of simple polyhedra have also been pre-
sented. See [39, 70] for a discussion of "beneath-and-beyond” and "divide-and-conquer” algorithms
for computing the convex hull of point sets in three (and higher) dimensions. No significant the-
oretical advantage seems to be gained in knowing that these points are the vertices of a simple
polyhedra [90]. Simplification in 2 practical setting, have yet to be addressed. As far as [ am aware
an algorithmic study of computing convex hulls of algebraic boundary models in three space is yet

to be undertaken.

9 Sweeping and Convolution Operations on Models

There exists numerous applications such as automated assembly, numerical machining and part
tolerancing, where generating the convolution or sweep of two curved models has proved useful.
Motion planning in sophisticated modeling environments, for product prototyping and simulation
also suggests the need to efficiently generate the surface boundary of sweeps of curved models
[16]. For example, the motion of two objects in continunous contact in three-dimensional space
can be represented as a point constrained to move on the boundary of convoluted solids [61, 84] .
Generating various curves on the boundary of the convoluted solids then gives a way of generating

motion patlhs, along which the given objects shall always keep in contact [19].

Efficient algorithms are known for generating the convelution of two convex polygons and poly-
hedra using methods for efficiently computing convex hulls, [61], and for the Minkowski sum, [48].
A convolution algorithm for two arbitrary planar geometric models, is described in [18] and for
two convex, algebraic boundary models in [19). See Figure 9.1, which shows the boundary (minus

dangling edges) of the convolution of two planar curved models.

The problem of convoluting two algebraic boundary models, consists of a nnmbher of convolution

subtasks with algebraic curves and surfaces as listed below. These in turn reduce 1+ ' .- computation
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of solutions of systems of polynomial equations. cf. Section 4. First there is the pairwise convolution

of curve and surface elements of the two solids. In particular, the convolution of :

¢ two curved edges
¢ an edge and a face

e two faces.

The pairwise convolution needs to be computed for only those curve and surface elements, one
from each solid, which have similar normal directions at some internal points. These compatible
pairs of boundary elements can be computed by overlaying the tangent space Gaussian models of
the two solids to be convoluted, see [19, 20]. The convolution surface generation is next followed
by the computation of curve and surface singularities on the convoluted boundary. The analysis
of these singularities is critical for the final topological reconstruction of the convolution boundary

description.

The convolution of a sphere with an algebraic boundary model, alternatively the sweep of the
sphere along all points on the boundary, is the same as constant radius "offsetting” of the model.
Offsetting, one of the more important operations in geometric modeling because of immediate
application in NC machining, has been considered by many authors recently. Paper [40] outlines
exact offset procedures for convex polyhedra, convex solids of revolution and convex solids of linear
extrusion. Paper [77] describe offsetting operations for solids represented in a dual form (boundary
representation and constructive solid geometry), where objects are constructed from primitive solids
which are natural quadrics. Paper [20] characterizes the offsetting problem for algebraic surfaces and
provides an algebraic algorithm for its computations. This algorithm is based on such operations
as computing resultants of polynomials, representing surface patches unambiguougly, intersecting
two algebraic surfaces and detecting self-intersections of algebraic surfaces. The efficiency of these

operations however are quite limited for very high degree surfaces.

10 Conclusion

In the last [ew sections we presented brief déscriptions of various geometric operations on physical
object models with algebraic surfaces. However we also omitted discussing a large number of

additional geometric operations, which are demanded by numerous applications using geometric
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modeling systems. We provide a shortlist of some of these here, with the hope that further attention
will be paid to them in the future.

1. Area and volume computations.

2. Surface and volume mesh generation.

3. Graphics display and animation techniques.

4. Languages and geometric editing techniques.

5. Approximations, surface continuity and interpolation schemes.

6. Parallel algorithms.

Clearly much remains to be researched in the unfolding science of geometric modeling with

algebraic surfaces.
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FIGURE 2.1.4: Raticnal Surface I
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FIGURE 2.2.1: Singular Algebraic Plane Curve C;
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FIGURE 2,2.2: C; after a Quadratic Transformation
rst42rs? =53 +r+35=0
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FIGURE 4.3.1: Numerically Traced Space Curve
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FIGURE 5.2.1: Algebraic Boundary Model
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FIGURE 5.2.2: Gaussian Model



FIGURE 7.1: Horizontal Visibility Partinon

FIGURE 7.2: Characteristic Carrier Polygon
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FIGURE 9.1: Convolution Boundary






