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Abstract

Algorithms are presented for constructing G' continuous meshes of degree two (quadric) and
degree three (cubic) implicitly defined, piecewise algebraic surfaces, which exactly fit any given
collection of points and algebraic space curves, of arbitrary degree. A combination of techniques
are used from computational algebraic geometry and numerical approximation theory which reduces
the problem to solving coupled systems of linear equations and low degree, polynomial equations.

1 Imntroduction

Interpolation provides an efficient way of generating G* continuous meshes of surface patches, necessary
for the construction of accurate computer models of solid physical objects [2]. In this paper, we focus
on the use of low degree, implicitly defined, algebraic surfaces in three dimensional real space R3,
Modeled physical objects with algebraic surface patches of the lowest degree, lend themselves to faster
computations in geometric design operations as well as in tasks such as computer graphics display,
animation, and physical simulations, see for e.g. (1}.

A real algebraic surface § in IR2 is implicitly defined by a single polynomial equation f(z,y,z) =0,
where coefficients of f are over the real numbers IR. A real algebraic space curve can be defined by the
intersection of two real algebraic surfaces and implicitly represented as a pair of polynomial equations
(fi{z,¥,2) = 0and fo(z,y,z) = 0) with coefficients again over the real numbers IR. In modeling the
boundary of physical objects it suffices to consider only space curves defined by the intersection of two

algebraic surfaces. Space curves, in general, may be defined by the intersection of several surfaces [15].
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Why algebraic surfaces ? Manipulating polynomials, as opposed to arbitrary analytic functions, is
computationally more efficient. Furthermore algebraic surfaces provide enough generality to accurately
model almost all complicated rigid objects. Also as we show here, algebraic curves and surfaces lend
themselves very naturally to the difficult problem of surface fitting.

Why implicit representations ? Most prior approaches to interpolation and surface fitting, have
focused on the parametric representation of surfaces [9, 18, 24]. Contrary to major opinion and as we
exhibit here, implicitly defined surfaces are also very appropriate. Additionally, while all algebraic sur-
faces can be represented implicitly, only a subset of them have the alternate parametric representation,
with £, ¥ and z given explicitly as rational functions of two parameters. Working with implicit alge-
braic surfaces of a fixed degree, thus provides a larger number of surfaces to design with. Furthermore,
implicit algebraic curves and surfaces have compact storage representations and form a class which is
closed under most common operations (boolean set operations, offsets etc.) required by a geometric
design system.

The main problem we consider in this paper, is the following: Construct 2 G continuvous mesh of
quadric and cubic surface patches which ‘smoothly’ interpolates a collection of points p in IR? and
given space curves C in IR3, with associated “normal” unit vectors varying along the entire span of the
curves. Both points and space curves have an infinity of potential “normal” vector directions. While
for points the normals may be chosen arbitrarily, for space curves the varying unit “normal” vectors
are chosen to be always orthogonal to the tangent vector, along the entire curve. Our emphasis being
algebraic space curves, the variance of the curves “normals” are restricted to polyromials of some
degree. By smaoth or G! interpolation we shall mean that the surface mesh contains the input poinfs
and curves and furthermore has its gradients in the same direction as the specified “normal” vectors.
This is a natural generalization of Hermite interpolation, applied to fitting curves or surfaces through
point data, and equating derivatives at those points.

There has been extensive prior work in surface fitting. Exact and approximate fitting of curves
(primarily conics) has been considered by several authors, see for eg[7, 8, 13, 16, 19]. Paper [18] presents
techniques for constructing a G' continuous surface of rectangular Bézier (parametric) surface patches,
interpolating a net of cubic Bézier curves. Other approaches to parametric surface fitting and transfinite
interpolation are also mentioned in that paper, as well as in [24]. An excellent exposition of exact and

least squares fitting of algebraic surfaces through given data points, is presented in [17]. This paper



generalizes the results of [17] in two ways. One, it considers exact fits of algebraic surfaces through
given space curves as well as data points. Second, it also considers similar surface fits when derivative
information (“normals”) are also provided at the given data points and along the given data curves.
Meshing of given algebraic surface patches using control techniques of joining Bézier polyhedrons is
shown in [20]. Some of the results in [20] are extended in [4]. Paper [5] considers higher order surface
fitting as well as least-squares approximations. Surface blending consisting of “rounding” and “filleting”
surfaces (smoothing the intersection of two primary surfaces), a special case of surface fitting, has been
considered for polyhedral models in [10} and for algebraic surface models in (3, 4, 5, 14, 23,24]. The
generalized techniques for G continous surface meshes, presented in this paper, also provide algorithms
to generate such blending and joining surfaces.

The rest of the paper is as follows. In section 2, we first show that the problem of G! interpolation
of points and curves with a single algebraic surface, reduces to solving a linear system. These results
are extended in section 3 to the construction of G continuous meshes of quadric and cubic surface
patches, which together smoothly interpolate the input points and curves. Here one needs to solve a
system of low degree polynomial equations. As applications of these characterizations of interpolation

and G! continuous fits with algebraic surfaces, we exhibit, in sections 2 and 3, interesting examples of

geometric design.

2 G! Interpolation Matrices

For any multivariate polynomial f, partial derivatives are written by subscripting, for example, fr =
af/0z, f, = 0%f/(828y), and so on. Since we consider algebraic curves and surfaces, we have
fzy = fyz etc. The gradient of f(z,y,z) is the vector Vf = (fz> fys f2)-

Bajaj and Thm in [3, 4], present a simple constructive characterization of the real algebraic surface
f(z,y,2) = 0 of degree n which smoothly contains any given number of points and algebraic space
curves, with associated “normal” directions. This characterization, called Hermile interpolation or G
interpolation, deals with the containment and matching normals at the input points or varying along

the entire span of the input space curves, To summarize:

1. Linear equations are generated from the smooth containment of a point p = (a,b,c) with an

associated “normal” m = (mz, my,m;), viz., f(p) = f(a,b,¢) = 0 and V f(p) = am, for some



NOoNzero .

2. Linear equations are also generated from the smooth containment of a space curve C : (fi(z,,2) =
0, fo(z,¥,2) = 0) of degree d, together with associated “normals” defined implicitly by the triple
n(z,y,z) = (n(2, ¥, 2), ny(2, ¥, 2), n2{2, ¥, 2)) where 7., ny and 7. are polynomials of maximum
degree m, defined for all points p = (z,¥,2) along the curve €. In fact, it suffices to satisfy
the point containment condition of 1. at nd + 1 points of C' and the point gradient matching
condition of 1. at (z +m — 1)d + 1 points of C. These follow directly from a form of Bezout’s

theorem, stated below (See also, for example, [21].)

Theorem 2.1 Ar algebraic curve C of degree d intersects an algebraic surface § of degree n in
at most nd points, or C musi intersect S infinitely often, that is, a component of C must lie

entirely on S.

For an algebraic surface § of degree n, G! interpolation above, generates a homogeneous linear
system Myx = 0 wherex is 2 (";s)wectorl of the coeflicients of the algebraic surface 5. All nontrivial
vectors, if any, in the nullspace of My forms a family of all algebraic surfaces, satisfying the input
constraints and whose coefficients are expressible in terms of p-parameters, where p is the rank of the

nullspace.
Example 2.1 G! interpolation with quadric and quartic surface patches

Consider the following wireframe of a solid model consisting of two circles (the intersections of planes
with a sphere), Cy : ((&2 + 3> + 22— 25 = 0,z = 0), and Co : ((z*+3¥° + 22 — 25 = 0,y = 0).
Each circle has an associated “normal” direction which is chosen in the same direction as the gradients
of the sphere, viz., ni(z,v,2) = (0,2y,2z), and n{z,y,z) = (22,0,22). The wireframe has 4 faces:
face; = (z > 0,y > 0), facep = (z > 0,y £ 0), faces = (z < 0,y <0), and faces = (z <0,y 2 0).
In Figure 1, face; and faces are filled with the patches taken from the sphere 22 + y* 4+ 22 —25 =10
(yellow patches). A designer, who wishes to smoothly flesh the remaining faces with quartic (degree 4)
surface patches, applies the above Hermite interpolation method to €1 and C,.This results in an 11-

parameter (10 independent) family of quartic G! interpolating surfaces, which is given by f(z,y,2) =

1There are ("';a) coeficients in f(z,y, z) of degree n



1284 (roy + 16T + 574) 2%+ (ray® + (172 + 5rg )y + 11022 + 5r11T — 25719 — 2571 )2% 4+ (129 + (rez + 574)y% +
(rox? — 2572 )y + 163+ 51422 — 257z — 12574) 2+ (3 — 71 )y + (r72 + 578)y° + (7522 + 5ri1z — 2579 — 2513+
2571 )y2 +(r72°+ 5raz? —25r72—12578)y+(r10~71 )T +5r1123 4+ (2579 — 25710+ 2571 o2 — 125711 5+62570.
An instance of this family is f(z,y,2) = —1250 — 1 — y? — 2222 — y222 4 5022 + 75y* + 7522 which is

used to flesh face; and facey in Figure 1 (red patches). O

3 Quadric and Cubic Surface Patches

Solving a linear system of equations plays a key role in G interpolation of the previous section. In what
follows, we give another approach of algebraic surface design where a nonlinear system of polynomial
equations needs to be solved. In interpolation, the linear equations generated, represent the constraints
to be met by a single interpolating surface. The larger the number of independent containment and
tangency constraints, the higher the degree of the resulting interpolating surface. The total number of
constraints depends largely on the degrees of the given curves and their “normals”. Since the number
of terms in an algebraic surface increases as the cube of its degree, computation with high degree
algebraic surfaces gets expensive and error prone. Hence, for good reasons we are advised to keep the
degrees of our designed surfaces as low as possible.

The problem considered in this section is to G'-interpolate, curves in space with (not necessarily
one), but a combination of quadric and cubic surface patches which themselves meet smoothly along
their intersection curves. Such “smooth” meshing has been largely addressed by [18, 20, 22] amongst
others, using the Bézier representations of surfaces.

The technique we now explain is primarily based on Bezout’s surface intersection theorem see [25]

Theorem 3.1 If an algebraic surface S of degree n inlersects an algebraic surface T of degree m in a

curve of degree d with intersection multiplicity ¢, then i+ d < am.

and a theorem from [22]

Theorem 3.2 If surfaces f(z,y,z) = 0 and g(z,y,z) = 0 intersect transversaily in a single irreducible
curve? C, then any algebraic surface h(z,y,z) = 0 conlains C with G* continuity must be of the form
Mz, y,2) = ofz, v, 2) f(2, 9, 2) + Bz, y,2)g*t(z,y,2). Furthermore, the degree of a(z,v,2)f(z,9,2) <
degree of h(z,y,z) and the degree of B(z,y,2)g"t (z,y,2) < degree of h(z,y,2).

2More precisely surfaces f{x,y,z) =0 and g(x,y,z) =0 intersect properly and share no common components at infinity



Another theorem that we need, relates continuity with the intersection multiplicity of smooth algebraic

surfaces, see [11, 12].

Theorem 3.3 Two smooth algebraic surfaces Sy : f(z,y,2) = 0 and 5> : g(z,¥,2) = 0 meet with G*

continuity along a curve C if and only if 51 and S» intersect with multiplicity &+ 1 along C.
From theorem 3.2 we obtain the following special case lemma

Lemma 3.1 Let §: f(z,y,2) = 0 be an irreducible quadric surface, and @ : q(z,y,2) = 0 be a plane
which intersects § in a conic C. Then, another quadric surface Sy : fi{z,¥,7) is langent lo § along C

if and only if there ezists nonzero constants o, B (possibly complez) such that f; = of + fq°.

Since we are interested in surface fitting with real surfaces, we may restrict a and f# to be real

numbers. A related theorem can be derived for the quadric surface interpolation of two conics in space.

Lemma 3.2 Consider guadrics S1 : f1 =0, S2: fo=0and planes Q1 : 1 = 0, {2 : gz = 0. Let
C1:(fi=0,q1=0) and C2 : (f2 = 0,g2 = 0) be two conics in space. Then Cy and Cy can be Hermite
interpolated by a quadric surface § if and only if there exist nonzero constanis oy, agz, £, and b

(possibly complez) such that ay fi + P19? — azfa — P203 = 0.

Proof: Trivial. (Just apply Lemma 3.1 twice.) &

This lemma is constructive, in that, it again yields a system of linear equations and a direct way of
computing a Gl-interpolating quadric surface. Furthermore a solution to the above equations, linear
in the a’s and A%, exists if and only if such an interpolating quadric surface exists. Again, when real

surfaces are favorable, we require oy, a2, fy, and f2 to be real numbers.

Example 3.1 Suppose C; :{(z2+22-1=0,3z4+y=0), and Cp: (y* + 2> - 1=0,24+ 3y = 0). We
get the following equation from Lemma 8.2: (a1 + 961 — B2)e? + (81 — ag — 962)9% + (on — o2)2% +
(661 —682)zy+ (1 — @2) = 0. This implies 01 = az, f = P2, o1 = —861. Whenoy =-~8and b =1,
the interpolating surface is 22 + y* — 82* + 6zy + 8= 0.

In the Lemma 3.2 and the example, the two conics on the given quadric surfaces, S7 and §;, were
fixed. If we have freedom to choose different intersecting planes 1 and (o then we may be able to

find a family of quadric interpolating surfaces. In this case, the equations of planes 21 and Q2 would



have unknown coefficients and the use of Lemma 3.2 would result in 2 nonlinear system of equations,
linear in terms of a1, &2, $1 and fz, and quadratic in terms of the unknowns of the plane’s equations.

Now, rather than trying to find a single quadric surface, we can also extend the above Lemma 3.2,
to construct two or more quadrics which smoothly contain two given conics in space, and furthermore
themselves intersect in a smooth fashion. The following Lemma 3.2, which is constructive tells us how

to go about this.

Lemma 3.3 Let Cy : (fi = 0,1 = 0) and C2 : (f2 = 0,q2 = 0) be two conics in space. These two
curves can be smoothly contained by two “smoothly intersecting” quadrics Sy : g1 = arf1 + big? = 0
and Sy : g2 = a3 f; + bag2 if and only if there exist nonzero constants a1, ap, by, bz, o, 8, and a plane

Q : q(z,y,2) = 0 such that a, fi + b1¢; — ez fo + bag3) — fg* = 0.

Proof: From theorem 3.3 we note that two quadrics that intersect smoothly (at least G1), must inter-
sect with multiplicity at least two. It follows then from Bezout’s theorem 3.1 for surface intersection,
that the two quadrics 5y and S2 must meet in a plane curve (either ar irreducible conic or straight
lines). Let the intersection curve lie on the unknown plane @, then just apply Lemma 3.1 three times.
A

The final equation of the above Lemma. results in a nonlinear (cubic) system of equations which
is linear in terms of the unknowns a;, ¢g, &1, b2, @, and B, and quadratic in terms of the unknown
coefficients of the plane Q : ¢ = 0. Note, that in Lemma 3.3, the quadric surfaces S1 and S2 need not
be in the form given (as constructed via Lemma 3.1}, but may instead be an m-parameter family of

solulions, obtained by G interpolation of input curves with possibly “normal” dala, as ezplained in the

previous section 2.

Example 3.2 Let conic Cy be given by f1 = 22 4+ y? — 22 + 4y + 4z + 4y + 3 = 0 (a hyperboloid
of one sheet) and g1 = z +y+ 1 = 0. Similarly, let conic Cy be given by f2 = 1922 + 1032 — 922 +
38zy — 114z — 114y + 180 = 0 (e hyperbooid of one sheet), a = = + y — 3 = 0, and let the unknown
plane be P : az + by + cz + d = 0. Then the equation for the system of smooth interpolating quadrics
a1 fi + hig? — alazfz + bag3) = Blaz + by + cz + d)? results in a nonlinear system of 10 equations:
—fc? + 9apa—ay = 0, —2bfc = 0, —2afic = 0, —2fed = 0, —b*B— aby + b1 — 10aza+ a1 = 0, —2abf—
Yarby + 2b1 — 38aze+4ay = 0, —2b8d+6aby +2b; + 114aza+4a; = 0, —a®S—aby+ b —19aza+a;1 = 0,
—%a8d + 6aby + 2b; + 114aze: + 4a; = 0, and —fd? — 9aby + by — 180a2a + 321 = 0. This nonlinear
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system has a nontrivial solution (in the sense that a1, aa, and a are nonzere) : a; = —a*f, b = 2425,
ag = —‘%i, ba = %‘g, andb=c=d = 0.3 Hence, the two conics C; and Cy are smoothly contained by
quadrics g1 = 0 and g2 = 0, respeciively, and which in turn, smoothly intersect in a conic in the plane
Q. The real quadric g = z2 +y? + 22 — 1 = 0 is a sphere, while the other real quadric go = y* 4+ 2% — 1
is a cylinder. Note thal the above solution implies that there is only one pair of real quadric surfaces
which smoothly contain the given conics. Also, for this case, it can be shown that neither a single
quadric nor a single cubic surface can Hermile interpolate the two given conics. Geometrically then,

the two hyperboloids of one sheet are smoothly joined by o sphere and a cylinder. See figure 2 at the

end of the paper.

The above methad of Lemma 3.3 can straightforwardly be extended to finding a G' continuous

mesh of & quadric surfaces which smoothly contain & conics in space.

Theorem 3.4 Let C; : (i = 0,10 = 0), C2 : (o = 0,2 =0) ... Cp : (fr = 0,q = 0) be k
conics in space. These curves can be smoothly contained by k quadrics 51 1 g1 = a1f1 + bigf = 0,
Sy :igo = aofo+begt, ..., Sk:gr = anfrt bkqé' which themselves “smoothly iniersect” if and only
if there exist nonzero constants ay, Gz, ..., @, b, ba, ..., b, @1, ..., ax_1, 1, -.., Br—1 and planes

Ry :ri(2,9,2) =0, ..., Ri—1:7k-1(2,y,2) = 0 such that

a1fr + bigf — on(azfo + bags) — Buri =0

azfa + bag — c2(asfa+ bagl) — Bori =0

ap_1 froo1 + br1qb_y ~ ox_1(@rfe + bugf) — Br—ati_y =0 (1)

Proof: Direct applications of Lemma 3.3 &

Note again as before, that in the above theorem, the quadric surfaces Sy, ... Si need not be in the
form given (as constructed via Lemma 3.1), but may instead be an m parameter family of solutions,
obtained by G? interpolation of input curves with possibly “normal” data, as explained in the previous
section 2. Also note, that given k conics in space, in general, & quadrics above, may not form a G*

continuous mesh {no non-trivial solution for the generated system (1) of polynomial equations). In

3This nonlinear system was solved with the aid of MACSYMA, on a Symbolics 3650



this case one may fry increasing the number of quadric surface patches between any two of the given

curves. This yields the theorem below, a vartation of theorem 3.4.

Theorem 3.5 Let Cy : (A =0,q1 = 0), and Cz : (f2 = 0,42 = 0) be two conics in space. These curves
can be smoothly contained by two quadrics Sy : g1 = e1fi +bigt = 0, S2 : g2 = axfo + b2g2 which
together with k other quadrics Ty : by = 0, ..., Ty : by = 0 form a G continuous mesh if and only
if there ezist nonzero constanis a;, ag, by, by, cio,...Cig (the coefficients of the quadric T; : h; = 0),
i=1...k and ey, ..., aky1, P1, - -+ Bra1, and planes Ry : m1(%,4,2) =0, ..., Riy1 : rena(2,9,2) =0

such that

a1 fr + blq% —arhy — 1311"% =0
azfa + bz‘]% — Qg — ﬂk+17'§+1 =0

hi = eihioy + Bir?, i=2,...,k 2)

Necessarily the complexity of the nonlinear system of equations also goes up.
If the above generated systems (1),(2) of polynomial equations, do not yield a satisfactory G*
solution, one may instead try intermixing cubic surfaces with quadrics. To do this one first considers

the lemma below similar to lemma 3.1 and a corollary of theorem 3.2

Lemma 3.4 Let 5 : f(z,y,z) = 0 be an irreducible quadric surface, and Q : g¢(z,y,z) = 0 be a plane
which intersects § in a conic C. Then, a cubic surface Ty : fi(z,y,7) is tangent to S along C if and

only if there exists nonzero conslanis ay,...,aq, and by, ..., by such that fi = (a12 +a2y+ asz+aq)f+

(012 + bay + baz + ba)g®.
Similar to lemma 3.3 one obtains

Lemma 3.5 Let C; : (fi = 0,q1 = 0) and Cs : (f2 = 0,42 = 0) be two conics in space. These lwo
curves can be smoothly contained by two quadrics Sy : g1 = a1 f1+61¢% =0 and Sz : g2 = az fo+b2g2 both
of which meet a cubic surface Ty : hy = 0 if there ezist nonzero constants ey, ag, by, by, ay1,..., 004,
@21, .., 024 Bi1s--., P14, B21s-- -, Peq and planes Ry : 11(z,y,2) = 0, R : rao(2,9,2) = 0 such thet by
= (117 + a2y + o3z + ara)g + (fuz + fray + fise + ﬁm)‘a“% = (e + azy + anz + azi)g: -
(B1% + fazy + Pasz + Paa)r



Proof: It follows from Bezout’s theorem 3.1 for surface intersection, that the a quadrics §; and a
cubic surface 77 must meet in either a space cubic, a plane cubic, an irreducible conic or straight lines.
Consider only the plane intersection curves and assume they lie on an unknown plane ¢, then just
apply Lemma 3.4. &

In both the above lemmas, 77 need not be in the above form but may instead be a /-parameter
family of solutions, obtained by G! interpolation of input curves with possibly “normal” data, as
explained in the previous section 2. These parameterized cubic surfaces may be intermixed with the
quadric surfaces in theorems 3.4 and 3.5 to form a G continuous mesh of alternating quadric and cubic

surfaces in the obvious manner. T'll skip the details here.

4 Conclusion

We have implemented the G! interpolation and G! continuous meshing algorithms as presented in
sections 2 and 3, as part of our geometric modeling system [1]. The program takes as input any
collection of geometric data points, curves, with and without associated “normals”. Both implicit
and rational parametric representations of the space curves and their derivatives are allowed. The
program solves the linear system of equations using a variant of Gaussian elimination with scaled
partial pivoting. The rank computation is done implicitly during the solution steps. The result, when
nontrivial solutions exist, are expressed in terms of symbolic coefficients and represent a family of
interpolation surfaces. Values are specified for these coefficients by means of either the least-squares
approximation approach [5] or using Bezier control weights [4]. The system of polynomial equations

of section 3, is currently solved by linking to Grobner basis routines in Macsyma. We are currently

improving our software implementation to include:

1. a linking to our own algebraic geometry package [6], optimized for solving systems of polynomial

equations

2. the development of a more user-friendly method of inputting geometric data and of selecting the

appropriate interpolated solutions

3. incorporating a way of automatically satisfying nonsingular and irreducibility constraints of in-

terpolating and meshing surfaces

10
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Figure 1: G! interpolation with quadric and quartic surface patches.
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Srooin Meaesh of Quadric Pator

Figure 2: G mesh of quadric surface paiches.




