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Abstract

The GANITH algebraic geometry toolkit manipulates arbitrary degree polynomials
and power series. It can be used to solve a system of algebraic equations and visualize its
multiple solutions. Example applications of this for geometric modeling and computer
graphics are curve and surface display, curve-curve intersections, surface-surface inter-
sections, global and local parameterizations, implicitizations, and inversions. It also
incorporates techniques for multivariate interpolation and least-squares approximation
to an arbitrary collection of points and curves.
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Figure 1: Display of Curve-Curve and Surface-Surface Intersections

1 INTRODUCTION

GANITH is an X-11 and XS based [6] application toolkit that manipulates polynomials
and power series. Its main use is as a tool for solving systems of algebraic equations. In
some special cases the user is provided with a variety of ways to display and manipulate
solutions. Example applications are curve and surface display, curve-curve intersections,
surface-surface intersections, global and local parameterizations, implicitizations, inversions,
etc. See Figures 1 and 2.

GANITH consists of two main subsystems. The first consists of a graphical user interface
and visualization system. This part is written in C. The second part, written in Lisp, is
a Computer Algebra (CA) library. The two parts reside in separate Unix processes and
communicate via the pipe mechanism.

The whole system is controlled by a multi-window graphical user interface system that
provides convenient methods for controlling the three subsystems. GANITH as a whole is
a subsystem of SHASTRA and will be integrated into the SHASTRA environment[5].

The rest of this paper consists of the following. Section 2 presents the technical details
of both the software architechture, and the choice and rational of the algorithms and data
structures implemented. It also highlights the new contributions made in solving systems
of polynomial equations and visualizing its solutions. Section 3 may be treated as a user
manual and details the functionality of the three subsystems in terms of the user interface.
This section also includes an example with a tutorial. Section 4 examines the system inter-
nals and provides a programmer’s guide. Finally the last section discusses future extensions
and plans.
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Figure 2: Shaded Display of Surfaces and Space Curves

2 TECHNICAL TOUR

2.1 Functional Subsystems

There are four major components of Ganith: user interface, controller, numerical and graph-
ics subsystem, and algebra subsystem. The first three components reside in one process,
and the algebra subsystem in another process. The algebra subsystem is written in Com-
mon Lisp, and the others in C and Fortran. All graphics and numerical calculations are
performed in C or Fortran, while symbolic and exact calculations are done in Lisp. The
two processes communicate with each other using Unix sockets, and may run on different
hosts.

To start Ganith, a C program containing the user interface, controller, and numerical
subsystem is executed. This invokes the algebra subsystem in a Lisp process, possibly on
another host. The user interface is used for command input and output. Once a command
is entered and edited to satisfaction, the controller sends it to the numerical or algebraic
subsystems for execution, then the results are sent to the user interface for display. The
algebraic and numerical subsystems may request computations from each other via the
controller.

2.2 Visualization Algorithms

2.2.1 Curve and Surface Display

A number of facilities for the display and manipulation of algebraic curves and surfaces
are provided. Curves and surfaces may be specified in either implicit or parametric form.
The display algorithms generally start by finding a piecewise linear approzimation (PLA)
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to a curve or surface. That is, a curve is approximated by line segments, and a surface by
polygons.

¢ Plane Curves in Implicit Form
A curve is specified by its polynomial equation f(z,y) = 0. A PLA is constructed
using the recursive plane-subdivision technique of Geisow [25]. The resulting list of
line segments is displayed. The user selects the portion of the plane over which to
graph the curve. An alternative curve tracing scheme using quadratic transformations
for local desingularization has also been implemented [12].

o Surfaces in Implicit Form
A surface is specified by its equation f(z,y,2z) = 0. A PLA is constructed using a
recursive space subdivision technique [16]. The user selects a bounding box within
which to display the surface. In addition, the granularity of the PLA is controlled by
selecting the maximum edge length of the approximating polygons, and the depth of
the recursion.

e Curves in Parametric Form
A rational plane curve given by parametric equations z = m;%,y = -ﬁg can be
graphed over a parameter interval [a,b] C R. In Ganith, a PLA can be constructed
by constant or adaptive stepping of the parameter in the given interval. The adaptive
method produces smoother displays, because stepping is curvature dependent. Curve
portions of higher curvature will produce denser subdivisions of corresponding portions
of the parameter interval.

Rational space curves given by a triple of rational functions of a single parameter can
also be graphed in a similar way. The adaptive technique used is from [15]; see also
[24],[28].

o Surfaces in Parametric Form
A rational surface given by a parameterization

g = g91(s,1) y = g2(s,1) L g3(s, 1)
g4(57t)’ 94(3,t)’ g4(s,t)

can be graphed over a parameter rectangle [aq, b1] X [as, b2] C R?. Once again, constant
or adaptive subdivision methods may be chosen in constructing a PLA. The adaptive
methods are curvature dependent, and are based on formulas given in [15]. These
formulas are used by a stepping algorithm to find an appropriate set of points in the
parameter rectangle. A Delaunay triangulation ([23]) of these points is constructed,
and the triangles are mapped into space via the parameterization. This yields a
curvature dependent triangulation of the surface.
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2.2.2 Animation

Anything displayed by Ganith can be freely rotated by simple mouse motions. In addition,
certain powerful animation tools are provided. These tools allow one to view entire families
of curves and surfaces, thereby gaining geometric insight into a variety of situation.

o Animation Objects and Groups
All displayable objects such as curves and surfaces can be converted by the user
into animation objects by attaching an animation script (script for short). A script
specifies a sequence of transformations to apply to the object. Once some animation
objects are constructed, they can be collected into animation groups for simultaneous
animation.

¢ Animation Scripts
An animation script is a recipe for smoothly transforming the object in some way.
Affine transformations (rotation, translation, scaling) are supported, as are a more
interesting kind, coefficient variations. In the latter, some coefficient of the object is
allowed vary in some range. This gives rise to a whole family of related curves or
surfaces. For instance, one could visually examine the sensitivity of a singularity of a
curve or surface to changes in a certain coefficient.

e Intersection of Animation Objects

Given two animated objects, under certain conditions, one may intersect them. That
is, at each time step, the corresponding “frames” of each animation ob ject are in-
tersected. For instance, one could attach scripts to two surfaces that translate them
towards each other, and intersect the resulting animation objects. This would produce
a sequence of intersection curves as the surfaces “pass through” one another. Much
more complicated examples can be generated by combining the affine transformations
with coefficient variation.

All intersections allowed in Ganith may be applied to animated ob jects (currently, one
is allowed to intersect two implicit plane curves or two implicit surfaces: see section

3).

o Animation Movies
Since some animation operations cannot be done in real-time, a “movie” feature allows
one to save the frames of an animation sequence. Once such a “movie” is made, it
can be played forward or backward under user control, at real-time speed.

2.3 Symbolic Computation

Ganith provides several operations on curves and surfaces. The algorithms used are pri-
marily algebraic in nature, but numerical calculations (especially root-finding) are crucial
to their implementation.
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2.3.1 Intersection by Birational Maps

Algorithms are provided for intersecting two curves or two surfaces, given in implicit form.
These are based on the computation of birational maps by polynomial remainder sequences
4, 8].

Given two equations fi(21,...,2,) = fa(21,...,2,) = 0, the birational map computa-
tion reduces this system to an equivalent one of the form

Res(z1,...,2,_1) = 0

. g(z1,.. . 20 y)
" h(.’L‘l,...,CEn_l)
Here Res(zi,...,2z,-1) is Sylvester’s resultant of the original equations with respect

to z,. The resultant and the rational function g/h can be obtained by computing the
subresultant polynomial remainder sequence [18},[19] of the polynomials f1, fa.

By this method, n — 1 coordinates of the solutions of the system are given as solutions
of a single equation. The remaining coordinate is given as a rational function of the others.
Hence if one can “solve” a single equation in n — 1 variables, one can solve two equations
in n variables. This method can be generalized to more than two equations, at the cost of
greater complexity [17],[11].

The curve and surface intersection facilities make use of this method. This method was
chosen because of its efficiency and simplicity (only a single polynomial remainder sequence
is needed).

¢ Curve Intersection
Given two curves, the resultant and rational function are constructed. The resultant
is a univariate polynomial. A numerical procedure is applied to find roots of this
polynomial, which are then used to find common curve points. The two curves are
displayed with their common points circled.

o Surface Intersection
Given two surfaces, the resultant and rational function are constructed as for curves.
This time the resultant is a plane curve. The numerical plane curve graphing proce-
dure described in section 2 is applied, and the plane curve is mapped to a space curve
by the rational function. The space curve is then displayed.

2.3.2 Global Parameterization

Given a curve or surface in implicit form, one can sometimes find a rational parameteri-
zation. Parameterization algorithms have been given in [1],2],[3],(4],[29]. One algorithm
for parameterizing quadratic hypersurfaces[9] has been implemented in Ganith. The user
can immediately choose to display one or two dimensional sections of the parameterization
using the facilities of section 2.
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2.3.3 Local Parameterization at Singularities

Around any point of a plane curve, one can find power series that approximate the curve
locally near that point [26, 21]. Near singular points, this is not easy; algorithms for this
have been given in [7], [22],[20]. The algorithm of [7] has been implemented in Ganith. It
uses fast algorithms for Weierstrass preparation, Hensel lifting, and Newton factorization
to compute power-series approximations for each branch of the curve near a given singular
point. The curve and the branches near the singular point are displayed.

2.3.4 Surface Fitting with Algebraic Surface Patches

C! Interpolation and Least-Squares approximation routines (13, 10, 14, 27] have been im-
plemented in Ganith.

2.4 System Design

There are four major components of Ganith: user interface, controller, numerical and graph-
ics subsystem, and algebra subsystem. The first three components reside in one process,
and the algebra subsystem in another process. The algebra subsystem is written in Com-
mon Lisp, and the others in C and Fortran. All graphics and numerical calculations are
performed in C or Fortran, while symbolic and exact calculations are done in Lisp. The
two processes communicate with each other using Unix sockets, and may run on different
hosts.

To start Ganith, a C program containing the user interface, controller, and numerical
subsystem is executed. This invokes the algebra subsystem in a Lisp process, possibly on
another host. The user interface is used for command input and output. Once a command
1s entered and edited to satisfaction, the controller sends it to the numerical or algebraic
subsystems for execution, then the results are sent to the user interface for display. The
algebraic and numerical subsystems may request computations from each other via the
controller.

Now two aspects of Ganith are discussed, namely extensibility, and communication with
other systems under development here.

2.5 Extensibility

In Ganith, our goal is not to provide a full-blown computer algebra program (e.g. MAC-
SYMA, Maple, Mathematica etc). Instead Ganith, provides specialized capabilities that are
useful in conjunction with other CA systems. For this reason, it was deemed unnecessary
at this point to provide a new language for extending Ganith. Instead, some primitive
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3 USER’S MANUAL

3.1

The User Interface

High level user interfaces are a developing trend in CA systems. In Ganith the user interface
was a part of the initial design. It is implemented using the Athena Widget Toolkit for the
X-11 window system, and a library that exploits special graphics hardware (such as polygon
shading hardware) where available. See accompanying figure. The user interface is fully
customizable to the extent allowed by the Widget Toolkit. For instance, the user can
customize features of subwindows such as size, relative position, label, color, and keystroke
interpretation.

The principal components of the user interface are discretization, visualization and in-
put/output. Their capabilities are described below, and their usage is described in the
Reference Manual section. The user interface also implements half of the protocol used in
communicating with the Lisp process containing the Computer Algebra library.

3.1.1

Discretization

This component implements the display of graphical objects. Such ob jects are usually
discretized approximations of piecewise-continuous mathematical entities. For instance,
the set of real solutions of the equation f(z,y) = 0 describes a plane curve. This set may
be unbounded, but the display area is finite. A portion of the set must be selected for
graphing. A typical choice is the part lying inside a square centered around the origin. This
portion is then approximated in some way, generally by a piecewise linear approximation.

The discretization component provides ways of generating such representations of math-
ematical entities. At present the following entities can be processed:

Implicitly Defined Plane Curves
The real solutions of f(z,y) = 0.

Parametrically Defined Curves

A plane curve may be defined as the set of points {[z(t), y(t)]} where ¢, the parameter,
varies over some interval. A space curve may be defined similarly as a set of points
{[z(t),4(t),2(2)]} in 3-space. The functions z,y,z are rational functions, that is,
quotients of two polynomials in ¢.

Implicitly Defined Surfaces
The real solutions of f(z,y,2) = 0.

Parametrically Defined Surfaces
Like curves, surfaces may be defined parametrically as the set of points {[2(s,1),9(s, 1), 2(s,1)]}
where the parameters s and ¢ each vary over some interval.

Intersections of Implicitly Defined Plane Curves
The real solutions of {fi(z,y) = 0, f2(z,y) = 0}. Here the plane curves of fiand f,
will be graphed, and their common points circled.
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¢ Intersections of Implicitly Defined Surfaces
The real solutions of { fi(z,y,2) = 0, f2(z,y,2) = 0}. The intersection of two surfaces
is in general a curve lying in 3-space.

Several variables control the concrete visual representation of these entities. These
are bounding box corners, parameter ranges, parameter nstep sizes, stepping methods,
subdivision levels, etc.

3.1.2 Visualization

Once a mathematical entity is approximated, the visualization component provides for its
display and manipulation. The primary tools supported are objects and windows. An object
is indirectly created by Ganith whenever some mathematical entity is approximated. A
window is directly created by the user. Ganith maintains a list of objects and a list of
windows, which are independently accessed and manipulated. Once a window is created,
the user may select any number of objects into that window for display. Thus selection is
the only operation that combines windows and objects.

Once an object is selected into a window, it can scaled and rotated along with all other
objects in that window. Each window maintains its own scale factor and orientation vector.
All objects of a window are drawn to the same scale and with in the same orientation.

An object consists of a set of equations, a set of points (i.e. an approximation to the
entity described by the equations), and a state (i.e. the particular parameters used for
generating the points). Objects may be refined: if the object’s state variables are out of
date, the current state is used to recompute the object’s points. Objects may also be
transferred to and from files.

3.1.3 Input/Output

Ganith departs from the line-oriented input style of traditional CA sytems. The Input
window is an Emacs-like editor. It is mouse-sensitive, i.e. the mouse can be used for cut
and paste operations. The keystroke translations of the editor are customizable.

The Output window is not editable. It is used to display numerical and symbolic results
of computations, and to annotate visualizations displayed in the Graphics window.

Both Input and Output windows have a built-in history mechanism accessible via mouse
scrollbars. The entire history of the Input window is editable. The history of both windows
may be accessed in cut/paste operations.

File operations are available for inserting files into the Input window, and for saving the
Output window contents.

3.2 The Computer Algebra Library

Most of Ganith’s algorithms are implemented in Lisp, and form the Computer Algebra,
library. The library is structured into layers, in order of ascending algorithm complexity.
Each layer uses and builds on the functionality provided by previous layers.
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The library provides an abstract data type for polynomials. This data type is based
on the recursive notation for polynomials: multivariate polynomials are represented as
univariates whose coefficients are recursively polynomials of the same form in other variables,
or constants.

All operations use this data type for polynomials. Accessor functions are used to query
polynomials for characteristics such as degree and variable lists, while constructor func-
tions are used to construct new polynomials. This structured approach localizes the exact
details of the polynomial data structure in a few select functions. However, for the sake
of efficiency, many low-level algorithms were constructed to be most efficient for sparse,
recursively represented polynomials.

The layers of the library are now described in degree of ascending complexity. Algorithms
marked with an asterisk are unimplemented at this time but shown to mark their place in
the hierarchy. Some algorithms are separately implemented but not yet incorporated into
Ganith.

¢ Polynomial Manipulation

o Abstract data types

¢ Accessor and constructor functions

¢ Rational and modular constant arithmetic

¢ Add, subtract, multiply, divide, pseudo-divide

o Differentiate, evaluate, interpolate, Chinese remainder

¢ Variable ordering, coefficient extraction
o Low-level Algebra

¢ Root extraction for univariate polynomials

e Subresultant remainder sequence calculation

e Resultant calculation by modular and non-modular methods

¢ Polynomial GCD

¢ Rational parameterization of quadrics in any number of variables

¢ Rational parameterization of singular cubic curves, and all
cubic surfaces

o Implicitization of parametrically given curves or surfaces
e Weierstrass preparation

e Newton factorization

¢ Hensel’s lemma

¢ Pade approximation

e Groebner Bases*
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e Macaulay’s Resultant*
o Algebraic Geometry Implementation

o Curve/curve intersection using resultants and birational maps
for curves in implicit form

o Surface/Surface intersection using resultants and birational maps
for surfaces in implicit form

e Intersections of hypersurfaces given in the same form, when implicitization or
parameterization successfully converts one hypersurface to the other form*

o Power-series parameterizations of curves at singularities

o Three-surface intersection using remainder sequences and
birational maps*

In addition to the Computer Algebra library, a small amount of Lisp code implements
half of the protocol used to communicate with the user interface process.

3.3 REFERENCE MANUAL

Ganith is started by running the user interface program, simply called “ganith.” The user
interface will also start a special Lisp process that contains the CA library, and initialize
communications with it. After that it will create a multi-panel window on the X display
host.

3.3.1 Terminology

Some simple terminology is given for users unfamiliar with window systems. Only a small
subset of window related operations are described, just enough to operate Ganith. Since
such operations are customizable in X, these may vary from user to user, and we only
describe some common defaults. Refer to X documentation for advanced use.

e Mouse Clicking This means depressing a mouse button and releasing it. The mouse
is assumed to have three buttons, denoted here as LEFT, MIDDLE, and RIGHT.
“Clicking” without any modifiers refers to clicking the LEFT mouse button. “Double-
clicking” means clicking a button twice, rapidly, and “triple-clicking” is similar.

o Text Selection A contiguous portion of text may be selected by clicking the LEFT
button at the beginning of the extent, and the RIGHT button at the end of the
extent. A word can be selected by double-clicking on it, and a line by triple-clicking.

e Cut and Paste The current text selection may be cut (deleted) by typing “Control-W.”
It may be pasted (inserted) using “control-Y.”
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o Buttons Not to be confused with mouse buttons. These are control subwindows that
perform some action in response to mouse clicks. Usually nothing else can be done in
Ganith while a button is performing an action; while a button is active, its foreground
and background colors will be reversed. There are several types of buttons:

o Command This type will simply perform some action
o Selection Selection buttons operate on the current text selection (see below)

¢ Dialog These buttons will prompt the user for some input before performing an
action

o Toggle These buttons change some boolean state variable in Ganith. They have
a dark background and light foreground when the state variable is true, and
vice-versa when it is false.

¢ Menu A menu button brings up a list of items for selection. There are two
kinds of menus: zero-or-one, and zero-or-many. The first kind will only allow
one item to be selected at a time. In each case, when an item is selected in the
menu by clicking the LEFT button, it will be highlighted. Selecting an already
highlighted item un-selects it. When all requisite items are selected, the “Ok”
button must be pressed to continue the action. A “Cancel” button allows one
to abort without performing the action. Finally, double-clicking an item in a
zero-or-one menu is shorthand for selecting it and clicking the “Ok” button.

3.3.2 Organization

Ganith consists of (at least) three subwindows, and various buttons.

The major subwindows are the following:

Control Panel: Titled “Ganith Control Panel,” this contains an assortment of buttons.
This window may be resized to any shape and the buttons will attempt to arrange themselves
to fit the shape.

Input/Output: This contains two text windows, with scroll bars. The upper text
window is the Input window. Ganith commands may be entered here. It is a text editor that
recognizes most of the standard editing commands of the EMACS editor. Click anywhere in
the window to set the cursor location. Inserting and deleting characters from the keyboard
is done relative to the cursor. Text may also be cut and pasted in this window. Backspace
deletes the previous character. The lower text window is the Output window. Nothing
should be typed here: Ganith uses it to print textual results. Both may be scrolled back
and forth using the scroll bars (by holding down the MIDDLE mouse button in the bar and
moving the mouse back and forth).

Graphics: These are titled “Ganith Window N” and are always square. There is always
one window that is current. Graphical objects are always selected into the current window.
Each window’s title indicates whether it is current, and also contains a list of the objects
selected by that window. The graphics windows may be resized, but will always be forced
to remain square. Each window displays its own XY Z-space. The X axis runs horizontally,
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Y vertically, and the Z-axis increases out of the screen. The initial viewpoint is usually at
(X =0,Y =0,Z = 20), looking at the origin.

Each window maintains its own scale and orientation, and all objects selected by that
window are drawn accordingly inside it. An object may be selected by multiple windows
and displayed in multiple sizes and orientations. A window’s orientation may be changed
by mouse motion inside the window (it doesn’t have to be current), followed by clicking
the LEFT button. If the user moves the mouse inside the window but doesn’t want those
motions to be later interpreted as rotations, clicking the MIDDLE button cancels any
accumulated mouse movement. The user may also hold down the LEFT button and “drag”
the mouse, causing continuous rotation of objects inside the window.

All rotations are performed around the axis in the XY -plane that is perpendicular to
the direction of the mouse motion. In particular, vertical motion corresponds to rotation
around the X axis, and horizontal motion corresponds to rotation around the Y-axis. A
mouse motion whose length equals the length (or width) of the window corresponds to a
rotation of 360 degrees.

The scale factor of the current window may be changed by the “Zoom” button, as
described below.

Planar objects are also drawn in three-dimensional space, hence to view them without
distortion, they must be viewed from along the Z axis. See the “Init” button below.

3.3.3 Interacting with Ganith

Ganith is operated using various control buttons. Each button is described along with its
type (and default value, if it is a toggle).

¢ Read(Dialog) Insert a file into the Ganith input buffer.

o Write(Dialog) Write the contents of the output buffer into a file
¢ Help(Dialog)

¢ Quit(Dialog)

¢ Execute(Selection) Execute the text selection as a command. Might create a new
object.

o DrawCurve(Selection) The text selected must be an expression describing a curve
to be drawn. Creates a new object.

¢ DrawSurface(Selection) The text selected must be an expression describing a surface
to be drawn. Creates a new ob ject.

¢ Init(Command) Resets the viewpoint, scale, and orientation of the current window
to its initial position. Thus to view a plane curve without distortion after rotating an
object in three-dimensions, one clicks Init to reset the viewpoint to its initial position
along the Z axis.
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¢ Clear(Command) Clear the current window.
¢ Redisplay(Command) Redraw all objects in current window.

¢ Zoom(Dialog) Will prompt for a scale factor. This number is then multiplied into
the scale factor of the current window. Typing a factor larger than 1 will cause an
object to grow; typing a factor smaller than 1 will cause an object to shrink. A good
way to perform repeated zooms is to enter a zoom factor of 1 + —0.1, and click the
“Ok” button on the Zoom prompt repeatedly.

¢ Graphics(Dialog) This button is used to set Ganith variables that control curve
and surface display. Different algorithms are used for polygonalizing implicit and
parametric surfaces. The variables must be entered separated by commas. For each
method the names, types, and default values of the variables are listed.

o Implicit Surfaces An Octree decomposition method is used. This method
starts with an initial bounding cube, and subdivides it recursively until small
facets of the surface are found. The variables are

o Coordinates of one cube corner: float : -2,-2,-2
o Cube side length: float : 4

e Maximum polygon side length: 0.5

¢ Should normals be generated: 0 (no) 1 (yes): 1
¢ Minimum subdivision level : integer : 3

¢ Maximum subdivision level : integer : 8

Thus the default variable string is “~2.0,-2.0,-2.0,4.0,0.5,0, 3, 8.”

¢ Parametric Surfaces Either constant or adaptive stepping of the parameters
may be used. The variables are

e initial-S,final-S,initial- T, final-T: float : -1,1,-1,1

e number of points in each parameter range : integer : 20

¢ adaptive delta : float : 0.3
If adaptive delta is 0.0, then constant stepping with the given number of points
will be used. Otherwise the points value will be ignored, and stepping will
proceed by increments of delta, scaled by the curvature of the surface. The
default variable string is “—1.0,1.0,-1.0,1.0,20,0.3” (adaptive stepping is the
default).

¢ Parametric Curves If a curve is being drawn, all values must be given, but
only “initial-S,” “final-S” and “points” are used.

¢ Colors(Command) Ganith maintains a small, fixed set of colors, and this button
allows the user to select the current line drawing color from a menu.
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Shades(Command) Ganith maintains a small, fixed set of color shades, and this
button allows the user to select the current polygon shade from a menu.

The following buttons are toggles.

AutoRedraw(Toggle, True) When true, redraw the screen each time some value such
as zoom factor or viewpoint changes.

Autolmp(Toggle,True) When true, expressions given to “DrawCurve” and “Draw-
Surface” must be implicit definitions of curves and surfaces. When false, they must
be expressions for parametrics.

AutoCull(Toggle,False) When true, polygons of a displayed surface whose normals
point away from the viewing direction will be removed.

AutoShade(Toggle,False) When true, polygons of a displayed surface are filled ac-
cording to the current shading parameters.

AutoWire(Toggle,True) When true, edges of polygons of a displayed surface are
drawn.

AutoSelect(Toggle,True) When true, every object created is automatically selected
into the current window.

The following buttons relate to windows and objects.

Select Window(Menu,0/1) The window list is displayed for selection, along with a
special item called NEW. One item is selected to be the current window. If NEW
1s selected, a new window is created and made current.

DeleteWindows(Menu,0/00) The window list is displayed, and several windows may
be selected for destruction. One may not destroy all windows — at least one must be
left. If the current window is destroyed, some other window is made current.

SelectObjects(Menu,0/00) The object list is displayed, and several objects may be
selected for inclusion into the current window.

UnSelectOb jects(Menu,0/00) The object list of the current window is displayed,
and several objects may removed from the current window.

DeleteOb jects(Menu,0/00) The object list is displayed, and several objects may be
selected for destruction. Destroyed objects are removed from each window that had
selected them.

RefineObjects(Menu,0/00) The object list is displayed, and several objects may be
selected for refinement. Each object is refined and then redrawn in each window that
contained it. For successful refinement, an object must contain both the equations
part and the state part. The state part is compared to the current graphics state and
the points of the object are revised if the object’s state is out of date.
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¢ DescribeOb jects(Menu,0/00) The object list is displayed, and several objects may
be selected. For each object, its equations, points, and state (whichever are present)
are described.

¢ InvertObjects(Menu,0/00) The object list is displayed, and several objects may be
selected. For each object, the direction of all polygon normals (if any) are reversed.

¢ RenameObject(Menu,0/1) The object list is displayed, and one object may be se-
lected for renaming. After selection, a dialog is displayed into which a new name may
be entered. The name must not already be in use. Objects are given numeric names
by default.

¢ SaveObject(Menu,0/1) The object list is displayed, and one object can be selected for
saving to disk, for subsequent retrieval and use. After selection, a dialog is displayed
into which a file name prefix must be entered. Then, three files are created with
the suffixes “.eq”, “.pts”, and “.st”, containing the equations, points, and state of an
object, respectively. If an object is missing one of these parts, the corresponding file
is not created. The saved file format will be described in the programmer’s guide.

¢ ReadObject(Dialog) A dialog is displayed into which the user enters a file name
prefix. Ganith searches for files with that prefix and suffixes “.eq”, “.pts”, and “.st”.
All three need not be present, but at least one of “.eq” and “.pts” must be present.
If no syntax errors are detected in these files, a new object is created.

3.3.4 Commands and Expressions

¢ Polynomials Ganith understands limited macsyma-like expressions. Floating-point
and rational coefficients are allowed. However, only polynomials are recognized, hence
“1/2%(x-0.3xy)*2” is a valid expression but “x/2” is not.

e Variables The “space” where curves and surfaces are manipulated has its axes la-
beled, by default, X, Y, and Z. The default parameter space is §,T. All expressions
describing plane curves must be in X and Y, when implicitly defined, or in S, when
parametrically defined. Likewise, polynomials describing surfaces must be in X,Y,
and Zorin S and T.

These variable bindings can be changed, as described later. All variables are translated
into upper-case, hence their case does not matter (but command names must be in
lower-case).

¢ Expressions An expression for an implicitly defined curve is a polynomial in two vari-
ables; for a surface, a polynomial in three. Not all variables must be present (then the
object will be a cylinder). A parametrically defined curve or surface is represented by
a tuple [ry, 2] or [ry, 79, 73] respectively. Each r; is an expression describing a rational
function; it can be simply a polynomial, or of the form “polynomiall—polynomial2,”
where “polynomiall” is the numerator, and “polynomial2” is the denominator.



3 USER’S MANUAL 19

e Commands The text of these must be selected, and executed using the Execute but-
ton. In what is below, p; stands for a polynomial. Only implicit-implicit intersections
are handled. The commands currently supported are:

¢ intersect2e2d(p;,p;) Intersect two plane algebraic curves and display their
points of intersection, along with the curves. This will create an object which
will be refined if the plane curve bounding box is changed.

o intersect2e3d(p;,p;) Intersect the surfaces p; and p,, displaying their curve of
intersection. The intersection curve is projected onto a plane curve first, so this
object can be refined by changing the plane curve bounding box.

¢ intersect3e3d(p;, p;,ps) Intersect the surfaces p;, p;, and p3. Currently, this
1s just a shortcut for displaying their pairwise intersections (i.e. calling inter-
sect2e3d three times).

¢ param2dNv(poly,vi,...,vN_1,p1,...,pN) Parameterize the hypersurface of de-
gree 2 and dimension N defined by the equation poly = 0. The v; are the parame-
ter variables to be used, and the p; are coordinates of a point on the hypersurface.
The parameterization is displayed in the (textual) output window.

¢ compactify(p) Compactify the polynomial p which may be in two or three
variables. If it is in two variables z,y, then it is homogenized with the variable z,
and the intersection of this surface with z%2 4+ %2 4+ 22 — 1 is displayed. Otherwise
a homogenizing variable w is used and the resultant of the homogeneous surface
and 22 + y% + 2% + w? — 1 with respect to w, is displayed.

¢ eliminate(p;,p;,v) Eliminate the variable v from the equations p; = 0 and
p2 = 0, by Sylvester’s resultant. The eliminant is displayed in the (textual)
output window.

e realify2d(p) Compute and return the real and imaginary parts of a curve, and
their resultant. If p is a polynomial in two variables z and vy, the substitution

T T+ 2w

y = y+iz

is made; then the real and imaginary parts are computed, and their resultant
w.r.t. w is returned. Their resultant is a polynomial in three variables defining
a surface, which is displayed.

e curvewin(ming, miny, max,,maxy) This resets the bounding box for implicit
plane curve display.

e setvars(v;,v2,v3) The names of the axes of the plane are set to (v1,v2) and
those of space are set to (v1,v2,v3). Implicit curves and surfaces must use these
variables. The variables are (z,y, 2) by default.

¢ setpvars(v;,vz) The variables for the parametric spaces of dimensions 1 and 2
are set to v; and (v, v2) respectively. The variables are (s,t) by default.
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Some simple examples of commands and expressions are listed below.
e intersect2e2d(x~2+y~2-1,y"3-x)

¢ intersect2e3d(x~2+y~2+z"2-1,z"2-y"3)

o intersect3e3d(z~2-y~3,x"2+y"2+z°2-1, (x-1) "2+y~2+z"2-1)

¢ param2dNv(x~2+y~2-1,s,1,0)

e setvars(u,v,w)

e setpvars(u,v)

3.4 Enhancements

Ganith graphics is built on top of a library that provides a device-independent graphics
interface. This library is currently implemented for the SGI 4D class workstations. In
that version of Ganith, additional features provided are hidden-surface elimination using
Gouraud shading, and lighting models.

3.5 TUTORIAL

We present here a sample interaction with Ganith, in step-by-step fashion. The sequence
of operations presented here are enough to gain some understanding of the Ganith user
interface and some of Ganith’s main facilities. The steps here are of course only a suggestion,
and the user is encouraged to experiment with the various facilities described.

An interaction is now described in which the user draws two surfaces and intersects
them, displaying these objects in multiple windows.

1. Start Ganith
2. Resize window 0 to make it a little smaller
3. Select a color, e.g. magenta by clicking the Colors button repeatedly.

4. Enter the text “1-x"2+y~2+2-4” in the input window, select it with the mouse, and
click the DrawSurface button. A surface will be drawn in window 0, and object 0
will be created. Rename object 0 to “surfl” using the Rename Object button. A
snapshot of the screen at this stage is shown in Figure 4.

5. Use the Select Window button to create a new window, called window 1.
6. Resize window 1 to make it smaller.

7. Select a different color, e.g. brown.
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Figure 4: Output of a Draw Surface(1 — z% 4 y? 4 2*) Command in Window 0
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Figure 5: Draw Surface(z? + y2 — 2% 2 + y * 2 — 1) Displayed in new Window 1
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Figure 6: Intersect2e2d(1 — 22+ y% + 24,22 + y2 — 2%z + y * 2 — 1) Displayed in Window 2

Figure 7: Simultaneous Display of Surface and Intersection Curve in Windows 0,1
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10.
11.
12.

13.
14.
15.
16.

Figure 8: Shaded Display of Draw Surface(z® + y2 — 2+ z*y* z — 1)

Enter the text “x~2+y~2-2*x*y*z-1" into the input window and click the DrawSur-
face button. This will draw a surface into window 1, calling it object 1. Rename this
object to “surf2.”

. Click the Graphics button and change the surface bounding box to have corner

—3,—-3, -3 and side of length 6, and refine the object “surf2” using the RefineOb ject
button. A larger portion of the surface will now be shown in window 1. A snapshot of
the screen at this stage is shown in Figure 5. On graphics workstations equipped with
a Z-buffer, a shaded display of the same surface is possible and shown in Figure 8.

Create a new window, window 2, and resize it to be somewhat smaller.
Select a new color, e.g. blue.

Edit the contents of the input window to contain the text
“intersect2e2d(1-x"2+y~2+2"4,x"2+y~2-2*x*y*z-1).” Then select this text with
the mouse and click the Execute button. This will display the intersection curve of
the surfaces in window 2, and create a corresponding object called “ob ject 2.” Rename
the object to “int1.” A snapshot of the screen at this stage is given in Figure 6.

Select window 0.
Select the object “int1” into window 0.
Select window 1.

Select the object “int1” into window 1. At this point the screen will show the curve of
intersection by itself and also overlaid on each of the intersecting surfaces. If desired,
one can change the drawing parameters and refine the object “int1” so that a larger
portion of the intersection curve is displayed, for emphasis. A snapshot of the screen
is shown in Figure 7.
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4 PROGRAMMER’S GUIDE

Ganith is divided into two components, the user interface and the CA library. The com-
ponents are written in separate languages and run inside separate processes. It is therefore
logical to discuss them separately. However, we first discuss the design of Ganith.

The first implementation was on a Sun workstation running the Unix operating system.
Later it was ported to the SGI 4D class of workstations. Ganith is written in Common Lisp
and C. It uses the X11 window system via the Athena Widget toolkit. The Lisp part is
written entirely in standard Common Lisp. In our experience, to deviate by even a minute
amount from standard Common Lisp (by using implementation-dependent extensions) is to
drastically reduce portability. Thus, while a certain amount of efficiency is lost, the system
as a whole is quite portable. Ganith is meant to be portable to any system that supports
Common Lisp and the X window system.

The Lisp process and the C process communicate via UNIX pipes and need not reside
on the same host.

The user interface and CA library were separated for practical reasons. This separation
allows graphics operations to be written in C, taking advantage of the extensive C libraries
available for graphics on contemporary workstations. Likewise, Lisp is well suited for alge-
braic computation. Its advantages such as built-in symbol and large-number manipulation
lead to quick prototyping and higher programmer productivity than a language such as C.
However, the prices paid for using Lisp are high memory overhead, slower run-time exe-
cution, somewhat lower portability, and the cost of an extra process. At this time we are
judging the cost of continuing to use Lisp versus writing a CA kernel from scratch in C.

The two components of Ganith work in a master-slave relationship. The user interface
is the master; it accepts commands from the user and executes them. At times it may
need facilities provided by the CA library. In this case, a simulated foreign-function call is
executed to call a function in the Lisp process and access its return value. The simulated
foreign-function call actually consists of two steps: send and receive. The send step returns
immediately after sending the command to Lisp, without waiting for its completion. The
receive call blocks until Lisp finishes its computation. This asynchrony may have some
value on multiprocessor architectures.

The rest of this section is as follows. First the user interface and CA libraries are
described, along with their directory structures. Next, the important functions of the user
interface and CA library are listed. Then we describe how to add new functions to Ganith,
and finally it is shown how to make the entire system.

4.1 User Interface Implementation and File Structure

The user interface is an X client. It is written using the Athena Widget Toolkit. The general
style of interaction is similar to other Toolkit programs, which is to edit commands in some
text window, and then perform some mouse action, such as clicking a button widget. Thus
there is no explicit read-execute-print loop present in the user interface source code. The
various actions are localized in individual callback procedures associated with each button
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described in the user’s guide.
Now we describe the files in the user interface.

e ui.c
The user interface control structure, including the main procedure, is in this file.
The main procedure makes itself an X client and initializes the Toolkit. It creates
all the Ganith widgets, and attaches Callback procedures to each widget created. It
also creates the Lisp subprocess. After initialization, control passes to a subroutine
that multiplexes between several event sources, such as the X server, other Shastra
processes, and other local graphics servers. The only time any user interface code
is executed is when the user performs some action in a widget that has a callback
procedure attached to it.

e actions.c
Each command recognized by the Execute button of the user interface has a C
function, called an action procedure, bound to it. A table that maps command names
to action procedures is maintained by Ganith. This file contains code to implement
the action procedure table lookup and utility functions to help in argument parsing.

¢ cmdsl.c, cmds2.c
Both these files contain various action procedures.

¢ draw.c
A high-level device-independent graphics library is implemented in this file. This
library supports graphics objects which are aggregates of graphics primitives such as
point, line segment, polygon, etc.

o li.c
This file contains the C/Lisp inter-process communication procedures. There are
procedures to fork a new Lisp process, send data to the Lisp process, and receive
data from the Lisp process. All data communicated in either direction are formulated
Into strings whose format obey a certain protocol. This protocol is implemented in
li.c, and its Lisp counterpart in the the CA library code. The protocol simulates a
foreign-function call.

e hl_graphics.c
This file contains code to draw implicitly defined plane curves and space curves defined
by an implicit plane curve and a birational map.

o lists.c
This file contains code to maintain a global list of objects, a global list of windows,
and all the operations supported on these items.

e io.c
This file contains code to transfer objects between the user interface and the disk.
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In addition to the above files, there are various subdirectories that each implement a
certain module. We describe each module here. Each directory contains files used to build
a library with a name of the form “libXXX.a”. Each of these libraries is linked into Ganith.

Parametric/

This directory contains files used to build a C library called “libpar.a.” It implements
drawing routines for parametrically defined curves and surfaces, using constant or
adaptive (curvature-dependent) stepping.

Octree/

This directory contains files used to build a C library called “liboct.a.” It contains
routines for faceting an implicitly defined surface into polygons. The method used is
a recursive subdivision of space, called Octree Decomposition.

Polymath/

This directory contains files used to build a C library called “libpoly.a.” It contains
a set of simple polynomial arithmetic routines written in C. These routines include
parse, unparse, add, subtract, multiply, differentiate, and evaluate. They are used
throughout the user interface.

Roots/
This directory contains files used to build a C library called “libroots.a.” It contajns
a polynomial real zero finder.

Menu/
All the code to maintain and manipulate 0/1 and 0/co menus, as described in the
user’s guide, are contained here. A C library called “libmenu.a” is built.

Network/

The files here are used to build a C library called “libnet.a.” This library implements
communication with other Shastra programs, and the multiplexer subroutine invoked
by the user interface.

Shilp/
Consists of include files representing data structures of Ob Jects communicated over
the network by the SHILP-Shastra program.

Interpolate/
The files here pertain to the functions responsible for C'1 interpolation of points, curves
with normals using algebraic surfaces.

Queen/
The files here pertain to the functions responsible for C! smoothing interpolation of
polyhedra using quintic algebraic triangular patches.
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4.2 Computer Algebra Library Implementation

The CA library is implemented in a layered fashion. Procedures at a given level can use
procedures defined in any lower level. At the heart of the library is multivariate polynomial
manipulation.

All polynomials are represented in Recursive Canonical Form (RCF). In this form, a
polynomial in the variables z;,...,z, is represented either as a constant, or as a poly-
nomial in z, whose coefficients are (recursively) polynomials in the remaining variables
Z1,...,Zn—1. The variable z, is sometimes referred to as the main variable. A strength
of this form (for purposes of implementation) is that multivariates “look like” univariates,
making it easy to modify algorithms for univariate polynomials to handle multivariates.

The data structure used to represent RCF polynomials can be described as a variant
record in a PASCAL-like language. We assume the types number and symbol are predefined
with the obvious meanings. The keyword listof followed by a type name t denotes a
composite type that is a sequence of items of type t.

type rcf =
record
case constantp : boolean of
true : (constant : number);
false : (nonconstant : record

v : symbol; (* main variable *)
tl : listof term; (* term list *)
end);
end;
type term =
record
c: ref: (* term coefficient *)
e : integer; (* term exponent *)
end;

Now for some examples of this representation. Let items in a record be denoted by
enclosing them in “[“ and “|,” and let items in a list be denoted by enclosing them in “«
and “).” Then we have the following correspondences between polynomials and their RCF
representations:

3 ~» 3

22+1 = [2,([2,1],[1,0])]

—z2 -2y - 32y -4

[ya ([_2, 2] ’ [[:l:, ([1, _3])] ,1] ’ [[:L‘, ([2’ —1] ’ [O’ —4])] ’ O])]

RCF polynomials don’t have unique representations. For instance z? could be [z, (11,2])]
or [y, ([[z, ([1,2])],0))]. In the latter form z? is treated as a constant polynomial in y. Each
low-level procedure that takes multiple RCF polynomials arguments will operate correctly
only if the polynomials all contain the same variables, in the same order, i.e. they must
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be from some the same polynomial domain D [zy,...,2,]. Polynomials from the same
domain may be referred to as compatible polynomials. Higher-level procedures must make
polynomials conform to the appropriate variable set and ordering before using the low-level
routines. This approach is used for speed. Variable reordering is not a common operation
for “most” applications, hence it is made more expensive so more common operations can
be performed faster.

Constant coefficients may be rationals or numbers modulo a prime. In the latter case
constant arithmetic is performed in the appropriate finite field. This set of constants allows
implementations of modular algorithms to use the same functions for polynomial arithmetic
as non-modular algorithms.

We now describe the various layers and their files. Each layer, or level, has one directory
containing all its files. The layer “levell” is at present undefined.

o level2/
This level contains the “Polynomial Manipulation” layer. Polynomials are represented
in RCF form. The files are

o rcf_arith.lsp
This file contains the data structure for RCF polynomials and basic arithmetic
routines (add, subtract, multiply, divide, pseudo-divide).

e tcf_math.lsp
More operations for polynomials in RCF form: evaluate, interpolate, differenti-
ate, Chinese remainder.

o rcfio.lsp
Parsing and printing of RCF polynomials.

o rcf_poly.lsp
Non-arithmetical manipulation of RCF polynomials, such as coefficient extrac-
tion and variable ordering.

e misc.lsp
Some routines that don’t fit anywhere else.

o leveld/
This directory contains the “Low-Level Algebra” layer. The files are

o resultant.lsp
Modular and non-modular methods for Sylvester’s resultant; subresultant re-
mainder sequence calculation, univariate GCD.

o gcd.lsp
Multivariate GCD.

e param.lsp .
Rational parameterization of conics and higher dimensional hypersurfaces of de-
gree 2,



4 PROGRAMMER’S GUIDE 29

e wnh.lsp
Weierstrass Preparation, Newton Factorization, Hensel’s Lemma. This code has
been tested under Symbolics Common Lisp and has not yet been incorporated
under Ganith.

o leveld/
This directory contains the “Algebraic Geometry” layer. The files are

¢ solve.lsp
This file contains routines to solve systems of two equations in two or three
unknowns, using subresultant remainder sequences and birational maps.

e intersect.lsp
Routines that use solve.lsp (possibly repeatedly) to compute curve/curve and
surface/surface intersections.

e output.sp
This file implements the Lisp half of the inter-process protocol used in commu-
nicating with the user interface.

e ci.lsp
This file contains a stub for each exported function in the CA library, that is
accessible to C via the simulated foreign-function call.

e environ/
This directory contains the files for compiling lisp, and is the place where the loaded
lisp binary is stored. The files in this directory are

e make.lsp
Compilation instructions.

e env.lsp
Environmental features, such as memory allocation.

e init_ganith.Isp
A load file.

4.3 C Side Functions

We now list the important functions from the user interface, listed by the file or library it
belongs to. Within each listing, functions are grouped by functionality.

® ui.c
The following functions are X callbacks, and take the standard arguments. They
correspond to identically named buttons of the user interface.

AbortCallback(w_button, client_data, call_data)
AutoAxesCallback(w_button, client_data, call_data)
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AutoClearCallback(w_button, client_data, call_data)
AutoCullCallback(w_button, client_data, call_data)
AutoImpCallback(w_button, client_data, call_data)
AutoRedrawCallback(w_button, client_data, call_data)
AutoShadeCallback(w_button, client_data, call_data)
AutoWireCallback(w_button, client_data, call_data)
ClearCallback(w_button, client_data, call_data)
ColorsCallback(w_button, client_data, call_data)
DialogCallback(w_button, client_data, call_data)
DrawCurveCallback(w_button, client_data, call_data)
DrawSurfaceCallback(w_button, client_data, call_data)
ExecuteCallback(w_button, client_data, call_data)
GraphicsCallback(w_button, client_data, call_data)
HardcopyCallback(w_button, client_data, call_data)
HelpCallback(w_button, client_data, call_data)
InitCallback(w_button, client_data, call_data)
QuitCallback(w_button, client_data, call_data)
ReadCallback(w_button, client_data, call-data)
RedisplayCallback(w_button, client_data, call_data)
SaveCallback(w_button, client_data, call_data)
ZoomCallback(w_button, client_data, call_data)

The following functions are used for printing in the output buffer.

AppendOutput(s)
AppendQutputLine(s)
BeginConversation/()

Functions for drawing something into the current window.

DrawAxes()
DrawlImplicitSurface(s)
DrawParametricCurve(s)
DrawParametricSurface(s)

Functions for manipulating various state variables kept by ganith.

LoadGrState(pgs)
SaveGrState(pgs)
SetVars(xyz)
SetPVars(st)
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Some action procedures related to user interface state variables.

CurveWinUl(args)
SetPVarsUl(args)
SetVarsUl(args)

Utility functions.

NewString(s)
StrUpCase(str)
sopen

sgets

e actions.c
These functions handle action procedure lookup and command argument parsing.

GanithCommandHandler(cmd)
GanithGetArgs(r, n, st)
FreeArgs(argc, argv)

e cmdsl.c, cmds2.c
Action procedures from cmdsl.c, and a corresponding procedure that actually imple-
ments the functionality, without the wrapper for making a graphical ob ject, etc.

Intersect2e2d UI(args)
Intersect2e2d(cl, c2)
Intersect2e3dUlI(args)
Intersect2e3d(s1, s2)
Intersect3e3dUI(args)
Intersect3e3d(s1, s2, s3)

Action procedures from cmds2.c.

Compactify Ul(args)
Compactify(s, drew)
EliminateUl(args)
Param2dNvUI(args)
Realify2d UI(args)
Realify2d(s)
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o draw.c
Functions for creation and display of graphical objects (collections of graphics primi-
tives).

StartGrObjectDescription()
EndGrOb jectDescription()
DrawGrObject(pgo, orient, scale)
FreeGrObject(pgo)

Functions for drawing graphics primitives and optionally saving them into graphical
objects.

PointAbs(x, vy, z)

LineAbs(x0, y0, z0, x1, y1, z1)
LabelledPointAbs(x, y, z)
DrawPolygon(num_vertex, vertices, normals)
DrawColor(rgb)

Other functions for changing graphical objects.

RecolorGrObject(pgo)
InvertGrObject(pgo)

e li.c
Functions for starting up lisp, calling lisp, and receiving data returned from lisp.

InitializeLispInterface(host)
CallLispFunction(fn, argc, argv)
GetLispReturn(out_buf)

e hl_graphics.c
Functions for drawing implicitly defined plane and space curves, and setting curve
drawing parameters.

SetPlaneCurveParams(x-min, x_max, y_min, y_max)
DrawImplicitPlaneCurve(curve)
DrawImplicitSpaceCurve(pcurve, csl, cs0, sl, s2, a, b, e, €2)

o lists.c
Callbacks for the buttons from user interface.
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AutoSelectCallback(w_button, client_data, call_data)
DeleteObjectsCallback(w_button, client_data, call_data)
DeleteWindowsCallback(w_button, client_data, call_data)
DescribeOb jectsCallback(w_button, client_data, call_data)
InvertObjectsCallback(w_button, client_data, call_data)
RefineObjectsCallback(w_button, client_data, call_data)
RenameObjectCallback(w_button, client_data, call_data)
SaveObjectCallback(w_button, client_data, call_data)
SelectObjectsCallback(w_button, client.data, call_data)
Select Window Callback(w_button, client_data, call_data)
UnSelectObjectsCallback(w_button, client_data, call_.data)

Functions for manipulating windows and ob jects.

UIAddWindow()
UIAddObject(pgo, gt, neqns, equs, select)
UIDeleteOb ject(oid)
UIDeleteWindow(wid)
UlIDescribeObject(oid)
UlInvertObject(oid)
UIMakeWinCurrent(wid)
UIReadOb ject(file_prefix)
UIRedrawWindow(wid)
UIRedrawWindows(wids, n)
UIRefineObject(oid)
UIRenameObject(oid, new_name)
UIResetWindow(wid)
UlRetitleWindow(wid, current)
UIRotateWindow(wid, angle, axes)
UISaveObject(oid, file_prefix)
UIScaleWindow(wid, scale)
UlSelectObject(oid, wid)
UlSelect Window(wid)
UIUnSelectOb ject(oid, wid)
UIWinFromXS(xsid, pwid)

e io.c
Functions for reading and writing the three parts of ob jects to and from files.

ReadObjectEqns(pnvars, pvars, pneqns, peqns, fp)
ReadObjectPts(ppgo, fp)
ReadObjectSt(pgt, ppgs, fp)



PROGRAMMER’S GUIDE

ReadStringFile(fp, term)
SaveObjectEqns(po, fp)
SaveObjectPts(po, fp)
SaveObjectSt(po, fp)

e libpar.a
Functions for drawing parametric curves and surfaces.

DrawParamCurve(curve,is,fs,pp,delphi,min_step,max_step)
DrawParamSurface(surface,is,fs,it,ft,pp,delphi,min_step,max_step)

e liboct.a
A function for octree decomposition of an implicit surface.

OCtree(octree_info, equation)

¢ libpoly.a
Polynomial arithmetic and manipulation.

AddPoly(x,y)

ConformPoly(p1, p2)
ConformPolyToVars(vars, varnames, p)
CopyPoly (polyc)
CreateConstantPoly(vars, varnames, coeff)
CreateMonPoly(varname)
DestrPoly(deadpoly,terms)
DiffPoly(x,var)

EvalPoly(x,point)

ExpPoly(p, €)

MultPoly(x,y)

NegPoly(pospoly)

Parse(s)

Partials(x)

SubPoly(x,y)

UnParse(x)

e libroots.a
Polynomial real root finding.

CRealRoots(poly.s)

34
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¢ libmenu.a
Functions for creating and manipulating lists of strings, and popping them up as 0/1
or 0/0o0 menus.

MLAddEntries(mid,newlist,num)
MLAddMenu(pmid) _
MLChooseMany(mid, func)
MLChooseOne(mid, func)
MLDeleteEntries(mid, list, num)
MLDestroyMenu(mid)
MLFreeMenu(Menu,Size)
MLInit(xac, wgParent)
MLRetrieveMenu(mid, list, psize)

¢ libnet.a

Functions for making connections to other Shastra processes and multiplexing among
them.

mplexInit()
mplexRegisterChannel(fd,handler,arg)
mplexUnRegisterChannel(fd)

mplexMain (flushFunc)
mplexGetFilePtrs(fd,pInStream,pOutStream)

4.4 Lisp Side Functions

Now the important functions from the CA library are listed by file, and again grouped by
functionality.

e level2/

o rcf_arith.lsp

Functions for coefficient arithmetic, over the field of rational numbers or a fixed
finite field.

rcf-set-coefficient-modulus (p)
coeff+ (a b)

coeff- (a b)

coeff* (a b)

coeff/ (a b)

coeff-negate (a)

coeff(a e)
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Predicates on polynomials.

rcf-constant (poly)
rcf-zerop (poly)

Constructor and accessor functions for polynomial data structures (terms, term
lists, and polynomials).
make-term (e c)
term-e (term)
term-c (term)
make-terms (n)
make-tl (n terms)
tl-length (t1)
tl-terms (tl)
terms-ref (terms index)
make-rcf-nc (v tl)
ref-v (poly)
rcf-tl (poly)
rcf-ldcf (poly)
rcf-degree (poly)
rcf-degree-v (poly v)

Functions for arithmetic on RCF polynomials.
rcf-add (polyl poly2)
ref-subtract (polyl poly2)
rcf-negate (poly)
rcf-multiply (polyl poly2)
rcf-exponentiate (poly n)
rcf-divide (polyl poly2)
rcf-pseudo-divide (polyl poly2)
rcf-remainder (polyl poly2)
rcf-quotient (polyl poly2)
rcf-pseudo-quotient (polyl poly2)
rcf-pseudo-remainder (polyl poly2)

A few other polynomial operations.
rcf-reduce-coefficients (poly)
rcf-norm (poly)
rcf-max-norm (poly)

e rcf_math.lsp
Higher level math routines.
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rcf-evaluate (poly v val)

rcf-substitute (poly s list)

rcf-partial-differentiate (poly v)

rcf-interpolate (points vals var n)

rcf-make-linear-poly (var c)
rcf-chinese-remainder-constant-moduli (residues moduli n)
ref-primitive-part-1 (poly)

rcf-content-1 (poly)

rcf-realroots-of-univariate (inpoly)

¢ rcfiolsp
Functions for lexical analysis, parsing and printing of polynomials in RCF form,
from and to a string.

lex (str)
rcf-parse (str)
rcf-format (poly)

o rcf_poly.lsp
Functions for symbolic operations on polynomials.

rcf-make-monomial (var e c)
rcf-atom-to-poly (a)
rcf-var-order-< (vl v2)
rcf-var-order-> (v1 v2)
rcf-var-order-= (v1 v2)
rcf-vars (rcf)
rcf-reorder-mainvar (poly)
rcf-constant-term (poly)
rcf-coeff (poly var e)

¢ misc.Isp
Some utility functions.
make-simple-string (s)
make-adjustable-string ()
reset-random-state ()

o level3/

¢ tesultant.lsp
Functions for modular and non-modular calculation of resultants, subresultant

chains, etc.
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subresultant-coefficient-bound (poly1 poly?2 j)
subresultant-modular (polyl poly?2 j)
subresultant-prs (polyl poly2)
multivariate-resultant (polyl poly?2 j)
resultant (polyl poly2 j var)

¢ gcdlsp
Multivariate gcd computation and related functions.

rcf-ged (polyl poly2)
rcf-primitive-part (poly)
rcf-content (poly)

e param.lsp
Functions for parameterizing implicit curves and surfaces of low degree.

parameterize (poly vl pvl optionals)
parameterize-trivial (poly vl pvl)
parameterize-quadratic (poly vl pvl point)

o leveld/

e solve.lsp
Function to find solutions to system of polynomial equations, using resultant
calculations.

solve (equations)

¢ intersect.lsp
Functions for intersecting implicit curves and surfaces, using solve.

intersect2e2d (cl c2)
intersect2e3d (sl s2)

¢ output.lsp
Functions for putting arguments into the protocol format for data transfer be-
tween C and Lisp.
ganith-format (string args)
ganith-format-string (s)
Cl-return (1)
request-ui-computation (req args)
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e ci.sp
C interface stub functions for each exported facility of the Computer Algebra
library.

resultant-CI (polyl poly2 var)
eliminate-CI (polyl poly2 var)
intersect2e2d-CI (cl c2)
intersect2e3d-CI (sl s2)
intersect3e3d-CI (s1 s2 s3)
compactify-CI (spoly)
param2dNv-CI (poly)
realify2d-CI (poly)

setvars-CI (vl v2 v3)

® environ
There are no functions defined in the files of this directory.

4.5 Extension Interfaces

Ganith provides simple ways to extend its capabilities. These extensions are in the form of
commands that can be executed directly from the user-interface. A command always has
the form name(arg, ..., arg). The central idea behind the implementation of Ganith com-
mands is simple: one writes a routine that performs some action, then a simple mechanism
is used to link this routine, or action procedure to the command.

Whenever Execute is called, the text selection is matched against the pattern func(args).
If it does, the func part is looked up in the table, and its corresponding action procedure is
called with args (a string) as an argument. The action procedure may then interpret args
in any way it chooses.

In this section, we describe the C and Lisp extension mechanisms.

4.5.1 C Language Interface

The information presented in this section should be enough to enable a programmer to
rapidly add new functions to the Ganith user interface. The features described here are
the action procedure linkage mechanism, and how to create graphical objects that can be
displayed in the user interface.

Adding an Action Procedure. An action procedure must always take a string as an
argument and return void. By convention, action procedures must have names ending with
the letters “UL” Once an action procedure is defined, it must be declared in “actions.h”
and have a one-line entry made in the data structure “FunctionTable” in that file, along
with all the other action procedures. This entry consists of a pair (command name, action
procedure name). This is all: once this is done, executing the command from the user
interface will automatically invoke the corresponding action procedure.
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For example, suppose one wishes to define a new command called “fancy.” First, define
a procedure as follows:

void
FancyUI(args)
char *args;

{

}

Then, add the following declaration in “actions.h”:
extern void FancyUI();

and then insert the (name, procedure) pair into the look up table in the same file:

GanithFunct FunctionTable[] = {

{‘‘fancy’’, FancyUI},
};

Finally, if “fancy” takes multiple arguments, there are utilities in “actions.c” to assist
in command argument parsing; see the section “C Side Functions.”

Creating Graphical Objects. To display something on the user interface, the standard
way is to create a graphical object. Once a graphical object is created and entered into
the global list of objects, it can be manipulated by the user in any window. Hence, it is
suggested that any action procedure that wishes to do graphics follow the structure of the
following code fragment:

void
FancyUI(args)
char *args;
{
GrObject *pgo;
... /* argument processing and other computations */

pgo = StartGrObjectDescription();
... /* any number of graphics calls */
EndObjectDescription();

/* add the object to the global object table */
UIAddObject(pgo, ... );
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4.5.2 Lisp Language Interface

In this section, we describe how how to create Lisp functions that can be called by the
simulated foreign-function call facilities in the file “li.c,” e.g. “CallLispFunction().”

Again, the syntax is very simple. Suppose one has a lisp function “fancy,” that takes
some lisp data structures as arguments and returns some lisp data structures, and wants
to make this function accessible to C. Then, one must write a stub function named (by
convention) “fancy-CI” that takes the same number of arguments as “fancy” except that
each argument is a string. All that “fancy-CI” need do is to parse each argument into the
appropriate format needed by “fancy” and then call “fancy.” It must then convert each
return value of “fancy” into a string and use the Lisp function “Cl-return” to return these
strings to C, where they can be accessed by “GetLispReturn().”

Thus the simulated foreign-function interface is similar in syntax to a real foreign-
function interface, but it trades some efficiency for large gains in portability.

4.6 Building Ganith

For the latest instructions to build Ganith see the Ganith. README.Build file distributed
with the source code. Building instructions for the current ganith source code distribution is
as follows. It is assumed that the source code lies in a directory “.../src” that in turn contains
two directories “ui” and “lisp,” containing the C and Lisp parts respectively. Instructions
for each part are described separately.

4.6.1 Building the User Interface

Throughout the user interface, Imakefiles are used instead of Makefiles. This allows some
independence of directory locations for certain files such as X libraries. However, for various
architectures, separate Imakefiles are still needed; it is just that the Imakefiles differ much
less than corresponding Makefiles would. One could also maintain one complicated Imakefile
with several targets, one for each architecture.

Building the user interface consists of building each sub-library (described earlier), and
then building ganith from the ui directory. For each sub-library, enter its corresponding
directory, type “xmkmf” followed by “make.” It should build to completion.

When all sub-libraries are successfully compiled, the user interface binary is built likewise
by typing “xmkmf” and “make.” The appropriate Imakefile must be used; there are various
files named “Imakefile.arch” where the suffix “arch” denotes the architecture.

A shell script “MakeAll” does all the above steps, so all one really needs to do is to
install the correct Imakefile in the ui directory and run “MakeAll.”

4.6.2 Building the Lisp Binary

The lisp binary must always reside in “../lisp/environ/ganith.lisp” relative to the “ui” di-
rectory. To build ganith.lisp, enter the “lisp/environ” directory and start a lisp process.
Then load the file “make.lsp” which should convert each “.Isp” file into a “.0” file in each
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of the levelN directories. Now, quit Lisp and start a fresh one. Load “init_ganith.lsp” to
load all object files, and dump the running Lisp binary into a file “ganith.lisp.”

The file “make.lsp” depends on a function “cd” (change directory) being defined. The
“save binary” function will vary from Lisp to Lisp.

For Kyoto Common Lisp, the file “env.Isp” contains a definition of the “cd” command,
and the “save binary” function is simply called “save.” It takes the file name as an argument.
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